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Abstract

Temporal-difference and Q-learning play a key role in deep reinforcement learning,
where they are empowered by expressive nonlinear function approximators such
as neural networks. At the core of their empirical successes is the learned feature
representation, which embeds rich observations, e.g., images and texts, into the
latent space that encodes semantic structures. Meanwhile, the evolution of such
a feature representation is crucial to the convergence of temporal-difference and
Q-learning.

In particular, temporal-difference learning converges when the function approxi-
mator is linear in a feature representation, which is fixed throughout learning, and
possibly diverges otherwise. We aim to answer the following questions:
When the function approximator is a neural network, how does the associated
feature representation evolve? If it converges, does it converge to the optimal one?

We prove that, utilizing an overparameterized two-layer neural network, temporal-
difference and Q-learning globally minimize the mean-squared projected Bellman
error at a sublinear rate. Moreover, the associated feature representation converges
to the optimal one, generalizing the previous analysis of [21] in the neural tan-
gent kernel regime, where the associated feature representation stabilizes at the
initial one. The key to our analysis is a mean-field perspective, which connects
the evolution of a finite-dimensional parameter to its limiting counterpart over an
infinite-dimensional Wasserstein space. Our analysis generalizes to soft Q-learning,
which is further connected to policy gradient.

1 Introduction

Deep reinforcement learning achieves phenomenal empirical successes, especially in challenging
applications where an agent acts upon rich observations, e.g., images and texts. Examples include
video gaming [56], visuomotor manipulation [51], and language generation [39]. Such empirical
successes are empowered by expressive nonlinear function approximators such as neural networks,
which are used to parameterize both policies (actors) and value functions (critics) [46]. In particular,
the neural network learned from interacting with the environment induces a data-dependent feature
representation, which embeds rich observations into a latent space encoding semantic structures

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



[12, 40, 49, 75]. In contrast, classical reinforcement learning mostly relies on a handcrafted feature
representation that is fixed throughout learning [65].

In this paper, we study temporal-difference (TD) [64] and Q-learning [71], two of the most prominent
algorithms in deep reinforcement learning, which are further connected to policy gradient [73]
through its equivalence to soft Q-learning [37, 57, 58, 61]. In particular, we aim to characterize how
an overparameterized two-layer neural network and its induced feature representation evolve in TD
and Q-learning, especially their rate of convergence and global optimality. A fundamental obstacle,
however, is that such an evolving feature representation possibly leads to the divergence of TD and
Q-learning. For example, TD converges when the value function approximator is linear in a feature
representation, which is fixed throughout learning, and possibly diverges otherwise [10, 18, 67].

To address such an issue of divergence, nonlinear gradient TD [15] explicitly linearizes the value
function approximator locally at each iteration, that is, using its gradient with respect to the parameter
as an evolving feature representation. Although nonlinear gradient TD converges, it is unclear whether
the attained solution is globally optimal. On the other hand, when the value function approximator in
TD is an overparameterized multi-layer neural network, which is required to be properly scaled, such
a feature representation stabilizes at the initial one [21], making the explicit local linearization in
nonlinear gradient TD unnecessary. Moreover, the implicit local linearization enabled by overparame-
terization allows TD (and Q-learning) to converge to the globally optimal solution. However, such a
required scaling, also known as the neural tangent kernel (NTK) regime [43], effectively constrains
the evolution of the induced feature presentation to an infinitesimal neighborhood of the initial one,
which is not data-dependent.

Contribution. Going beyond the NTK regime, we prove that, when the value function approximator
is an overparameterized two-layer neural network, TD and Q-learning globally minimize the mean-
squared projected Bellman error (MSPBE) at a sublinear rate. Moreover, in contrast to the NTK
regime, the induced feature representation is able to deviate from the initial one and subsequently
evolve into the globally optimal one, which corresponds to the global minimizer of the MSPBE. We
further extend our analysis to soft Q-learning, which is connected to policy gradient.

The key to our analysis is a mean-field perspective, which allows us to associate the evolution of a
finite-dimensional parameter with its limiting counterpart over an infinite-dimensional Wasserstein
space [4, 5, 68, 69]. Specifically, by exploiting the permutation invariance of the parameter, we
associate the neural network and its induced feature representation with an empirical distribution,
which, at the infinite-width limit, further corresponds to a population distribution. The evolution of
such a population distribution is characterized by a partial differential equation (PDE) known as
the continuity equation. In particular, we develop a generalized notion of one-point monotonicity
[38], which is tailored to the Wasserstein space, especially the first variation formula therein [5],
to characterize the evolution of such a PDE solution, which, by a discretization argument, further
quantifies the evolution of the induced feature representation.

Related Work. When the value function approximator is linear, the convergence of TD is extensively
studied in both continuous-time [16, 17, 42, 47, 67] and discrete-time [14, 29, 48, 63] settings. See
[31] for a detailed survey. Also, when the value function approximator is linear, [25, 55, 78] study
the convergence of Q-learning. When the value function approximator is nonlinear, TD possibly
diverges [10, 18, 67]. [15] propose nonlinear gradient TD, which converges but only to a locally
optimal solution. See [13, 36] for a detailed survey. When the value function approximator is an
overparameterized multi-layer neural network, [21] prove that TD converges to the globally optimal
solution in the NTK regime. See also the independent work of [1, 19, 20, 62], where the state space
is required to be finite. In contrast to the previous analysis in the NTK regime, our analysis allows
TD to attain a data-dependent feature representation that is globally optimal.

Meanwhile, our analysis is related to the recent breakthrough in the mean-field analysis of stochastic
gradient descent (SGD) for the supervised learning of an overparameterized two-layer neural network
[23, 27, 34, 35, 44, 53, 54, 72]. See also the previous analysis in the NTK regime [2, 3, 7–9, 22, 24,
26, 30, 32, 33, 43, 45, 50, 52, 76, 77]. Specifically, the previous mean-field analysis casts SGD as the
Wasserstein gradient flow of an energy functional, which corresponds to the objective function in
supervised learning. In contrast, TD follows the stochastic semigradient of the MSPBE [65], which
is biased. As a result, there does not exist an energy functional for casting TD as its Wasserstein
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gradient flow. Instead, our analysis combines a generalized notion of one-point monotonicity [38]
and the first variation formula in the Wasserstein space [5], which is of independent interest.

Notations. We denote by B(X ) the Borel σ-algebra over the space X . Let P(X ) be the set of Borel
probability measures over the measurable space (X ,B(X )). We denote by [N ] = {1, 2, . . . , N}
for any N ∈ N+. Also, we denote by Bn(x; r) = {y ∈ Rn | ‖y − x‖ ≤ r} the closed ball in Rn.
Given a curve ρ : R→ X , we denote by ρ′s = ∂tρt | t=s its derivative with respect to the time. For
a function f : X → R, we denote by Lip(f) = supx,y∈X ,x 6=y |f(x)− f(y)|/‖x− y‖ its Lipschitz
constant. For an operator F : X → X and a measure µ ∈P(X ), we denote by F]µ = µ ◦ F−1 the
push forward of µ through F . We denote by DKL and Dχ2 the Kullback-Leibler (KL) divergence
and the χ2 divergence, respectively.

2 Background

2.1 Policy Evaluation

We consider a Markov decision process (S,A, P,R, γ,D0), where S ⊆ Rd1 is the state space,
A ⊆ Rd2 is the action space, P : S ×A →P(S) is the transition kernel,R : S ×A →P(R) is the
reward distribution, γ ∈ (0, 1) is the discount factor, and D0 ∈P(S) is the initial state distribution.
An agent following a policy π : S →P(A) interacts with the environment in the following manner.
At a state st, the agent takes an action at according to π(· | st) and receives from the environment
a random reward rt following R(· | st, at). Then, the environment transits into the next state st+1

according to P (· | st, at). We measure the performance of a policy π via the expected cumulative
reward J(π), which is defined as follows,

J(π) = E
[ ∞∑
t=0

γt · rt
∣∣∣ s0 ∼ D0, at ∼ π(· | st), rt ∼ R(· | st, at), st+1 ∼ P (· | st, at)

]
. (2.1)

In policy evaluation, we are interested in the state-action value function (Q-function)Qπ : S×A → R,
which is defined as follows,

Qπ(s, a) = E
[ ∞∑
t=0

γt · rt
∣∣∣ s0 = s, a0 = a, at ∼ π(· | st), rt ∼ R(· | st, at), st+1 ∼ P (· | st, at)

]
.

We learn the Q-function by minimizing the mean-squared Bellman error (MSBE), which is defined
as follows,

MSBE(Q) =
1

2
· E(s,a)∼D

[(
Q(s, a)− T πQ(s, a)

)2]
.

Here D ∈P(S ×A) is the stationary distribution induced by the policy π of interest and T π is the
corresponding Bellman operator, which is defined as follows,

T πQ(s, a) = E
[
r + γ ·Q(s′, a′)

∣∣ r ∼ R(· | s, a), s′ ∼ P (· | s, a), a′ ∼ π(· | s′)
]
.

However, T πQ may be not representable by a given function class F . Hence, we turn to minimizing
a surrogate of the MSBE over Q ∈ F , namely the mean-squared projected Bellman error (MSPBE),
which is defined as follows,

MSPBE(Q) =
1

2
· E(s,a)∼D

[(
Q(s, a)−ΠFT πQ(s, a)

)2]
, (2.2)

where ΠF is the projection onto F with respect to the L2(D)-norm. The global minimizer of the
MSPBE is the fixed point solution to the projected Bellman equation Q = ΠFT πQ.

In temporal-difference (TD) learning, corresponding to the MSPBE defined in (2.2), we parameterize
the Q-function with Q̂(·; θ) and update the parameter θ via stochastic semigradient descent [65],

θ′ = θ − ε ·
(
Q̂(s, a; θ)− r − γ · Q̂(s′, a′; θ)

)
· ∇θQ̂(s, a; θ), (2.3)

where ε > 0 is the stepsize and (s, a, r, s′, a′) ∼ D̃. Here we denote by D̃ ∈P(S×A×R×S×A) the
distribution of (s, a, r, s′, a′), where (s, a) ∼ D, r ∼ R(· | s, a), s′ ∼ P (· | s, a), and a′ ∼ π(· | s′).
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2.2 Wasserstein Space

Let Θ ⊆ RD be a Polish space. We denote by P2(Θ) ⊆ P(Θ) the set of probability measures
with finite second moments. Then, the Wasserstein-2 distance between µ, ν ∈P2(Θ) is defined as
follows,

W2(µ, ν) = inf
{
E
[
‖X − Y ‖2

]1/2 ∣∣∣ law(X) = µ, law(Y ) = ν
}
, (2.4)

where the infimum is taken over the random variables X and Y on Θ. Here we denote by law(X)
the distribution of a random variable X . We callM = (P2(Θ),W2) the Wasserstein space, which
is an infinite-dimensional manifold [69]. In particular, such a structure allows us to write any tangent
vector at µ ∈M as ρ′0 for a corresponding curve ρ : [0, 1]→P2(Θ) that satisfies ρ0 = µ. Here ρ′0
denotes ∂tρt | t=0. Specifically, under certain regularity conditions, for any curve ρ : [0, 1]→P2(Θ),
the continuity equation ∂tρt = −div(ρtvt) corresponds to a vector field v : [0, 1]×Θ→ RD, which
endows the infinite-dimensional manifold P2(Θ) with a weak Riemannian structure in the following
sense [69]. Given any tangent vectors u and ũ at µ ∈ M and the corresponding vector fields v, ṽ,
which satisfy u+ div(µv) = 0 and ũ+ div(µṽ) = 0, respectively, we define the inner product of u
and ũ as follows,

〈u, ũ〉µ =

∫
〈v, ṽ〉dµ, (2.5)

which yields a Riemannian metric. Here 〈v, ṽ〉 is the inner product on RD. Such a Riemannian metric
further induces a norm ‖u‖µ = 〈u, u〉1/2µ for any tangent vector u ∈ TµM at any µ ∈ M, which
allows us to write the Wasserstein-2 distance defined in (2.4) as follows,

W2(µ, ν) = inf

{(∫ 1

0

‖ρ′t‖2ρt dt

)1/2
∣∣∣∣∣ ρ : [0, 1]→M, ρ0 = µ, ρ1 = ν

}
. (2.6)

Here ρ′s denotes ∂tρt | t=s for any s ∈ [0, 1]. In particular, the infimum in (2.6) is attained by the
geodesic ρ̃ : [0, 1] → P2(Θ) connecting µ, ν ∈ M. Moreover, the geodesics onM are constant-
speed, that is,

‖ρ̃′t‖ρ̃t =W2(µ, ν), ∀t ∈ [0, 1]. (2.7)

3 Temporal-Difference Learning

For notational simplicity, we write Rd = Rd1 ×Rd2 , X = S ×A ⊆ Rd, and x = (s, a) ∈ X for any
s ∈ S and a ∈ A.

Parameterization of Q-Function. We consider the parameter space RD and parameterize the Q-
function with the following two-layer neural network,

Q̂(x; θ(m)) =
α

m

m∑
i=1

σ(x; θi), (3.1)

where θ(m) = (θ1, . . . , θm) ∈ RD×m is the parameter, m ∈ N+ is the width, α > 0 is the scaling
parameter, and σ : Rd×RD → R is the activation function. Assuming the activation function in (3.1)
takes the form of σ(x; θ) = b · σ̃(x;w) for θ = (w, b), we recover the standard form of two-layer
neural networks, where σ̃ is the rectified linear unit or the sigmoid function. Such a parameterization
is also used in [23, 26, 53]. For {θi}mi=1 independently sampled from a distribution ρ ∈P(RD), we
have the following infinite-width limit of (3.1),

Q(x; ρ) = α ·
∫
σ(x; θ) dρ(θ). (3.2)

For the empirical distribution ρ̂(m) = m−1 ·
∑m
i=1 δθi corresponding to {θi}mi=1, we have that

Q(x; ρ̂(m)) = Q̂(x; θ(m)).
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TD Dynamics. In what follows, we consider the TD dynamics,

θi(k + 1)

= θi(k)− ηε · α ·
(
Q̂
(
xk; θ(m)(k)

)
− rk − γ · Q̂

(
x′k; θ(m)(k)

))
· ∇θσ

(
xk; θi(k)

)
, (3.3)

where i ∈ [m], (xk, rk, x
′
k) ∼ D̃, and ε > 0 is the stepsize with the scaling parameter η > 0. Without

loss of generality, we assume that (xk, rk, x
′
k) is independently sampled from D̃, while our analysis

straightforwardly generalizes to the setting of Markov sampling [14, 74, 78]. For an initial distribution
ρ0 ∈ P(RD), we initialize {θi}mi=1 as θi

i.i.d.∼ ρ0 (i ∈ [m]). See Algorithm 1 in §A for a detailed
description.

Mean-Field Limit. Corresponding to ε→ 0+ and m→∞, the continuous-time and infinite-width
limit of the TD dynamics in (3.3) is characterized by the following partial differential equation (PDE)
with ρ0 as the initial distribution,

∂tρt = −η · div
(
ρt · g(·; ρt)

)
. (3.4)

Here g(·; ρt) : RD → RD is a vector field, which is defined as follows,

g(θ; ρ) = −α · E(x,r,x′)∼D̃

[(
Q(x; ρ)− r − γ ·Q(x′; ρ)

)
· ∇θσ(x; θ)

]
. (3.5)

Note that (3.4) holds in the sense of distributions [5]. See [6, 53, 54] for the existence, uniqueness,
and regularity of the PDE solution ρt in (3.4). In the sequel, we refer to the continuous-time and
infinite-width limit with ε→ 0+ and m→∞ as the mean-field limit. Let ρ̂(m)

k = m−1 ·
∑m
i=1 δθi(k)

be the empirical distribution corresponding to {θi(k)}mi=1 in (3.3). The following proposition proves
that the PDE solution ρt in (3.4) well approximates the TD dynamics θ(m)(k) in (3.3).

Proposition 3.1 (Informal Version of Proposition D.1). Let the initial distribution ρ0 be the standard
Gaussian distribution N(0, ID). Under certain regularity conditions, ρ̂(m)

bt/εc weakly converges to ρt
as ε→ 0+ and m→∞.

The proof of Proposition 3.1 is based on the propagation of chaos [53, 54, 66]. In contrast to [53, 54],
the PDE in (3.4) can not be cast as a gradient flow, since there does not exist a corresponding energy
functional. Thus, their analysis is not directly applicable to our setting. We defer the detailed discussion
on the approximation analysis to §D. Proposition 3.1 allows us to convert the TD dynamics over the
finite-dimensional parameter space to its counterpart over the infinite-dimensional Wasserstein space,
where the infinitely wide neural network Q(·; ρ) in (3.2) is linear in the distribution ρ.

Feature Representation. We are interested in the evolution of the feature representation(
∇θσ

(
x; θ1(k)

)>
, . . . ,∇θσ

(
x; θm(k)

)>)> ∈ RDm (3.6)

corresponding to θ(m)(k) = (θ1(k), . . . , θm(k)) ∈ RD×m. Such a feature representation is used to
analyze the TD dynamics θ(m)(k) in (3.3) in the NTK regime [21], which corresponds to setting
α =
√
m in (3.1). Meanwhile, the nonlinear gradient TD dynamics [15] explicitly uses such a feature

representation at each iteration to locally linearize the Q-function. Moreover, up to a rescaling, such a
feature representation corresponds to the kernel

K(x, x′; ρ̂
(m)
k ) =

∫
∇θσ(x; θ)>∇θσ(x′; θ) dρ̂

(m)
k (θ),

which by Proposition 3.1 further induces the kernel

K(x, x′; ρt) =

∫
∇θσ(x; θ)>∇θσ(x′; θ) dρt(θ) (3.7)

at the mean-field limit with ε→ 0+ and m→∞. Such a correspondence allows us to use the PDE
solution ρt in (3.4) as a proxy for characterizing the evolution of the feature representation in (3.6).
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4 Main Results

We first introduce the assumptions for our analysis.
Assumption 4.1. We assume that the state-action pair x = (s, a) satisfies ‖x‖ ≤ 1 for any s ∈ S
and a ∈ A.

Assumption 4.1 can be ensured by normalizing all state-action pairs. Such an assumption is commonly
used in the mean-field analysis of neural networks [6, 23, 27, 34, 35, 53, 54]. We remark that our
analysis straightforwardly generalizes to the setting where ‖x‖ ≤ C for an absolute constant C > 0.
Assumption 4.2. We assume that the activation function σ in (3.1) satisfies∣∣σ(x; θ)

∣∣ ≤ B0,
∥∥∇θσ(x; θ)

∥∥ ≤ B1 · ‖x‖,
∥∥∇2

θθσ(x; θ)
∥∥

F
≤ B2 · ‖x‖2 (4.1)

for any x ∈ X . Also, we assume that the reward r satisfies |r| ≤ Br.

Assumption 4.2 holds for a broad range of neural networks. For example, let θ = (w, b) ∈ RD−1×R.
The activation function

σ†(x; θ) = B0 · tanh(b) · sigmoid(w>x) (4.2)

satisfies (4.1) in Assumption 4.2. Moreover, the infinitely wide neural network in (3.2) with the
activation function σ† in (4.2) induces the following function class,

F† =

{∫
β · sigmoid(w>x) dµ(w, β)

∣∣∣∣µ ∈P
(
RD−1 × [−B0, B0]

)}
,

where β = B0 · tanh(b) ∈ [−B0, B0]. By the universal approximation theorem [11, 60], F† captures
a rich class of functions.

Throughout the rest of this paper, we consider the following function class,

F =

{∫
σ0(b) · σ1(x;w) dρ(w, b)

∣∣∣∣ ρ ∈P2(RD−1 × R)

}
, (4.3)

which is induced by the infinitely wide neural network in (3.2) with θ = (w, b) ∈ RD−1 ×R and the
following activation function,

σ(x; θ) = σ0(b) · σ1(x;w).

We assume that σ0 is an odd function, that is, σ0(b) = −σ0(−b), which implies
∫
σ(x; θ) dρ0(θ) = 0.

Note that the set of infinitely wide neural networks taking the forms of (3.2) is α · F , which is
larger than F in (4.3) by the scaling parameter α > 0. Thus, α can be viewed as the degree of
“overrepresentation”. Without loss of generality, we assume that F is complete. The following
theorem characterizes the global optimality and convergence of the PDE solution ρt in (3.4).
Theorem 4.3. There exists a unique fixed point solution to the projected Bellman equation Q =
ΠFT πQ, which takes the form of Q∗(x) =

∫
σ(x; θ) dρ̄(θ). Also, Q∗ is the global minimizer of the

MSPBE defined in (2.2). We assume that Dχ2(ρ̄ ‖ ρ0) < ∞ and ρ̄(θ) > 0 for any θ ∈ RD. Under
Assumptions 4.1 and 4.2, it holds for η = α−2 in (3.4) that

inf
t∈[0,T ]

Ex∼D
[(
Q(x; ρt)−Q∗(x)

)2] ≤ Dχ2(ρ̄ ‖ ρ0)

2(1− γ) · T
+

C∗
(1− γ) · α

, (4.4)

where C∗ > 0 is a constant that depends on Dχ2(ρ̄ ‖ ρ0), B1, B2, and Br.

Proof. See §5 for a detailed proof.

Theorem 4.3 proves that the optimality gap Ex∼D[(Q(x; ρt)−Q∗(x))2] decays to zero at a sublinear
rate up to the error of O(α−1), where α > 0 is the scaling parameter in (3.1). Varying α leads to
a tradeoff between such an error of O(α−1) and the deviation of ρt from ρ0. Specifically, in §5 we
prove that ρt deviates from ρ0 by the divergence Dχ2(ρt ‖ ρ0) ≤ O(α−2). Hence, a smaller α allows
ρt to move further away from ρ0, inducing a feature representation that is more different from the
initial one [34, 35]. See (3.6)-(3.7) for the correspondence of ρt with the feature representation and
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the kernel that it induces. On the other hand, a smaller α yields a larger error of O(α−1) in (4.4) of
Theorem 4.3. In contrast, the NTK regime [21], which corresponds to setting α =

√
m in (3.1), only

allows ρt to deviate from ρ0 by the divergence Dχ2(ρt ‖ ρ0) ≤ O(m−1) = o(1). In other words, the
NTK regime fails to induce a feature representation that is significantly different from the initial one.
In summary, our analysis goes beyond the NTK regime, which allows us to characterize the evolution
of the feature representation towards the (near-)optimal one. Moreover, based on Proposition 3.1 and
Theorem 4.3, we establish the following corollary, which characterizes the global optimality and
convergence of the TD dynamics θ(m)(k) in (3.3).

Corollary 4.4. Under the same conditions of Theorem 4.3, it holds with probability at least 1− δ
that

min
k≤T/ε
(k∈N)

Ex∼D
[(
Q̂
(
x; θ(m)(k)

)
−Q∗(x)

)2
]
≤
Dχ2(ρ̄ ‖ ρ0)

2(1− γ) · T
+

C∗
(1− γ) · α

+ ∆(ε,m, δ, T ), (4.5)

where C∗ > 0 is the constant of (4.4) in Theorem 4.3 and ∆(ε,m, δ, T ) > 0 is an error term such
that

lim
m→∞

lim
ε→0+

∆(ε,m, δ, T ) = 0.

Proof. See §D.2 for a detailed proof.

In (4.5) of Corollary 4.4, the error term ∆(ε,m, δ, T ) characterizes the error of approximating the
TD dynamics θ(m)(k) in (3.3) using the PDE solution ρt in (3.4). In particular, such an error vanishes
at the mean-field limit.

5 Proof of Main Results

We first introduce two technical lemmas. Recall that F is defined in (4.3), Q(x; ρ) is defined in (3.2),
and g(θ; ρ) is defined in (3.5).

Lemma 5.1. There exists a unique fixed point solution to the projected Bellman equation Q =
ΠFT πQ, which takes the form of Q∗(x) =

∫
σ(x; θ) dρ̄(θ). Also, there exists ρ∗ ∈P2(RD) that

satisfies the following properties,

(i) Q(x; ρ∗) = Q∗(x) for any x ∈ X ,

(ii) g(·; ρ∗) = 0 for ρ̄-a.e., and

(iii) W2(ρ∗, ρ0) ≤ α−1 · D̄, where D̄ = Dχ2(ρ̄ ‖ ρ0)1/2.

Proof. See §C.1 for a detailed proof. The proof of (iii) is adopted from [23], which focuses on
supervised learning.

Lemma 5.1 establishes the existence of the fixed point solution Q∗ to the projected Bellman equation
Q = ΠFT πQ. Furthermore, such a fixed point solution Q∗ can be parameterized with the infinitely
wide neural network Q(·; ρ∗) in (3.2). Meanwhile, the Wasserstein-2 distance between ρ∗ and the
initial distribution ρ0 is upper bounded by O(α−1). Based on the existence of Q∗ and the property of
ρ∗ in Lemma 5.1, we establish the following lemma that characterizes the evolution ofW2(ρt, ρ

∗),
where ρt is the PDE solution in (3.4).

Lemma 5.2. We assume thatW2(ρt, ρ
∗) ≤ 2W2(ρ0, ρ

∗), Dχ2(ρ̄ ‖ ρ0) <∞, and ρ̄(θ) > 0 for any
θ ∈ RD. Under Assumptions 4.1 and 4.2, it holds that

d

dt

W2(ρt, ρ
∗)2

2
≤ −(1− γ) · η · Ex∼D

[(
Q(x; ρt)−Q∗(x)

)2]
+ C∗ · α−1 · η, (5.1)

where C∗ > 0 is a constant depending on Dχ2(ρ̄ ‖ ρ0), B1, B2, and Br.

Proof. See §C.2 for a detailed proof.
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ρt

g(·; ρt)

v
ρ∗

Figure 1: We illustrate the first variation formula dW2(ρt,ρ
∗)2

2 = −〈g(·; ρt), v〉ρt , where v is the
vector field corresponding to the geodesic that connects ρt and ρ∗. See Lemma E.2 for details.

0 t∗ t∗

W2(ρt, ρ
∗) ≤ 2W2(ρ0, ρ

∗)

d
dt
W2(ρt,ρ∗)

2

2 ≤ 0 ifW2(ρt, ρ
∗) ≤ 2W2(ρ0, ρ

∗)

Figure 2: For any 0 ≤ t ≤ min{t∗, t∗}, (5.1) of Lemma 5.2 holds and d
dt
W2(ρt,ρ∗)

2

2 ≤ 0.

The proof of Lemma 5.2 is based on the first variation formula of the Wasserstein-2 distance (Lemma
E.2), which is illustrated in Figure 1, and the one-point monotonicity of g(·;βt) along a curve β on
the Wasserstein space (Lemma C.1). When the right-hand side of (5.1) is nonpositive, Lemma 5.2
characterizes the decay ofW2(ρt, ρ

∗). We are now ready to present the proof of Theorem 4.3.

Proof. We use a continuous counterpart of the induction argument. We define

t∗ = inf

{
τ ∈ R+

∣∣∣∣Ex∼D[(1− γ) ·
(
Q(x; ρτ )−Q∗(x)

)2]
< C∗ · α−1

}
. (5.2)

In other words, the right-hand side of (5.1) in Lemma 5.2 is nonpositive for any t ≤ t∗, that is,

−(1− γ) · Ex∼D
[(
Q(x; ρt)−Q∗(x)

)2]
+ C∗ · α−1 ≤ 0. (5.3)

Also, we define

t∗ = inf
{
τ ∈ R+

∣∣W2(ρτ , ρ
∗) > 2W2(ρ0, ρ

∗)
}
. (5.4)

In other words, (5.1) of Lemma 5.2 holds for any t ≤ t∗. Thus, for any 0 ≤ t ≤ min{t∗, t∗}, it holds
that d

dt
W2(ρt,ρ∗)

2

2 ≤ 0. Figure 2 illustrates the definition of t∗ and t∗ in (5.2) and (5.4), respectively.

We now prove that t∗ ≥ t∗ by contradiction. By the continuity ofW2(ρt, ρ
∗)2 with respect to t [5], it

holds that t∗ > 0, sinceW2(ρ0, ρ
∗) < 2W2(ρ0, ρ

∗). For the sake of contradiction, we assume that
t∗ < t∗, by (5.1) of Lemma 5.2 and (5.3), it holds for any 0 ≤ t ≤ t∗ that

d

dt

W2(ρt, ρ
∗)2

2
≤ 0,

which implies thatW2(ρt, ρ
∗) ≤ W2(ρ0, ρ

∗) for any 0 ≤ t ≤ t∗. This contradicts the definition of t∗
in (5.4). Thus, it holds that t∗ ≥ t∗, which implies that (5.1) of Lemma 5.2 holds for any 0 ≤ t ≤ t∗.
If t∗ ≤ T , (5.3) implies Theorem 4.3. If t∗ > T , by (5.1) of Lemma 5.2, it holds for any 0 ≤ t ≤ T
that

d

dt

W2(ρt, ρ
∗)2

2
≤ −(1− γ) · η · Ex∼D

[(
Q(x; ρt)−Q∗(x)

)2]
+ C∗ · α−1 · η ≤ 0,
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which further implies that

Ex∼D
[(
Q(x; ρt)−Q∗(x)

)2] ≤ −(1− γ)−1 · η−1 · d

dt

W2(ρt, ρ
∗)2

2
+

C∗
(1− γ) · α

. (5.5)

Upon telescoping (5.5) and setting η = α−2, we obtain that

inf
t∈[0,T ]

ED
[(
Q(x; ρt)−Q∗(x)

)2]
≤ T−1 ·

∫ T

0

Ex∼D
[(
Q(x; ρt)−Q∗(x)

)2]
dt

≤ 1/2 · (1− γ)−1 · η−1 · T−1 · W2(ρ0, ρ
∗)2 + C∗ · (1− γ)−1 · α−1

≤ 1/2 · (1− γ)−1 · D̄2 · T−1 + C∗ · (1− γ)−1 · α−1,

where the last inequality follows from the fact that η = α−2 and (iii) of Lemma 5.1. Thus, we
complete the proof of Theorem 4.3.

6 Extension to Q-Learning and Policy Improvement

In §B, we extend our analysis of TD to Q-learning and soft Q-learning for policy improvement. In
§B.1, we introduce Q-learning and its mean-field limit. In §B.2, we establish the global optimality
and convergence of Q-learning. In §B.3, we further extend our analysis to soft Q-learning, which is
equivalent to a variant of policy gradient [37, 57, 58, 61].

Broader Impact

The popularity of RL creates a responsibility for researchers to design algorithms with guaranteed
safety and robustness, which rely on their stability and convergence. In this paper, we provide
a theoretical understanding of the global optimality and convergence of the TD and Q-learning
with neural network parameterization. We believe that our work is an important step forward in
the algorithm design of RL in emerging high-stakes applications, such as autonomous driving,
personalized medicine, power systems, and robotics.
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[6] Araújo, D., Oliveira, R. I. and Yukimura, D. (2019). A mean-field limit for certain deep neural
networks. arXiv preprint arXiv:1906.00193.

[7] Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R. and Wang, R. (2019). On exact com-
putation with an infinitely wide neural net. In Advances in Neural Information Processing
Systems.

[8] Arora, S., Du, S. S., Hu, W., Li, Z. and Wang, R. (2019). Fine-grained analysis of optimiza-
tion and generalization for overparameterized two-layer neural networks. arXiv preprint
arXiv:1901.08584.

9



[9] Bai, Y. and Lee, J. D. (2019). Beyond linearization: On quadratic and higher-order approxima-
tion of wide neural networks. arXiv preprint arXiv:1910.01619.

[10] Baird, L. (1995). Residual algorithms: Reinforcement learning with function approximation. In
International Conference on Machine Learning.

[11] Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information Theory, 39 930–945.

[12] Bengio, Y. (2012). Deep learning of representations for unsupervised and transfer learning. In
ICML Workshop on Unsupervised and Transfer Learning.

[13] Bertsekas, D. P. (2019). Feature-based aggregation and deep reinforcement learning: A survey
and some new implementations. IEEE/CAA Journal of Automatica Sinica, 6 1–31.

[14] Bhandari, J., Russo, D. and Singal, R. (2018). A finite time analysis of temporal difference
learning with linear function approximation. arXiv preprint arXiv:1806.02450.

[15] Bhatnagar, S., Precup, D., Silver, D., Sutton, R. S., Maei, H. R. and Szepesvári, C. (2009). Con-
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A Pseudocode of TD Learning

In this section, we present the pseudocode of TD learning in Algorithm 1, which is introduced in §3.

Algorithm 1 Temporal-Difference Learning with Two-Layer Neural Network for Policy Evaluation

Initialization: θi(0)
i.i.d.∼ ρ0 (i ∈ [m]), number of iterations K = bT/εc, and policy π of interest.

for k = 0, . . . ,K − 1 do
Sample the state-action pair (s, a) from the stationary distribution D of π, receive the reward r,
and obtain the subsequent state-action pair (s′, a′).
Calculate the Bellman residual δ = Q̂(x; θ(m)(k))− r − γ · Q̂(x′; θ(m)(k)), where x = (s, a)
and x′ = (s′, a′).
Perform the TD update θi(k + 1)← θi(k)− ηε · α · δ · ∇θσ(x; θi(k)) (i ∈ [m]).

end for
Output: {θ(m)(k)}K−1

k=0

B Q-Learning and Policy Improvement

In this section, we extend our analysis of TD to Q-learning and soft Q-learning for policy improvement.
In §B.1, we introduce Q-learning and its mean-field limit. In §B.2, we establish the global optimality
and convergence of Q-learning. In §B.3, we further extend our analysis to soft Q-learning, which is
equivalent to policy gradient.

B.1 Q-Learning

Q-learning aims to solve the following projected Bellman optimality equation,

Q = ΠFT ∗Q. (B.1)

Here T ∗ is the Bellman optimality operator, which is defined as follows,

T ∗Q(s, a) = E
[
r + γ ·max

a∈A
Q(s′, a)

∣∣ r ∼ R(· | s, a), s′ ∼ P (· | s, a)
]
.

When ΠF is the identity mapping, the fixed point solution to (B.1) is the Q-function Qπ
∗

of the
optimal policy π∗, which maximizes the expected total reward J(π) defined in (2.1) [65]. We consider
the parameterization of the Q-function in (3.1) and update the parameter θ(m) as follows,

θi(k + 1) (B.2)

= θi(k)− ηε · α ·
(
Q̂
(
sk, ak; θ(m)(k)

)
− rk − γ ·max

a∈A
Q̂
(
s′k, a; θ(m)(k)

))
· ∇θσ

(
sk, ak; θi(k)

)
,

where i ∈ [m], (sk, ak) is sampled from the stationary distributionDE ∈P(S×A) of an exploration
policy πE, rk ∼ R(· | sk, ak) is the reward, and s′k ∼ P (· | sk, ak) is the subsequent state. For
notational simplicity, we denote by D̃E ∈P(S ×A×R×S) the distribution of (sk, ak, rk, s

′
k). For

an initial distribution ν0 ∈P(RD), we initialize {θi}mi=1 as θi
i.i.d.∼ ρ0 (i ∈ [m]). See Algorithm 2

for a detailed description.

Mean-Field Limit. Corresponding to ε→ 0+ and m→∞, the mean-field limit of the Q-learning
dynamics in (B.2) is characterized by the following PDE with ν0 as the initial distribution,

∂tνt = −η · div
(
νt · h(·; νt)

)
. (B.3)

Here h(·; νt) : RD → RD is a vector field, which is defined as follows,

h(θ; ν) = −α · E(s,a,r,s′)∼D̃E

[(
Q(s, a; ν)− r − γ ·max

a∈A
Q(s′, a; ν)

)
· ∇θσ(s, a; θ)

]
. (B.4)

In parallel to Proposition 3.1, the empirical distribution ν̂(m)
k = m−1 ·

∑m
i=1 δθi(k) weakly converges

to νkε as ε→ 0+ and m→∞.
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Algorithm 2 Q-Learning with Two-Layer Neural Network for Policy Improvement

Initialization. θi(0)
i.i.d.∼ ν0 (i ∈ [m]), number of iterations K = bT/εc, and exploration policy

πE.
for k = 0, . . . ,K − 1 do

Sample the state-action pair (s, a) from the stationary distribution DE of πE, receive the reward
r, and obtain the subsequent state s′.
Calculate the Bellman residual δ = Q̂(x; θ(m)(k))− r − γ · Q̂(x′; θ(m)(k)), where x = (s, a)

and x′ = (s′, argmaxa∈A Q̂(s′, a; θ(m)(k))).
Perform the Q-learning update θi(k + 1)← θi(k)− ηε · α · δ · ∇θσ(x; θi(k)) (i ∈ [m]).

end for
Output: {θ(m)(k)}K−1

k=0

B.2 Global Optimality and Convergence of Q-Learning

The max operator in the Bellman optimality operator T ∗ makes the analysis of Q-learning more
challenging than that of TD. Correspondingly, we lay out an extra regularity condition on the
exploration policy πE. Recall that the function class F is defined in (4.3).

Assumption B.1. We assume for an absolute constant κ > 0 and any Q1, Q2 ∈ F that

E(s,a)∼DE

[(
Q1(s, a)−Q2(s, a)

)2] ≥ (γ + κ)2 · E(s,a)∼DE

[(
max
a∈A

Q1(s, a)−max
a∈A

Q2(s, a)
)2]

.

Although Assumption B.1 is strong, we are not aware of any weaker regularity condition in the
literature, even in the linear setting [25, 55, 78] and the NTK regime [21]. Let the initial distribution
ν0 be the standard Gaussian distribution N(0, ID). In parallel to Theorem 4.3, we establish the
following theorem, which characterizes the global optimality and convergence of Q-learning. Recall
that we write X = S ×A and x = (s, a) ∈ X . Also, νt is the PDE solution in (B.3), while θ(m)(k)
is the Q-learning dynamics in (B.2).

Theorem B.2. There exists a unique fixed point solution to the projected Bellman optimality equation
Q = ΠFT ∗Q, which takes the form of Q†(x) =

∫
σ(x; θ) dν̄(θ). We assume that Dχ2(ν̄ ‖ ν0) <∞

and ν̄(θ) > 0 for any θ ∈ RD. Under Assumptions 4.1, 4.2, and B.1, it holds for η = α−2 that

inf
t∈[0,T ]

Ex∼DE

[(
Q(x; νt)−Q†(x)

)2] ≤ (κ+ γ) ·Dχ2(ν̄ ‖ ν0)

2κ · T
+

(κ+ γ) · C∗
κ · α

, (B.5)

where C∗ > 0 is a constant depending on Dχ2(ν̄ ‖ ν0), B1, B2, and Br. Moreover, it holds with
probability at least 1− δ that

min
k≤T/ε
(k∈N)

Ex∼DE

[(
Q̂
(
x; θ(m)(k)

)
−Q†(x)

)2
]

≤
(κ+ γ) ·Dχ2(ν̄ ‖ ν0)

2κ · T
+

(κ+ γ) · C∗
κ · α

+ ∆(ε,m, δ, T ), (B.6)

where ∆(ε,m, δ, T ) > 0 is an error term such that

lim
m→∞

lim
ε→0+

∆(ε,m, δ, T ) = 0.

Proof. See §B.4 for a detailed proof.

Theorem B.2 proves that the optimality gap Ex∼DE [(Q(x; νt)−Q†(x))2] decays to zero at a sublinear
rate up to the error of O(α−1), where α > 0 is the scaling parameter in (3.1). In parallel to Theorem
4.3, varying α leads to a tradeoff between such an error of O(α−1) and the deviation of νt from ν0.
Moreover, based on the counterparts of Proposition 3.1 and Lemma D.6, Theorem B.2 gives the
global optimality and convergence of the Q-learning dynamics θ(m)(k) in (B.2), which is in parallel
to Corollary 4.4.
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B.3 Soft Q-Learning

In this section, we generalize Theorem B.2 to soft Q-learning. To introduce soft Q-learning, we first
define the soft Bellman optimality operator as follows,

TβQ(s, a) = E
[
r + γ · softmax

a∈A
βQ(s′, a)

∣∣ r ∼ R(· | s, a), s′ ∼ P (· | s, a)
]
,

where the softmax operator is defined as follows,

softmax
a∈A

βQ(s, a) = β · logEa∼π̄(· | s)

[
exp
(
β−1 ·Q(s, a)

)]
.

Here π̄(· | s) is the uniform policy. Soft Q-learning aims to find the fixed point solution to the projected
soft Bellman optimality equation Q = ΠFTβQ. In parallel to the Q-learning dynamics in (B.2), we
consider the following soft Q-learning dynamics,

θi(k + 1) (B.7)

= θi(k)− ηε · α ·
(
Q̂
(
sk, ak; θ(m)(k)

)
− rk − γ · softmax

a∈A
βQ̂
(
s′k, a; θ(m)(k)

))
· ∇θσ

(
sk, ak; θi(k)

)
,

whose mean-field limit is characterized by the following PDE,

∂tνt = −η · div
(
νt · h(·; νt)

)
. (B.8)

In parallel to (B.4), h(·; νt) : RD → RD is a vector field, which is defined as follows,

h(θ; ν) = −α · E(s,a,r,s′)∼D̃E

[(
Q(s, a; ν)− r − γ · softmax

a∈A
βQ(s′, a; ν)

)
· ∇θσ(s, a; θ)

]
.

In parallel to Assumption B.1, we lay out the following regularity condition.
Assumption B.3. We assume for an absolute constant κ > 0 and any ν1, ν2 ∈P(RD) that

E(s,a)∼DE

[(
Q(s, a; ν1)−Q(s, a; ν2)

)2]
≥ (γ + κ)2 · E(s,a)∼DE

[(
softmax
a∈A

βQ(s, a; ν1)− softmax
a∈A

βQ(s, a; ν2)
)2]

.

The following proposition parallels Theorem B.2, which characterizes the global optimality and
convergence of soft Q-learning. Recall that νt is the PDE solution in (B.8) and θ(m)(k) is the soft
Q-learning dynamics in (B.7).
Proposition B.4. There exists a unique fixed point solution to the projected soft Bellman optimal-
ity equation Q = ΠFTβQ, which takes the form of Q‡(x) =

∫
σ(x; θ) dν(θ). We assume that

Dχ2(ν ‖ ν0) <∞ and ν(θ) > 0 for any θ ∈ RD. Under Assumptions 4.1, 4.2, and B.3, it holds for
η = α−2 that

inf
t∈[0,T ]

Ex∼DE

[(
Q(x; νt)−Q‡(x)

)2] ≤ (κ+ γ) ·Dχ2(ν ‖ ν0)

2κ · T
+

(κ+ γ) · C∗
κ · α

,

where C∗ > 0 is a constant depending on Dχ2(ν ‖ ν0), B1, B2, and Br. Moreover, it holds with
probability at least 1− δ that

min
k≤T/ε
(k∈N)

Ex∼DE

[(
Q̂
(
x; θ(m)(k)

)
−Q‡(x)

)2
]
≤

(κ+ γ) ·Dχ2(ν ‖ ν0)

2κ · T
+

(κ+ γ) · C∗
κ · α

+ ∆(ε,m, δ, T ),

where ∆(ε,m, δ, T ) > 0 is an error term such that

lim
m→∞

lim
ε→0+

∆(ε,m, δ, T ) = 0.

Proof. Replacing the max operator by the softmax operator in the proof of Theorem B.2 in §B.4
implies Proposition B.4.

Moreover, soft Q-learning is equivalent to a variant of policy gradient [37, 57, 58, 61]. Hence,
Proposition B.4 also characterizes the global optimality and convergence of such a variant of policy
gradient.
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B.4 Proof of Theorem B.2

For notational simplicity, we denote by EDE the expectation with respect to x ∼ DE and ED̃E
the

expectation with respect to (x, r, x′) ∼ D̃E.

Proof. In parallel to the proof of Lemma 5.1 in §C.1, to establish the existence and uniqueness of the
fixed point solution to the projected Bellman optimality equation Q = ΠFT ∗Q, it suffices to show
that ΠFT ∗ : F → F is a contraction mapping. In particular, it holds for any Q1, Q2 ∈ F that

‖ΠFT ∗Q1 −ΠFT ∗Q2‖2L2(DE) ≤ γ
2 · ED̃E

[(
max
a∈A

Q1(s′, a)−max
a∈A

Q2(s′, a)
)2]

= γ2 · EDE

[(
max
a∈A

Q1(s, a)−max
a∈A

Q2(s, a)
)2]

≤ γ2

(γ + κ)2
· EDE

[(
Q1(s, a)−Q2(s, a)

)2]
,

where the equality follows from the fact that DE is the stationary distribution and the last inequality
follows from Assumption B.1. Thus, ΠFT ∗ : F → F is a contraction mapping. Following from the
Banach fixed point theorem [28], there exists a unique fixed point solution Q† ∈ F to the projected
Bellman optimality equation Q = ΠFT ∗Q. Moreover, in parallel to the proof of Lemma 5.1 in §C.1,
there exists ν† ∈P2(RD) such that Q(x; ν†) = Q†(x), h(x; ν†) = 0, andW2(ν†, ν0) ≤ α−1 · D̄,
where D̄ = Dχ2(ν̄ ‖ ν0)1/2.

For notational simplicity, we define QA(x) = maxa∈AQ(s, a). In parallel to (C.13) in the proof of
Lemma 5.2 in §C.2, we have that

d

dt

W2(νt, ν
†)2

2
= η ·

∫ 1

0

〈
∂sh(·;βs), vs

〉
βs

ds︸ ︷︷ ︸
(i)

+η ·
∫ 1

0

∫ 〈
h(θ;βs), ∂s(vs · βs)(θ)

〉
dθ ds︸ ︷︷ ︸

(ii)

, (B.9)

where β : [0, 1]→P2(RD) is the geodesic connecting νt and ν† with ∂sβs = −div(βs · vs).

Upper bounding term (i) of (B.9). In parallel to (C.5) and (C.6) in the proof of Lemma C.1, we
have that〈
∂sh(·;βs), vs

〉
βs

= −ED̃E

[
∂s
(
Q(x;βs)− γ ·QA(x′;βs)

)
· ∂sQ(x;βs)

]
(B.10)

≤ −EDE

[(
∂sQ(x;βs)

)2]
+ γ · EDE

[(
∂sQ(x;βs)

)2]1/2 · EDE

[(
∂sQ

A(x;βs)
)2]1/2

.

For the second term on the right-hand side of (B.10), we have that

EDE

[(
∂sQ

A(x;βs)
)2]

= lim
u→0

EDE

[(
u−1 ·

(
QA(x;βs+u)−QA(x;βs)

))2
]

≤ (γ + κ)−2 · lim
u→0

u−2 · EDE

[(
Q(x;βs+u)−Q(x;βs)

)2]
= (γ + κ)−2 · EDE

[(
∂sQ(x;βs)

)2]
, (B.11)

where the inequality follows from Assumption B.1 and the fact that Q(·; ν) ∈ α · F . Plugging (B.11)
into (B.10), we have that〈

∂sh(·;βs), vs
〉
βs
≤ − κ

γ + κ
· EDE

[(
∂sQ(x;βs)

)2]
,

which further implies that∫ 1

0

〈
∂sh(·;βs), vs

〉
βs

ds ≤ − κ

γ + κ
·
∫ 1

0

EDE

[(
∂sQ(x;βs)

)2]
ds

≤ − κ

γ + κ
· EDE

[(∫ 1

0

∂sQ(x;βs) ds
)2
]

= − κ

γ + κ
· EDE

[(
Q(x; νt)−Q(x; ν†)

)2]
. (B.12)
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Upper bounding term (ii) of (B.9). In parallel to the proof of Lemma C.2 in §C.2, noting that
|QA(x; ν)| ≤ supx∈X |Q(x; ν)| for any ν ∈P2(RD), we have that∥∥∇θh(θ; νt)

∥∥
F
≤ α ·B2 ·

(
2α ·B1 · W2(νt, ν0) +Br

)
.

In parallel to (C.15) and (C.16), we have that∫ 1

0

∫ ∣∣∣〈h(θ;βs), ∂s(vs · βs)(θ)
〉∣∣∣dθ ds ≤ C∗ · α−1, (B.13)

where C∗ > 0 is a constant that depends on D̄, B1, B2, and Br.

Plugging (B.12) and (B.13) into (B.9), we have that

d

dt

W2(νt, ν
†)2

2
≤ − η · κ

γ + κ
· EDE

[(
Q(x; νt)−Q(x; ν†)

)2]
+ C∗ · η · α−1.

Thus, in parallel to the proof of Theorem 4.3 in §5, we have that

inf
t∈[0,T ]

ED
[(
Q(x; νt)−Q†(x)

)2] ≤ (κ+ γ) ·Dχ2(ν̄ ‖ ν0)

2κ · T
+ C∗ · α−1 · κ+ γ

κ
,

which completes the proof of (B.5) in Theorem B.2. Meanwhile, in parallel to the proof of Lemma
D.6 in §D.2, we upper bound the error of approximating ν̂k by νkε, which further implies (B.6) of
Theorem B.2.

C Proofs of Supporting Lemmas

For notational simplicity, we denote by ED the expectation with respect to x ∼ D and ED̃ the
expectation with respect to (x, r, x′) ∼ D̃. Also, with a slight abuse of notations, we write θ(m) =
{θi}mi=1.

C.1 Proof of Lemma 5.1

Proof. Existence and uniqueness of Q∗. To establish the existence of the fixed point solution Q∗
to the projected Bellman equation Q = ΠFT πQ, it suffices to show that ΠFT π : F → F is a
contraction mapping. It holds for any Q1, Q2 ∈ F that

‖ΠFT πQ1 −ΠFT πQ2‖2L2(D) ≤ γ
2 · ED̃

[(
Q1(x′)−Q2(x′)

)2]
= γ2 ·

∥∥Q1 −Q2
∥∥2

L2(D)
,

where the last equality follows from the fact that D is the stationary distribution. Thus, ΠFT π :
F → F is a contraction mapping. Note that F is complete. Following from the Banach fixed point
theorem [28], there exists a uniqueQ∗ ∈ F that solves the projected Bellman equationQ = ΠFT πQ.
Moreover, by the definition of F in (4.3), there exists ρ̄ ∈P2(RD) such that

Q∗(x) =

∫
σ(x; θ) dρ̄(θ).

Proof of (i) in Lemma 5.1. We define

ρ∗ = ρ0 + α−1 · (ρ̄− ρ0). (C.1)

By the definition of Q(·; ρ) in (3.2) and the fact that Q(x; ρ0) = 0, we have that Q(x; ρ∗) = Q∗(x),
which completes the proof of (i) in Lemma 5.1.

Proof of (ii) in Lemma 5.1. For (ii) of Lemma 5.1, note that Q(·; ρ∗) = ΠFT πQ(·; ρ∗). Thus, we
have that 〈

Q(·; ρ∗)− T πQ(·; ρ∗), f(·)−Q(·; ρ∗)
〉
D ≥ 0, ∀f ∈ F ,
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which further implies that

ED̃
[(
Q(x; ρ∗)− r − γ ·Q(x′; ρ∗)

)
·
∫
σ(x; θ) d(ρ− ρ̄)(θ)

]
≥ 0, ∀ρ ∈P2(RD). (C.2)

Let ρ = (id+h ·v)]ρ̄ for a sufficiently small scaling parameter h ∈ R+ and any Lipschitz-continuous
mapping v : RD → RD. Then, following from (C.2), we have that∫

ED̃

[(
Q(x; ρ∗)− r − γ ·Q(x′; ρ∗)

)
·
(
σ
(
x; θ + h · v(θ)

)
− σ(x; θ)

)]
dρ̄(θ) ≥ 0 (C.3)

for any v : RD → RD. Dividing the both sides of (C.3) by h and letting h→ 0+, we have for any
v : RD → RD that

0 ≤
∫

ED̃
[(
Q(x; ρ∗)− r − γ ·Q(x′; ρ∗)

)
·
〈
∇θσ(x; θ), v(θ)

〉]
dρ̄(θ)

= −α−1 ·
∫ 〈

g(θ; ρ∗), v(θ)
〉

dρ̄(θ),

where the equality follows from the definition of g in (3.5). Thus, we have that g(θ; ρ∗) = 0 for ρ̄-a.e.,
which completes the proof of (ii) in Lemma 5.1.

Proof of (iii) in Lemma 5.1. Following from the definition of ρ∗ in (C.1), we have that

Dχ2(ρ∗ ‖ ρ0)

=

∫ (
ρ∗(θ)

ρ0(θ)
− 1

)2

dρ0(θ) =

∫ (
(1− α−1) · ρ0(θ) + α−1 · ρ̄(θ)

ρ0(θ)
− 1

)2

dρ0(θ) = α−2 · D̄2,

where D̄ = Dχ2(ρ̄ ‖ ρ0)1/2. By Lemma E.3, we have that

W2(ρ∗, ρ0) ≤ DKL(ρ∗ ‖ ρ0)1/2 ≤ Dχ2(ρ∗ ‖ ρ0)1/2 ≤ α−1 · D̄,

which completes the proof of (iii) in Lemma 5.1.

C.2 Proof of Lemma 5.2

We first introduce the following lemmas. The first lemma establishes the one-point monotonicity of
g(·;βt) along a curve β : [0, 1]→P2(RD) on the Wasserstein space.
Lemma C.1. Let β : [0, 1]→P2(RD) be a curve such that ∂tβt = − div(βt · vt) for a vector field
v. We have that 〈

∂tg(·;βt), vt
〉
βt
≤ −(1− γ) · ED

[(
∂tQ(x;βt)

)2]
.

Furthermore, we have that∫ 1

0

〈
∂sg(·;βs), vs

〉
βs

ds ≤ −(1− γ) · ED
[(
Q(x;β0)−Q(x;β1)

)2]
. (C.4)

Proof. Following from the definition of g in (3.5), we have that

∂tg(θ;βt) = −α · ED̃
[
∂t
(
Q(x;βt)− γ ·Q(x′;βt)

)
· ∇θσ(x; θ)

]
.

Thus, following from integration by parts and the continuity equation ∂tβt = −div(βt · vt), we have
that〈
∂tg(·;βt), vt

〉
βt

= −
∫ 〈

α · ED̃
[
∂t
(
Q(x;βt)− γ ·Q(x′;βt)

)
· ∇θσ(x; θ)

]
, vt(θ) · βt(θ)

〉
dθ

= −
∫
α · ED̃

[
∂t
(
Q(x;βt)− γ ·Q(x′;βt)

)
· σ(x; θ)

]
· ∂tβt(θ) dθ

= −ED̃
[
∂t
(
Q(x;βt)− γ ·Q(x′;βt)

)
· ∂tQ(x;βt)

]
, (C.5)
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where the last equality follows from the definition of Q in (3.2). Applying the Cauchy-Schwartz
inequality to (C.5), we have that〈
∂tg(·;βt), vt

〉
βt

= −ED̃
[(
∂tQ(x;βt)

)2]
+ γ · ED̃

[
∂tQ(x′;βt) · ∂tQ(x;βt)

]
≤ −ED̃

[(
∂tQ(x;βt)

)2]
+ γ · ED̃

[(
∂tQ(x;βt)

)2]1/2 · ED̃[(∂tQ(x′;βt)
)2]1/2

= −(1− γ) · ED
[(
∂tQ(x;βt)

)2]
, (C.6)

where the last equality follows from the fact that the marginal distributions of D̃ with respect to x
and x′ are D, since D is the stationary distribution. Furthermore, we have that∫ 1

0

〈
∂sg(·;βs), vs

〉
βs

ds ≤ −(1− γ) ·
∫ 1

0

ED
[(
∂sQ(x;βs)

)2]
ds

≤ −(1− γ) · ED
[(∫ 1

0

∂sQ(x;βs) ds
)2
]

= −(1− γ) · ED
[(
Q(x;β1)−Q(x;β0)

)2]
,

which completes the proof of Lemma C.1.

The following lemma upper bounds the norms of Q and ∇θg.
Lemma C.2. Under Assumptions 4.1 and 4.2, it holds for any ρ ∈P2(RD) that

sup
x∈X

∣∣Q(x; ρ)
∣∣ ≤ α ·min

{
B1 · W2(ρ, ρ0), B0

}
, (C.7)

sup
θ∈RD

∥∥∇θg(θ; ρ)
∥∥

F
≤ α ·B2 ·min

{
2α ·B1 · W2(ρ, ρ0) +Br, 2α ·B0 +Br

}
. (C.8)

Proof. We introduce the Wasserstein-1 distance, which is defined as

W1(µ1, µ2) = inf
{
E
[
‖X − Y ‖

] ∣∣∣ law(X) = µ1, law(Y ) = µ2
}

for any µ1, µ2 ∈P(RD) with finite first moments. Thus, we have thatW1(µ1, µ2) ≤ W2(µ1, µ2).
The Wasserstein-1 distance has the following dual representation [5],

W1(µ1, µ2) = sup

{∫
f(x) d(µ1 − µ2)(x)

∣∣∣∣ continuous f : RD → R,Lip(f) ≤ 1

}
. (C.9)

Following from Assumptions 4.1 and 4.2, we have that ‖∇θσ(x; θ)‖ ≤ B1 for any x ∈ X and
θ ∈ RD, which implies that Lip(σ(x; ·)/B1) ≤ 1 for any x ∈ X . Note that Q(x; ρ0) = 0 for any
x ∈ X . Thus, by (C.9) we have for any ρ ∈P2(RD) and x ∈ X that∣∣Q(x; ρ)

∣∣ = α ·
∣∣∣∣∫ σ(x; θ) · d(ρ− ρ0)(θ)

∣∣∣∣ ≤ α ·B1 · W1(ρ, ρ0) ≤ α ·B1 · W2(ρ, ρ0). (C.10)

Meanwhile, following from Assumptions 4.1 and 4.2, we have for any x ∈ X and ρ ∈P2(RD) that∣∣Q(x; ρ)
∣∣ = α ·

∣∣∣∣∫ σ(x; θ) dρ(θ)

∣∣∣∣ ≤ α ·B0. (C.11)

Combining (C.10) and (C.11), we have for any ρ ∈P2(RD) that

sup
x∈X

∣∣Q(x; ρ)
∣∣ ≤ α ·min

{
B1 · W2(ρ, ρ0), B0

}
, (C.12)

which completes the proof of (C.7) in Lemma C.2. Following from the definition of g in (3.5), we
have for any x ∈ X and ρ ∈P2(RD) that∥∥∇θg(θ; ρ)

∥∥
F
≤ α · ED̃

[∣∣Q(x; ρ)− r − γ ·Q(x′; ρ)
∣∣ · ∥∥∇2

θθσ(x; θ)
∥∥

F

]
≤ α ·min

{
2α ·B1 · W2(ρ, ρ0) +Br, 2α ·B0 +Br

}
·B2.

Here the last inequality follows from (C.12) and the fact that ‖∇2
θθσ(x; θ)‖F ≤ B2 for any x ∈ X

and ρ ∈ P2(RD), which follows from Assumptions 4.1 and 4.2. Thus, we complete the proof of
Lemma C.2.
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We are now ready to present the proof of Lemma 5.2.

Proof. Recall that ρt is the PDE solution in (3.4), that is,

∂tρt = −η · div
(
ρt · g(·; ρt)

)
,

where

g(θ; ρ) = −α · ED̃
[(
Q(x; ρ)− r − γ ·Q(x′; ρ)

)
· ∇θσ(x; θ)

]
.

We fix a t ∈ [0, T ]. We denote by β : [0, 1] → P2(RD) the geodesic connecting ρt and ρ∗.
Specifically, β satisfies that β′s = − div(βs · vs) for a vector field v. Following from Lemma E.2, we
have that

d

dt

W2(ρt, ρ
∗)2

2
= −η ·

〈
g(·; ρt), v0

〉
ρt

= η ·
∫ 1

0

∂s
〈
g(·;βs), vs

〉
βs

ds− η ·
〈
g(·; ρ∗), v1

〉
ρ∗

= η ·
∫ 1

0

〈
∂sg(·;βs), vs

〉
βs

ds︸ ︷︷ ︸
(i)

+η ·
∫ 1

0

∫ 〈
g(θ;βs), ∂s(vs · βs)(θ)

〉
dθ ds︸ ︷︷ ︸

(ii)

,

(C.13)

where the last equality follows from (ii) of Lemma 5.1.

For term (i) of (C.13), following from (C.4) of Lemma C.1, we have that∫ 1

0

〈
∂sg(·;βs), vs

〉
βs

ds ≤ −(1− γ) · ED
[(
Q(x;β0)−Q(x;β1)

)2]
= −(1− γ) · ED

[(
Q(x; ρt)−Q∗(x)

)2]
. (C.14)

For term (ii) of (C.14), we have that∫ ∣∣∣〈g(θ;βs), ∂s(vs · βs)(θ)
〉∣∣∣dθ =

∫ ∣∣∣〈∇θg(θ;βs), βs(θ) · vs(θ)⊗ vs(θ)
〉∣∣∣dθ

≤ sup
θ∈RD

∥∥∇θg(θ;βs)
∥∥

F
· ‖vs‖2βs

,

where the equality follows from integration by parts and Lemma E.4. Since β is the geodesic
connecting ρt and ρ∗, (2.7) implies that ‖vs‖2βs

= W2(β0, β1)2 = W2(ρt, ρ
∗)2 for any s ∈ [0, 1].

Applying (C.8) of Lemma C.2, we have that∫ ∣∣∣〈g(θ;βs), ∂s(vs · βs)(θ)
〉∣∣∣dθ ≤ α ·B2 ·

(
2α ·B1 · W2(ρt, ρ0) +Br

)
· W2(ρt, ρ

∗)2

≤ 4α ·B2 ·
(
6α ·B1 · W2(ρ0, ρ

∗) +Br
)
· W2(ρ0, ρ

∗)2, (C.15)

where the last inequality follows from the condition of Lemma 5.2 thatW2(ρt, ρ
∗) ≤ 2W2(ρ0, ρ

∗)
and the fact that W2(ρt, ρ0) ≤ W2(ρt, ρ

∗) +W2(ρ0, ρ
∗). Then, applying (iii) of Lemma 5.1 to

(C.15), we have that∫ 1

0

∫ ∣∣∣〈g(θ;βs), ∂s(vs · βs)(θ)
〉∣∣∣dθ ds ≤ 4α−1 ·B2 · D̄2 · (6B1 · D̄ +Br)

= C∗ · α−1, (C.16)

where C∗ > 0 is a constant depending on D̄, B1, B2, and Br.

Finally, plugging (C.14) and (C.16) into (C.13), we have that

d

dt

W2(ρt, ρ
∗)2

2
≤ −(1− γ) · η · ED

[(
Q(x; ρt)−Q∗(x)

)2]
+ C∗ · α−1 · η,

which completes the proof of Lemma 5.2.
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D Mean-Field Limit of Neural Networks

In this section, we prove Proposition 3.1, whose formal version is presented as follows. Recall
that ρt is the PDE solution in (3.4) and ρ̂k = m−1 ·

∑m
i=1 θi(k) is the empirical distribution of

θ(m)(k) = {θi(k)}mi=1. Note that we omit the dependence of ρ̂k on m and ε for notational simplicity.

Proposition D.1 (Formal Version of Proposition 3.1). Let f : RD → R be any continuous function
such that ‖f‖∞ ≤ 1 and Lip(f) ≤ 1. Under Assumptions 4.1 and 4.2, it holds that

sup
k≤T/ε
(k∈N)

∣∣∣∣∫ f(θ) dρkε(θ)−
∫
f(θ) dρ̂k(θ)

∣∣∣∣
≤ B · eBT ·

(√
log(m/δ)/m+

√
ε ·
(
D + log(m/δ)

))
with probability at least 1−δ. HereB is a constant that depends on α, η, γ,Br, andBj (j ∈ {0, 1, 2}).

The proof of Proposition D.1 is based on [6, 53, 54], which utilizes the propagation of chaos [66].
Recall that g(·; ρ) is a vector field defined as follows,

g(θ; ρ) = −α · ED̃
[(
Q(x; ρ)− r − γ ·Q(x′; ρ)

)
· ∇θσ(x; θ)

]
.

Correspondingly, we define the finite-width and stochastic counterparts of g(θ; ρ) as follows,

ĝ(θ; θ(m)) = −α · ED̃
[(
Q̂(x; θ(m))− r − γ · Q̂(x′; θ(m))

)
· ∇θσ(x; θ)

]
, (D.1)

Ĝk(θ; θ(m)) = −α ·
(
Q̂(xk; θ(m))− rk − γ · Q̂(x′k; θ(m))

)
· ∇θσ(xk; θ), (D.2)

where (xk, rk, x
′
k) ∼ D̃. Following from [6, 53], we consider the following four dynamics.

• Temporal-difference (TD). We consider the following TD dynamics θ(m)(k), where k ∈ N, with
θi(0)

i.i.d.∼ ρ0 (i ∈ [m]) as its initialization,

θi(k + 1) = θi(k)− ηε · α ·
(
Q̂
(
xk; θ(m)(k)

)
− rk − γ · Q̂

(
x′k; θ(m)(k)

))
· ∇θσ

(
xk; θi(k)

)
= θi(k) + ηε · Ĝk

(
θi(k); θ(m)(k)

)
, (D.3)

where (xk, rk, x
′
k) ∼ D̃. Note that this definition is equivalent to (2.3).

• Expected temporal-difference (ETD). We consider the following expected TD dynamics θ̆(m)(k),
where k ∈ N, with θ̆i(0) = θi(0) (i ∈ [m]) as its initialization,

θ̆i(k + 1) = θ̆i(k)− ηε · α · ED̃

[(
Q̂
(
x; θ̆(m)(k)

)
− r − γ · Q̂

(
x′; θ̆(m)(k)

))
· ∇θσ

(
x; θ̆i(k)

)]
= θ̆i(k) + ηε · ĝ

(
θ̆i(k); θ̆(m)(k)

)
. (D.4)

• Continuous-time temporal-difference (CTTD). We consider the following continuous-time TD
dynamics θ̃(m)(t), where t ∈ R+, with θ̃i(0) = θi(0) (i ∈ [m]) as its initialization,

d

dt
θ̃i(t) = −η · α · ED̃

[(
Q̂
(
x; θ̃(m)(t)

)
− r − γ · Q̂

(
x′; θ̃(m)(t)

))
· ∇θσ

(
x; θ̃i(t)

)]
= η · ĝ

(
θ̃i(t); θ̃

(m)(t)
)
. (D.5)

• Ideal particle (IP). We consider the following ideal particle dynamics θ̄(m)(t), where t ∈ R+,
with θ̄i(0) = θi(0) (i ∈ [m]) as its initialization,

d

dt
θ̄i(t) = −η · α · ED̃

[(
Q(x; ρt)− r − γ ·Q(x′; ρt)

)
· ∇θσ

(
x; θ̄i(t)

)]
= η · g

(
θ̄i(t); ρt

)
, (D.6)

where ρt is the PDE solution in (3.4).
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We aim to prove that ρ̂k = m−1 ·
∑m
i=1 δθi(k) weakly converges to ρkε. For any continuous function

f : RD → R such that ‖f‖∞ ≤ 1 and Lip(f) ≤ 1, we use the IP, CTTD, and ETD dynamics as the
interpolating dynamics,

PDE− TD︷ ︸︸ ︷∣∣∣∣∫ f(θ) dρkε(θ)−
∫
f(θ) dρ̂k(θ)

∣∣∣∣
≤
∣∣∣∣∫ f(θ) dρkε(θ)−m−1 ·

m∑
i=1

f
(
θ̄i(kε)

)∣∣∣∣+

∣∣∣∣m−1 ·
m∑
i=1

f
(
θ̄i(kε)

)
−m−1 ·

m∑
i=1

f
(
θ̃i(kε)

)∣∣∣∣
+

∣∣∣∣m−1 ·
m∑
i=1

f
(
θ̃i(kε)

)
−m−1 ·

m∑
i=1

f
(
θ̆i(k)

)∣∣∣∣+

∣∣∣∣m−1 ·
m∑
i=1

f
(
θ̆i(k)

)
−m−1 ·

m∑
i=1

f
(
θi(k)

)∣∣∣∣
≤
∣∣∣∣∫ f(θ) dρkε(θ)−m−1 ·

m∑
i=1

f
(
θ̄i(kε)

)∣∣∣∣︸ ︷︷ ︸
PDE− IP

+
∥∥θ̄(m)(kε)− θ̃(m)(kε)

∥∥
(m)︸ ︷︷ ︸

IP− CTTD

+
∥∥θ̃(m)(kε)− θ̆(m)(k)

∥∥
(m)︸ ︷︷ ︸

CTTD− ETD

+
∥∥θ̆(m)(k)− θ(m)(k)

∥∥
(m)︸ ︷︷ ︸

ETD− TD

, (D.7)

where the last inequality follows from the the fact that Lip(f) ≤ 1. Here the norm ‖·‖(m) of
θ(m) = {θi}mi=1 is defined as follows,

‖θ(m)‖(m) = sup
i∈[m]

‖θi‖. (D.8)

In what follows, we define B > 0 as a constant that depends on α, η, γ, Br, and Bj (j ∈ {0, 1, 2}),
whose value varies from line to line. We establish the following lemmas to upper bound the terms on
the right-hand side of (D.8).
Lemma D.2 (Upper Bound of PDE – IP). Let f be any continuous function such that ‖f‖∞ ≤ 1 and
Lip(f) ≤ 1. Under Assumptions 4.1 and 4.2, it holds for any f that

sup
t∈[0,T ]

∣∣∣∫ f(θ) dρt(θ)−m−1 ·
m∑
i=1

f
(
θ̄i(t)

)∣∣∣ ≤ B ·√log(mT/δ)/m

with probability at least 1− δ.

Proof. See §D.1.1 for a detailed proof.

Lemma D.3 (Upper Bound of IP – CTTD). Under Assumptions 4.1 and 4.2, it holds that

sup
t∈[0,T ]

∥∥θ̄(m)(t)− θ̃(m)(t)
∥∥

(m)
≤ B · eBT ·

√
log(m/δ)/m

with probability at least 1− δ.

Proof. See §D.1.2 for a detailed proof.

Lemma D.4 (Upper Bound of CTTD – ETD). Under Assumptions 4.1 and 4.2, it holds that

sup
k≤T/ε
(k∈N)

∥∥θ̃(m)(kε)− θ̆(m)(k)
∥∥

(m)
≤ B · eBT · ε.

Proof. See §D.1.3 for a detailed proof.

Lemma D.5 (Upper Bound of ETD – TD). Under Assumptions 4.1 and 4.2, it holds that

sup
k≤T/ε
(k∈N)

∥∥θ̆(m)(k)− θ(m)(k)
∥∥

(m)
≤ B · eBT ·

√
ε ·
(
D + log(m/δ)

)
with probability at least 1− δ
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Proof. See §D.1.4 for a detailed proof.

We are now ready to present the proof of Proposition D.1.

Proof. Plugging Lemmas D.2-D.5 into (D.7), we have that

sup
k≤T/ε
(k∈N)

∣∣∣∣∫ f(θ) dρkε(θ)−
∫
f(θ) dρ̂k(θ)

∣∣∣∣
≤ B · eBT ·

(√
log(m/δ)/m+

√
ε ·
(
D + log(m/δ)

))
with probability at least 1− δ. Thus, we complete the proof of Proposition D.1.

D.1 Proofs of Lemmas D.2-D.5

In this section, we present the proofs of Lemmas D.2-D.5, which are based on [6, 53, 54]. We include
the required technical lemmas in §D.3. Recall that B > 0 is a constant that depends on α, η, γ, Br,
and Bj (j ∈ {0, 1, 2}), whose value varies from line to line.

D.1.1 Proof of Lemma D.2

Proof. For the IP dynamics in (D.6), it holds that θ̄i(t) ∼ ρt (i ∈ [m]) (Proposition 8.1.8 in [5]).
Furthermore, since the randomness of θ̄i(t) comes from θi(0) while θi(0) (i ∈ [m]) are independent,
we have that θ̄i(t)

i.i.d.∼ ρt (i ∈ [m]). Thus, we have that

Eρt
[
m−1 ·

m∑
i=1

f
(
θ̄i(t)

)]
=

∫
f(θ) dρt(θ).

Let θ1,(m) = {θ1, . . . , θ
1
i , . . . , θm} and θ2,(m) = {θ1, . . . , θ

2
i , . . . , θm} be two sets that only differ

in the i-th element. Then, by the condition of Lemma D.2 that ‖f‖∞ ≤ 1, we have that∣∣∣m−1 ·
m∑
j=1

f(θ1
j )−m−1 ·

m∑
j=1

f(θ2
j )
∣∣∣ = m−1 ·

∣∣f(θ1
i )− f(θ2

i )
∣∣ ≤ 2/m.

Applying McDiarmid’s inequality [70], we have for a fixed t ∈ [0, T ] that

P
(∣∣∣m−1 ·

m∑
i=1

f
(
θ̄i(t)

)
−
∫
f(θ) dρt(θ)

∣∣∣ ≥ p) ≤ exp(−mp2/4). (D.9)

Moreover, we have for any s, t ∈ [0, T ] that∣∣∣∣∣∣∣m−1 ·
m∑
i=1

f
(
θ̄i(t)

)
−
∫
f(θ) dρt(θ)

∣∣∣− ∣∣∣m−1 ·
m∑
i=1

f
(
θ̄i(s)

)
−
∫
f(θ) dρs(θ)

∣∣∣∣∣∣∣
≤
∣∣∣m−1 ·

m∑
i=1

f
(
θ̄i(t)

)
−m−1 ·

m∑
i=1

f
(
θ̄i(s)

)∣∣∣+
∣∣∣∫ f(θ) dρt(θ)−

∫
f(θ) dρs(θ)

∣∣∣
≤
∥∥θ̄(m)(t)− θ̄(m)(s)

∥∥
(m)

+W1(ρt, ρs)

≤
∥∥θ̄(m)(t)− θ̄(m)(s)

∥∥
(m)

+W2(ρt, ρs),

where the second inequality follows from the fact that Lip(f) ≤ 1 and (C.9). Applying (D.38) and
(D.40) of Lemma D.8, we have for any s, t ∈ [0, T ] that∣∣∣∣∣∣∣m−1 ·

m∑
i=1

f
(
θ̄i(t)

)
−
∫
f(θ) dρt(θ)

∣∣∣− ∣∣∣m−1 ·
m∑
i=1

f
(
θ̄i(s)

)
−
∫
f(θ) dρs(θ)

∣∣∣∣∣∣∣ ≤ B · |t− s|.
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Applying the union bound to (D.9) for t ∈ ι · {0, 1, . . . , bT/ιc}, we have that

P
(

sup
t∈[0,T ]

∣∣∣m−1 ·
m∑
i=1

f
(
θ̄i(t)

)
−
∫
f(θ) dρt(θ)

∣∣∣ ≥ p+B · ι
)
≤ (T/ι+ 1) · exp(−mp2/4).

Setting ι = m−1/2 and p = B ·
√

log(mT/δ)/m, we have that

sup
t∈[0,T ]

∣∣∣m−1 ·
m∑
i=1

f
(
θ̄i(t)

)
−
∫
f(θ) dρt(θ)

∣∣∣ ≤ B ·√log(mT/δ)/m

with probability at least 1− δ. Thus, we complete the proof of Lemma D.2.

D.1.2 Proof of Lemma D.3

Proof. Recall that g and ĝ are defined in (3.5) and (D.1), respectively, that is,

g(θ; ρ) = −α · ED̃
[(
Q(x; ρ)− r − γ ·Q(x′; ρ)

)
· ∇θσ(x; θ)

]
,

ĝ(θ; θ(m)) = −α · ED̃
[(
Q̂(x; θ(m))− r − γ · Q̂(x′; θ(m))

)
· ∇θσ(x; θ)

]
.

Following from the definition of θ̃i(t) and θ̄i(t) in (D.5) and (D.6), respectively, we have for any
i ∈ [m] and t ∈ [0, T ] that∥∥θ̄i(t)− θ̃i(t)∥∥
≤
∫ t

0

∥∥∥∥dθ̃i(s)

ds
− dθ̄i(s)

ds

∥∥∥∥ ds

= η ·
∫ t

0

∥∥∥ĝ(θ̃i(s); θ̃(m)(s)
)
− g
(
θ̄i(s); ρs

)∥∥∥ds

≤ η ·
∫ t

0

∥∥∥ĝ(θ̃i(s); θ̃(m)(s)
)
− ĝ
(
θ̄i(s); θ̄

(m)(s)
)∥∥∥ds+ η ·

∫ t

0

∥∥∥ĝ(θ̄i(s); θ̄(m)(s)
)
− g
(
θ̄i(s); ρs

)∥∥∥ds

≤ B ·
∫ t

0

∥∥θ̃(m)(s)− θ̄(m)(s)
∥∥

(m)
ds+ η ·

∫ t

0

∥∥∥ĝ(θ̄i(s); θ̄(m)(s)
)
− g
(
θ̄i(s); ρs

)∥∥∥ds, (D.10)

where the last inequality follows from (D.35) of Lemma D.7. We now upper bound the second term
on the right-hand side of (D.10). Following from the definition of Q̂, Q, and ĝ in (3.1), (3.2), and
(D.1), respectively, we have for any s ∈ [0, T ] and i ∈ [m] that∥∥∥ĝ(θ̄i(s); θ̄(m)(s)

)
− g
(
θ̄i(s); ρs

)∥∥∥ = α2 ·
∥∥∥m−1 ·

m∑
j=1

Zji (s)
∥∥∥, (D.11)

where

Zji (s) = ED̃

[(
σ
(
x; θ̄j(s)

)
−
∫
σ(x; θ) dρs(θ)− γ · σ

(
x′; θ̄j(s)

)
+ γ ·

∫
σ(x′; θ) dρs(θ)

)
· ∇θσ

(
x; θ̄i(s)

)]
.

Following from Assumptions 4.1 and 4.2, we have that ‖Zji (s)‖ ≤ B. When i 6= j, following from

the fact that θ̄i(s)
i.i.d.∼ ρs (i ∈ [m]), it holds that E[Zji (s) | θ̄i(s)] = 0. Following from Lemma D.9,

we have for fixed s ∈ [0, T ] and i ∈ [m] that

P
(∥∥∥m−1 ·

∑
j 6=i

Zji (s)
∥∥∥ ≥ B · (m−1/2 + p)

)
= E

[
P
(∥∥∥m−1 ·

∑
j 6=i

Zji (s)
∥∥∥ ≥ B · (m−1/2 + p)

∣∣∣∣ θ̄i(s))
]

≤ exp(−mp2). (D.12)

By (C.9), we have that

sup
x∈X

∣∣∣∫ σ(x; θ) dρs(θ)−
∫
σ(x; θ) dρt(θ)

∣∣∣ ≤ B · W1(ρs, ρt) ≤ B · W2(ρs, ρt) ≤ B · |s− t|,
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where the last inequality follows from (D.40) of Lemma D.8. Thus, following from Assumptions 4.1
and 4.2, Lemma D.8, and the fact that Lip(fg) ≤ ‖f‖∞ · Lip(g) + ‖g‖∞ · Lip(f) for any functions
f and g, we have for any s, t ∈ [0, T ] that∣∣∣∣∥∥∥m−1 ·

∑
j 6=i

Zji (s)
∥∥∥− ∥∥∥m−1 ·

∑
j 6=i

Zji (t)
∥∥∥∣∣∣∣ ≤ B · |t− s|.

Applying the union bound to (D.12) for i ∈ [m] and t ∈ ι · {0, 1, . . . , bT/ιc}, we have that

P
(

sup
i∈[m],
s∈[0,T ]

∥∥∥m−1 ·
∑
j 6=i

Zji (s)
∥∥∥ ≥ B · (m−1/2 + p) +Bι

)
≤ m · (T/ι+ 1) · exp(−mp2).

Setting ι = m−1/2 and p = B ·
√

log(mT/δ)/m, we have that

sup
i∈[m],
s∈[0,T ]

∥∥∥m−1 ·
∑
j 6=i

Zji (s)
∥∥∥ ≤ B ·√log(mT/δ)/m (D.13)

with probability at least 1 − δ. When i = j, it holds that ‖m−1 · Zii (s)‖ ≤ B/m in (D.11), which
follows from Assumptions 4.1 and 4.2. Thus, plugging (D.13) into (D.11), we have that

sup
i∈[m],
s∈[0,T ]

∥∥∥ĝ(θ̄i(s); θ̄(m)(s)
)
− g
(
θ̄i(s); ρs

)∥∥∥ ≤ sup
i∈[m],
s∈[0,T ]

α2 ·
(∥∥m−1 · Zii (s)

∥∥+
∥∥∥m−1 ·

∑
j 6=i

Zji (s)
∥∥∥)

≤ B ·
√

log(mT/δ)/m (D.14)

with probability at least 1− δ.

Conditioning on the event in (D.14), we obtain from (D.10) that∥∥θ̃(m)(t)− θ̄(m)(t)
∥∥

(m)
≤ B ·

∫ t

0

∥∥θ̃(m)(s)− θ̄(m)(s)
∥∥

(m)
ds+BT ·

√
log(mT/δ)/m

for any t ∈ [0, T ]. Following from Gronwall’s Lemma [41], we have that∥∥θ̃(m)(t)− θ̄(m)(t)
∥∥

(m)
≤ B · eBt ·BT ·

√
log(mT/δ)/m

≤ B · eBT ·
√

log(m/δ)/m, ∀t ∈ [0, T ]

with probability at least 1− δ. Here the last inequality holds since we allow the value of B to vary
from line to line. Thus, we complete the proof of Lemma D.3

D.1.3 Proof of Lemma D.4

Proof. By the definition of ĝ, θ̆i(t), and θ̃i(t) in (D.1), (D.4), and (D.5), respectively, it holds that∥∥θ̃i(kε)− θ̆i(k)
∥∥ ≤ η · ∫ kε

0

∥∥∥ĝ(θ̃i(s); θ̃(m)(s)
)
− ĝ
(
θ̆i(bs/εc); θ̆(m)(bs/εc)

)∥∥∥ds

≤ η ·
∫ kε

0

∥∥∥ĝ(θ̃i(s); θ̃(m)(s)
)
− ĝ
(
θ̃i(bs/εc · ε); θ̃(m)(bs/εc · ε)

)∥∥∥ds

+ η ·
k−1∑
`=0

∥∥∥ĝ(θ̃i(`ε); θ̃(m)(`ε)
)
− ĝ
(
θ̆i(`); θ̆

(m)(`)
)∥∥∥

≤ B · k · ε2 +B ·
k−1∑
`=0

∥∥θ̃(m)(`ε)− θ̆(m)(`)
∥∥

(m)
,

where the last inequality follows from (D.35) of Lemma D.7 and (D.39) of Lemma D.8. Following
from the definition of ‖·‖(m) in (D.8), it holds for any k ≤ T/ε (k ∈ N) that

∥∥θ̃(m)(kε)− θ̆(m)(k)
∥∥

(m)
≤ B · T · ε+B ·

k−1∑
`=0

∥∥θ̃(m)(`ε)− θ̆(m)(`)
∥∥

(m)
.
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Following from the discrete Gronwall’s lemma [41], we have that

sup
k≤T/ε
(k∈N)

∥∥θ̃(m)(kε)− θ̆(m)(k)
∥∥

(m)
≤ B2 · T · ε · eBT ≤ B · eBT · ε,

where the last inequality holds since we allow the value of B to vary from line to line. Thus, we
complete the proof of Lemma D.4.

D.1.4 Proof of Lemma D.5

Proof. Let Gk = σ(θ(m)(0), z0, . . . , zk) be the σ-algebra generated by θ(m)(0) and z` =

(x`, r`, x
′
`) (` ≤ k). Recall that ĝ and Ĝk are defined in (D.1) and (D.2), respectively. We have

for any i ∈ [m] and k ∈ N+ that

E
[
Ĝk
(
θi(k); θ(m)(k)

) ∣∣∣Gk−1

]
= ĝ
(
θi(k); θ(m)(k)

)
.

Recall that θ(m)(k) and θ̆(m)(k) are the TD and ETD dynamics defined in (D.3) and (D.4), respec-
tively. Thus, we have for any i ∈ [m] and k ∈ N+ that∥∥θ̆i(k)− θi(k)

∥∥ = ηε ·
∥∥∥k−1∑
`=0

Ĝ`
(
θi(`); θ

(m)(`)
)
−
k−1∑
`=0

ĝ
(
θ̆i(`); θ̆

(m)(`)
)∥∥∥

≤ ηε ·
∥∥∥k−1∑
`=0

Xi(`)
∥∥∥+ ηε ·

k−1∑
`=0

∥∥∥ĝ(θ̆i(`); θ̆(m)(`)
)
− ĝ
(
θi(`); θ

(m)(`)
)∥∥∥

≤ ηε ·
∥∥Ai(k)

∥∥+Bε ·
k−1∑
`=0

∥∥θ̆(m)(`)− θ(m)(`)
∥∥

(m)
, (D.15)

where the last inequality follows from (D.35) of Lemma D.7, and Xi(`) and Ai(k) are defined as
Xi(0) = 0,

Xi(`) = Ĝ`
(
θi(`); θ

(m)(`)
)
− E

[
Ĝ`
(
θi(`); θ

(m)(`)
) ∣∣∣G`−1

]
∀` ≥ 1,

Ai(k) =

k−1∑
`=0

Xi(`).

Following from (D.32) of Lemma D.7, we have that ‖Xi(`)‖ ≤ B. Thus, the stochastic process
{Ai(k)}k∈N+

is a martingale with ‖Ai(k)−Ai(k − 1)‖ ≤ B. Applying Lemma D.10, we have that

P
(

max
k≤T/ε
(k∈N+)

∥∥Ai(k)
∥∥ ≥ B ·√T/ε · (√D + p)

)
≤ exp(−p2). (D.16)

Applying the union bound to (D.16) for i ∈ [m], we have that

P
(

max
i∈[m],

k≤T/ε (k∈N+)

∥∥Ai(k)
∥∥ ≥ B ·√T/ε · (√D + p)

)
≤ m · exp(−p2).

By setting p =
√

log(m/δ), we have that∥∥Ai(k)
∥∥ ≤ B ·√T/ε · (√D +

√
log(m/δ)

)
, ∀i ∈ [m], k ≤ T/ε (k ∈ N+) (D.17)

with probability at least 1− δ. By (D.15) and (D.17), we have that∥∥θ̆(m)(k)− θ(m)(k)
∥∥

(m)

≤ B ·
√
Tε · (

√
D +

√
log(m/δ)) +Bε ·

k−1∑
`=0

∥∥θ̆(m)(`)− θ(m)(`)
∥∥

(m)
, ∀k ≤ T/ε (k ∈ N)

with probability at least 1− δ. Applying the discrete Gronwall’s Lemma [41], we have that∥∥θ̆(m)(k)− θ(m)(k)
∥∥

(m)
≤ B · eBT ·B ·

√
Tε ·

(√
D +

√
log(m/δ)

)
≤ B · eBT ·

√
ε ·
(
D + log(m/δ)

)
, ∀k ≤ T/ε (k ∈ N)

with probability at least 1− δ. Here the last inequality holds since we allow the value of B to vary
from line to line. Thus, we complete the proof of Lemma D.5.

27



D.2 Proof of Corollary 4.4

The proof of Corollary 4.4 follows from Theorem 4.3 and the following lemma, which characterizes
the error of approximating the TD dynamics θ(m)(k) in (3.3) using the PDE solution ρt in (3.4).
Lemma D.6. Let B be a constant that depends on α, η, γ, B0, B1, and B2. Under Assumptions 4.1
and 4.2, it holds for any k ≤ T/ε (k ∈ N) that

Ex∼D
[(
Q̂
(
x; θ(m)(k)

)
−Q∗(x)

)2
]

≤ Ex∼D
[(
Q(x; ρkε)−Q∗(x)

)2]
+B · eBT ·

(√
m−1 · log(m/δ) +

√
ε ·
(
D + log(m/δ)

))
with probability at least 1− δ.

Proof. Recall that Q̂ and Q(·; ρ) are defined in (3.1) and (3.2), respectively. For notational simplicity,
we denote the optimality gaps for θ(m) = {θi}mi=1 and ρ ∈P2(RD) by

L(θ(m)) = ED
[(
Q̂(x; θ(m))−Q∗(x)

)2]
, (D.18)

L̄(ρ) = ED
[(
Q(x; ρ)−Q∗(x)

)2]
. (D.19)

Recall that θ(m)(k), θ̄(m)(kε), and ρt are the TD dynamics, the IP dynamics, and the PDE solution
defined in (D.3), (D.6), and (3.4), respectively. It holds for any k ∈ N that∣∣∣L(θ(m)(k)

)
− L̄(ρkε)

∣∣∣ ≤ ∣∣∣L(θ(m)(k)
)
− L

(
θ̄(m)(kε)

)∣∣∣︸ ︷︷ ︸
(i)

+
∣∣∣L(θ̄(m)(kε)

)
− L̄(ρkε)

∣∣∣︸ ︷︷ ︸
(ii)

. (D.20)

In what follows, we upper bound the two terms on the right-hand side of (D.20).

Upper bounding term (i) of (D.20). Following from the definition of L in (D.18), it holds for any
k ∈ N that∣∣∣L(θ(m)(k)

)
− L

(
θ̄(m)(kε)

)∣∣∣
=

∣∣∣∣∣ED
[(
Q̂
(
x; θ(m)(k)

)
+ Q̂

(
x; θ̄i(kε)

)
− 2Q∗(x)

)
·
(
Q̂
(
x; θ(m)(k)

)
− Q̂

(
x; θ̄i(kε)

))]∣∣∣∣∣.
(D.21)

Following from (D.30), (D.31), and (D.36) of Lemma D.7, we have for any k ∈ N that

sup
x∈X

∣∣∣Q̂(x; θ(m)(k)
)

+ Q̂
(
x; θ̄i(kε)

)
− 2Q∗(x)

∣∣∣ ≤ B, (D.22)

sup
x∈X

∣∣∣Q̂(x; θ(m)(k)
)
− Q̂

(
x; θ̄i(kε)

)∣∣∣ ≤ B · ∥∥θ(m)(k)− θ̄(m)(kε)
∥∥

(m)
. (D.23)

Thus, we have that∣∣∣L(θ(m)(k)
)
− L

(
θ̄(m)(kε)

)∣∣∣
≤ B ·

∥∥θ(m)(k)− θ̄(m)(kε)
∥∥

(m)

≤ B · eBT ·
(√

log(m/δ)/m+
√
ε ·
(
D + log(m/δ)

))
, ∀k ≤ T/ε (k ∈ N) (D.24)

with probability at least 1− δ. Here the last inequality follows from Lemmas D.3-D.5.

Upper bounding term (ii) of (D.20). Let t = kε. It holds for any t ∈ [0, T ] that∣∣∣L(θ̄(m)(t)
)
− L̄(ρt)

∣∣∣ ≤ ∣∣∣∣L(θ̄(m)(t)
)
− Eρt

[
L
(
θ̄(m)(t)

)]∣∣∣∣+

∣∣∣∣Eρt[L(θ̄(m)(t)
)]
− L̄(ρt)

∣∣∣∣,
(D.25)
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where the expectation is with respect to θ̄i(t)
i.i.d.∼ ρt (i ∈ [m]). For the second term on the right-hand

side of (D.25), following from the fact that Eρt [Q̂(x; θ̄(m)(t))] = Q(x; ρt) for any x ∈ X , we have
that ∣∣∣∣Eρt[L(θ̄(m)(t)

)]
− L̄(ρt)

∣∣∣∣ =

∣∣∣∣∫ Eρt
[
Q̂
(
x; θ̄(m)(t)

)2 −Q(x; ρt)
2
]

dD(x)

∣∣∣∣
=

∣∣∣∣∫ Varρt

[
Q̂
(
x; θ̄(m)(t)

)]
dD(x)

∣∣∣∣
≤ B/m, (D.26)

where the inequality follows from the fact that ‖σ‖ ≤ B in Assumption 4.2 and the independence of
θ̄i(t) (i ∈ [m]). Let θ1,(m) = {θ1, . . . , θ

1
i , . . . , θm} and θ2,(m) = {θ1, . . . , θ

2
i , . . . , θm} be two sets

that only differ in the i-th element. It holds that∣∣L(θ1,(m))− L(θ2,(m))
∣∣ ≤ B ·m−1 · ED

[∣∣σ(x; θ1
i )− σ(x; θ2

i )
∣∣] ≤ B/m,

where the first inequality follows from (D.21) and (D.22) and the second inequality follows from
Assumption 4.2. Applying McDiarmid’s inequality [70], we have for a fixed t ∈ [0, T ] that

P

(∣∣∣∣L(θ̄(m)(t)
)
− Eρt

[
L
(
θ̄(m)(t)

)]∣∣∣∣ ≥ p
)
≤ exp(−mp2/B). (D.27)

It holds for any s, t ∈ [0, T ] that∣∣∣∣∣
∣∣∣∣L(θ̄(m)(t)

)
− Eρt

[
L
(
θ̄(m)(t)

)]∣∣∣∣− ∣∣∣∣L(θ̄(m)(s)
)
− Eρt

[
L
(
θ̄(m)(s)

)]∣∣∣∣
∣∣∣∣∣

≤ B ·
∥∥θ̄(m)(t)− θ̄(m)(s)

∥∥
(m)
≤ B · |t− s|,

where the first inequality follows from (D.21), (D.22), and (D.23) and the second inequality follows
from (D.38) of Lemma D.8. Applying the union bound to (D.27) for t ∈ ι · {0, 1, . . . , bT/ιc}, we
have that

P

(
sup
t∈[0,T ]

∣∣∣∣L(θ̄(m)(t)
)
− Eρt

[
L
(
θ̄(m)(t)

)]∣∣∣∣ ≥ p+Bι

)
≤ (T/ι+ 1) · exp(−mp2/B),

Setting ι = m−1/2 and p = B ·
√

log(mTδ)/m, we have that

sup
t∈[0,T ]

∣∣∣∣L(θ̄(m)(t)
)
− Eρt

[
L
(
θ̄(m)(t)

)]∣∣∣∣ ≤ B ·√log(mTδ)/m (D.28)

with probability at least 1− δ. Plugging (D.26) and (D.28) into (D.25), noting that t = kε, we have
that ∣∣∣L(θ̄(m)(kε)

)
− L̄(ρkε)

∣∣∣ ≤ B ·√log(mTδ)/m, ∀k ≤ T/ε (k ∈ N) (D.29)

with probability at least 1− δ.

Plugging (D.24) and (D.29) into (D.20), we have that∣∣∣L(θ(m)(k)
)
− L̄(ρkε)

∣∣∣ ≤ B · eBT · (√log(m/δ)/m+
√
ε ·
(
D + log(m/δ)

))
, ∀k ≤ T/ε (k ∈ N)

with probability at least 1− δ. Thus, we complete the proof of Lemma D.6.

D.3 Technical Lemmas for §D

In what follows, we present the technical lemmas used in §D. Recall that Q̂, ĝ, and Ĝk are defined
in (3.1), (D.1), and (D.2), respectively. Let B > 0 be a constant depending on α, η, γ, Br, and
Bj (j ∈ {0, 1, 2}), whose value varies from line to line.
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Lemma D.7. Under Assumptions 4.1 and 4.2, it holds for θ(m) = {θi}mi=1 and θ(m) = {θi}mi=1 that

sup
x∈X

∣∣Q̂(x; θ(m))
∣∣ ≤ B, (D.30)

sup
x∈X

∣∣Q̂(x; θ(m))− Q̂(x; θ(m))
∣∣ ≤ B · ‖θ(m) − θ(m)‖(m), (D.31)∥∥Ĝk(θi; θ

(m))
∥∥ ≤ B, (D.32)∥∥Ĝk(θi; θ

(m))− Ĝk(θi; θ
(m))

∥∥ ≤ B · ‖θ(m) − θ(m)‖(m), ∀k ∈ N, (D.33)∥∥ĝ(θi; θ
(m))

∥∥ ≤ B, (D.34)∥∥ĝ(θi; θ
(m))− ĝ(θi; θ

(m))
∥∥ ≤ B · ‖θ(m) − θ(m)‖(m). (D.35)

Meanwhile, for any Q ∈ F , it holds that

sup
x∈X

∥∥Q(x)
∥∥ ≤ B. (D.36)

For any ρ ∈P2(RD), it holds that ∥∥g(θ; ρ)
∥∥ ≤ B. (D.37)

Proof. For (D.30) and (D.31) of Lemma D.7, following from Assumptions 4.1 and 4.2 and the
definition of Q̂ in (3.1), we have for any x ∈ X , θ(m), and θ(m) that

∣∣Q̂(x; θ(m))
∣∣ ≤ α ·m−1

m∑
i=1

∣∣σ(x; θi)
∣∣ ≤ B,

∣∣Q̂(x; θ(m))− Q̂(x; θ(m))
∣∣ ≤ α ·m−1

m∑
i=1

∣∣σ(x; θi)− σ(x; θi)
∣∣ ≤ B · ‖θ(m) − θ(m)‖(m).

For (D.32) and (D.33) of Lemma D.7, following from the definition of Ĝk in (D.2), we have for any
θ(m) and θ(m) that∥∥Ĝk(θi; θ

(m))
∥∥ = α ·

∣∣Q̂(xk; θ(m))− rk − γ · Q̂(x′k; θ(m))
∣∣ · ∥∥∇θσ(xk; θi)

∥∥ ≤ B,∥∥Ĝk(θi; θ
(m))− Ĝk(θi; θ

(m))
∥∥

≤ α · sup
θ(m)

∣∣Q̂(xk; θ(m))− rk − γ · Q̂(x′k; θ(m))
∣∣ · ∥∥∇θσ(xk; θi)−∇θσ(xk; θi)

∥∥
+ α ·

∣∣Q̂(xk; θ(m))− γ · Q̂(x′k; θ(m))− Q̂(xk; θ(m)) + γ · Q̂(x′k; θ(m))
∣∣ · sup
θi∈RD

∥∥∇θσ(xk; θi)
∥∥

≤ B · ‖θ(m) − θ(m)‖(m).

The inequalities in (D.34) and (D.35) of Lemma D.7 for ĝ follow from the fact that

ĝ(θi; θ
(m)) = E(xk,rk,x′k)∼D̃

[
Gk(θi; θ

(m))
]
.

The inequalities in (D.36) and (D.37) follow from the definition of F and g in (4.3) and (3.5),
respectively. Thus, we complete the proof of Lemma D.7.

Recall that ρt is the PDE solution in (3.4) and θ̃(m)(t) and θ̄(m)(t) are the CTTD and IP dynamics
defined in (D.5) and (D.6), respectively.

Lemma D.8. Under Assumptions 4.1 and 4.2, it holds for any s, t ∈ [0, T ] that∥∥θ̄(m)(t)− θ̄(m)(s)
∥∥

(m)
≤ B · |t− s|, (D.38)∥∥θ̃(m)(t)− θ̃(m)(s)

∥∥
(m)
≤ B · |t− s|, (D.39)

W2(ρt, ρs) ≤ B · |t− s|. (D.40)
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Proof. For (D.38) of Lemma D.8, by the definition of θ̄i(t) in (D.6) and (D.37) of Lemma D.7, we
have for any s, t ∈ [0, T ] and i ∈ [m] that∥∥θ̄i(t)− θ̄i(s)∥∥ = η ·

∫ t

s

∥∥∥g(θ̄i(τ); ρτ
)∥∥∥dτ ≤ B · |t− s|.

Similarly, for (D.39) of Lemma D.8, by the definition of θ̃i(t) in (D.5) and (D.34) of Lemma D.7, we
have for any i ∈ [m] and s, t ∈ [0, T ] that ‖θ̃i(t)− θ̃i(s)‖ ≤ B · |t− s|.

For (D.40) of Lemma D.8, following from the fact that θ̄i(t)
i.i.d.∼ ρt (i ∈ [m]) and the definition of

W2 in (2.4), it holds for any s, t ∈ [0, T ] that

W2(ρt, ρs) ≤ E
[∥∥θ̄i(t)− θ̄i(s)∥∥2

]1/2
≤ B · |t− s|.

Thus, we complete the proof of Lemma D.8.

Lemma D.9 (Lemma 30 in [53]). Let {Xi}mi=1 be i.i.d. random variables with ‖Xi‖ ≤ ξ and
E[Xi] = 0. Then, it holds for any p > 0 that

P
(∥∥∥m−1 ·

m∑
i=1

Xi

∥∥∥ ≥ Cξ · (m−1/2 + p)

)
≤ exp(−mp2),

where C > 0 is an absolute constant.
Lemma D.10 (Lemma A.3 in [6] and Lemma 31 in [53]). Let Xk ∈ RD (k ∈ N) be a martingale
with respect to the filtration Gk (k ≥ 0) with X0 = 0. We assume for ξ > 0 and any λ ∈ RD that

E
[
exp
(
〈λ,Xk −Xk−1〉

) ∣∣∣Gk−1

]
≤ exp

(
ξ2 · ‖λ‖2/2

)
.

Then, it holds that

P
(

max
k≤n

(k∈N)

‖Xk‖ ≥ Cξ ·
√
n · (
√
D + p)

)
≤ exp(−p2),

where C > 0 is an absolute constant.

E Auxiliary Lemmas

We use the definition of absolutely continuous curves in P2(RD) in [5].
Definition E.1 (Absolutely Continuous Curve). Let β : [a, b]→P2(RD) be a curve. Then, β is an
absolutely continuous curve if there exists a square-integrable function f : [a, b]→ R such that

W2(βs, βt) ≤
∫ t

s

f(τ) dτ

for any a ≤ s < t ≤ b.

Then, we have the following first variation formula.
Lemma E.2 (First Variation Formula, Theorem 8.4.7 in [5]). Given ν ∈P2(RD) and an absolutely
continuous curve µ : [0, T ] → P2(RD), let β : [0, 1] → P2(RD) be the geodesic connecting µt
and ν. It holds that

d

dt

W2(µt, ν)2

2
= −〈µ′t, β′0〉µt

,

where µ′t = ∂tµt, β′0 = ∂tβt | t=0, and the inner product is defined in (2.5).
Lemma E.3 (Talagrand’s Inequality, Corollary 2.1 in [59]). Let ν be N(0, κ · ID). It holds for any
µ ∈P2(RD) that

W2(µ, ν)2 ≤ 2DKL(µ ‖ ν)/κ.

Lemma E.4 (Eulerian Representation of Geodesics, Proposition 5.38 in [68]). Let β : [0, 1] →
P2(RD) be a geodesic and v be the corresponding vector field such that ∂tβt = −div(βt · vt). It
holds that

∂t(βt · vt) = −div(βt · vt ⊗ vt).

31


	Introduction
	Background
	Policy Evaluation
	Wasserstein Space

	Temporal-Difference Learning
	Main Results
	Proof of Main Results
	Extension to Q-Learning and Policy Improvement
	Pseudocode of TD Learning
	Q-Learning and Policy Improvement
	Q-Learning
	Global Optimality and Convergence of Q-Learning
	Soft Q-Learning
	Proof of Theorem B.2

	Proofs of Supporting Lemmas
	Proof of Lemma 5.1
	Proof of Lemma 5.2

	Mean-Field Limit of Neural Networks
	Proofs of Lemmas D.2-D.5
	Proof of Lemma D.2
	Proof of Lemma D.3
	Proof of Lemma D.4
	Proof of Lemma D.5

	Proof of Corollary 4.4
	Technical Lemmas for §D

	Auxiliary Lemmas

