
Appendix

In our proofs, we use c, c1, c2, . . . to denote positive universal constants, the value of which may differ
across instances. For a matrix A, we write kAkop and kAkF as the operator norm and Frobenius
norm, respectively. For a set S, we use S to denote the complement of the set.

A Proof of Theorem 1

Since we only analyze a single iteration, for simplicity we drop the superscript that indicates the
iteration counter. Suppose that at a particular iteration, we have model parameters ✓j , j 2 [k], for the
k clusters. We denote the estimation of the set of worker machines that belongs to the j-th cluster by
Sj , and recall that the true clusters are denoted by S⇤

j , j 2 [k].

Probability of erroneous cluster identity estimation We begin with the analysis of the probability
of incorrect cluster identity estimation. Suppose that a worker machine i belongs to S⇤

j . We define
the event Ej,j0

i as the event when the i-th machine is classified to the j0-th cluster, i.e., i 2 Sj0 . Thus
the event that worker i is correctly classified is Ej,j

i , and we use the shorthand notation Ei := E
j,j
i .

We now provide the following lemma that bounds the probability of Ej,j0

i for j0 6= j.

Lemma 1. Suppose that worker machine i 2 S⇤
j . Let ⇢ := �2

�2 . Then there exist universal constants
c1 and c2 such that for any j0 6= j,

P(Ej,j0

i )  c1 exp

✓
�c2n

0(
⇢

⇢+ 1
)2
◆
,

and by union bound

P(Ei)  c1k exp

✓
�c2n

0(
⇢

⇢+ 1
)2
◆
.

We prove Lemma 1 in Appendix A.1.

Now we proceed to analyze the gradient descent step. Without loss of generality, we only analyze the
first cluster. The update rule of ✓1 in this iteration can be written as

✓+1 = ✓1 �
�

m

X

i2S1

rFi(✓1;Zi),

where Zi is the set of the n0 data points that we use to compute gradient in this iteration on a particular
worker machine.

We use the shorthand notation Fi(✓) := Fi(✓;Zi), and note that Fi(✓) can be written in the matrix
form as

Fi(✓) =
1

n0 kYi �Xi✓k
2,

where we have the feature matrix Xi 2 Rn0⇥d and response vector Yi = Xi✓⇤1 + ✏i. According to
our model, all the entries of Xi are i.i.d. sampled according to N (0, 1), and ✏i ⇠ N (0,�2I).

We first notice that

k✓+1 � ✓⇤1k = k ✓1 � ✓⇤1 �
�

m

X

i2S1\S⇤
1

rFi(✓1)

| {z }
T1

�
�

m

X

i2S1\S⇤
1

rFi(✓1)

| {z }
T2

k  kT1k+ kT2k.

We control the two terms separately. Let us first focus on kT1k.

Bound kT1k To simplify notation, we concatenate all the feature matrices and response vectors
of all the worker machines in S1 \ S⇤

1 and get the new feature matrix X 2 RN⇥d, Y 2 RN with
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Y = X✓⇤1 + ✏, where N := n0
|S1 \ S⇤

1 |. It is then easy to verify that

T1 = (I �
2�

mn0X
>X)(✓1 � ✓⇤1) +

2�

mn0X
>✏

= (I �
2�

mn0E[X
>X])(✓1 � ✓⇤1) +

2�

mn0 (E[X
>X]�X>X)(✓1 � ✓⇤1) +

2�

mn0X
>✏

= (1�
2�N

mn0 )(✓1 � ✓⇤1) +
2�

mn0 (E[X
>X]�X>X)(✓1 � ✓⇤1) +

2�

mn0X
>✏.

Therefore

kT1k  (1�
2�N

mn0 )k✓1 � ✓⇤1k+
2�

mn0 kX
>X � E[X>X]kopk✓1 � ✓⇤1k+

2�

mn0 kX
>✏k. (1)

Thus in order to bound kT1k, we need to analyze two terms, kX>X � E[X>X]kop and kX>✏k.
To bound kX>X � E[X>X]kop, we first provide an analysis of N showing that it is large enough.
Using Lemma 1 in conjunction with Assumption 2, we see that the probability of correctly classifying
any worker machine i, given by P(Ei), satisfies P(Ei) � 1

2 . Hence, we obtain

E[|S1 \ S⇤
1 |] � E[ 1

2
|S⇤

1 |] =
1

2
p1m,

where we use the fact that |S⇤
1 | = p1m. Since |S1 \ S⇤

1 | is a sum of Bernoulli random variables with
success probability at least 1

2 , we obtain

P
✓
|S1 \ S⇤

1 | 
1

4
p1m

◆
 P

✓����|S1 \ S⇤
1 |� E[|S1 \ S⇤

1 |]

���� �
1

4
p1m

◆
 2 exp(�cpm),

where p = min{p1, p2, . . . , pk}, and the second step follows from Hoeffding’s inequality. Hence,
we obtain |S1 \ S⇤

1 | �
1
4p1m with high probability, which yields

P(N �
1

4
p1mn0) � 1� 2 exp(�cpm). (2)

By combining this fact with our assumption that pmn0 & d, we know that N & d. Then, according to
the concentration of the covariance of Gaussian random vectors [41], we know that with probability
at least 1� 2 exp(� 1

2d),

kX>X � E[X>X]kop  6
p

dN . N. (3)

We now proceed to bound kX>✏k. In particular, we use the following lemma.

Lemma 2. Consider a random matrix X 2 RN⇥d with i.i.d. entries sampled according to N (0, 1),
and ✏ 2 RN be a random vector sampled according to N (0,�2I), independently of X . Then we
have with probability at least 1� 2 exp(�c1 max{d,N}),

kXkop  cmax{
p

d,
p

N},

and with probability at least 1� c2 exp(�c3 min{d,N}),

kX>✏k  c4�
p

dN.

We prove Lemma 2 in Appendix A.2. Now we can combine (1), (3), (2), and Lemma 2 and obtain
with probability at least 1� c1 exp(�c2pm)� c3 exp(�c4d),

kT1k  (1� c5�p)k✓1 � ✓⇤1k+ c6��

r
d

mn0 . (4)

Since we assume that p & logm
m and d & logm, the success probability can be simplified as

1� 1/poly(m).
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Bound kT2k We first condition on S1. We have the following:

rFi(✓1) =
2

n0X
>
i (Yi �Xi✓1).

For i 2 S1 \ S⇤
j , with j 6= 1, we have Yi = Xi✓⇤j + ✏i, and so we obtain

n0
rFi(✓1) = 2X>

i Xi(✓
⇤
j � ✓1) + 2X>

i ✏i,

which yields

n0
krFi(✓1)k . kXik

2
op + kX>

i ✏ik, (5)

where we use the fact that k✓⇤j � ✓1k  k✓⇤j k+ k✓⇤1k+ k✓⇤1 � ✓1k . 1. Then, we combine (5) and
Lemma 2 and get with probability at least 1� c1 exp(�c2 min{d, n0

}),

krFi(✓1)k 
1

n0 (c3 max{d, n0
}+ c4�

p

dn0)  c5 max{1,
d

n0 }, (6)

where we use our assumption that � . 1. By union bound, we know that with probability at least
1�c1m exp(�c2 min{d, n0

}), (6) holds for all j 2 S⇤
1 . In addition, since we assume that n0 & logm,

d & logm, this probability can be lower bounded by 1� 1/poly(m). This implies that conditioned
on S1, with probability at least 1� 1/poly(m),

kT2k  c5
�

m
|S1 \ S⇤

1 |max{1,
d

n0 }. (7)

Since we choose � = c
p , we have �

m max{1, d
n0 } . 1, where we use our assumption that pmn0 & d.

This shows that with probability at least 1� 1/poly(m),

kT2k  c5|S1 \ S⇤
1 |. (8)

We then analyze |S1 \ S⇤
1 |. By Lemma 1, we have

E[|S1 \ S⇤
1 |]  c6m exp(�c7(

⇢

⇢+ 1
)2n0). (9)

According to Assumption 2, we know that n0
� c(⇢+1

⇢ )2 logm, for some constant c that is large
enough. Therefore, m  exp( 1c (

⇢
⇢+1 )

2n0), and thus, as long as c is large enough such that 1
c < c7

where c7 is defined in (9), we have

E[|S1 \ S⇤
1 |]  c6 exp(�c8(

⇢

⇢+ 1
)2n0). (10)

and then by Markov’s inequality, we have

P
✓
|S1 \ S⇤

1 |  c6 exp(�
c8
2
(

⇢

⇢+ 1
)2n0)

◆
� 1� exp(�

c8
2
(

⇢

⇢+ 1
)2n0)) � 1� poly(m). (11)

Combining (8) with (11), we know that with probability at least 1� 1/poly(m),

kT2k  c1 exp(�c2(
⇢

⇢+ 1
)2n0).

Using this fact and (4), we obtain that with probability at least 1� 1/poly(m),

k✓+1 � ✓⇤1k  (1� c1�p)k✓1 � ✓⇤1k+ c2��

r
d

mn0 + c3 exp(�c4(
⇢

⇢+ 1
)2n0).

Then we can complete the proof for the first cluster by choosing � = 1
2c1p

. To complete the proof for
all the k clusters, we can use union bound, and the success probability is 1� k/poly(m). However,
since k  m by definition, we still have success probability 1� 1/poly(m).

15



A.1 Proof of Lemma 1

Without loss of generality, we analyze E
1,j
i for some j 6= 1. By definition, we have

E
1,j
i = {Fi(✓j ; bZi)  Fi(✓1; bZi)},

where bZi is the set of n0 data points that we use to estimate the cluster identity in this iteration.
We write the data points in bZi in matrix form with feature matrix Xi 2 Rn0⇥d and response vector
Yi = Xi✓⇤1 + ✏i. According to our model, all the entries of Xi are i.i.d. sampled according to N (0, 1),
and ✏i ⇠ N (0,�2I). Then, we have

P{E1,j
i } = P

�
kXi(✓

⇤
1 � ✓1) + ✏ik

2
� kXi(✓

⇤
1 � ✓j) + ✏ik

2
 
.

Consider the random vector Xi(✓⇤1 � ✓j) + ✏i, and in particular consider the `-th coordinate of it.
Since Xi and ✏i are independent and we resample (Xi, Yi) at each iteration, the `-th coordinate
of Xi(✓⇤1 � ✓j) + ✏i is a Gaussian random variable with mean 0 and variance k✓j � ✓⇤1k

2 + �2.
Since Xi and ✏i contain independent rows, the distribution of kXi(✓⇤1 � ✓j) + ✏ik2 is given by
(k✓j � ✓⇤1k

2 + �2)uj , where uj is a standard Chi-squared random variable n0 degrees of freedom.
We now calculate the an upper bound on the following probability:

P
�
kXi(✓

⇤
1 � ✓1) + ✏ik

2
� kXi(✓

⇤
1 � ✓j) + ✏ik

2
 

(i)
P

�
kXi(✓

⇤
1 � ✓j) + ✏ik

2
 t

 
+ P

�
kXi(✓

⇤
1 � ✓1) + ✏ik

2 > t
 

P
�
(k✓j � ✓⇤1k

2 + �2)uj  t
 
+ P

�
(k✓1 � ✓⇤1k

2 + �2)u1 > t
 
, (12)

where (i) holds for all t � 0. For the first term, we use the concentration property of Chi-squared
random variables. Using the fact that k✓j � ✓⇤1k � k✓⇤j � ✓⇤1k � k✓j � ✓⇤j k �

3
4�, we have

P
�
(k✓j � ✓⇤1k

2 + �2)uj  t
 
 P

⇢
(
9

16
�2 + �2)uj  t

�
. (13)

Similarly, using the initialization condition, k✓1 � ✓⇤1k 
1
4�, the second term of equation (12) can

be simplified as

P
�
(k✓1 � ✓⇤1k

2 + �2)u1 > t
 
 P

⇢
(
1

16
�2 + �2)u1 > t

�
. (14)

Based on the above observation, we now choose t = n0( 5
16�

2 + �2). Recall that ⇢ := �2

�2 . Then the
inequlity (13) can be rewritten as

P
�
(k✓j � ✓⇤1k

2 + �2)uj  t
 
 P

⇢
uj

n0 � 1  �
4⇢

9⇢+ 16

�
.

According to the concentration results for standard Chi-squared distribution [41], we know that there
exists universal constants c1 and c2 such that

P
�
(k✓j � ✓⇤1k

2 + �2)uj  t
 
 c1 exp

✓
�c2n

0(
⇢

⇢+ 1
)2
◆
. (15)

Similarly, the inequality (14) can be rewritten as

P
�
(k✓1 � ✓⇤1k

2 + �2)u1 > t
 
 P

⇢
u1

n0 � 1 >
4⇢

⇢+ 16
,

�

and again according to the concentration of Chi-squared distribution, there exists universal constants
c3 and c4 such that

P
�
(k✓1 � ✓⇤1k

2 + �2)u1 > t
 
 c3 exp

✓
�c4n

0(
⇢

⇢+ 1
)2
◆
. (16)

The proof can be completed by combining (12), (15) and (16).
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A.2 Proof of Lemma 2

According to Theorem 5.39 of [40], we have with probability at least 1� 2 exp(�c1 max{d,N}),

kXkop  cmax{
p

d,
p

N},

where c and c1 are universal constants. As for kX>✏k, we first condition on X . According to the
Hanson-Wright inequality [33], we obtain for every t � 0

P
���kX>✏k � �kX>

kF

�� > t
�
 2 exp

✓
�c

t2

�2kX>k2op

◆
. (17)

Using Chi-squared concentration [41], we obtain with probability at least 1� 2 exp(�cdN),

kXkF  c
p

dN.

Furthermore, using the fact that kX>
kop = kXkop and substituting t = �

p
dN in (17), we obtain

with probability at least 1� c2 exp(�c3 min{d,N}),

kX>✏k  c4�
p

dN.

B Proof of Theorem 2

The proof of this theorem is similar to that of the linear model. We begin with a single-step analysis.

B.1 Analysis for a single step

Suppose that at a certain step, we have model parameters ✓j , j 2 [k] for the k clusters. Assume that

k✓j � ✓⇤j k 
1
4

q
�
L�, for all j 2 [k].

Probability of erroneous cluster identity estimation: We first calculate the probability of erro-
neous estimation of worker machines’ cluster identity. We define the events Ej,j0

i in the same way as
in Appendix A, and have the following lemma.
Lemma 3. Suppose that worker machine i 2 S⇤

j . Then there exists a universal constants c1 such
that for any j0 6= j,

P(Ej,j0

i )  c1
⌘2

�2�4n0 ,

and by union bound

P(Ei)  c1
k⌘2

�2�4n0 .

We prove Lemma 3 in Appendix B.3. Now we proceed to analyze the gradient descent iteration.
Without loss of generality, we focus on ✓1. We have

k✓+1 � ✓⇤1k = k✓1 � ✓⇤1 �
�

m

X

i2S1

rFi(✓1)k,

where Fi(✓) := Fi(✓;Zi) with Zi being the set of data points on the i-th worker machine that we use
to compute the gradient, and S1 is the set of indices returned by Algorithm 1 corresponding to the
first cluster. Since

S1 = (S1 \ S⇤
1 ) [ (S1 \ S⇤

1 )

and the sets are disjoint, we have

k✓+1 � ✓⇤1k = k ✓1 � ✓⇤1 �
�

m

X

i2S1\S⇤
1

rFi(✓1)

| {z }
T1

�
�

m

X

i2S1\S⇤
1

rFi(✓1)

| {z }
T2

k.

Using triangle inequality, we obtain
k✓+1 � ✓⇤1k  kT1k+ kT2k,

and we control both the terms separately. Let us first focus on kT1k.
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Bound kT1k We first split T1 in the following way:

T1 = ✓1 � ✓⇤1 � b�rF 1(✓1)| {z }
T11

+b�
�
rF 1(✓1)�

1

|S1 \ S⇤
1 |

X

i2S1\S⇤
1

rFi(✓1)

| {z }
T12

�
, (18)

where b� := � |S1\S⇤
1 |

m . Let us condition on S1. According to standard analysis technique for gradient
descent on strongly convex functions, we know that when b� 

1
L ,

kT11k = k✓1 � ✓⇤1 � b�rF 1(✓1)k  (1�
b��L
�+ L

)k✓1 � ✓⇤1k. (19)

Further, we have E[kT12k
2] = v2

n0|S1\S⇤
1 |

, which implies E[kT12k] 
vp

n0|S1\S⇤
1 |

, and thus by

Markov’s inequality, for any �0 > 0, with probability at least 1� �0,

kT12k 
v

�0
p

n0|S1 \ S⇤
1 |
. (20)

We then analyze |S1 \ S⇤
1 |. Similar to the proof of Theorem 1, we can show that |S1 \ S⇤

1 | is large
enough. From Lemma 3 and using our assumption, we see that the probability of correctly classifying
any worker machine i, given by P(Ei), satisfies P(Ei) � 1

2 . Recall p = min{p1, p2, . . . , pk}, and
we obtain |S1 \ S⇤

1 | �
1
4p1m with probability at least 1 � 2 exp(�cpm). Let us condition on

|S1 \ S⇤
1 | �

1
4p1m and choose � = 1/L. Then b�  1/L is satisfied, and on the other hand b� �

p
4L .

Plug this fact in (19), we obtain

kT11k  (1�
p�

8L
)k✓1 � ✓⇤1k. (21)

We then combine (20) and (21) and have with probability at least 1� �0 � 2 exp(�cpm),

kT1k  (1�
p�

8L
)k✓1 � ✓⇤1k+

2v

�0L
p
pmn0 . (22)

Bound kT2k Let us define T2j :=
P

S1\S⇤
j
rFi(✓1), j � 2. We have T2 = �

m

Pk
j=2 T2j . We

condition on S1 and first analyze T2j . We have

T2j = |S1 \ S⇤
j |rF j(✓1) +

X

i2S1\S⇤
j

�
rFi(✓1)�rF j(✓1)

�
. (23)

Due to the smoothness of F j(✓), we know that

krF j(✓1)k  Lk✓1 � ✓⇤j k  3L, (24)

where we use the fact that k✓1 � ✓⇤j k  k✓⇤j k + k✓⇤1k + k✓1 � ✓⇤1k  1 + 1 + 1
4

q
�
L�  3. In

addition, we have

E

2

64

������

X

i2S1\S⇤
j

rFi(✓1)�rF j(✓1)

������

2
3

75 = |S1 \ S⇤
j |
v2

n0 ,

which implies

E

2

4

������

X

i2S1\S⇤
j

rFi(✓1)�rF j(✓1)

������

3

5 

q
|S1 \ S⇤

j |
v

p
n0

,

and then according to Markov’s inequality, for any �1 2 (0, 1), with probability at least 1� �1,
������

X

i2S1\S⇤
j

rFi(✓1)�rF j(✓1)

������


q
|S1 \ S⇤

j |
v

�1
p
n0

. (25)
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Then, by combining (24) and (25), we know that with probability at least 1� �1,

kT2jk  3L|S1 \ S⇤
j |+

q
|S1 \ S⇤

j |
v

�1
p
n0

. (26)

By union bound, we know that with probability at least 1� k�1, (26) applies to all j 6= 1. Then, we
have with probability at least 1� k�1,

kT2k 
3�L

m
|S1 \ S⇤

1 |+
�v

p
k

�1m
p
n0

q
|S1 \ S⇤

1 |. (27)

According to Lemma 3, we know that

E[|S1 \ S⇤
1 |]  c1

⌘2m

�2�4n0 .

Then by Markov’s inequality, we know that with probability at least 1� �2,

|S1 \ S⇤
1 |  c1

⌘2m

�2�2�4n0 . (28)

Now we combine (27) with (28) and obtain with probability at least 1� k�1 � �2,

kT2k  c1
⌘2

�2�2�4n0 + c2
v⌘

p
k

�1
p
�2�L�2

p
mn0 . (29)

Combining (22) and (29), we know that with probability at least 1� �0 � k�1 � �2 � 2 exp(�cpm),

k✓+1 � ✓⇤1k  (1�
p�

8L
)k✓1 � ✓⇤1k+

2v

�0L
p
pmn0 + c1

⌘2

�2�2�4n0 + c2
v⌘

p
k

�1
p
�2�L�2

p
mn0 . (30)

In the following, we let �3 := �0 + k�1 + �2 + 2 exp(�cpm), and

"0 =
2v

�0L
p
pmn0 + c1

⌘2

�2�2�4n0 + c2
v⌘

p
k

�1
p
�2�L�2

p
mn0 .

Let us simplify this expression. We first choose � 2 (0, 1) as the failure probability of the entire
algorithm. Then, we choose

�0 =
p��

CkL log(mn0)
, �1 =

p��

Ck2L log(mn0)
, �2 =

p��

CkL log(mn0)
,

for some constant C > 0 that is large enough. In addition, since we assume that p & log(mn0)
m , we

have exp(�cpm)  1/poly(mn0) . p��
kL log(mn0) . Consider all these facts, we obtain

�3 =
4p��

CkL log(mn0)
, (31)

"0 . vk log(mn0)

p3/2��
p
mn0

+
⌘2Lk log(mn0)

p�3��4n0 +
v⌘k3

p
L log3/2(mn0)

p3/2�5/2�3/2�2
p
mn0 . (32)

In addition, by union bound, we know that with probability at least 1� k�3, for all j 2 [k],

k✓+j � ✓⇤j k  (1�
p�

8L
)k✓j � ✓⇤j k+ "0. (33)

B.2 Convergence of the algorithm

We now analyze the convergence of the entire algorithm. First, we can verify that as long as

"0 
p

32
(
�

L
)3/2�, (34)

we can guarantee that k✓+j � ✓⇤j k 
1
4

q
�
L�. We can also verify that as long as there is

� � eO(max{(n0)�1/5,m�1/6(n0)�1/3
}), (35)
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using the definition of "0 in (32), we know that (34) holds. Here, in the eO notation, we omit the
logarithmic factors and quantities that does not depend on m and n0. In this case, we can iteratively
apply (33) for T iterations and obtain that with probability at least 1� kT �3,

k✓(T )
j � ✓⇤j k  (1�

p�

8L
)T k✓(0)j � ✓⇤j k+

8L

p�
"0.

Then, we know that when we choose

T =
8L

p�
log

✓
p��

32"0L

◆
, (36)

we have

(1�
p�

8L
)T k✓(0)j � ✓⇤j k  exp(�

p�

8L
T )

1

4

r
�

L
� 

8

p

r
L

�
"0,

which implies k✓(T )
j � ✓⇤j k 

16L
p� "0. Finally, we check the failure probability. The failure probability

is

kT �3 
8kL

p�
log

✓
p��

32"0L

◆
4p��

CkL log(mn0)
=

32�

C

log( p��
32"0L

)

log(mn0)
 �

log( 1
"0
)

log((mn0)C/32)
.

On the other hand, according to (32), we know that
1

"0
 eO(max{

p

mn0, n0
}),

then, as long as C is large enough, we can guarantee that (mn0)C/32 > 1
"0

, which implies that the
failure probability is upper bounded by �. Our final error floor can be obtained by redefining

" :=
16L

p�
"0.

B.3 Proof of Lemma 3

Without loss of generality, we bound the probability of E1,j
i for some j 6= 1. We know that

E
1,j
i =

n
Fi(✓1; bZi) � Fi(✓j ; bZi)

o
,

where bZi is the set of n0 data points that we use to estimate the cluster identity in this iteration. In the
following, we use the shorthand notation Fi(✓) := Fi(✓; bZi). We have

P(E1,j
i )  P (Fi(✓1) > t) + P (Fi(✓j)  t)

for all t � 0. We choose t = F 1(✓1)+F 1(✓j)
2 . With this choice, we obtain

P (Fi(✓1) > t) = P
✓
Fi(✓1) >

F 1(✓1) + F 1(✓j)

2

◆
(37)

= P
✓
Fi(✓1)� F 1(✓1) >

F 1(✓j)� F 1(✓1)

2

◆
. (38)

Similarly, for the second term, we have

P (Fi(✓j)  t) = P
✓
Fi(✓j)� F 1(✓j)  �

F 1(✓j)� F 1(✓1)

2

◆
. (39)

Based on our assumption, we know that k✓j � ✓1k � ��
1
4

q
�
L� �

3
4�. According to the strong

convexity of F 1(·),

F 1(✓j) � F 1(✓⇤1) +
�

2
k✓j � ✓⇤1k

2
� F 1(✓⇤1) +

9�

32
�2,

and according to the smoothness of F 1(·),

F 1(✓1)  F 1(✓⇤1) +
L

2
k✓1 � ✓⇤1k

2
 F 1(✓⇤1) +

L

2

�

16L
�2 = F 1(✓⇤1) +

�

32
�2.

Therefore, F 1(✓j) � F 1(✓1) �
�
4�

2. Then, according to Chebyshev’s inequality, we obtain that
P(Fi(✓1) > t)  64⌘2

�2�4n0 and that P(Fi(✓j)  t)  64⌘2

�2�4n0 , which complete the proof.
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