
Appendix

Appendix A: Forward Optimization Problem for Figure 1

Forward optimization problem for Figure 1. The FOP formulation used is shown in (2) below.

minimize
x1,x2

cos(w

1

+ w

2

u)x

1

+ sin(w

1

+ w

2

u)x

2

subject to (1 + w

2

u)x

1

� w

1

(1 + w

1

)x

2

� w

2

u

x

1

+ x

2

 1 + w

1

+ w

2

u

(2)

For a fixed u and weights w = (w

1

, w

2

) it is an LP. The observation x

obs

1

= (�0.625, 0.925) was
generated using u

1

= 1.0 with true parameters w = (�0.5,�0.2).

For illustrative clarity, the panels in Figure 1 depicting the specific feasible regions for {w
1

,w

2

,w

3

}
are slightly adjusted and stylized from the actual PLP (2), but are qualitatively representative.

Appendix B: Redundancy Among Target-Feasibility Constraints

Redundant constraints in (1a) are not problematic in principle. Still, removing redundant constraints
may help overall performance, either in terms of speed or numerical stability of the ‘outer’ solver. Here
we discuss strategies for automatically removing redundant constraints, depending on assumptions.
In this section, when we use x or x

i

it should be understood to represent some target xobs or xobs

i

.

Constraints that are equivalent. There may exist indices i and i

0 for which the corresponding
constraints a(u

i

,w)

T

x

i

 b(u

i

,w) and a(u

i

0
,w)

T

x

i

0  b(u

i

0
,w) are identical or equivalent. For

example, when a constraint is independent of u this often results in identical training targets x
i

and
x

i

0 that produce identical constraints. The situation for equality constraints is similar.

Constraints independent of w. If an individual constraint a(u,w)

T

x  b(u,w) is independent
of w then either:

1. a(u

i

)

T

x

i

 b(u

i

) for all i so the constraint can be omitted; or,
2. a(u

i

)

T

x

i

> b(u

i

) for some i so the (ILOP) formulation is infeasible due to model misspecifica-
tion, either in structural assumptions, or assumptions about noise.

The same follows for any equality constraint g(u,w)

T

x = h(u,w) that is independent of w. For
example, in our minimum-cost multi-commodity flow experiments, the flow conservation constraints
(equality) are independent of w and so are omitted from (1a) in the corresponding (ILOP) formulation.

Constraints affinely-dependent in w. Constraints may be affinely-dependent on parameters w.
For example, this is a common assumption in robust optimization [Zhen et al., 2018]. Let A(u,w)

and b(u,w) represent the constraints that are affinely dependent on w 2 RK . We can write

A(u,w) = A

0

(u) +

KX

k=1

w

k

A

k

(u) and b(u,w) = b

0

(u) +

KX

k=1

w

k

b

k

(u)

for some matrix-valued functions Ak

(·) and vector-valued functions bk

(·). It is easy to show that we
can then rewrite the constraints A(u,w)x  b(u,w) as ˜

A(u,x)w  ˜

b(u,x) where

˜

A(u,x) =

⇥
A

1

(u)x� b

1

(u) · · · A

K

(u)x� b

K

(u)

⇤

˜

b(u,x) = b

0

(u) �A

0

(u)x.

Similarly if G(u,w)x = h(u,w) are affine in w we can rewrite them as ˜

G(u,x)w =

˜

h(u,x). If
we apply these functions across all training samples i = 1, . . . , N , and stack their coefficients as

˜

A =

⇥
˜

A(u

i

,x

i

)

⇤
N

i=1

,

˜

b =

⇥
˜

b(u

i

,x

i

)

⇤
N

i=1

,

˜

G =

⇥
˜

G(u

i

,x

i

)

⇤
N

i=1

,

˜

h =

⇥
˜

h(u

i

,x

i

)

⇤
N

i=1

then the corresponding (ILOP) constraints (1a) reduce to a set of linear ‘outer’ constraints ˜

Aw  ˜

b

and ˜

Gw =

˜

h where ˜

A 2 RNM1⇥K

,

˜

b 2 RNM1
,

˜

G 2 RNM2⇥K

,

˜

h 2 RNM2 . These reformulated
constraint matrices are the system within which we eliminate redundancy in the affinely-dependent
case, continued below.

13

Equality constraints affinely-dependent in w. We can eliminate affinely-dependent equality
constraint sets by reparametrizing the (ILOP) search over a lower-dimensional space; this is what
we do for the experiments with equality constraints shown in Figure 8, although the conclusions do
not change with or without this reparametrization. To reparametrize the (ILOP) problem, compute a
Moore-Penrose pseudoinverse ˜

G

+ 2 RK⇥NM2 to get a direct parametrization of constrained vector
w in terms of an unconstrained vector w0 2 RK :

w(w

0
) =

˜

G

+

˜

h + (I� ˜

G

+

˜

G)w

0
. (3)

By reparametrizing (ILOP) in terms of w0 we guarantee ˜

Gw(w

0
) =

˜

h is satisfied and can drop
equality constraints from (1a) entirely. There are three practical issues with (3):

1. Constrained vector w only has K 0 ⌘ K � rank(

˜

G) degrees of freedom, so we would like to
re-parametrize over a lower-dimensional w0 2 RK

0
.

2. To search over w0 2 RK

0
we need to specify ˜

A

0 2 RNM1⇥K

0
and ˜

b

0 2 RNM1 such that
˜

A

0
w

0  ˜

b

0 is equivalent to ˜

Aw(w

0
)  ˜

b.
3. Given initial w

ini

2 RK we need a corresponding w

0
ini

2 RK

0
to initialize our search.

To address the first issue, we can let the final K �K

0 components of w0 2 RK in (3) be zero, which
corresponds to using a lower-dimensional w0 2 RK

0
. As shorthand let matrix P 2 RK⇥K

0
be

P ⌘ (I

K⇥K

� ˜

G

+

˜

G)I

K⇥K

0
= I

K⇥K

0 � (

˜

G

+

˜

G)

1:K,1:K

0

where I

K⇥K

0 denotes


I

K

0⇥K

0

0

(K�K

0
)⇥K

0

�
as in torch.eye(K, K’) and (G

+

G)

1:K,1:K

0 denotes the

first K 0 columns of K ⇥ K matrix G

+

G. Then we have w(w

0
) = G

+

h + Pw

0 where the full
dimension of w0 2 RK

0
matches the degrees of freedom in w subject to ˜

Gw =

˜

h and we have
˜

Gw(w

0
) =

˜

h for any choice of w0.

To address the second issue, simplifying ˜

Aw(w

0
)  ˜

b gives inequality constraints ˜

A

0
w

0  ˜

b

0 with
˜

A

0
=

˜

AP and ˜

b

0
=

˜

b� ˜

A

˜

G

+

˜

h.

To address the third issue we must solve for w0
ini

2 RK

0
in the linear system Pw

0
ini

= w

ini

� ˜

G

+

˜

h.
Since rank(P) = K

0 the solution exists and is unique.

Consider also the effect of this reparametrization when ˜

Gw =

˜

h is an infeasible system, for example
due to noisy observations or misspecified constraints. In that case searching over w0 automatically
restricts the search to w that satisfy ˜

Gw =

˜

h in a least squares sense, akin to adding an infinitely-
weighted k˜Gw � ˜

hk2 term to the (ILOP) objective.

Inequality constraints affinely-dependent in w. After transforming affinely-dependent inequality
constraints to ˜

A

0
w

0  ˜

b

0, detecting redundancy among these constraints can be as hard as solving an
LP [Telgen, 1983]. Generally, inequality constraint aT

j

w  b

j

is redundant with respect to Aw  b

if and only if the optimal value of the following LP is non-negative:

minimize
w

b

j

� a

T

j

w

subject to A{j0 6=j}w  b{j0 6=j}
(4)

Here a
j

is the jth row of A and A{j0 6=j} is all the rows of A except the jth. If the optimal value to (4)
is non-negative then it says “we tried to violate the j

th constraint, but the other constraints prevented
it, and so the jth constraint must be redundant.” However, Telgen [1983] reviews much more efficient
methods of identifying redundant linear inequality constraints, by analysis of basic basic variables in
a simplex tableau. Zhen et al. [2018] proposed a ‘redundant constraint identification’ (RCI) procedure
that is directly analogous to (4) along with another heuristic RCI procedure.

Constraints polynomially-dependent in w. Similar to the affinely-dependent case, when the
coefficients of constraints A(u,w)x  b(u,w) and G(u,w)x  h(u,w) are polynomially-
dependent on w, we can rewrite the constraints in terms of w. Redundancy among equality constraints
of the resulting system can be simplified by computing a minimal Gröbner basis [Cox et al., 2013],
for example by Buchberger’s algorithm which is a generalization of Gaussian elimination; see the
paper by Lim and Brunner [2012] for a review of Gröbner basis techniques applicable over a real

14

field. Redundancy among inequality constraints for nonlinear programming has been studied [Caron,
2009, Obuchowska and Caron, 1995]. Simplifying polynomial systems of equalities and inequalities
is a subject of semialgebraic geometry and involves generalizations of Fourier-Motzkin elimination.
Details are beyond the scope of this manuscript.

Appendix C: Proofs of Theorem 1 and Corollary 1

Degeneracy is often defined for vertices, but solutions returned by an interior point solver tend toward
the analytical center of the optimal face. We first define non-degeneracy for a face of an LP model,
following Tijssen and Sierksma [1998] and Sierksma and Tijssen [2003]. We then use this definition
to define non-degeneracy of a particular solution on the optimal face of an LP model.

Let F be a face of the polyhedron P . A constraint of P is binding on F if it is satisfied with equality
for every point of F . Let dim(F) and n denote the dimension of F and P respectively and bnd(F, P)

denote the number of constraints of P that are binding on F .
Definition 1 (Tijssen & Sierksma 1998). The degeneracy degree of a face F with respect to polyhe-
dron P is �(F, P) = bnd(F, P) + dim(F) � n.
Definition 2 (Tijssen & Sierksma 1998). A face F of polyhedron P is degenerate iff �(F, P) > 0,
and non-degenerate iff �(F, P) = 0.
Definition 3. Given an LP with feasible set P , an optimal solution x

⇤ is non-degenerate iff the
smallest face F containing x

⇤ is non-degenerate, i.e., �(F, P) = 0 for the smallest face with x

⇤ 2 F .

By these definitions, a solution on the relative interior of the optimal face may be non-degenerate,
even when other sub-faces of the optimal face (including vertices) are degenerate in the usual sense.

To assist the proof of Theorem 1, we first show that the following lemma is true.
Lemma 1. If x⇤ is a non-degenerate solution to an LP, then the constraints active at x⇤ are linearly
independent.

Proof. Let P denote the feasible set of the LP, and let F denote the smallest face containing
x

⇤ 2 Rn. Let {a
1

, . . . ,a

k

} denote the set of constraints binding on F , so that bnd(F, P) = k.
By non-degeneracy of x

⇤ we have �(F, P) = 0 and so k = n � dim(F). Since dim(F) +

rank{a
1

, . . . ,a

k

} = n must also hold, we have rank{a
1

, . . . ,a

k

} = k, i.e., the constraints binding
face F are of full rank.

Now consider whether a constraint a
k+1

can be active at x⇤ but not binding on F . Since a

k+1

is not
binding on F , it must be must be linearly independent from the constraints that are binding on F , i.e.,
rank{a

1

, . . . ,a

k

,a

k+1

} = k + 1. But if a
k+1

were also active at x⇤, this would imply the existence
of a face of P containing x

⇤ and having dimension n� k � 1. Since F has dimension n� k, this
would contradict our assumption that F is the smallest face containing x

⇤. Therefore {a
1

, . . . ,a

k

}
must comprise all constraints that are active on x

⇤, and they are linearly independent.

Proof of Theorem 1. The dual linear program associated with (LP) is

maximize
�, ⌫

b

T� + h

T⌫

subject to A

T� + G

T⌫ = c

�  0,

(DP)

where � 2 RM1
0

,⌫ 2 RM2 are the associated dual variables for the primal inequality and equality
constraints, respectively.

Since x

⇤ is optimal to (LP) and �⇤
,⌫⇤ are optimal to (DP), then (x

⇤
, �⇤

, ⌫⇤
) satisfy the KKT

conditions (written specialized to the particular LP form we use):

Ax  b

Gx = h

A

T� + G

T⌫ = c

�  0

D(�)(Ax� b) = 0

(KKT)

15

where D(�) is the diagonal matrix having � on the diagonal. The first two constraints correspond to
primal feasibility, the next two to dual feasibility and the last one specifies complementary slackness.
From here forward it should be understood that x,�,⌫ satisfy KKT even when not emphasized by ⇤.

As in the paper by Amos and Kolter [2017], implicitly differentiating the equality constraints in
(KKT) gives

Gdx = dh� dGx

A

T

d� + G

T

d⌫ = dc� dA

T�� dG

T⌫

D(�)Adx + D(Ax� b)d� = D(�)(db� dAx)

(DKKT)

where dc, dA, db, dG, dh are parameter differentials and dx, d�, d⌫ are solution differentials, all
having the same dimensions as the variables they correspond to. Because (KKT) is a second-order
system, (DKKT) is a system of linear equations. Because the system is linear, a partial derivative
such as @x

⇤
j

@bi
can be determined (if it exists) by setting db

i

= 1 and all other parameter differentials
to 0, then solving the system for solution differential dx

j

, as shown by Amos and Kolter [2017].

We can assume (KKT) is feasible in x,�,⌫. In each case of the main proof it will be important to
characterize conditions under which (DKKT) is then feasible in dx. This is because, if (DKKT) is
feasible in at least dx, then by substitution we have

c

T

dx = (A

T� + G

T⌫)

T

dx

= �T

Adx + ⌫T

Gdx

= �T

(db� dAx) + ⌫T

(dh� dGx)

(5)

and this substitution is what gives the total derivatives their form. In (5) the substitution �T

Adx =

�T

(db� dAx) holds because x,� feasible in (KKT) implies �
i

< 0) A

i

x� b

i

= 0 in (DKKT),
where A

i

is the ith row of A. Whenever dx is feasible in (DKKT) we have �
i

A

i

dx = �

i

(db

i

�dA

i

x)

for any �

i

 0, where dA

i

is the i

th row of differential dA.

Note that (5) holds even if (DKKT) is not feasible in d� and/or d⌫. In other words, it does not
require the KKT point (x

⇤
,�⇤

,⌫⇤
) to be differentiable with respect to �⇤ and/or ⌫⇤.

Given a KKT point (x

⇤
,�⇤

,⌫⇤
) let I,J ,K be a partition of inequality indices {1, . . . ,M

1

} where

I = { i : �

⇤
i

< 0, A

i

x

⇤
= b

i

}
J = { i : �

⇤
i

= 0, A

i

x

⇤
< b

i

}
K = { i : �

⇤
i

= 0, A

i

x

⇤
= b

i

}

and the corresponding submatrices of A are AI ,AJ ,AK. Then (DKKT) in matrix form is
2

6664

G 0 0 0 0

D(�I)AI 0 0 0 0

0 0 D(AJx� bJ) 0 0

0 0 0 0 0

0 A

T

I A

T

J A

T

K G

T

3

7775

2

6664

dx

d�I
d�J
d�K
d⌫

3

7775
=

2

6664

dh� dGx

dbI � dAIx
0

0

dc� dA

T�� dG

T⌫

3

7775
(6)

The pattern of the proof in each case will be to characterize feasibility of (6) in dx and then apply (5)
for the result.

Evaluating @z

@c

. Consider @z

@cj
= x

obs

j

� x

⇤
j

� c

T

@x

⇤

@cj
. To evaluate the cT @x

⇤

@cj
term, set dc

j

= 1 and
all other parameter differentials to 0. Then the right-hand side of (6) becomes

2

6664

G 0 0 0 0

D(�I)AI 0 0 0 0

0 0 D(AJx� bJ) 0 0

0 0 0 0 0

0 A

T

I A

T

J A

T

K G

T

3

7775

2

6664

dx

d�I
d�J
d�K
d⌫

3

7775
=

2

6664

0

0

0

0

1

j

3

7775
(7)

16

where 1j denotes the vector with 1 for component j and 0 elsewhere. System (7) is feasible in dx (not
necessarily unique) so we can apply (5) to get cT @x

⇤

@cj
= c

T

dx = �T

(0� 0x) + ⌫T

(0� 0x) = 0.
The result for @z

@c

then follows from c

T

@x

⇤

@c

= 0.

Evaluating @z

@h

. Consider @z

@hi
= �c

T

@x

⇤

@hi
. Set dh

i

= 1 and all other parameter differentials to 0.
Then the right-hand side of (6) becomes

2

6664

G 0 0 0 0

D(�I)AI 0 0 0 0

0 0 D(AJx� bJ) 0 0

0 0 0 0 0

0 A

T

I A

T

J A

T

K G

T

3

7775

2

6664

dx

d�I
d�J
d�K
d⌫

3

7775
=

2

6664

1

i

0

0

0

0

3

7775
(8)

Since x⇤ is non-degenerate in the sense of Definition 3, then there are at most D active constraints (in-

cluding equality constraints) and by Lemma 1 the rows of

G

AI

�
are also linearly independent. Since

active constraints are linearly independent, system (8) is feasible in dx across all i 2 {1, . . . ,M
2

}.
We can therefore apply (5) to get cT @x

⇤

@hi
= c

T

dx = �T

(0� 0x) + ⌫T

(1

i � 0x) = ⌫

i

. The result
for @z

@h

then follows from c

T

@x

⇤

@h

= ⌫⇤T .

Evaluating @z

@b

. Consider @z

@bi
= �c

T

@x

⇤

@bi
. Set db

i

= 1 and all other parameter differentials to 0.
For i 2 I the right-hand side of (6) becomes

2

6664

G 0 0 0 0

D(�I)AI 0 0 0 0

0 0 D(AJx� bJ) 0 0

0 0 0 0 0

0 A

T

I A

T

J A

T

K G

T

3

7775

2

6664

dx

d�I
d�J
d�K
d⌫

3

7775
=

2

6664

0

�

i

1

i

0

0

0

3

7775
(9)

Since x

⇤ is non-degenerate, then system (9) is feasible in dx for all i 2 I by identical reasoning
as for @z

@hi
. For i 2 J [K the right-hand side of (6) is zero and so the system is feasible in dx.

System (9) is therefore feasible in dx across all i 2 {1, . . . ,M
1

}. We can therefore apply (5) to
get cT @x

⇤

@bi
= c

T

dx = �T

(1

i � 0x) + ⌫T

(0 � 0x) = �

i

. The result for @z

@b

then follows from
c

T

@x

⇤

@b

= �⇤T .

Evaluating @z

@G

. Consider @z

@Gij
= �c

T

@x

⇤

@Gij
. Set dG

ij

= 1 and all other parameter differentials to
0. Then the right-hand side of (6) becomes

2

6664

G 0 0 0 0

D(�I)AI 0 0 0 0

0 0 D(AJx� bJ) 0 0

0 0 0 0 0

0 A

T

I A

T

J A

T

K G

T

3

7775

2

6664

dx

d�I
d�J
d�K
d⌫

3

7775
=

2

6664

�x

j

1

i

0

0

0

�⌫

i

1

j

3

7775
(10)

Since x⇤ is non-degenerate, then (10) is feasible in dx for all i 2 {1, . . . ,M
2

} and j 2 {1, . . . , D} by
same reasoning as @z

@h

. Applying (5) gives cT @x

⇤

@Gij
= c

T

dx = �T

(0�0x)+⌫T

(0�1

ij

x) = �⌫

i

x

j

where 1

ij is the M

2

⇥ D matrix with 1 for component (i, j) and zeros elsewhere. The result for
@z

@G

then follows from c

T

@x

⇤

@G

= �⌫⇤
x

⇤T where we have slightly abused notation by dropping the
leading singleton dimension of the 1 ⇥M

2

⇥D Jacobian.

17

Evaluating @z

@A

. Consider @z

@Aij
= �c

T

@x

⇤

@Aij
. Set dA

ij

= 1 and all other parameter differentials to
0. Then the right-hand side of (6) becomes

2

6664

G 0 0 0 0

D(�I)AI 0 0 0 0

0 0 D(AJx� bJ) 0 0

0 0 0 0 0

0 A

T

I A

T

J A

T

K G

T

3

7775

2

6664

dx

d�I
d�J
d�K
d⌫

3

7775
=

2

6664

0

�x

j

1

i

0

0

��

i

1

j

3

7775
(11)

Since x

⇤ is non-degenerate, then by similar arguments as @z

@b

and @z

@G

(11) is feasible in dx for all
i 2 {1, . . . ,M

1

} and j 2 {1, . . . , D} and the result for @z

@A

follows from c

T

@x

⇤

@G

= ��⇤
x

⇤T .

Proof of Corollary 1. The result for @z

@c

is direct. In linear programming, Tijssen and Sierksma [1998]
showed that the existence of a non-degenerate primal solution x

⇤ implies uniqueness of the dual
solution �⇤

,⌫⇤ so the result for @z

@b

and @z

@h

follows directly. If a non-degenerate solution x

⇤ is unique
then matrices �⇤

x

⇤T and ⌫⇤
x

⇤T are both unique, regardless of whether c = 0. In the other direction,
if �⇤

x

⇤T and ⌫⇤
x

⇤T are both unique, consider two mutually exclusive and exhaustive cases: (1)
when either �⇤ 6= 0 or ⌫⇤ 6= 0 this would imply x

⇤ unique, and (2) when both �⇤
= 0 and ⌫⇤

= 0

in (DP) this would imply c = 0, i.e. the primal linear program (LP) is merely a feasibility problem.
The result for @z

@A

and @z

@G

then follows.

Appendix D: Additional Results

Figure 7 shows the task of learning (c, A, b) with a K=6 dimensional parametrization w and 20
training observations for a D dimensional decision space x with M

1

inequality constraints. The five
different considered combinations of D and M

1

are shown in the figure. The results over all problem
sizes are similar to the case of D = 10,M

1

= 80 shown in the main paper: RS fails; COBYLA
‘succeeds’ on ~25% of instances; SQP succeeds on ~60–75%. As expected, instances with higher
D, are more challenging as we observe that the success rate decreases slightly. The success curve
of SQP

bprop

slightly lags those of SQP
impl

and SQP
dir

due to the overhead of backpropagating
through the steps of the interior point solver. However, this computational advantage of SQP

impl

and
SQP

dir

over SQP
bprop

is less obvious on LP instances with D = 10. For larger LP instances, the
overall framework spends significantly more computation time on other components (e.g., solving
the forward problem, solving (SQP)). Thus, the advantage of SQP

impl

and SQP
dir

in computing
gradients is less significant in the overall performance. The SQP

cvx

implementation works better
than COBYLA for most instances, but struggles to converge to the requested tolerance when more
constraints are added (M

1

= 80, shown in Figure 3).

Figure 8 shows instances with equality constraints, where G and h also need to be learned, and the
performance is similar. Note that RS failed to find a feasible w in all instances, caused mainly by the
failure to satisfy the equality target feasibility constraints in (1a). Recall that a feasible w means both
(1a) and (1b) are satisfied.

Figure 9 shows the performance on LPs where the dimensionality of w is higher. We observe that
COBYLA performs poorly, SQP

cvx

makes progress but is slow, and the remaining SQP methods
succeed quickly on all instances. COBYLA’s poor performance is caused by the finite-difference
approximation technique used in COBYLA which is inefficient in high dimension w space. This
result demonstrates the importance of using gradient-based methods in high dimensional (in w) NLP.

Sensitivity of results to parameter settings The specific results of our experiments can vary slightly
with certain choices, but the larger conclusions do not change: the gradient-based SQP methods
all perform similarly, and they consistently out-perform non-gradient-based methods, especially for
higher-dimensional search.

Specific choices of parameter settings include the numerical tolerance used in the forward solve (e.g.
10

�5 vs 10

�8), algorithm termination tolerances of the COBYLA and SLSQP, and PyTorch version
(v1.6 vs. nightly builds). However, we did see a degradation in “success rates” when tolerance on the
forward problem was configured to be weak (10

�3), which may be caused by unstable or inaccurate
gradients. The running time of the SQP

cvx

forward solver, scs, can be very sensitive to the numerical

18

(i) D=2,M1 =4

(ii) D=2,M1 =8

(iii) D=2,M1 =16

(iv) D=10,M1 =20

(v) D=10,M1 =80

Figure 7: A comparison on synthetic PLP instances as in Figure 3 but with other choices of deci-
sion variable dimension D and inequality constraints M

1

. Shown are 100 trials, where each trial
includes 20 training and 20 testing instances. After training, if an instance u

i

(of 20) for which
the LP c(u

i

,w),A(u

i

,w),b(u

i

,w) is infeasible or unbounded, then we report a loss `(w) = 100

arbitrarily and consider these to be failures. In the M

1

=80 case, SQP
cvx

tends to fail for one of two
reasons: its forward solver (scs) is slow to converge to the requested tolerance of 10

�8, or cvxpylayers
raises an exception on encountering any infeasible/unbounded instance (whereby we return ` = 100);
the latter behaviour is a consequence of how cvxpylayers handles errors, not a fundamental limitation.

19

Figure 8: Same as Figure 7(v) but with the additional task of learning parametric equality constraints.
Specifically the experiment is configured with with decision variable dimension D=10, number of
inequalities M

1

=80, and number of equalities M
2

=2.

Figure 9: A comparison on synthetic LP instances (D=10, M
1

=80). Shown is the probability of
achieving zero AOE training loss over time (curves), along with final loss (box plots). Each mark
denotes one of 100 trials (different instances), each with one training point. Note, in this experiment
we aim to learn LP coefficients directly, i.e., w comprises all LP coefficients, and the LP coefficients
do not depend on u. Therefore, there is only a single target xobs for learning w, and no testing data.

tolerance requested. For example, using the default SciPy tolerance of 10

�8 and max_iter= 10

8,
the scs solver could be >100x slower than the case of using its default settings of tolerance 10

�3 and
max_iter= 2500.

In general, the experimental results of SQP
bprop

, SQP
impl

and SQP
dir

are largely insensitive to
specific parameter settings. For example, we tried using strict tolerances and different trust region
sizes for COBYLA to encourage the algorithm to search more aggressively, but these made only a
small improvement to performance; these small improvements are represented in our results. We also
observed that, although the homogeneous solver works slightly better when we use a strict numerical
tolerance, there is no major difference in the learning results.

Appendix E: Parametric Linear Program for Figure 6

Forward optimization problem for Figure 6. The FOP formulation used is shown in (12) below.

minimize
x1,x2

� w

1

u

1

x

1

� w

2

u

2

x

2

subject to x

1

+ x

2

 max(1, u

1

+ u

2

)

0  x

1

 1

0  x

2

 1

(12)

The two training points are generated with w = (1, 1) at u
1

= (1,

1

3

) and u

2

= (1,

1

3

) with testing
point u

test

= (

1

2

,

5

6

). PLP learning was initialized at w
ini

= (4, 1) and the SQP
impl

algorithm
returned w

learned

⇡ (

35

9

,

4

3

), used to generate the learned decision map depicted in the figure.

20

	Introduction
	Related Work
	Methodology
	Inverse Optimization as PLP Model Fitting
	Learning Linear Programs with Sequential Quadratic Programming
	Computing Loss Function and its Gradients

	Experiments
	Discussion
	Conclusion

