A Pseudocode of TD Learning

In this section, we present the pseudocode of TD learning in Algorithm 1, which is introduced in §3.

Algorithm 1 Temporal-Difference Learning with Two-Layer Neural Network for Policy Evaluation

Initialization: 6;(0) o (¢ € [m]), number of iterations K = |T'/€], and policy 7 of interest.

fork=0,...,K —1do
Sample the state-action pair (s, a) from the stationary distribution D of 7, receive the reward r,
and obtain the subsequent state-action pair (s, a’).
Calculate the Bellman residual § = @(m, 0 (k) —r — - @(m’; 0™ (k)), where z = (s, a)
and 2’ = (¢, d’).
Perform the TD update 6;(k + 1) < 6;(k) —ne -« -0 - Vgo(x;0;(k)) (i € [m]).

end for

Output: {0 (k)}; !

B Q-Learning and Policy Improvement

In this section, we extend our analysis of TD to Q-learning and soft Q-learning for policy improvement.
In §B.1, we introduce Q-learning and its mean-field limit. In §B.2, we establish the global optimality
and convergence of Q-learning. In §B.3, we further extend our analysis to soft Q-learning, which is
equivalent to policy gradient.

B.1 Q-Learning

Q-learning aims to solve the following projected Bellman optimality equation,
Q=IrT"Q. (B.1)
Here 7 is the Bellman optimality operator, which is defined as follows,
T*Q(s,a) =E[r +~- maj(Q(s’&) |7~ R(-|s,a),s' ~ P(-]s,a)].
a€
When I+ is the identity mapping, the fixed point solution to (B.1) is the Q-function Q" of the

optimal policy 7*, which maximizes the expected total reward J(7) defined in (2.1) [65]. We consider
the parameterization of the Q-function in (3.1) and update the parameter (™) as follows,

0;(k+1) (B.2)
=0;(k) —ne-«a- (@(sk,ak; G(m)(k)) — T = r;lea%@(sg,g; H(W)(k))) . V90(8k7 ag; 91-(k))7

where i € [m], (sk, ax) is sampled from the stationary distribution Dy € (S x A) of an exploration
policy 7, 7, ~ R(-|sk,ax) is the reward, and s, ~ P(-|sg,ax) is the subsequent state. For
notational simplicity, we denote by Dy € Z(S x A x R x §) the distribution of (s, ay, 7%, s}, ). For
an initial distribution vy € 2(RP), we initialize {6;}™, as 0; "~ pq (i € [m]). See Algorithm 2
for a detailed description.

Mean-Field Limit. Corresponding to ¢ — 07 and m — oo, the mean-field limit of the Q-learning
dynamics in (B.2) is characterized by the following PDE with 1 as the initial distribution,

Oy = —1 - div(yt ~h(; Vt)). (B.3)

Here h(-;v;) : RP — RP is a vector field, which is defined as follows,
h(O;v) = —a - ]E(S,W,’s,)NﬁE {(Q(s, a;v) —r—-y- glea,i{ Q(s, a; 1/)) -Voo(s,a;0)|. (B.4)

In parallel to Proposition 3.1, the empirical distribution ﬁ](cm) =ml. Z:il d9, (1) weakly converges

to Ve as € — 01 and m — oo.
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Algorithm 2 Q-Learning with Two-Layer Neural Network for Policy Improvement

Initialization. 6;(0) RS (¢ € [m]), number of iterations K = |7T'/¢|, and exploration policy

TE.

fork=0,..., K —1do
Sample the state-action pair (s, a) from the stationary distribution Dy, of 7, receive the reward
r, and obtain the subsequent state s’.
Calculate the Bellman residual § = @(x, 00m) (k)) — r — v - Qa3 0™ (k)), where z = (s, a)
and ' = (s, argmax, 4 Qs a; 0™ (k).
Perform the Q-learning update 6; (k + 1) < 0;(k) — ne - o~ 6 - Voo (z;60;(k)) (i € [m]).

end for

Output: {0 (k)} 1}

B.2 Global Optimality and Convergence of Q-Learning

The max operator in the Bellman optimality operator 7 * makes the analysis of Q-learning more
challenging than that of TD. Correspondingly, we lay out an extra regularity condition on the
exploration policy 7rg. Recall that the function class F is defined in (4.3).

Assumption B.1. We assume for an absolute constant £ > 0 and any Q', Q% € F that

E(s.aomg | (@1(5:0) = Q%(5,))°] = (7 + )2+ (s | (max Q' (s, 0) — max Q%(s,0))

Although Assumption B.1 is strong, we are not aware of any weaker regularity condition in the
literature, even in the linear setting [25, 55, 78] and the NTK regime [21]. Let the initial distribution
Vo be the standard Gaussian distribution N (0, Ip). In parallel to Theorem 4.3, we establish the
following theorem, which characterizes the global optimality and convergence of Q-learning. Recall
that we write ¥ = S x Aand z = (s,a) € X. Also, v; is the PDE solution in (B.3), while ™ (k)
is the Q-learning dynamics in (B.2).

Theorem B.2. There exists a unique fixed point solution to the projected Bellman optimality equation
@ = ILxT*Q, which takes the form of QT (z) = [ o(z;0) di’(0). We assume that D, (¥ || 1) < oo
and 7(0) > 0 for any § € RP. Under Assumptions 4.1, 4.2, and B.1, it holds for = o~ that

(k+7) Dy (7|lvo) | (k+7)-Ci
+ )
26T K-«

inf B,y | (Qesvr) - Q1)) < (B.5)

te[0,T]

where C, > 0 is a constant depending on D, (7| vo), B1, B2, and B,.. Moreover, it holds with
probability at least 1 — ¢ that

win Boey | (Qai0(1) - Q')

k<T/e
(keN)
- Doo(D - O
< WA De@lin) (547 Co | A5, (B.6)
2k-T k- o

where A(e, m,d,T) > 0 is an error term such that

lim lim A(e,m,0,T) =0.

m—00 e—0t
Proof. See §B.4 for a detailed proof. O

Theorem B.2 proves that the optimality gap E,p; [(Q(z; 1) — QT (x))?] decays to zero at a sublinear
rate up to the error of O(a 1), where o > 0 is the scaling parameter in (3.1). In parallel to Theorem
4.3, varying « leads to a tradeoff between such an error of O(a~!) and the deviation of v; from vy.
Moreover, based on the counterparts of Proposition 3.1 and Lemma D.6, Theorem B.2 gives the
global optimality and convergence of the Q-learning dynamics (™) (k) in (B.2), which is in parallel
to Corollary 4.4.
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B.3 Soft Q-Learning

In this section, we generalize Theorem B.2 to soft Q-learning. To introduce soft Q-learning, we first
define the soft Bellman optimality operator as follows,

T5Q(s,a) =E[r + - soft&ax'@Q(s',g) ’ r~R(-|s,a),s ~ P(-|s,a)],
where the softmax operator is defined as follows,
softmax’ Q(s, a) = - 10g Bvn. 1 [exp(71 - Qs,a)) .
ac -

Here 7 (- | s) is the uniform policy. Soft Q-learning aims to find the fixed point solution to the projected
soft Bellman optimality equation () = IIz73(). In parallel to the Q-learning dynamics in (B.2), we
consider the following soft Q-learning dynamics,

0;(k+1) B.7)
=0;(k) —ne-a- (@(sk,ak; 6 (k)) — i — 7 - softmax"Q (s}, a; 0<m>(k>)) - Voo (sk, ar; 0;(k)),

ac
whose mean-field limit is characterized by the following PDE,
atl/t =—-n" diV(Vt . h(, l/t)). (BS)
In parallel to (B.4), h(:;v;) : RP — RP is a vector field, which is defined as follows,

h(0;v) = —a-E [(Q(s,a; v)—r—"- softeraaXBQ(s’,g; 1/)) -Vyo(s,a;0)|.

(s,a,m,s")~Dg

In parallel to Assumption B.1, we lay out the following regularity condition.
Assumption B.3. We assume for an absolute constant x > 0 and any v, % € 2(RP) that

E (s | (Qs a5v") = Qs a51%))]

> 2 { B 1) B 2 2} )

= (7 + H) ]E(s,a)NDE (SOg&aX Q(S7Q7 v ) Soggf}lax Q(‘97@7 v ))
The following proposition parallels Theorem B.2, which characterizes the global optimality and
convergence of soft Q-learning. Recall that v, is the PDE solution in (B.8) and 6m) (k) is the soft
Q-learning dynamics in (B.7).
Proposition B.4. There exists a unique fixed point solution to the projected soft Bellman optimal-
ity equation Q@ = II1x73Q, which takes the form of Q¥(z) = [o(z;6)dyr(0). We assume that
D,2(v||vy) < oo and v(0) > 0 for any § € RP. Under Assumptions 4.1, 4.2, and B.3, it holds for

—2

n =« < that

inf Epopg {(Q(m;ut) — Qi(x))ﬂ < (

te[0,T)

k+7) Delwv) | (8+7)- C.
+ )
26T K-

where C, > 0 is a constant depending on D, (v || 1), B1, B2, and B,.. Moreover, it holds with
probability at least 1 — ¢ that

£+7) Dye(v|vo)  (k+7) Cs
_|_
2k - T K-«

+ A(67 m) 67 T)’

where A(e, m,d,T) > 0 is an error term such that
lim lim A(e,m,0,T) =0.

m—00 ¢—0+

Proof. Replacing the max operator by the softmax operator in the proof of Theorem B.2 in §B.4
implies Proposition B.4. O

Moreover, soft Q-learning is equivalent to a variant of policy gradient [37, 57, 58, 61]. Hence,

Proposition B.4 also characterizes the global optimality and convergence of such a variant of policy
gradient.
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B.4 Proof of Theorem B.2

For notational simplicity, we denote by Ep, the expectation with respect to x ~ Dg and EﬁE the

expectation with respect to (z,7,2”) ~ Dk.

Proof. In parallel to the proof of Lemma 5.1 in §C.1, to establish the existence and uniqueness of the
fixed point solution to the projected Bellman optimality equation Q = I1=7 *(Q, it suffices to show
that IL=7* : F — F is a contraction mapping. In particular, it holds for any Q!, Q% € F that

* 1 * 1212 2 1/./ 20/ 2
IMFT*Q' =TT Q?|Z,(pp) <7 ~E5E{(gleaj<é2 (+,a) — max Q*(s',a)) ]

=~ -Ep, {(glea} Q' (s, a) — max Q*(s, @))2}
2

< (fy—’&y-i/@)Q -Epy [(Ql(s,a) - Q2(57a))2},

where the equality follows from the fact that D, is the stationary distribution and the last inequality
follows from Assumption B.1. Thus, I[I=7* : F — F is a contraction mapping. Following from the
Banach fixed point theorem [28], there exists a unique fixed point solution QT € F to the projected
Bellman 0pt1ma11ty equation Q = I1=7*Q. Moreover, in parallel to the proof of Lemma 5.1 in §C 1,
there exists T € P, (RP) such that Q(x;v) = QT(2), h(z; ') = 0, and Wa(vf, 1) < a~!- D,
where D = D 2 (7 || 1o)'/2.

For notational simplicity, we define Q*(x) = max,e 4 Q(s, a). In parallel to (C.13) in the proof of
Lemma 5.2 in §C.2, we have that

12 1
%W 7. / (Dsh(+5 Bs),vs) 5. ds 417+ / /(h 8.),0s(vs - B:)(6)) A0 ds, (B.9)
0
(i) (i)
where 3 : [0,1] — P5(RP) is the geodesic connecting v; and v with 058; = — div(B;s - vs).

Upper bounding term (i) of (B.9). In parallel to (C.5) and (C.6) in the proof of Lemma C.1, we
have that

<65h('; 68)’ Us>ﬁs = _EﬁE [85 (Q(Z‘, Bs) -7 Q'A(x/§ ﬁs)) : 85@(-17; ﬁs):| (BIO)

1/2 1/2
< —Ep, [(0,Q(:8.))°] + 7 Eny (0.0 8,))°] - Ep, [(0.:04(:8,))°] .
For the second term on the right-hand side of (B.10), we have that

Ep, {(&QA(I;BS))Q} = lim Ep, [(ul QM (@ Bogu) — QA(I;ﬂs)))Q}
< ('}’ + "5)72 : }Lll)% u?- EDE [(Q(m, 5s+u) - Q(x’ ﬂs))z}

=(y+r)"? Ep, [(&Q(z;ﬂs)ﬂ, (B.11)

where the inequality follows from Assumption B.1 and the fact that Q(+;v) € « - F. Plugging (B.11)
into (B.10), we have that

(063800}, <~ By [ (0,Q(a: )7,

which further implies that

1
| (0hi8.0), ds< -

. /01 Ep, [(aSQ(x;ﬁs)ﬂ ds

R
1
< B [(/0 a@(x;ﬁs)ds)z}
= _'y i - Epg [(Q(m, v) — Q(x; VT))Q}. (B.12)

17



Upper bounding term (ii) of (B.9). In parallel to the proof of Lemma C.2 in §C.2, noting that
|QA(x;v)| < sup,er |Q(x;v)] for any v € P5(RP), we have that

|Voh(0;v)||, < a- By (2a- By - Wa(ve,10) + By).
In parallel to (C.15) and (C.16), we have that

1
/ /‘(h(@;ﬁs),as(vs -ﬁS)(0)>‘ d9ds < C, - a1, (B.13)
0
where C, > 0 is a constant that depends on D, By, Bs, and B,.
Plugging (B.12) and (B.13) into (B.9), we have that

iVVg(l/t,l/Jf)2 Mk
dt 2 T ov+k

2 _
-Epg [(Q(x; 1) — Q(x; l/Jf)) ] +C,-n-at
Thus, in parallel to the proof of Theorem 4.3 in §5, we have that

inf Ep {(Q(x; V) — QT(:U))Q} L (5+9) D@ w)

te[0,7]

4 K+
C, o .21
% -T thoa P

which completes the proof of (B.5) in Theorem B.2. Meanwhile, in parallel to the proof of Lemma
D.6 in §D.2, we upper bound the error of approximating 7, by v, which further implies (B.6) of
Theorem B.2. O

C Proofs of Supporting Lemmas

For notational simplicity, we denote by Ep the expectation with respect to x ~ D and Ej5 the
expectation with respect to (x,r,z") ~ D. Also, with a slight abuse of notations, we write fm) =

{ei}z@r
C.1 Proof of Lemma 5.1

Proof. Existence and uniqueness of (Q*. To establish the existence of the fixed point solution Q*
to the projected Bellman equation ) = IIz77(Q, it suffices to show that [Ix7™ : F — Fisa
contraction mapping. It holds for any Q!, Q? € F that

||H]__T7TQ1 o H]__TWQ2||2£2(D) < 72 . Eﬁ [(Ql(.’ﬁl) o Q2($/))2]
=7 1@ = Qo)

where the last equality follows from the fact that D is the stationary distribution. Thus, IIz7 ™ :
F — F is a contraction mapping. Note that F is complete. Following from the Banach fixed point
theorem [28], there exists a unique Q* € F that solves the projected Bellman equation @ = IIx7 ™ Q.
Moreover, by the definition of F in (4.3), there exists p € P(RP) such that

Q"(x) = / o (2:6) dp(6).

Proof of (i) in Lemma 5.1. We define

P =po+a - (p—po). (C.1)

By the definition of Q(+; p) in (3.2) and the fact that Q(z; pg) = 0, we have that Q(z; p*) = Q* (),
which completes the proof of (i) in Lemma 5.1.

Proof of (ii) in Lemma 5.1. For (ii) of Lemma 5.1, note that Q(-; p*) = HT"Q(+; p*). Thus, we
have that

Q") =T7Q(5p"), f() = Q(5p"))p, 20, VfEF,
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which further implies that
Ep {(Q(l’;p*) —r—y-Q(z';p")) - /U(m;H) d(p— ﬁ)(9)} >0, Vpe Z[RP). (C2)

Let p = (id+ h - v)yp for a sufficiently small scaling parameter » € R, and any Lipschitz-continuous
mapping v : RP — RP. Then, following from (C.2), we have that

/E5 [(Q(x;p*) —r=7-Q@sp") - (o(a:0+ h-v(0)) — o(a 9))] dp(0) =20 (C3)

for any v : RP — RP”. Dividing the both sides of (C.3) by h and letting h — 0T, we have for any
v:RP — RP that

0< [ B5[(QUwip") —r =7+ QUa'ip) - (Var(w:6),0(6))] dp(0)
— = [ (g(6:0").0(6)) dp(0).

where the equality follows from the definition of g in (3.5). Thus, we have that g(8; p*) = 0 for p-a.e.,
which completes the proof of (ii) in Lemma 5.1.

Proof of (iii) in Lemma 5.1. Following from the definition of p* in (C.1), we have that

Dy (p" | o)
- /<ZOEZ§ — 1>2 dpo(6) = /((1 —a™ ). ppoo((ee))+ al-p(0) 1>2 doo(6) = a2 . D,

where D = D, 2(p || po)'/?. By Lemma E.3, we have that
Wa(p®, po) < Dxr(p” |1 po)'/* < Dya(p* || po)'/? < o' - D,

which completes the proof of (iii) in Lemma 5.1. O

C.2 Proof of Lemma 5.2

We first introduce the following lemmas. The first lemma establishes the one-point monotonicity of
g(+; B;) along a curve 3 : [0,1] — P5(RP) on the Wasserstein space.

Lemma C.1. Let 3 : [0,1] — %2(RP) be a curve such that 9;8; = — div(B; - v;) for a vector field
v. We have that

<6tg(';ﬂt)avt>6t <—(1-7)-Ep [(atQ(x;ﬂt))Q}

Furthermore, we have that
1
/0 (959(+3 Bs),vs) 5 ds < =(1 =) -Ep [(Q(fv; Bo) — Q(x; 61))2] (C4)

Proof. Following from the definition of g in (3.5), we have that
903 8) = o B |04(Q(x: B) = - Qa3 B)) - Voor(ws0)]

Thus, following from integration by parts and the continuity equation 9;3; = — div(5; - v;), we have
that

(g5 Bu) v, = — / <a B |0(Q(a:8) = 7+ Q'3 1)) - Voo (w;0)] vi(6) -ﬁt<e>> a0
— [ aE5[a(@wi5) -1 QU 51) - o(w:0)] - 215u(6) 09
= —Ep |0:(Q(: ) — 7+ Q'3 1)) - 9Q(w: )] (©5)
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where the last equality follows from the definition of ) in (3.2). Applying the Cauchy-Schwartz
inequality to (C.5), we have that

(D9(5B0),v1) 5, = B [ (0iQ(ws ))°] + 7 E5[0iQ('s 8) - 0:Q (w3 )]

< -E5[(0.Q(: 8))°] +7Es [(atcm;m))ﬂ” *Es [(atcxx/;ﬁt)ﬂl/z

=—(1-7)-Ep [(@Q(w;ﬂt)ﬂ, (C.6)

where the last equality follows from the fact that the marginal distributions of D with respect to x
and z’ are D, since D is the stationary distribution. Furthermore, we have that

[ (0t .0, 05 =02 [ Bo[ (0.0 ) as

ey
=—(1-7)Ep {(Q(x; p1) — Qg 50))2}’

which completes the proof of Lemma C.1. O

The following lemma upper bounds the norms of  and Vyg.
Lemma C.2. Under Assumptions 4.1 and 4.2, it holds for any p € Z5(RP) that

SHE\Q(x;p)! < a-min{B; - Wa(p, o), Bo}, (C.7)
xre

esu%HVQg(G; p)HF <a-By- min{2a - By - Wa(p, po) + B, 2 - By + BT}. (C.8)
€R

Proof. We introduce the Wasserstein-1 distance, which is defined as
Wi, i) = inf {E[I1X = Y] |law(X) = !, law(¥) = i}

for any p!, u? € 2(RP) with finite first moments. Thus, we have that Wi (u!, u?) < Wo(ut, p?).
The Wasserstein-1 distance has the following dual representation [5],

Wit ) =sup{ [ ) at = )0
Following from Assumptions 4.1 and 4.2, we have that |Vyo(x;0)| < B; forany z € X and

6 € RP, which implies that Lip(c(x;-)/B;) < 1 for any € X. Note that Q(x; py) = 0 for any
x € X. Thus, by (C.9) we have for any p € Z5(RP) and = € X that

Qi p)| = a- | [ oti6) - d(p = po)0)
Meanwhile, following from Assumptions 4.1 and 4.2, we have for any x € X and p € £, (RP) that
Qo] =a-| [ ola:0)aple)

Combining (C.10) and (C.11), we have for any p € 2, (RP) that
suE|Q(x;p)! < a-min{B; - Wa(p, po), Bo}, (C.12)
xTE

continuous f : R? — R, Lip(f) < 1}. (C.9

<a-By-Wi(p,po) < - Br-Wa(p,po). (C.10)

< a- By. (C.11)

which completes the proof of (C.7) in Lemma C.2. Following from the definition of g in (3.5), we
have for any x € X and p € Z5(RP) that

[V09(6: )| < 0~ Es || Qs p) = =7 Q(a's )] - [V (as )]
<a- min{?a By - Wa(p, po) + By, 20 By + BT} "By,

Here the last inequality follows from (C.12) and the fact that | V3,0 (z;0)||r < Bs for any z € X

and p € Z5(RP), which follows from Assumptions 4.1 and 4.2. Thus, we complete the proof of
Lemma C.2. O
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We are now ready to present the proof of Lemma 5.2.

Proof. Recall that p; is the PDE solution in (3.4), that is,

Ope = —n-div(pe - g(-p1)),
where

9(0;p) = —a-Ep [(Q(w; p) =1 —7-Q';p)) - Voo 9)} :

We fix at € [0,T]. We denote by 8 : [0,1] — P»(RP) the geodesic connecting p; and p*.

Specifically, 3 satisfies that 5, = — div(f; - vs) for a vector field v. Following from Lemma E.2, we
have that

d Wa(pr, p*)°

T =g,

p*

=n: /0 88<9('§6s)a718>65 ds—n- <g(-;p*),01>

:n-/o <8sg(.;68)7vs>65 ds+n./0 /<g(9;/85)’85(us'ﬁs)(9)>d9d87

(i) (i)
(C.13)
where the last equality follows from (ii) of Lemma 5.1.
For term (i) of (C.13), following from (C.4) of Lemma C.1, we have that
1
/0 (59(3B5),vs) 5, ds < —(1=7) - Ep [(Q(: Bo) — Qla: 51)) ]
= ~(1-9)-Ep[(Q(ip) - Q")) (.14

For term (ii) of (C.14), we have that

[ltat6:8.).0.00. - 5.)0)] @0 = [ |(Vag®:5.),6.(6) - v.(6) . (6))] a0

< sup [|Vog(0; Bs) || - [lvs]
0eRP

2
Bs?

where the equality follows from integration by parts and Lemma E.4. Since [ is the geodesic
connecting p; and p*, (2.7) implies that ””8”%5 = Wu(Bo, £1)? = Wa(ps, p*)? for any s € [0, 1].
Applying (C.8) of Lemma C.2, we have that

/’(g(G;Bs)ﬁs(vs : Bs)(0)>‘ d0 < o+ By - (2ac- By - Wa(py, po) + Br) - Wal(pe, p*)?
< 4o By (6o By - Walpo, p*) + Br) - Wa(po, p*)?, (C.15)
where the last inequality follows from the condition of Lemma 5.2 that Ws(py, p*) < 2Wh(po, p*)

and the fact that W (pt, po) < Wa(pe, p*) + Wa(po, p*). Then, applying (iii) of Lemma 5.1 to
(C.15), we have that

1
| [lo®:50.0.00. 5)0)] a0ds < 407t B D (6B - D + By)
0
=C,-a !, (C.16)
where C, > 0 is a constant depending on D, By, Bs, and B,.

Finally, plugging (C.14) and (C.16) into (C.13), we have that

%M <-(1-7)n ED{(Q((IJ;pt) - Q*(m)ﬂ 10, -a .y,

which completes the proof of Lemma 5.2. O
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D Mean-Field Limit of Neural Networks

In this section, we prove Proposition 3.1, whose formal version is presented as follows. Recall
that p; is the PDE solution in (3.4) and p, = m~! - >°7" 6;(k) is the empirical distribution of
0™ (k) = {0;(k)},. Note that we omit the dependence of /. on m and e for notational simplicity.

Proposition D.1 (Formal Version of Proposition 3.1). Let f : R — R be any continuous function
such that || f|lcc < 1 and Lip(f) < 1. Under Assumptions 4.1 and 4.2, it holds that

[r®ano - [ o) dﬁkw)\

sup
k<T/e
(keN)

< BB (Vioa(m/8) fm + \Je - (D +log(m/5)))

with probability at least 1 — 4. Here B is a constant that depends on «, 1), 7, By, and B; (j € {0, 1, 2}).

The proof of Proposition D.1 is based on [6, 53, 54], which utilizes the propagation of chaos [66].
Recall that g(; p) is a vector field defined as follows,

9(0:0) = —a g | (Q(wip) =7 = 7+ Q('; ) - Voor(w: ).
Correspondingly, we define the finite-width and stochastic counterparts of g(6; p) as follows,
5(0;00) = —a - E [(@(a:; 0 —r —~ - Q(a';0™)) - Vyo(a; 9)} . DD
Gr(0;0) = —a- (Q(a; 07) = ric =7~ Q(a}:0™)) - Voo (13 0), (D2)
where (zg, 1, mﬁg) ~D. Following from [6, 53], we consider the following four dynamics.

o Temporal-difference (TD). We consider the following TD dynamics 6m) (k), where k € N, with
0;(0) bid- po (i € [m]) as its initialization,

O;(k+1)=06;(k) —ne-«- (@(mk, H(m)(k‘)) —Tp =y @(w%, G(m)(kz))) . Vga(a:k; Hl(k))
= 0;(k) + ne - Gi (6:(k); 67 (k)), (D.3)
where (zg, 15, 2},) ~ D. Note that this definition is equivalent to (2.3).

o Expected temporal-difference (ETD). We consider the following expected TD dynamics g(m) (k),
where k € N, with 6;(0) = 6,(0) (¢ € [m]) as its initialization,
Bk +1) = 09— e B (@0 (1) — 7 - Q00 1)) - Vo (2304 |
= 0i(k) +ne - (0:(k); 00 (k). (D4)
e Continuous-time temporal-difference (CTTD). We consider the following continuous-time TD
dynamics 6™ (t), where t € R, with 6;(0) = 0;(0) (i € [m]) as its initialization,
d~ PO o~ -
30t =-n-a-Ep {(Q(SE; 0 (1)) —r —v-Q(a; 9<m><t>)) Voo (w3 ai(t>)}
=n-g(0:(t); 0™ (1)). (D.5)
o Ideal particle (IP). We consider the following ideal particle dynamics 6(™)(t), where t € R,
with 6;(0) = 0;(0) (¢ € [m]) as its initialization,

C0.1) = —n-0 - E5[(QUai o) - Qs ) - Voo (w:0:(1)

=n-g(0:(t); pr), (D.6)
where p; is the PDE solution in (3.4).
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We aim to prove that p, = m~'- >, 09, (k) Weakly converges to pyc. For any continuous function

f:RP < 1 and Lip(f) < 1, we use the IP, CTTD, and ETD dynamics as the
interpolating dynamics,

PDE — TD

‘ / £(60) dpre (6 / £(6) (0 ‘

’/f ) dpge(6) — -;f<ei(ke>)‘+’m-l-zf(i<ke))—m-1~2f(@(ke>)

+ ’ml S F @)~ Zf(éi(k))’ - ‘ml DS (OiR)) =m0 f (0:(k))
i=1 ' =1 ‘

<| [ 16 ap0) = 3 10tk + [0 0 - T30,
PDE — = P — CTTD
+ (|00 (ke) — 6 R)]|,y + 167 (R) = 8 (R - (D.7)
CTTD — ETD ETD — TD

where the last inequality follows from the the fact that Lip(f) < 1. Here the norm ||-||(,) of
0™ = {0,}7 is defined as follows,

||9(m)\|(m) = ,Sup 1161 (D.8)
In what follows, we define B > 0 as a constant that depends on «, 7, -y, By, and B; (j € {0, 1,2}),

whose value varies from line to line. We establish the following lemmas to upper bound the terms on
the right-hand side of (D.8).

Lemma D.2 (Upper Bound of PDE —IP). Let f be any continuous function such that || || < 1 and
Lip(f) < 1. Under Assumptions 4.1 and 4.2, it holds for any f that

m

oup | [ 10)an©) == 32 100)] < B iogbnT[5)/m

te[0,T]

with probability at least 1 — 4.

Proof. See §D.1.1 for a detailed proof. O
Lemma D.3 (Upper Bound of IP — CTTD). Under Assumptions 4.1 and 4.2, it holds that

bup Hﬁ(m) — 6™ (1) < B-ePT . \/log(m/d)/m
tel0,T

with probability at least 1 — 4.

Proof. See §D.1.2 for a detailed proof. O
Lemma D.4 (Upper Bound of CTTD — ETD). Under Assumptions 4.1 and 4.2, it holds that
sup HH é(m)(k‘)H(m) < B-ePT . e

k<T/e
(keN)

Proof. See §D.1.3 for a detailed proof. O
Lemma D.5 (Upper Bound of ETD — TD). Under Assumptions 4.1 and 4.2, it holds that

<B-.ePT. \/e-(D+10g(m/5))

sup Hé(m)(k) — ||( )
k<T/e
(keN)

with probability at least 1 — §
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Proof. See §D.1.4 for a detailed proof. O
We are now ready to present the proof of Proposition D.1.

Proof. Plugging Lemmas D.2-D.5 into (D.7), we have that

[0~ [ 10 dﬁkw)\

sup
k<T/e
(keN)
< BT (\flog(m/8)/m + Ve (D+ log(m/)) )
with probability at least 1 — §. Thus, we complete the proof of Proposition D.1. O

D.1 Proofs of Lemmas D.2-D.5
In this section, we present the proofs of Lemmas D.2-D.5, which are based on [6, 53, 54]. We include

the required technical lemmas in §D.3. Recall that B > 0 is a constant that depends on «, 7, 7, B,
and B; (5 € {0,1,2}), whose value varies from line to line.

D.1.1 Proof of Lemma D.2

Proof. For the IP dynamics in (D.6), it holds that 6;(t) ~ p; (i € [m]) (Proposmon 8.1.8 in [5]).
Furthermore, since the randomness of 0;(t) comes from ;(0) while 6;(0) (i € [m]) are independent,

we have that 0;(t) A pt (i € [m]). Thus, we have that

B, [ 3 1@0)] = [ 1040

Let 0™ = {0, ...,0} ... 0,,} and 6>("™) = {#;,...,62,...,6,,} be two sets that only differ

sy Vi y Vg

in the i-th element. Then, by the condition of Lemma D.2 that || f||o < 1, we have that

SO =SR] = m o |f0h) — F67)] < 2/m.
j=1 j=1
Applying McDiarmid’s inequality [70], we have for a fixed ¢ € [0, T that

P(\m‘l-if(ext)) - / 1) dpt(ﬁ)\ >p> < exp(—mp” /4). (D.9)
=1

Moreover, we have for any s, ¢ € [0, T'] that

“ml . if(éi(t)) - /f(H) dpu(0)| = |m - fjf(el(s)) - /f<9> dps(@!‘

< |t Zf =m0 +| [ 1018000 - [ 100000
< [0 = 0y + Wilors )
Hg(m) t) m)(s)H(m) —i—Wz(pt’pS)

where the second inequality follows from the fact that Lip(f) < 1 and (C.9). Applying (D.38) and
(D.40) of Lemma D.8, we have for any s, ¢ € [0, T that

Hml : if(@(t)) - [ 10)an0)] - [~ if(@-(s)) - [ 10 dps<9>H <B.jt—s|
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Applying the union bound to (D.9) fort € ¢ - {0,1,...,|T/¢]}, we have that

IP’( sup ’mfl . if(éi(t)) - /f(@) dpt(ﬁ)’ >p+B- L) < (T/e+1) - exp(—mp?/4).

t€[0,T]

Setting t = m~'/? and p = B - \/log(mT/J)/m, we have that
sup [t 3" (0:0) ~ [ 7(0)dpu ()] < B /o J5)
i=1

t€[0,T]

with probability at least 1 — d. Thus, we complete the proof of Lemma D.2. O
D.1.2 Proof of Lemma D.3
Proof. Recall that g and g are defined in (3.5) and (D.1), respectively, that is,
9(0;p) = —a-Ep [(Q(x; p)—r—-Qa';p)) - Voo(x; 9)} :
m&mm>=—a»&{@ﬂmMMU—r—v-@uemmn-vMﬂaw]

Following from the definition of 6;(¢) and 6;(¢) in (D.5) and (D.6), respectively, we have for any
i € [m]and t € [0, T that

16:(t) — 0:(1)

[},
=7n- / Hg G(m) )) _g(éi(s),ps) ‘ds

<n- 3(0:(5);0™) (s)) — g(0:(s); ps

’ds

< 8- [106) =86y ds - [ [5(0:50) —0(@u:

where the last inequality follows from (D.35) of Lemma D.7. We now upper bound the second term

on the right-hand side of (D.10). Following from the definition of @, Q, and g in (3.1), (3.2), and
(D.1), respectively, we have for any s € [0,7] and 7 € [m] that

) =t 2700

‘ ds, (D.10)

[9(8:(5); 0 (5)) = 9(Bi(s); s (D.11)

where
ZI(s) :Eﬁ{(a(m‘;t?j(s)) - /U(x;&) dps(0) — - o (2';0,(s)) + - /a(a:’;@) dps(e)) -Vga(x;ﬁi(s))}

Following from Assumptions 4.1 and 4.2, we have that || Z7 (s)|| < B. When i # 7, following from

the fact that ;(s) b ps (i € [m]), it holds that E[Z7 (s) | 6;(s)] = 0. Following from Lemma D.9,
we have for fixed s € [0, 7] and i € [m] that

p<Hm1 . ;_zg(s) m1/2 +p>) _E IP’(Hml : ;zg'(s) m=1/2 4 p) \ fils >)]

< exp(—mp?). (D.12)

By (C.9), we have that

sup| [ a(a:0)dp.(6) ~ [ oa:6)dn(®)| < B Walpu.pi) < B Walpupr) < B+Js ],
€
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where the last inequality follows from (D.40) of Lemma D.8. Thus, following from Assumptions 4.1
and 4.2, Lemma D.8, and the fact that Lip(fg) < || f]lco - Lip(9) + ||9||0o - Lip(f) for any functions
f and g, we have for any s,t € [0, 7] that

[ SEAE! B s SEAC] | EERE
i i

Applying the union bound to (D.12) fori € [m]and ¢ € ¢ - {0,1,...,|T/¢|}, we have that

]P’( sup Hmfl . ZZf(s)H >B-(m~ Y2 4p)+ BL) <m-(T/t+1)-exp(—mp?).
ig[[cr)n%} el

Setting t = m~'/? and p = B - \/log(mT/J)/m, we have that

sup Hm ZZZ(S)’ < log(mT/&)/m (D.13)
;ee[o 7] 37

with probability at least 1 — §. When i = 7, it holds that |m~! - Zi(s)| < B/m in (D.11), which
follows from Assumptions 4.1 and 4.2. Thus, plugging (D.13) into (D.11), we have that

sup [3(0:():0)(5) = 9(0:(5); ps)|| < sup 0 (Hm Zz<s>|\+Hm-1-ZZ£‘<s>H)
slg[[g?%} ;ee[[én]T] I

< B-+/log(mT/§)/m (D.14)

with probability at least 1 — 4.
Conditioning on the event in (D.14), we obtain from (D.10) that

Hg(m)( g(m) < B- / Hg(m) é(m)(s)H(m) ds + BT - \/log(mT/5)/m
for any ¢ € [0, T]. Following from Gronwall’s Lemma [41], we have that
|60 (£) — g0 (&) < B - €P"- BT - \/log(mT/3)/m
< B-eBT . \/log(m/5)/m, vt € [0,T]

with probability at least 1 — §. Here the last inequality holds since we allow the value of B to vary
from line to line. Thus, we complete the proof of Lemma D.3 O

D.1.3 Proof of Lemma D.4
Proof. By the definition of g, éi(t), and 671(15) in (D.1), (D.4), and (D.5), respectively, it holds that

ke~ il <n- [ [F@:0) 061D 8 7)) s

G(0:():0)(5)) = G(O:(Ls/e] - ;0 (/] - )| s

k—1
- Y |[5(B: 008 (0e)) — (i) 0 (1))
£=0
k—1 N .
<SB-k-+B-Y [0 (te) =6 @),
£=0

where the last inequality follows from (D.35) of Lemma D.7 and (D.39) of Lemma D.8. Following
from the definition of ||-||(;,,) in (D.8), it holds for any k < T'/e (k € N) that

k—1
<B-T-e+B-Y ||00™) (L) O oy
£=0

(|60 (ke) — é<m>(k)||( :
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Following from the discrete Gronwall’s lemma [41], we have that

sup HG(m) ke) G(m) H <B?2.T.c- BT <B.eBT
k<T
(keN)
where the last inequality holds since we allow the value of B to vary from line to line. Thus, we
complete the proof of Lemma D.4. O

D.1.4 Proof of Lemma D.5

Proof. Let G, = o (0)(0),20,...,2;) be the o-algebra generated by 6" (0) and z
(g, e, 2y) (¢ < k). Recall that g and G}, are defined in (D.1) and (D.2), respectively. We have
forany i € [m] and k € N that

B[ G (6:(k); 0 () | Gio—1| = 5(6(1); 6 (k).

Recall that (") (k) and g(m) (k) are the TD and ETD dynamics defined in (D.3) and (D.4), respec-
tively. Thus, we have for any ¢ € [m] and k € N that

k—1 k—1
10: (k) = 0:0)]| = me - ||>_ G (0:(0:0(0)) = > G(Bu(0): 0 (1))
£=0 =0
k-1
< e[|S0 X0 + e ZH 00 () = (6,00 0) |
=0
< e ||Ai(k) 0" (O] ) (D.15)
where the last inequality follows from (D.35) of Lemma D.7, and X;(¢) and A;(k) are defined as
X;(0) =0,
Xi(0) = Co(0:(0:01) (1) ~ E[Ge(0:(0);0"(0)) | Gea] WE2 1,
k—1
= Z Xi()
=0

Following from (D.32) of Lemma D.7, we have that || X;(¢)|| < B. Thus, the stochastic process
{Ai(k)}ren, is a martingale with || A;(k) — A;(k — 1)|| < B. Applying Lemma D.10, we have that

P(kxgj@/( |Ai(k)|| = B-/T/e- (x@ﬂa)) < exp(—p?). (D.16)
(keNy)

Applying the union bound to (D.16) for i € [m], we have that

P( Grrl{&)}( HAz(k)H >B-\/T]e- (\/B+P)) <m- exp(—p2).
kgT’L/e ?llcéNJr)

By setting p = 1/log(m/d), we have that

| 4i(k)|| < B-/T/e- (VD + \/log(m/s)), Vi€ [m],k<T/e(keNy) (D.17)
with probability at least 1 — §. By (D.15) and (D.17), we have that

00 (k) — 0™ (k)

k-1
< B-VTe- (VD + \/log(m/5)) + Be- Y _ |6 (¢) — o™ Ol ys VE<T/e(k€N)
(=0
with probability at least 1 — 0. Applying the discrete Gronwall’s Lemma [41], we have that
160 (k) — 0 (k)| < BT - B-VTe- (VD + /log(m/5))

<B.BT. \/6. (D + log(m/5)), Vk<T/e(keN)

with probability at least 1 — §. Here the last inequality holds since we allow the value of B to vary
from line to line. Thus, we complete the proof of Lemma D.5. O
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D.2 Proof of Corollary 4.4

The proof of Corollary 4.4 follows from Theorem 4.3 and the following lemma, which characterizes
the error of approximating the TD dynamics #(") (k) in (3.3) using the PDE solution p; in (3.4).

Lemma D.6. Let B be a constant that depends on «, 1, 7y, By, B1, and By. Under Assumptions 4.1
and 4.2, it holds for any k < T'/e (k € N) that

o | (@ 0™ 0) - @) ]

<E,wp {(Q(m;pke) - Q*(w))z} + B-eBT. ( m~1-log(m/§) + \/e~ (D+ log(m/d)))

with probability at least 1 — 4.

Proof. Recall that @ and Q(+; p) are defined in (3.1) and (3.2), respectively. For notational simplicity,
we denote the optimality gaps for §(™) = {0,172, and p € Z25(RP) by

L(O™) = Ep {(@(x; gim)y — Q*(x))ﬂ, (D.18)
L(p) = En [(Q(w; ) — Q"(@))"]. (D.19)

Recall that 0™ (k), 0™ (ke), and p; are the TD dynamics, the IP dynamics, and the PDE solution
defined in (D.3), (D.6), and (3.4), respectively. It holds for any k£ € N that

‘L(G“”)(k:)) - l_}(pke)‘ < ‘L(&W(k)) - L(é(m)(k:e))’ + ’L(é(””(ke)) ~Lipr)|. D20
(i) (ii)

In what follows, we upper bound the two terms on the right-hand side of (D.20).

Upper bounding term (i) of (D.20). Following from the definition of L in (D.18), it holds for any
k € N that

L0 (k) = (8 (ke))|

(D.21)
Following from (D.30), (D.31), and (D.36) of Lemma D.7, we have for any k£ € N that
sup‘@(x; 9(m)(k)) + @(w, 0;(ke)) — QQ*(Z‘)‘ < B, (D.22)
reX
sup [Q (a3 0™ (k)) — Q(=; éi(ke))’ < B- [0 (k) = 0" (ke)| .- (D.23)

TeEX

Thus, we have that
L8 (k) = L8 (ke))|

<B- H@(m)(k) —pim)
< B BT (flog(m/8)/m + Je (D + log(m/6))), Vk<T/e(keN)  (D24)

with probability at least 1 — §. Here the last inequality follows from Lemmas D.3-D.5.

Upper bounding term (ii) of (D.20). Let ¢t = ke. It holds for any ¢ € [0, T that

E,, [L(9‘<m> (t))] — L(py)
(D.25)

L@ @) - L(p) i

7

<[e@mi0) - 5, [LEm 0)
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where the expectation is with respect to 0; () Lid

Pt
side of (D.25), following from the fact that E,, [Q(x
that

(i

€ [ ]). For the second term on the right-hand
;60m ( ))] = Q(z; p;) for any z € X, we have

E,, [L(0"®)] - Lip)

\/,n Q(a:0(1)* - Qe p1)?] dD()

‘ / Varp (3 0™ (¢ ))} aD(z)
< B/m, (D.26)

where the inequality follows from the fact that [|o|| < B in Assumption 4.2 and the independence of
0;(t) (i € [m]). Let 0%(™) = {@;,...,0},....60,,} and 6> = {0,,...,6%,...,0,,} be two sets
that only differ in the i-th element. It holds that

’L(Gl’(m)) - L(92’(m))’ <B-m™ ' -Ep Ua(x;@il) - 0’(31‘;61-2)” < B/m,

where the first inequality follows from (D.21) and (D.22) and the second inequality follows from
Assumption 4.2. Applying McDiarmid’s inequality [70], we have for a fixed ¢ € [0, T that

P ( ‘L(G(m)(t)) —E,, [L(0"(1))] ‘ > p) < exp(—mp*/B). (D.27)

It holds for any s, ¢ € [0, T that

mew—mﬁwwwﬂ—ﬁwwm—thwmm
< B0 (t) — 0 (5)] ) < B It — 5],
where the first inequality follows from (D.21), (D.22), and (D.23) and the second inequality follows

from (D.38) of Lemma D.8. Applying the union bound to (D.27) fort € ¢ - {0,1,...,|T/¢]}, we
have that

P<sm>l&mmww>—EmP%%meﬂ|zp+¢%)s(Tﬂ+ﬂ)«mm—anBL
te[0,T]
Setting ¢t = m~'/2 and p = B - y/log(mT3)/m, we have that
sup [L(0U™(t)) — E,, [L(9<m> )H < B \/log(mT9)/ (D.28)
t€(0,T]

with probability at least 1 — §. Plugging (D.26) and (D.28) into (D.25), noting that t = ke, we have
that

‘L(é(m)(ke)) — L(pre)| < B+ /log(mT®)/m, Vk <T/e (k€ N) (D.29)

with probability at least 1 — 4.
Plugging (D.24) and (D.29) into (D.20), we have that

L6 (k) = L(pw)

< B-ePT - (\/log(m/5)/m + Ve (D+ log(m/4))), ¥k < T/e(keN)
with probability at least 1 — &. Thus, we complete the proof of Lemma D.6. O
D.3 Technical Lemmas for §D

In what follows, we present the technical lemmas used in §D. Recall that @, g, and G & are defined
in (3.1), (D.1), and (D.2), respectively. Let B > 0 be a constant depending on «, 1, 7, B,, and
B, (j € {0,1,2}), whose value varies from line to line.
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Lemma D.7. Under Assumptions 4.1 and 4.2, it holds for (™) = {#;}™, and 8™ = {6,}™, that

sup’Q x;0 m))’ < B, (D.30)
zeX
sup|Q(w;0™) = Q(x;6"™)| < B[00 = 6™ || (), (D31)
reX
1G(0550"™)| < B, (D.32)
|Gr(0550™) — Gr(0;:0"™)|| < B (16 — 0|y, ¥k €N, (D.33)
|5(0:;00™)]| < B, (D.34)
[9(6::7) — 56,6 | < B 16 ~ 0™ . (033)
Meanwhile, for any @ € F, it holds that
supHQ(x)H < B. (D.36)
rzeX
For any p € %5(RP), it holds that
l9(6;p)| < B. (D.37)

Proof. For (D.30) and (D.31) of Lemma D.7, following from Assumptions 4.1 and 4.2 and the
definition of ) in (3.1), we have for any = € X, 6™ and Q(m) that

Q0] < a-m S |o(a:6:)]| < B,
=1
Qa1 0™)) = Q(; 0| < oo™ o(w:60:) — o(38,)| < B (|07 — 0| 1y
=1

For (D.32) and (D.33) of Lemma D.7, following from the definition of @k in (D.2), we have for any
0(™) and 9™ that

|Gr(0::0™)|| = @ |Qx; 67) = i — 7 - Q(a}; 0™) | - | Voo (wx; 6:)]| < B

||ék 0:;00™)) — ék(9_~9(m))H

= SPI?\Q a3 00) — 7y — - Q00| - || Voo (w3 6:) — Voo (xx; 0,)]
9 m

Qax;0) =7 - Q(af; 07™) — Qa; 6 ))+v~@(ﬂf§c;9(m))\-esupDHVea i 0;) |
€R

+o

< B [0 =6 ).
The inequalities in (D.34) and (D.35) of Lemma D.7 for g follow from the fact that

G050 =E Gre(0:;00™)].

(Tk Tk ,x;c)r\zﬁ [

The inequalities in (D.36) and (D.37) follow from the definition of F and g in (4.3) and (3.5),
respectively. Thus, we complete the proof of Lemma D.7. O

Recall that p, is the PDE solution in (3.4) and 8(™) (¢) and (™) (t) are the CTTD and IP dynamics
defined in (D.5) and (D.6), respectively.

Lemma D.8. Under Assumptions 4.1 and 4.2, it holds for any s,t € [0, T that

187 () = 8" ()] . — s, (D.38)
||§(m)(t) _ g(m) (s ||(m) <B-|t—s|, (D.39)
Wa(pisps) < B- |t 3. (D.40)
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Proof. For (D.38) of Lemma D.8, by the definition of 6; (t) in (D.6) and (D.37) of Lemma D.7, we
have for any s,t € [0, and ¢ € [m] that

16:(t) — 6:(s)|| = n / 9(0i(1): pr)

Similarly, for (D.39) of Lemma D.8§, by the definition of @(t) in (D.5) and (D.34) of Lemma D.7, we
have for any 7 € [m] and s,t € [0, 7] that ||6;(¢) — 6;(s)|| < B - |t — s|.

’dT§B~|tfs|.

For (D.40) of Lemma D.8, following from the fact that 6;(t) S pt (i € [m]) and the definition of
Wy in (2.4), it holds for any s, ¢ € [0, T that

Wa(pr,p) < B[00~ 8.)F] " < B 1t~
Thus, we complete the proof of Lemma D.8. O

Lemma D.9 (Lemma 30 in [53]). Let {X;}™ be i.i.d. random variables with | X;|| < & and
E[X;] = 0. Then, it holds for any p > 0 that

S(Ian

where C' > 0 is an absolute constant.

Lemma D.10 (Lemma A.3 in [6] and Lemma 31 in [53]). Let X;, € R? (k € N) be a martingale
with respect to the filtration Gy, (k > 0) with Xy = 0. We assume for ¢ > 0 and any A € R that

]E{exp(()\,Xk - Xi—1)) ‘ gkfl] <exp(€2-[A?/2).

172y >) < exp(—mp?),

Then, it holds that

P(max | Xul| = C&- v+ (VD +p)) < exp(—p?),
(kEN)
where C' > 0 is an absolute constant.

E Auxiliary Lemmas

We use the definition of absolutely continuous curves in %, (RP) in [5].

Definition E.1 (Absolutely Continuous Curve). Let 3 : [a,b] — Z3(RP) be a curve. Then, 3 is an
absolutely continuous curve if there exists a square-integrable function f : [a, b] — R such that

W2(55,,6t)§/ f(r)dr

Then, we have the following first variation formula.

Lemma E.2 (First Variation Formula, Theorem 8.4.7 in [5]). Given v € %5(R”) and an absolutely
continuous curve 4 : [0,T] — P5(RP), let 8 : [0,1] — P2(RP) be the geodesic connecting i
and v. It holds that

foranya < s <t <hb.

d WQ(MDVF !l
@ 2 —<Mtaﬁo>m,

where ji; = Oy, 5y = 04f¢ | ,_o» and the inner product is defined in (2.5).
Lemma E.3 (Talagrand’s Inequality, Corollary 2.1 in [59]). Let v be N (0, - Ip). It holds for any
w € P5(RP) that

Wa(u,v)* < 2Dgr (1 || v) /-

Lemma E.4 (Eulerian Representation of Geodesics, Proposition 5.38 in [68]). Let 5 : [0,1] —
P5(RP) be a geodesic and v be the corresponding vector field such that 9;3; = — div(8; - vy). It
holds that

OBy - vp) = —div(By - v @ 1y).
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