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Abstract

We propose a flexible gradient-based framework for learning linear programs from
optimal decisions. Linear programs are often specified by hand, using prior knowl-
edge of relevant costs and constraints. In some applications, linear programs must
instead be learned from observations of optimal decisions. Learning from optimal
decisions is a particularly challenging bilevel problem, and much of the related
inverse optimization literature is dedicated to special cases. We tackle the general
problem, learning all parameters jointly while allowing flexible parametrizations
of costs, constraints, and loss functions. We also address challenges specific to
learning linear programs, such as empty feasible regions and non-unique optimal
decisions. Experiments show that our method successfully learns synthetic linear
programs and minimum-cost multi-commodity flow instances for which previous
methods are not directly applicable. We also provide a fast batch-mode PyTorch
implementation of the homogeneous interior point algorithm, which supports
gradients by implicit differentiation or backpropagation.

1 Introduction
In linear programming, the goal is to make an optimal decision given a linear objective and subject to
linear constraints. Traditionally, a linear program is designed using knowledge of relevant costs and
constraints. More recently, methodologies that are data-driven have emerged.

Inverse optimization (IO) [Burton and Toint, 1992, Troutt, 1995, Ahuja and Orlin, 2001], in contrast,
learns linear programs from observations of optimal decisions rather than of the costs or constraints
themselves. The IO approach is particularly important when observations come from optimizing
agents (e.g., experts [Chan et al., 2014, Bärmann et al., 2017] or customers [Dong et al., 2018]) who
make near-optimal decisions with respect to their internal (unobserved) optimization models.

From a machine learning perspective, the IO setup is as follows: we are given feature vectors
{u

1

,u

2

, . . . ,u

N

} representing conditions (e.g., time, prices, weather) and we observe the corre-
sponding decision targets {xobs

1

,x

obs

2

, . . . ,x

obs

N

} (e.g., quantities, actions) determined by an unknown
optimization process, which in our case is assumed linear. We view IO as the problem of inferring a
constrained optimization model that gives identical (or equivalent) decisions, and which generalizes
to novel conditions u. The family of candidate models is assumed parametrized by some vector w.

Learning a constrained optimizer that makes the observations both feasible and optimal poses multiple
challenges that have not been explicitly addressed. For instance, parameter setting w

1

in Figure 1
makes the observed decision x

obs

1

optimal but not feasible, w
2

produces exactly the opposite result,
and some w values (black-hatched region in Figure 1) are not even admissible because they will result
in empty feasible regions. Finding a parameter such as w

3

that is consistent with the observations
can be difficult. We formulate the learning problem in a novel way, and tackle it with gradient-based
methods despite the inherent bilevel nature of learning. Using gradients from backpropagation or
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Figure 1: A depiction of our constrained learning formulation. We learn a parametric linear program
(PLP), here parametrized by a feature u and weights w = (w

1

, w

2

) and using a single training
observation (u

1

,x

obs

1

). The PLP corresponding to three parameter settings w
1

,w

2

,w

3

are shown,
with the cost vector and feasible region corresponding to u

1

emphasized. The goal of learning is to
find solutions such as w⇤

= w

3

. (See Appendix for the specific PLP used in this example.)

implicit differentiation, we successfully learn linear program instances of various sizes as well as
learning the costs and right-hand coefficients of a minimum-cost multi-commodity flow problem.

Parametric Linear Programs In a linear program (LP), the values of decision variables x 2 RD

must be determined, whereas the cost coefficients c 2 RD, inequality constraint coefficients
A 2 RM1⇥D, b 2 RM1 , and equality constraint coefficients G 2 RM2⇥D, h 2 RM2 are all treated
as constants. In a parametric linear program (PLP), the coefficients (and therefore the optimal
decisions) may depend on features u. In order to infer a PLP from data, one may define a suitable
hypothesis space parametrized by w. We refer to this hypothesis space as the form of our forward
optimization problem (FOP).

min

x

c

T

x

s.t. Ax  b

Gx = h

(LP)
min

x

c(u)

T

x

s.t. A(u)x  b(u)

G(u)x = h(u)

(PLP)
min

x

c(u,w)

T

x

s.t. A(u,w)x  b(u,w)

G(u,w)x = h(u,w)

(FOP)

A choice of hypothesis w in (FOP) identifies a PLP, and a subsequent choice of conditions u

identifies an LP. The LP can then be solved to yield an optimal decision x

⇤ under the model. These
predictions of optimal decisions can be compared to observations at training time, or can be used to
anticipate optimal decisions under novel conditions u at test time.

2 Related Work

Inverse optimization IO has focused on developing optimization models for minimally adjusting
a prior estimate of c to make a single feasible observation x

obs optimal [Ahuja and Orlin, 2001,
Heuberger, 2004] or for making x

obs minimally sub-optimal to (LP) without a prior c [Chan et al.,
2014, 2019]. Recent work [Babier et al., 2020, Shahmoradi and Lee, 2020] develops exact approaches
for imputing non-parametric c given multiple potentially infeasible solutions to (LP), and to finding
non-parametric A and/or b [Chan and Kaw, 2020, Ghobadi and Mahmoudzadeh, 2020]. In the
parametric setting, joint estimation of A and c via a maximum likelihood approach was developed by
Troutt et al. [2005, 2008] when only h is a function of u. Saez-Gallego and Morales [2017] jointly
learn c and b which are affine functions of u. Bärmann et al. [2017, 2020] and Dong et al. [2018]
study online versions of inverse linear and convex optimization, respectively, learning a sequence of
cost functions where the feasible set for each observation are assumed to be fully-specified. Tan et al.
[2019] propose a gradient-based approach for learning costs and constraints of a PLP, inspired by
deep learning: they ‘unroll’ a barrier interior point solver and backpropagate through its steps. For
certain loss functions, their formulation is susceptible to the situation depicted in Figure 1 as ‘w

1

’.

In inverse convex optimization, the focus has been on imputing parametric cost functions while
assuming that the feasible region is known for each u

i

[Keshavarz et al., 2011, Bertsimas et al., 2015,
Aswani et al., 2018, Esfahani et al., 2018], usually under assumptions of a convex set of admissible u,
the objective and/or constraints being convex in u, and uniqueness of the optimal solution for every u.
Furthermore, since the feasible region is fixed for each u, it is assumed to be non-empty and bounded,
unlike for our work. Although our work focuses on linear programming, it is otherwise substantially
more general, allowing for learning of all cost and constraint coefficients simultaneously with no
convexity assumptions related to u, no restrictions on the existence of multiple optima, and explicit
handling of empty or unbounded feasible regions.
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Optimization task-based learning Kao et al. [2009] introduces the concept of directed regression,
where the goal is to fit a linear regression model while minimizing the decision loss, calculated with
respect to an unconstrained quadratic optimization model. Donti et al. [2017] use a neural network
approach to minimize a task loss which is calculated as a function of the optimal decisions in the
context of stochastic programming. Elmachtoub and Grigas [2020] propose the “Smart Predict-then-
Optimize” framework in which the goal is to predict the cost coefficients of a linear program with a
fixed feasible region given past observations of features and true costs, i.e., given (u

i

, c

i

). Note that
knowing c

i

in this case implies we can solve for x⇤
i

, so our framework can in principle be applied in
their setting but not vice versa. Our framework is still amenable to more ‘direct’ data-driven prior
knowledge: if in addition to (u

i

,x

⇤
i

) we have partial or complete observations of c
i

or of constraint
coefficients, regressing to these targets can easily be incorporated into our overall learning objective.

Structured prediction In structured output prediction [Taskar et al., 2005, BakIr et al., 2007,
Nowozin et al., 2014, Daumé III et al., 2015], each prediction is x

⇤ 2 arg min

x2X (u)

f(x,u,w)

for an objective f and known output structure X (u). In our work the structure is also learned,
parametrized as X (u,w) = {x | A(u,w)x  b(u,w), G(u,w)x = h(u,w) }, and the objective
is linear f(x,u,w) = c(u,w)

T

x. In structured prediction the loss ` is typically a function of x⇤

and a target x̄, whereas in our setting it is important to consider a parametric loss `(x⇤
, x̄,u,w).

Differentiating through optimization Our work involves differentiating through an LP. Bengio
[2000] proposed gradient-based tuning of neural network hyperparameters and, in a special case,
backpropagating through the Cholesky decomposition computed during training (suggested by
Léon Bottou). Stoyanov et al. [2011] proposed backpropagating through a truncated loopy belief
propagation procedure. Domke [2012, 2013] proposed automatic differentiation through truncated
optimization procedures more generally, and Maclaurin et al. [2015] proposed a similar approach for
hyperparameter search. The continuity and differentiability of the optimal solution set of a quadratic
program has been extensively studied [Lee et al., 2006]. Amos and Kolter [2017] recently proposed
integrating a quadratic optimization layer in a deep neural network, and used implicit differentiation
to derive a procedure for computing parameter gradients. As part of our work we specialize their
approach, providing an expression for LPs. Even more general is recent work on differentiating
through convex cone programs [Agrawal et al., 2019], submodular optimization [Djolonga and
Krause, 2017], and arbitrary constrained optimization [Gould et al., 2019]. There are also versatile
perturbation-based differentiation techniques [Papandreou and Yuille, 2011, Berthet et al., 2020].

3 Methodology

Here we introduce our new bilevel formulation and methodology for learning parametric linear
programs. Unlike previous approaches (e.g., Aswani et al. [2018]), we do not transform the problem
to a single-level formulation, and so we do not require simplifying assumptions. We propose a
technique for tackling our bilevel formulation with gradient-based non-linear programming methods.

3.1 Inverse Optimization as PLP Model Fitting

Let {(u
i

,x

obs

i

)}N
i=1

denote the training set. A loss function `(x

⇤
,x

obs

,u,w) penalizes discrepancy
between prediction x

⇤ and target xobs under conditions u for the PLP hypothesis identified by w.
Note that if xobs

i

is optimal under conditions u

i

, then x

obs

i

must also be feasible. We therefore
propose the following bilevel formulation of the inverse linear optimization problem (ILOP):

minimize
w2W

1

N

P
N

i=1

`(x

⇤
i

,x

obs

i

,u

i

,w) + r(w) (ILOP)

subject to A(u

i

,w)x

obs

i

 b(u

i

,w), G(u

i

,w)x

obs

i

= h(u

i

,w), i = 1, . . . , N (1a)

x

⇤
i

2 arg min

x

⇢
c(u

i

,w)

T

x

����
A(u

i

,w)x  b(u

i

,w)

G(u

i

,w)x = h(u

i

,w)

�
, i = 1, . . . , N (1b)

where r(w) denotes an optional regularization term such as r(w) = kwk2 and W ✓ RK denotes
additional problem-specific prior knowledge, if applicable (similar constraints are standard in the IO
literature [Keshavarz et al., 2011, Chan et al., 2019]). The ‘inner’ problem (1b) generates predictions
x

⇤
i

by solving N independent LPs. The ‘outer’ problem tries to make these predictions consistent
with the targets x⇤

i

while also satisfying target feasibility (1a).
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Difficulties may arise, in principle and in practice. An inner LP may be infeasible or unbounded
for certain w 2 W , making ` undefined. Even if all w 2 W produce feasible and bounded LPs,
an algorithm for solving (ILOP) may still attempt to query w /2 W . The outer problem as a whole
may be subject to local minima due to non-convex objective and/or constraints, depending on the
problem-specific parametrizations. We propose gradient-based techniques for the outer problem
(Section 3.2), but d`

dw

may not exist or may be non-unique at certain u

i

and w (Section 3.3).

Nonetheless, we find that tackling this formulation leads to practical algorithms. To the best of our
knowledge, our proposed (ILOP) formulation is the most general model of inverse linear parametric
programming. The formulation subsumes cases that are non-parametric, or parametric only in u, that
have received much interest in the IO literature. It has not been proposed in work focused purely on
differentiation, such as that of Amos and Kolter [2017] or of Agrawal et al. [2019].

Choice of loss function The IO literature considers decision error, which penalizes difference in
decision variables, and objective error, which penalizes difference in optimal objective value [Babier
et al., 2020]. A fundamental issue with decision error, such as squared decision error (SDE)
`(x

⇤
,x

obs

) =

1

2

kx⇤
i

� x

obs

i

k2, is that when x

⇤ is non-unique the loss is also not unique; this issue
was also a motivation for the “Smart Predict-then-Optimize” paper [Elmachtoub and Grigas, 2020].
An objective error, such as absolute objective error (AOE) `(x⇤

,x

obs

, c) = |cT (x

obs

i

� x

⇤
i

)|, is
unique even if x⇤ is not. We evaluate AOE using imputed cost c(u,w) during training; doing so
requires at least some prior knowledge W to avoid trivial cost vectors, as in Keshavarz et al. [2011].

Target feasibility Constraints (1a) explicitly enforce target feasibility Ax

obs

i

 b, Gx

obs

i

= h in
any learned PLP. The importance of these constraints can be understood through Figure 1, where
hypothesis w

1

achieves AOE=0 since x

obs and x

⇤ are on the same hyperplane, despite x

obs being
infeasible. Chan et al. [2019] show that if the feasible region is bounded then for any infeasible x

obs

there exists a cost vector achieving AOE=0.

Unbounded or infeasible subproblems Despite (1a), an algorithm for solving (ILOP) may query
a w for which an LP in (1b) is itself infeasible or unbounded, in which case a finite x⇤ is not defined.
We can extend (ILOP) to explicitly account for these special cases (by penalizing a measure of
infeasibility [Murty et al., 2000], and penalizing unbounded directions when detected) but in our
experiments simply evaluating the (large) loss for an arbitrary x

⇤ returned by our interior point solver
worked nearly as well at avoiding such regions of W , so we opt to keep the formulation simple.

Noisy observations Formulation (ILOP) can be extended to handle measurement noise. For
example, individually penalized non-negative slack variables can be added to the right-hand sides
of (1a) as in a soft-margin SVM [Cortes and Vapnik, 1995]. Alternatively, a norm-penalized group of
slack variables can be added to each x

obs

i

on the left-hand side of (1a), softening targets in decision
space. We leave investigation of noisy data and model-misspecification as future work.

3.2 Learning Linear Programs with Sequential Quadratic Programming

We treat (ILOP) as a non-linear programming (NLP) problem, making as few assumptions as possible.
We focus on sequential quadratic programming (SQP), which aims to solve NLP problems iteratively.
Given current iterate w

k, SQP determines a search direction �k and then selects the next iterate
w

k+1

= w

k

+ ↵�k via line search on ↵ > 0. Direction �k is the solution to a quadratic program.

minimize
w

f(w) minimize� rf(w

k

)

T � + �TBk�

subject to g(w)  0 (NLP) subject to rg(w

k

)

T � + g(w

k

)  0 (SQP)
h(w) = 0 rh(w

k

)

T � + h(w

k

) = 0

Each instance of subproblem (SQP) requires evaluating constraints1 and their gradients at wk,
as well as the gradient of the objective. Matrix B

k approximates the Hessian of the Lagrange
function for (NLP), where B

k+1 is typically determined from the gradients by a BFGS-like update.
Our experiments use an efficient variant called sequential least squares programming (SLSQP)
[Schittkowski, 1982, Kraft, 1988] which exploits a stable LDL factorization of B.

The NLP formulation of (ILOP) has NM

1

inequality and NM

2

equality constraints from (1a):

g(w) =

⇥
A(u

i

,w)x

obs

i

� b(u

i

,w)

⇤
N

i=1

, h(w) =

⇥
G(u

i

,w)x

obs

i

� h(u

i

,w)

⇤
N

i=1

,

1NLP constraint vector h(w) is not the same as FOP right-hand side h(u,w), despite same symbol.
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Figure 2: An illustration of how SLSQP and COBYLA solve the learning problem in Figure 1 for
the AOE and SDE loss functions. Each algorithm first tries to satisfy the NLP constraints g(w)  0

(triangle-shaped feasible region in w-space), then makes progress minimizing f(w).

plus any constraints needed to enforce w 2 W . The NLP constraint residuals and their gradients
rg(w),rh(w) can be directly evaluated. Evaluating f(w) =

1

N

P
N

i=1

`(x

⇤
i

,x

obs

i

,u

i

,w) + r(w)

requires solving each LP in (1b). Finally, evaluating rf(w) requires evaluating the vector-Jacobian
product term in d`

dw

=

@`

@w

+

@`

@x

⇤
i

@x

⇤
i

@w

for each i, which requires differentiating through the LP opti-
mization that produced x

⇤
i

from u

i

and w. Differentiating through the LP allows us to tackle (ILOP)
directly in its bilevel form, using powerful gradient-based NLP algorithms such as SQP as the ‘outer’
solver. Section 3.3 compares methods for differentiating through an LP optimization.

Redundant NLP constraints When PLP model parameters w have fixed dimension, the NLP
formulation of (ILOP) can involve many redundant constraints, roughly in proportion to N . Indeed,
if W ✓ RK and K < NM

2

, the equality constraints may appear to over-determine w, treating
(NLP) as a feasibility problem; but, due to redundancy in (1a), w is not uniquely determined. The
ease or difficulty of removing redundant constraints from (NLP) depends on the domain-specific
parametrizations of PLP constraints A(u,w),b(u,w),G(u,w), and h(u,w). Equality constraints
that are affinely-dependent on w can be eliminated from (NLP) by a pseudoinverse technique,
resulting in a lower-dimensional problem; this technique also handles the case where (NLP) is
not strictly feasible in h(w) = 0 (either due to noisy observations or model misspecification) by
automatically searching only among w that exactly minimize the sum of squared residuals kh(w)k2.
If equality constraints are polynomially-dependent on w, we can eliminate redundancy by Gröbner
basis techniques [Cox et al., 2013] although, unlike the affine case, it may not be possible or beneficial
to reparametrize-out the new non-redundant basis constraints from the NLP. Redundant inequality
constraints can be either trivial or costly to identify [Telgen, 1983], but are not generally problematic
for SQP algorithms. See Appendix for details.

Benefit over gradient-free methods Evaluating f(w) is expensive in our NLP because it requires
solving N linear programs. To understand why access to rf(w) is important in this scenario, it
helps to contrast SQP with a well-known gradient-free NLP optimizer such as COBYLA [Powell,
1994]. For K-dimensional NLP, COBYLA maintains K + 1 samples of f(w),g(w),h(w) and uses
them as a finite-difference approximation to rf(w

k

),rg(w

k

),rh(w

k

) where w

k is the current
iterate (best sample). The next iterate w

k+1 is computed by optimizing over a trust region centered
at wk. COBYLA recycles past samples to effectively estimate ‘coarse’ gradients, whereas SQP uses
gradients directly. Figure 2 shows SLSQP and COBYLA running on the example from Figure 1.

3.3 Computing Loss Function and its Gradients

If, at a particular point (u

i

,w), each corresponding vector-Jacobian product @`

@x

⇤
i

@x

⇤
i

@w

exists, is unique,
and can be computed, then we can construct (SQP) at each step. For convenience, we assume that
(c,A,b,G,h) are expressed in terms of (u,w) within an automatic differentiation framework such
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as PyTorch, so all that remains is to compute Jacobians (

@`

@c

,

@`

@A

,

@`

@b

,

@`

@G

,

@`

@h

) at each (u

i

,w) as an
intermediate step at the outset of computing d`

dw

. We consider four approaches:
backprop: backpropagate through the steps of the homogeneous interior point algorithm for LPs,

implicit: the implicit differentiation procedure of Amos and Kolter [2017] specialized to LPs,
direct: evaluate gradients directly, in closed form (for objective error only), and

cvx: use a cvxpylayer [Agrawal et al., 2019] for LP solve and for implicit differentiation.
To implement the first three approaches, we developed a batch PyTorch version of the homogeneous
interior point algorithm [Andersen and Andersen, 2000, Xu et al., 1996]; this algorithm was originally
developed for the MOSEK optimization suite and is currently the default linear programming solver
in SciPy [Virtanen et al., 2020]. Our backprop implementation is also efficient, for example re-using
the LU decompositionfrom each Newton step.

For implicit differentiation we follow Amos and Kolter [2017] by forming the system of linear
equations that result from differentiating the KKT conditions and then inverting that system to
compute the needed vector-Jacobian products. For LPs this system can be poorly conditioned,
especially at strict tolerances on the LP solver, but in practice it provides useful gradients. The cvx
approach is similar but is implemented by a cvxpylayer, which in turn relies on a fast conic solver
[O’Donoghue et al., 2016] for the forward problem and an implicit differentiation procedure similar
to the work of Amos and Kolter [2017] for the gradients.

For direct gradients (in the case of objective error), we use Theorem 1.

Theorem 1. Let x⇤ 2 RD be an optimal solution to (LP) and let �⇤ 2 RM1
0

,⌫⇤ 2 RM2 be an
optimal solution to the associated dual linear program. If x⇤ is non-degenerate then the objective
error z = c

T

(x

obs � x

⇤
) is differentiable and the total derivatives2 are

@z

@c

=

�
x

obs � x

⇤�T
@z

@A

= �⇤
x

⇤T
@z

@b

= ��⇤T
@z

@G

= ⌫⇤
x

⇤T
@z

@h

= �⌫⇤T
.

When ` is AOE loss, by chain rule we can multiply each quantity by @`

@z

= sign(z) to get the needed
Jacobians. Gradients @z

@b

and @z

@h

for the right-hand sides are already well-known as shadow prices.
If x⇤ is degenerate then the relationship between shadow prices and dual variables breaks down,
resulting in two-sided shadow prices [Strum, 1969, Aucamp and Steinberg, 1982].

We use degeneracy in the sense of Tijssen and Sierksma [1998] (see Appendix), where a point on the
relative interior of the optimal face need not be degenerate, even if there exists a degenerate vertex
on the optimal face. This matters when x

⇤ is non-unique because interior point methods typically
converge to the analytical center of the relative interior of the optimal face [Zhang, 1994]. Tijssen and
Sierskma also give relations between degeneracy of x⇤ and uniqueness of �⇤

,⌫⇤, which we apply in
Corollary 1. When the gradients are non-unique, this corresponds to the subdifferentiable case.

Corollary 1. In Theorem 1, both @z

@b

and @z

@h

are unique, @z

@c

is unique if and only if x⇤ is unique, and
both @z

@A

and @z

@G

are unique if and only if x⇤ is unique or c = 0.

4 Experiments

We evaluate our approach by learning a range of synthetic LPs and parametric instances of minimum-
cost multi-commodity flow problems. Use of synthetic instances is common in IO (e.g., Ahuja and
Orlin [2001], Keshavarz et al. [2011], Dong et al. [2018]) and there are no community-established
and readily-available benchmarks, especially for more general formulations. Our experimental
study considers instances not directly addressable by previous IO work, either because we learn all
coefficients jointly or because the parametrization results in non-convex NLP.

We compare four versions of our gradient-based method (SQP
bprop

, SQP
impl

, SQP
dir

, SQP
cvx

) with
two gradient-free methods: random search (RS) and COBYLA. A gradient-free baseline is applicable
to (ILOP) only if it (i) supports general bilevel natively, or (ii) allows the objective and constraints
to be specified by callbacks. COBYLA is conceptually similar to SQP and can be readily applied
to (ILOP), but many otherwise-powerful solvers such as BARON [Sahinidis, 2017], CPLEX [IBM,
2020] and Gurobi [Gurobi Optimization, 2020] cannot.

2In a slight abuse of notation, we ignore leading singleton dimension of @z
@A 2 R1⇥M1⇥D, @z

@G 2 R1⇥M2⇥D .
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Figure 3: A comparison on synthetic PLP instances having D=10 decision variables and M

1

=36

inequality constraints. Curves show the probability over time of achieving AOE training loss `(w)

below a tolerance threshold of 10

�5. Box plots show final training and testing loss of 100 different
trial instances, each with 20 training and 20 testing points (distinct u values). We evaluate the “testing
loss” for AOE with respect to the ‘true’ cost c(u), never the imputed cost. The median loss over a set
of testing points tends to be smaller than their mean; see Section 5 for discussion.

Complete experimental results for synthetic LPs are presented in Figures 3, 7, 8, 9. The main
observation is that the gradient-based methods perform similarly and become superior to gradient-free
methods as the dimension K of parametrization w increases. We find that including a black-box base-
line like COBYLA is important for assessing the practical difficulty of an IO instance (and encourage
future papers to do so) because such methods work reasonably well in low-dimensional problems. A
second observation is that there are instances for which no method succeeds at minimizing training
error 100% of the time. Our method can therefore be viewed as a way to boost the probability of
successful training when combined with simple global optimization strategies such as multi-start.

Experiments used PyTorch v1.6 nightly build, the COBYLA and SLSQP wrappers from SciPy v1.4.1,
and were run on an Intel Core i7 with 16GB RAM. (We do not use GPUs, though our PyTorch interior
point solver inherits GPU acceleration.) We do not regularize w nor have any other hyperparameters.
Code to reproduce experiments is available at https://github.com/yingcongtan/ilop.

Learning linear programs We used the LP generator of Tan et al. [2019], modifying it to create a
more challenging variety of feasible regions; their code did not perform competitively in terms of
runtime or success rate on these harder instances, and is not effective at learning constraints under an
AOE loss. Fig. 3 shows the task of learning (c, A, b) with a K=6 dimensional parametrization w, a
D=10 dimensional decision space x, and 20 training observations. RS fails; COBYLA ‘succeeds’
on ~30% of instances; SQP

bprop

, SQP
impl

, SQP
dir

succeeds on ~60–65%, which is substantially
better. The success curve of SQP

bprop

slightly lags those of SQP
impl

and SQP
dir

due to the overhead
of backpropagating through the steps of the interior point solver. SQP

cvx

performs worse in these
instances due to the speed at which the internal scs solver (written in C) could reach the inner
tolerance (10

�8), and not due to any overhead. See Appendix for five additional problem sizes, where
overall the conclusions are the same. On instances with equality constraints, where we learn (c, A, b,
G, h) jointly, performance was similar to the above (see Figure 8 in Appendix).

Much of the IO literature is focused on learning coefficients of c and/or b directly, often from
a single training target xobs, i.e., learning a single LP rather than a PLP. In our formulation, we
can learn coefficients of (c,A,b,G,h) jointly by concatenating them into w. For example, an
instance with D=10,M

1

=80,M

2

=0 has 890 adjustable parameters. In Figure 9 of Appendix, we
show SQP

bprop

, SQP
impl

and SQP
dir

consistently achieve zero AOE training loss on such problems,
whereas RS and COBYLA fail to make learning progress given the same time budget. SQP

cvx

makes
progress, but is slower than the other gradient-based implementations.

Learning minimum-cost multi-commodity flow problems Fig. 4 shows a visualization of our
experiment on the Nguyen-Dupuis graph [Nguyen and Dupuis, 1984]. We learn a periodic arc
cost c

j

(t, l

j

, p

j

) = l

j

+ w

1

p

j

+ w

2

l

j

(sin(2⇡(w

3

+ w

4

t + w

5

l

j

)) + 1) and an affine arc capacity
b

j

(l

j

) = 1 + w

6

+ w

7

l

j

, based on global feature t (time of day) and arc-specific features l
j

(length)
and p

j

(toll price). To avoid trivial solutions, we set W = {w � 0, w

3

+ w

4

+ w

5

= 1}. Results
on 100 instances are shown in Fig. 5. The SQP methods outperform RS and COBYLA in training
and testing loss. From an IO perspective the fact that we are jointly learning costs and capacities in a
non-convex NLP formulation is already quite general. SQP

cvx

is still slower, but more competitive.
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Figure 4: A visualization of minimum-cost paths (for simplicity) and minimum-cost multi-commodity
flows (our experiment) on the Nguyen-Dupuis network. Sources {s

1

, s

2

, s

3

, s

4

} and destinations
{d

1

, d

2

, d

3

, d

4

} are shown. At left are two example sets of training paths {(t
1

,x

obs

1

), (t

2

,x

obs

2

)}
alongside an example of a correctly predicted set of optimal paths under different conditions (differ-
ent t). At right is a visualization of a correctly predicted optimal flow, where color intensity indicates
proportion of flow along arcs.

Figure 5: A comparison on minimum-cost multi-commodity flow instances, similar to Fig. 3.

5 Discussion

Generalizing is hard We report both the mean and median loss over the testing points in each trial.
The difference in mean and median testing error is due to the presence of a few ‘outliers’ among
the otherwise-small test set errors. Fig. 6 shows the nature of this failure to generalize: the decision
map u 7! x

⇤ of a PLP has discontinuities, so the training data can easily under-specify the set of
learned models that can achieve zero training loss; this is similar to the scenario that motivates the
max-margin learning principle, used for good generalization in SVMs. It is not clear what forms of
regularization r(w) might reliably improve generalization in IO. Fig. 6 also suggests that training
points which closely straddle discontinuities are much more ‘valuable’ from a learning perspective.

Scalability We wish to highlight the scalability of direct gradients, and of our bilevel approach more
generally. First, our experiments use a general-purpose LP solver where forward solve dominates
runtime. In scenarios where forward solve is fast, for example by an application-specific algorithm

(a) (b) (c)

Figure 6: A failure to generalize in a learned PLP. Shown are the optimal decision map u 7! x

⇤ for a
ground-truth PLP (a) and learned PLP (b) with the value of components (x

⇤
1

, x

⇤
2

) represented by red
and green intensity respectively, along with that of a PLP trained on {u

1

,u

2

}. The learned PLP has
no training error (SDE=0,AOE=0) but large test error (SDE= .89,AOE= .22) as depicted in (c).
(See Appendix for the specific PLP used in this example.)
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.

cvx bprop impl direct

s
e
c
o
n
d
s

.0393
.0428

.0163

.0004

gradient time only

(max-flow, matching, etc.) or a fast re-solve strategy, the gradient computation
can be proportionally significant. In that case, direct evaluation of the gradient
scales much better than solving backprop or solving the system required by
implicit differentiation [Amos and Kolter, 2017, Agrawal et al., 2019]. Shown
at right are compute times for an LP parameter gradient averaged over the 100
instances from Fig. 5, with ‘direct’ being at least ~50x faster than alternatives.

Second, note that other IO approaches often convert a bilevel problem into a
new single-level one [Aswani et al., 2018]. This strategy cannot exploit fast
algorithms for specialized forward problems (i.e., the inner problem of our formulation) and must rely
on general-purpose machinery like CPLEX. By retaining the bilevel nature of (ILOP), our approach
allows specialized algorithms to be used for the forward problem, and fast gradients whenever optimal
primal and dual solutions can be recovered.

Generality and applicability Our work generalizes in some respects, and specializes others.
Considering only literature on inverse linear optimization, our (ILOP) formulation generalizes prior
work in that it tackles fully parametric PLPs and arbitrary number of observations. Our methodology
is meanwhile a novel extension of Tan et al. [2019] since here we introduce ‘outer’ constraints,
SQP-based training, a new gradient computation method, and a faster forward solver implementation.
Outside the linear case, our NLP approach can be applied to inverse convex optimization because the
more general gradient-computation machinery now also exists [Agrawal et al., 2019].

Although we highlighted SQP as a suitable gradient-based NLP solver, other NLP methods may work
better in a given setting. Our methodology is applicable for any gradient-based NLP solver allowing
specification of objective and constraints via callbacks, thereby being ‘agnostic’ to the bilevel nature.

6 Conclusion
In this paper, we propose a novel bilevel formulation and gradient-based framework for learning linear
programs from optimal decisions. The methodology learns all parameters jointly while allowing
flexible parametrizations of costs, constraints, and loss functions—a generalization of the problems
typically addressed in the inverse linear optimization literature. It furthermore has speed advantages
over a gradient-free approach.

Our work allows a strong class of inductive priors, namely parametric linear programs, to be imposed
on a hypothesis space for learning. A major motivation for ours and for similar work is that, when the
inductive prior is suited to the problem, we can learn a much better (and more interpretable) model,
from far less data, than by applying general-purpose machine learning methods. In settings spanning
economics, commerce, and healthcare, data on decisions is expensive to obtain and to collect, so we
hope that our data-efficient approach will help to build better models and to make better decisions.

Broader Impact
We believe this work may be of interest to scientists working in machine learning, operations research,
mechanism design and/or game theory. The methodology applies whenever desired outcomes of an
LP can be given by example, rather than by the LP’s coefficients. Linear programs are widely used
for planning, for modeling natural phenomena, and for decision-making agents.

A positive impact of this work is faster and more flexible training of LPs. For example, this may
be useful for training better recommender systems when users are known to optimize their choices.
Another positive impact is data efficiency: LPs are a strong class of inductive priors, so we can learn
more interpretable models from less data. Data efficiency is important because collecting data on
optimal decisions (and under different conditions) can be very expensive, and because interpretability
is important in decision-making settings where unwanted biases may be introduced from the data.

While our goal is for the work to have positive impact, and it has potential applications in co-operative
games, negative outcomes are also possible if the framework is applied with malicious or adversarial
goals, for example to build a model of an opponent’s decision-making process in an adversarial game.
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