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1 Overview

This supplement provides

• in Section 2, the proof of the Theorem in the paper,
• in Section 3, the derivation of the ADMM equations for optimizing Eq. 10 in the paper, and
• in Section 4, the derivation of the update-equations for optimizing Eq. 11 in the paper, and
• in Section 5, the generalization of Section 3 in the paper to dropout at different layers in a

deep network.
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2 Proof of the Theorem

This first section of the proof provides an overview, where we start with the objective function of
Eq. 1 in the paper (re-stated in Eq. 2 below), and show that it is equal to the objective function in the
Theorem in the paper (see Eq. 8 below) up to the factor ap+ bq, which is an irrelevant constant when
optimizing for B(EDLAE). But first, let us introduce the following definitions, which will be used
throughout this proof:

β := diag(B(EDLAE))

B(off) := B(EDLAE) − dMat(β) (1)

where β is the diagonal of B(EDLAE), while B(off) contains the off-diagonal elements of B(EDLAE)

and has a zero diagonal. Also note that B(EDLAE) = q ·B, see Eq. 2 in the paper.

In the following, we provide the detailed steps. We first provide the sequence of manipulations at
once, and then describe each step in the text below. We start by re-stating Eq. 1 in the paper
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Line 2 is decomposed into a sum over the m features in line 3, where A·,i, X·,i and B·,i refer to
column i.
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In line 4, for each column i, we split column A·,i into two parts based on the two weight-values a, b
in A·,i, and then apply the same (row-wise) split to Z(n) (resulting in Z(n,i,a) and Z(n,i,b)) and to
X·,i (resulting in X(n,i,a) and X(n,i,b)), see Section 2.1 for details.

Line 5 states the analytic simplifications obtained for the parts (a) and (b), respectively, when
the number n of training-epochs approaches infinity (for convergence). The details are outlined
in Sections 2.2 and 2.3 below. See Eq. 1 above for the definitions of β and B(off). Moreover,
Λ = p

qdMat(diag(X>X)), as in Eq. 4 in the paper, is the diagonal matrix that holds the diagonal of
X>X, multiplied by the dropout-probability p, and q = 1− p.

In line 6, we change the sum over the m columns back to matrix notation.

In line 7 is obtained by first expanding each of the squared terms in line 6, then collecting the
corresponding parts, and finally undoing the expansions.

Finally, in line 8, we used the substitutions from Eq. 1 as to obtain B(EDLAE), and collected the
corresponding terms.

2.1 Split into Two Parts

This section provides the details on how line 3 above is split into the two parts (a) and (b) as to
obtain line 4 above. This is outlined in the following for a column i ∈ {1, ...m}. The split of the
column vectors A·,i and X

(n)
·,i as well as of the matrix Z(n) is based on the two weights a, b in the

weight-vector A·,i. Note that these weights reflect the fact whether the corresponding feature-value
was dropped out or not, see Section 2 in the paper. To this end, we define the following two sets of
row-indices:

R(n,i,a) = {r̃ : A
(n)
r̃,i = a}

R(n,i,b) = {r̃ : A
(n)
r̃,i = b}

Given dropout-probability p (and q = 1−p), note that the relative sizes of the sets obey |R
(n,i,a)|

|R(n,i,b)| →
p
q

as n→∞, which will be used in the next two sections.

Based on these two sets of row-indices, we now split column X
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and Z(n,i,b) := Z

(n)

R(n,i,b),·

Hence, line 3 above can be split accordingly into two parts as to obtain line 4 above:
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2.2 Simplification of Part (a)

In this section, we simplify part (a) in line 4 above by eliminating Z(n,i,a) and X
(n,i,a)
·,i , and rewriting

them in terms of the given training data X (which is unaffected by any dropout). We first present the
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equations, followed by a detailed description of the manipulations to get from one line to the next:
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When simplifying part (a), it is important that column i in matrix Z(n,i,a) is zero by construction, as
all these values have been dropped out (see section above). Hence, column i can be removed from
matrix Z(n,i,a) without affecting the squared loss–the resulting matrix is denoted by Z

(n,i,a)
·,−i (where

−i denotes all indices except for i). Correspondingly, B−i,i denotes the column-vector where row i
is removed from vector B·,i. This yields line 10. As an aside, note that element Bi,i is not affected
by part (a)–it is solely determined by part (b), see next section.

In lines 11 and 12, the squared loss is expanded into its four terms.1

Line 13 is the key step, where we simplify each of the three terms as follows as the number of
training-epochs n→∞:

1. As n → ∞, the vector X(n,i,a)
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1In our notation, the indices take priority over transposition, e.g., B>−i,i = (B−i,i)
>.
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now q (and not q2) is the probability of both entries being present because both entries are
the same here.
Combining the diagonal and off-diagonal entries, we obtain (as n→∞):

1

n
Z
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(n,i,a)
·,−i → p ·

{
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}
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q , and defined Λ−i,−i = p

qdMat(diag(X>·,−iX·,−i)), where
Λ−i,−i means that column i and row i are removed from matrix Λ = p

q ·dMat(diag(X>X)).

In line 14, we collect the terms (reversing the earlier expansion) and obtain the squared loss plus the
remainder, which is an L2-norm regularization term (where the square root is applied elementwise to
Λ).

Finally, line 15 is obtained by using the identities B(off)
−i,i = B

(EDLAE)
−i,i for the off-diagonal elements

j 6= i (see Eq. 1 above), and B
(EDLAE)
−i,i = qB−i,i (see Eq. 2 in the paper). Moreover, given that
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i,i = 0, we can undo the removal of element i from vector B(off), and correspondingly

from matrices X and Λ, as it does not change the squared norms.

2.3 Simplification of Part (b)

In this section, we simplify part (b) in line 4 above, by eliminating Z(n,i,b) and X
(n,i,b)
·,i , and rewriting

them in terms of the given training data X (which is unaffected by dropout). Like above, we first
present the equations, followed by a detailed description of the manipulations to get from one line to
the next:
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We start in line 17 by re-stating part (b) from line 4 above. In line 18 we introduce the diagonal matrix
Q(i) (and I denotes the identity matrix) such that Q(i)

jj = 1 for j 6= i, and Q
(i)
ii = q. The reason for

introducing Q(i) is that matrix Z(n,i,b) was constructed in Section 2.1 such that it contains exactly
those rows where none of the entries in column i were dropped out. In all other columns j 6= i of
Z(n,i,b), the entries were dropped out independently of each other with probability q = 1− p. For
this reason, we now scale the values in column i by the factor q, which is the purpose of matrix Q(i).
In the equations above, we simplified the notation Q(i) to Q for easier readability.

In lines 19, we expanded the squared error into its four terms, like in part (a) before.

Line 20 is the key step, where we simplify the the three terms as follows as n→∞:

1. As n → ∞, the vector X(n,i,b)
·,i contains q · n · r rows from the given data X·,i (with r

rows), see its precise construction in Section 2.1. Analogous to the same term in part (a), we
have 1

nX
(n,i,b)
·,i

>X
(n,i,b)
·,i → qX>·,iX·,i as n→∞, where q arises from the difference in the

number of rows.
2. In Z(n,i,b)Q(i), the entries are present with probability q in all columns j 6= i, while column
i is uncorrupted but scaled by q due to Q(i). Hence, given the (uncorrupted) vector X(n,i,b)

·,i ,

we have 1
nX

(n,i,b)
·,i

>Z(n,i,b)Q(i) → q2X>·,iX as n → ∞, where one q arises from the
difference in the number of rows, and the other q is due to the dropout/scaling with q.

3. Again, we have to consider the diagonal and off-diagonal entries separately, and further
have two cases on the diagonal:

• off-diagonal entries:
(

1
nQ

(i)Z(n,i,b)>Z(n,i,b)Q(i)
)
j,l
→ q3(X>X)j,l as n → ∞ for

all j 6= l. Again, one q arises from the difference in the number of rows, while the
remaining q2 is the probability that two different entries in Z(n,i,b) were both present
after the dropout for j, l 6= i; in the case that j = i or l = i, one was present with
probability q and one was scaled with q (by Q(i)).

• diagonal entry (i, i): given that column i was scaled with q (by Q(i)), we get(
1
nQ

(i)Z(n,i,b)>Z(n,i,b)Q(i)
)
i,i
→ q3(X>X)i,i as n→∞, where again one q arises

from the difference in the number of rows, while the remaining q2 is due to the scaling
of column i with q (by Q(i)).

• diagonal entries (j, j) for j 6= i: given that entries are present with probability q in
column j 6= i, we get

(
1
nQ

(i)Z(n,i,b)>Z(n,i,b)Q(i)
)
j,j
→ q2(X>X)j,j as n → ∞,

where again one q arises from the difference in the number of rows, while the other q
is due to the probability q of each entry being present.

Combining the diagonal and off-diagonal entries, we obtain (as n→∞):
1

n
Q(i)Z(n,i,b)>Z(n,i,b)Q(i) → q ·

{
q2X>X + (q − q2)dMat([diag(X>X)](i))

}
= q ·

{
q2X>X + q2[Λ](i))

}
where [·](i) denotes that entry i in the vector (or entry (i, i) in the diagonal matrix) is set to
0; the second line is obtained by again using q− q2 = q2 p

q , and Λ = p
qdMat(diag(X>X)).

In line 21, we collect the terms as to obtain the squared error, plus the remainder, which is an L2-norm
regularization term. The latter term can also be written in terms of a Frobenius norm, which yields
line 22.

Line 23 is obtained by using the identity B(EDLAE) = qB, see Eq. 2 in the paper.

In line 24, we simplify the L2-norm regularization term as follows: because [Λ](i) is zero for entry
(i, i), we can first drop Q(i)−1, as its diagonal is different from 1 only for index i, and then replace
B

(EDLAE)
·,i with B

(off)
·,i (see also Eq. 1 above), given that here its entry (i, i) gets multiplied by 0

from [Λ](i). Given that now entry B
(off)
i,i = 0, we can replace [Λ](i) by Λ in the L2 regularization. In

other words, we ‘moved’ the zero entry in [Λ](i) to B
(off)
·,i without changing the value of the L2-norm

regularization term.
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In line 25, we rewrite the diagonal matrix Q(i)−1 as follows: we first use the identity B(EDLAE) =
B(off) + dMat(β), where β = diag(B(EDLAE)), as defined in Eq. 1 above. Now we see that in
B

(EDLAE)
·,i , only the entry B

(EDLAE)
i,i = βi,i gets affected by Q(i)−1, as the diagonal of Q(i)−1 is

different from one only at i, where it is 1/q.

3 ADMM-updates to minimize Eq. 10 in the Paper

We first re-write Eq. 10 in the paper in the following equivalent form:

‖X + X · dMat(β)−XUV>‖2F + ‖Λ1/2UV>‖2F − ‖Λ
1/2β‖22

s.t. diag(UV>) = β (26)

as to decouple the training-updates for the matrices U and V from the diagonal β := diag(UV>).
This constrained least-squares problem can efficiently be solved using the Alternating Directions
Method of Multipliers (ADMM) [3, 2, 1] as follows: the equality constraint diag(UV>) = β is
absorbed into the augmented Lagrangian

||X + X · dMat(β)−XUV>||2F + ||Λ1/2UV>||2F − ||Λ
1/2β||22

+2γ>Ω(β − diag(UV>)) + ||Ω1/2(β − diag(UV>))||22 (27)

where γ is the vector of Lagrangian multipliers that (upon convergence of ADMM) enforces the
equality constraint diag(UV>) = β. Instead of a scalar penalty parameter (as used in the review
[1]), we here use a vector of penalty parameters, one for each feature; Ω is a diagonal matrix, and
diag(Ω) is this vector of penalty parameters. Λ and Ω are training-hyper-parameters, while U, V,
β, and the vector of Lagrangian parameters γ are learned. Given any two of U, V, β, the third one
can be optimized in closed form by setting the derivative of the augmented Lagrangian to zero, and
then solving for it. As a result, we obtain the following update-equations of the iterative ADMM
algorithm (see also [1]):

Û ← (X>X + Λ + Ω)−1
(
X>X · dMat(1 + β̂) + Ω · dMat(β̂ − γ̂)

)
V̂(V̂>V̂)−1

V̂> ←
(
Û>(X>X + Λ + Ω)Û

)−1

Û>
(
X>X · dMat(1 + β̂) + Ω · dMat(β̂ − γ̂)

)
β̂ ← diag(X>XÛV̂>)− diag(X>X) + diag(Ω)� (diag(ÛV̂>) + γ̂)

diag(X>X) + diag(Ω− Λ)

γ̂ ← γ̂ + diag(ÛV̂>)− β̂

where the last line updates the vector of Lagrangian multipliers, see [1]. In the update of the vector β,
the fraction denotes an elementwise division of the vectors, and � is the elementwise multiplication.
As to ensure that this division is well-defined, we chose Ω = Λ + ωI, where ω > 0 is a scalar, so that
we are left with a single penalty parameter (rather than the vector diag(Ω)) that needs to be tuned in
the training.

4 Optimization of Eq. 11 in the Paper

Using the method of Lagrangian multipliers, the two matrices U and V can be learned by minimizing
Eq. 11 in the paper as follows. The equality constraint diag(UV>) = 0 is absorbed in the Lagrangian

||X−XUV>||2F + ||Λ 1
2UV>||2F + 2η> · diag(UV>) (28)

where η is the vector of Lagrangian multipliers.

For fixed Û, the optimal V̂> can be found in closed form by setting the derivative of the Lagrangian
to zero, and solving for V̂>:

V̂> =
(
Û>(X>X + Λ)Û

)−1

︸ ︷︷ ︸
=:D

Û>
(
X>X− dMat(η)

)
(29)
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where the vector of Lagrangian multipliers η is determined by the constraint diag(UV>) = 0,
resulting in

η =
diag(UDU>X>X)

diag(UDU>)
(30)

where the division of the two diagonals is elementwise.

Conversely, for fixed V̂, Eq. 28 is minimized by

Û = C
(
X>X− dMat(η)

)
V̂(V̂>V̂)−1 (31)

where C = (X>X + Λ)−1. Note that matrix V̂>V̂ is invertible, as it is of rank k and of size k × k
(see above), and hence full rank. The (column-)vector of Lagrangian multipliers η is again determined
by the constraint diag(UV>) = 0, which yields to the following system of linear equations

diag(CX>XV̂(V̂>V̂)−1V̂>) =
(
C� (V̂(V̂>V̂)−1V̂>)

)
· η (32)

which has to be solved for η. Here, � denotes the elementwise product of the two m×m matrices.
Note that η in Eqs. 30 and 32 converge towards each other, as they refer to the same vector of
Lagrangian multipliers in Eq. 28.

Like in Alternating Least Squares, these two updates of Û and V̂ are iterated until convergence
(which took a few dozen iterations in our experiments).

5 L2-norm Regularization in Deep Networks

As an aside regarding Section 3 in the paper (concerning denoising and dropout), here we briefly
discuss dropout at different layers in a deep feed-forward network.Again, we consider linear models
for analytic tractability. While a deep linear network is not more expressive than a shallow one, its
study may still help to better understand deep nonlinear models, e.g. [4].

Let us consider a network with L+ 1 layers and the weight matrices W1, ...,WL. This results in
B = W1 · ... ·WL (as a generalization of B = UV> in Section 3.2 in the paper). If we apply
dropout to layer j ∈ {1, ..., L}, the derivation in the paper (Eqs. 3 and 4) immediately carries over:
the induced L2-norm regularization applies to the product of the weight matrices that follow the
dropout-layer j: ||Λ(j)1/2 ·Wj · ... ·WL||2F . The L2-regularization is scaled by the diagonal matrix
Λ(j), which depends on the second moment of the distribution of each node in the dropout-layer j, in
other words diag(Λ(j)) = p

qdiag(X(j)>X(j)) where X(j) = X ·W1 · ... ·Wj−1 are the (predicted)
values of the hidden nodes in layer j.

This also reveals that, if dropout is applied to several different layers of a network, each dropout-layer
induces the corresponding L2-regularization. Consequently, weight matrices that are positioned closer
to the output-layer are subject to a larger number of L2-regularization terms than weight matrices that
are located closer to the input-layer of the network.
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