Appendix

In our proofs, we use c, c_{1}, c_{2}, \ldots to denote positive universal constants, the value of which may differ across instances. For a matrix A, we write $\|A\|_{o p}$ and $\|A\|_{F}$ as the operator norm and Frobenius norm, respectively. For a set S, we use \bar{S} to denote the complement of the set.

A Proof of Theorem 1

Since we only analyze a single iteration, for simplicity we drop the superscript that indicates the iteration counter. Suppose that at a particular iteration, we have model parameters $\theta_{j}, j \in[k]$, for the k clusters. We denote the estimation of the set of worker machines that belongs to the j-th cluster by S_{j}, and recall that the true clusters are denoted by $S_{j}^{*}, j \in[k]$.

Probability of erroneous cluster identity estimation We begin with the analysis of the probability of incorrect cluster identity estimation. Suppose that a worker machine i belongs to S_{j}^{*}. We define the event $\mathcal{E}_{i}^{j, j^{\prime}}$ as the event when the i-th machine is classified to the j^{\prime}-th cluster, i.e., $i \in S_{j^{\prime}}$. Thus the event that worker i is correctly classified is $\mathcal{E}_{i}^{j, j}$, and we use the shorthand notation $\mathcal{E}_{i}:=\mathcal{E}_{i}^{j, j}$. We now provide the following lemma that bounds the probability of $\mathcal{E}_{i}^{j, j^{\prime}}$ for $j^{\prime} \neq j$.
Lemma 1. Suppose that worker machine $i \in S_{j}^{*}$. Let $\rho:=\frac{\Delta^{2}}{\sigma^{2}}$. Then there exist universal constants c_{1} and c_{2} such that for any $j^{\prime} \neq j$,

$$
\mathbb{P}\left(\mathcal{E}_{i}^{j, j^{\prime}}\right) \leq c_{1} \exp \left(-c_{2} n^{\prime}\left(\frac{\rho}{\rho+1}\right)^{2}\right)
$$

and by union bound

$$
\mathbb{P}\left(\overline{\mathcal{E}_{i}}\right) \leq c_{1} k \exp \left(-c_{2} n^{\prime}\left(\frac{\rho}{\rho+1}\right)^{2}\right)
$$

We prove Lemma 1 in Appendix 1.1
Now we proceed to analyze the gradient descent step. Without loss of generality, we only analyze the first cluster. The update rule of θ_{1} in this iteration can be written as

$$
\theta_{1}^{+}=\theta_{1}-\frac{\gamma}{m} \sum_{i \in S_{1}} \nabla F_{i}\left(\theta_{1} ; Z_{i}\right)
$$

where Z_{i} is the set of the n^{\prime} data points that we use to compute gradient in this iteration on a particular worker machine.
We use the shorthand notation $F_{i}(\theta):=F_{i}\left(\theta ; Z_{i}\right)$, and note that $F_{i}(\theta)$ can be written in the matrix form as

$$
F_{i}(\theta)=\frac{1}{n^{\prime}}\left\|Y_{i}-X_{i} \theta\right\|^{2}
$$

where we have the feature matrix $X_{i} \in \mathbb{R}^{n^{\prime} \times d}$ and response vector $Y_{i}=X_{i} \theta_{1}^{*}+\epsilon_{i}$. According to our model, all the entries of X_{i} are i.i.d. sampled according to $\mathcal{N}(0,1)$, and $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2} I\right)$.
We first notice that

$$
\left\|\theta_{1}^{+}-\theta_{1}^{*}\right\|=\|\underbrace{\theta_{1}-\theta_{1}^{*}-\frac{\gamma}{m} \sum_{i \in S_{1} \cap S_{1}^{*}} \nabla F_{i}\left(\theta_{1}\right)}_{T_{1}}-\underbrace{\frac{\gamma}{m} \sum_{i \in S_{1} \cap \overline{S_{1}^{*}}} \nabla F_{i}\left(\theta_{1}\right)}_{T_{2}}\| \leq\left\|T_{1}\right\|+\left\|T_{2}\right\|
$$

We control the two terms separately. Let us first focus on $\left\|T_{1}\right\|$.
Bound $\left\|T_{1}\right\|$ To simplify notation, we concatenate all the feature matrices and response vectors of all the worker machines in $S_{1} \cap S_{1}^{*}$ and get the new feature matrix $X \in \mathbb{R}^{N \times d}, Y \in \mathbb{R}^{N}$ with
$Y=X \theta_{1}^{*}+\epsilon$, where $N:=n^{\prime}\left|S_{1} \cap S_{1}^{*}\right|$. It is then easy to verify that

$$
\begin{aligned}
T_{1} & =\left(I-\frac{2 \gamma}{m n^{\prime}} X^{\top} X\right)\left(\theta_{1}-\theta_{1}^{*}\right)+\frac{2 \gamma}{m n^{\prime}} X^{\top} \epsilon \\
& =\left(I-\frac{2 \gamma}{m n^{\prime}} \mathbb{E}\left[X^{\top} X\right]\right)\left(\theta_{1}-\theta_{1}^{*}\right)+\frac{2 \gamma}{m n^{\prime}}\left(\mathbb{E}\left[X^{\top} X\right]-X^{\top} X\right)\left(\theta_{1}-\theta_{1}^{*}\right)+\frac{2 \gamma}{m n^{\prime}} X^{\top} \epsilon \\
& =\left(1-\frac{2 \gamma N}{m n^{\prime}}\right)\left(\theta_{1}-\theta_{1}^{*}\right)+\frac{2 \gamma}{m n^{\prime}}\left(\mathbb{E}\left[X^{\top} X\right]-X^{\top} X\right)\left(\theta_{1}-\theta_{1}^{*}\right)+\frac{2 \gamma}{m n^{\prime}} X^{\top} \epsilon .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left\|T_{1}\right\| \leq\left(1-\frac{2 \gamma N}{m n^{\prime}}\right)\left\|\theta_{1}-\theta_{1}^{*}\right\|+\frac{2 \gamma}{m n^{\prime}}\left\|X^{\top} X-\mathbb{E}\left[X^{\top} X\right]\right\|_{o p}\left\|\theta_{1}-\theta_{1}^{*}\right\|+\frac{2 \gamma}{m n^{\prime}}\left\|X^{\top} \epsilon\right\| \tag{1}
\end{equation*}
$$

Thus in order to bound $\left\|T_{1}\right\|$, we need to analyze two terms, $\left\|X^{\top} X-\mathbb{E}\left[X^{\top} X\right]\right\|_{o p}$ and $\left\|X^{\top} \epsilon\right\|$. To bound $\left\|X^{\top} X-\mathbb{E}\left[X^{\top} X\right]\right\|_{o p}$, we first provide an analysis of N showing that it is large enough. Using Lemma in conjunction with Assumption we see that the probability of correctly classifying any worker machine i, given by $\mathbb{P}\left(\mathcal{E}_{i}\right)$, satisfies $\mathbb{P}\left(\mathcal{E}_{i}\right) \geq \frac{1}{2}$. Hence, we obtain

$$
\mathbb{E}\left[\left|S_{1} \cap S_{1}^{*}\right|\right] \geq \mathbb{E}\left[\frac{1}{2}\left|S_{1}^{*}\right|\right]=\frac{1}{2} p_{1} m
$$

where we use the fact that $\left|S_{1}^{*}\right|=p_{1} m$. Since $\left|S_{1} \cap S_{1}^{*}\right|$ is a sum of Bernoulli random variables with success probability at least $\frac{1}{2}$, we obtain

$$
\mathbb{P}\left(\left|S_{1} \cap S_{1}^{*}\right| \leq \frac{1}{4} p_{1} m\right) \leq \mathbb{P}\left(| | S_{1} \cap S_{1}^{*}\left|-\mathbb{E}\left[\left|S_{1} \cap S_{1}^{*}\right|\right]\right| \geq \frac{1}{4} p_{1} m\right) \leq 2 \exp (-c p m)
$$

where $p=\min \left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$, and the second step follows from Hoeffding's inequality. Hence, we obtain $\left|S_{1} \cap S_{1}^{*}\right| \geq \frac{1}{4} p_{1} m$ with high probability, which yields

$$
\begin{equation*}
\mathbb{P}\left(N \geq \frac{1}{4} p_{1} m n^{\prime}\right) \geq 1-2 \exp (-c p m) \tag{2}
\end{equation*}
$$

By combining this fact with our assumption that $p m n^{\prime} \gtrsim d$, we know that $N \gtrsim d$. Then, according to the concentration of the covariance of Gaussian random vectors [41], we know that with probability at least $1-2 \exp \left(-\frac{1}{2} d\right)$,

$$
\begin{equation*}
\left\|X^{\top} X-\mathbb{E}\left[X^{\top} X\right]\right\|_{o p} \leq 6 \sqrt{d N} \lesssim N \tag{3}
\end{equation*}
$$

We now proceed to bound $\left\|X^{\top} \epsilon\right\|$. In particular, we use the following lemma.
Lemma 2. Consider a random matrix $X \in \mathbb{R}^{N \times d}$ with i.i.d. entries sampled according to $\mathcal{N}(0,1)$, and $\epsilon \in \mathbb{R}^{N}$ be a random vector sampled according to $\mathcal{N}\left(0, \sigma^{2} I\right)$, independently of X. Then we have with probability at least $1-2 \exp \left(-c_{1} \max \{d, N\}\right)$,

$$
\|X\|_{o p} \leq c \max \{\sqrt{d}, \sqrt{N}\}
$$

and with probability at least $1-c_{2} \exp \left(-c_{3} \min \{d, N\}\right)$,

$$
\left\|X^{\top} \epsilon\right\| \leq c_{4} \sigma \sqrt{d N}
$$

We prove Lemma 2 in Appendix A.2. Now we can combine (1), (3), (2), and Lemma 2 and obtain with probability at least $1-c_{1} \exp \left(-c_{2} p m\right)-c_{3} \exp \left(-c_{4} d\right)$,

$$
\begin{equation*}
\left\|T_{1}\right\| \leq\left(1-c_{5} \gamma p\right)\left\|\theta_{1}-\theta_{1}^{*}\right\|+c_{6} \gamma \sigma \sqrt{\frac{d}{m n^{\prime}}} \tag{4}
\end{equation*}
$$

Since we assume that $p \gtrsim \frac{\log m}{m}$ and $d \gtrsim \log m$, the success probability can be simplified as $1-1 / \operatorname{poly}(m)$.

Bound $\left\|T_{2}\right\| \quad$ We first condition on S_{1}. We have the following:

$$
\nabla F_{i}\left(\theta_{1}\right)=\frac{2}{n^{\prime}} X_{i}^{\top}\left(Y_{i}-X_{i} \theta_{1}\right)
$$

For $i \in S_{1} \cap S_{j}^{*}$, with $j \neq 1$, we have $Y_{i}=X_{i} \theta_{j}^{*}+\epsilon_{i}$, and so we obtain

$$
n^{\prime} \nabla F_{i}\left(\theta_{1}\right)=2 X_{i}^{\top} X_{i}\left(\theta_{j}^{*}-\theta_{1}\right)+2 X_{i}^{\top} \epsilon_{i}
$$

which yields

$$
\begin{equation*}
n^{\prime}\left\|\nabla F_{i}\left(\theta_{1}\right)\right\| \lesssim\left\|X_{i}\right\|_{o p}^{2}+\left\|X_{i}^{\top} \epsilon_{i}\right\| \tag{5}
\end{equation*}
$$

where we use the fact that $\left\|\theta_{j}^{*}-\theta_{1}\right\| \leq\left\|\theta_{j}^{*}\right\|+\left\|\theta_{1}^{*}\right\|+\left\|\theta_{1}^{*}-\theta_{1}\right\| \lesssim 1$. Then, we combine (5) and Lemma 2 and get with probability at least $1-c_{1} \exp \left(-c_{2} \min \left\{d, n^{\prime}\right\}\right)$,

$$
\begin{equation*}
\left\|\nabla F_{i}\left(\theta_{1}\right)\right\| \leq \frac{1}{n^{\prime}}\left(c_{3} \max \left\{d, n^{\prime}\right\}+c_{4} \sigma \sqrt{d n^{\prime}}\right) \leq c_{5} \max \left\{1, \frac{d}{n^{\prime}}\right\} \tag{6}
\end{equation*}
$$

where we use our assumption that $\sigma \lesssim 1$. By union bound, we know that with probability at least $1-c_{1} m \exp \left(-c_{2} \min \left\{d, n^{\prime}\right\}\right),(6)$ holds for all $j \in \overline{S_{1}^{*}}$. In addition, since we assume that $n^{\prime} \gtrsim \log m$, $d \gtrsim \log m$, this probability can be lower bounded by $1-1 / \operatorname{poly}(m)$. This implies that conditioned on S_{1}, with probability at least $1-1 /$ poly (m),

$$
\begin{equation*}
\left\|T_{2}\right\| \leq c_{5} \frac{\gamma}{m}\left|S_{1} \cap \overline{S_{1}^{*}}\right| \max \left\{1, \frac{d}{n^{\prime}}\right\} \tag{7}
\end{equation*}
$$

Since we choose $\gamma=\frac{c}{p}$, we have $\frac{\gamma}{m} \max \left\{1, \frac{d}{n^{\prime}}\right\} \lesssim 1$, where we use our assumption that $p m n^{\prime} \gtrsim d$. This shows that with probability at least $1-1 / \operatorname{poly}(m)$,

$$
\begin{equation*}
\left\|T_{2}\right\| \leq c_{5}\left|S_{1} \cap \overline{S_{1}^{*}}\right| \tag{8}
\end{equation*}
$$

We then analyze $\left|S_{1} \cap \overline{S_{1}^{*}}\right|$. By Lemma 1 , we have

$$
\begin{equation*}
\mathbb{E}\left[\left|S_{1} \cap \overline{S_{1}^{*}}\right|\right] \leq c_{6} m \exp \left(-c_{7}\left(\frac{\rho}{\rho+1}\right)^{2} n^{\prime}\right) \tag{9}
\end{equation*}
$$

According to Assumption 2, we know that $n^{\prime} \geq c\left(\frac{\rho+1}{\rho}\right)^{2} \log m$, for some constant c that is large enough. Therefore, $m \leq \exp \left(\frac{1}{c}\left(\frac{\rho}{\rho+1}\right)^{2} n^{\prime}\right)$, and thus, as long as c is large enough such that $\frac{1}{c}<c_{7}$ where c_{7} is defined in (9), we have

$$
\begin{equation*}
\mathbb{E}\left[\left|S_{1} \cap \overline{S_{1}^{*}}\right|\right] \leq c_{6} \exp \left(-c_{8}\left(\frac{\rho}{\rho+1}\right)^{2} n^{\prime}\right) \tag{10}
\end{equation*}
$$

and then by Markov's inequality, we have

$$
\begin{equation*}
\left.\mathbb{P}\left(\left|S_{1} \cap \overline{S_{1}^{*}}\right| \leq c_{6} \exp \left(-\frac{c_{8}}{2}\left(\frac{\rho}{\rho+1}\right)^{2} n^{\prime}\right)\right) \geq 1-\exp \left(-\frac{c_{8}}{2}\left(\frac{\rho}{\rho+1}\right)^{2} n^{\prime}\right)\right) \geq 1-\operatorname{poly}(m) \tag{11}
\end{equation*}
$$

Combining (8) with (11), we know that with probability at least $1-1 / \operatorname{poly}(m)$,

$$
\left\|T_{2}\right\| \leq c_{1} \exp \left(-c_{2}\left(\frac{\rho}{\rho+1}\right)^{2} n^{\prime}\right)
$$

Using this fact and (4), we obtain that with probability at least $1-1 / \operatorname{poly}(m)$,

$$
\left\|\theta_{1}^{+}-\theta_{1}^{*}\right\| \leq\left(1-c_{1} \gamma p\right)\left\|\theta_{1}-\theta_{1}^{*}\right\|+c_{2} \gamma \sigma \sqrt{\frac{d}{m n^{\prime}}}+c_{3} \exp \left(-c_{4}\left(\frac{\rho}{\rho+1}\right)^{2} n^{\prime}\right)
$$

Then we can complete the proof for the first cluster by choosing $\gamma=\frac{1}{2 c_{1} p}$. To complete the proof for all the k clusters, we can use union bound, and the success probability is $1-k / \operatorname{poly}(m)$. However, since $k \leq m$ by definition, we still have success probability $1-1 / \operatorname{poly}(m)$.

A. 1 Proof of Lemma 1

Without loss of generality, we analyze $\mathcal{E}_{i}^{1, j}$ for some $j \neq 1$. By definition, we have

$$
\mathcal{E}_{i}^{1, j}=\left\{F_{i}\left(\theta_{j} ; \widehat{Z}_{i}\right) \leq F_{i}\left(\theta_{1} ; \widehat{Z}_{i}\right)\right\},
$$

where \widehat{Z}_{i} is the set of n^{\prime} data points that we use to estimate the cluster identity in this iteration. We write the data points in \widehat{Z}_{i} in matrix form with feature matrix $X_{i} \in \mathbb{R}^{n^{\prime} \times d}$ and response vector $Y_{i}=X_{i} \theta_{1}^{*}+\epsilon_{i}$. According to our model, all the entries of X_{i} are i.i.d. sampled according to $\mathcal{N}(0,1)$, and $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2} I\right)$. Then, we have

$$
\mathbb{P}\left\{\mathcal{E}_{i}^{1, j}\right\}=\mathbb{P}\left\{\left\|X_{i}\left(\theta_{1}^{*}-\theta_{1}\right)+\epsilon_{i}\right\|^{2} \geq\left\|X_{i}\left(\theta_{1}^{*}-\theta_{j}\right)+\epsilon_{i}\right\|^{2}\right\}
$$

Consider the random vector $X_{i}\left(\theta_{1}^{*}-\theta_{j}\right)+\epsilon_{i}$, and in particular consider the ℓ-th coordinate of it. Since X_{i} and ϵ_{i} are independent and we resample $\left(X_{i}, Y_{i}\right)$ at each iteration, the ℓ-th coordinate of $X_{i}\left(\theta_{1}^{*}-\theta_{j}\right)+\epsilon_{i}$ is a Gaussian random variable with mean 0 and variance $\left\|\theta_{j}-\theta_{1}^{*}\right\|^{2}+\sigma^{2}$. Since X_{i} and ϵ_{i} contain independent rows, the distribution of $\left\|X_{i}\left(\theta_{1}^{*}-\theta_{j}\right)+\epsilon_{i}\right\|^{2}$ is given by $\left(\left\|\theta_{j}-\theta_{1}^{*}\right\|^{2}+\sigma^{2}\right) u_{j}$, where u_{j} is a standard Chi-squared random variable n^{\prime} degrees of freedom. We now calculate the an upper bound on the following probability:

$$
\begin{align*}
& \quad \mathbb{P}\left\{\left\|X_{i}\left(\theta_{1}^{*}-\theta_{1}\right)+\epsilon_{i}\right\|^{2} \geq\left\|X_{i}\left(\theta_{1}^{*}-\theta_{j}\right)+\epsilon_{i}\right\|^{2}\right\} \\
& \stackrel{(\mathrm{i})}{\leq} \leq \mathbb{P}\left\{\left\|X_{i}\left(\theta_{1}^{*}-\theta_{j}\right)+\epsilon_{i}\right\|^{2} \leq t\right\}+\mathbb{P}\left\{\left\|X_{i}\left(\theta_{1}^{*}-\theta_{1}\right)+\epsilon_{i}\right\|^{2}>t\right\} \\
& \leq \mathbb{P}\left\{\left(\left\|\theta_{j}-\theta_{1}^{*}\right\|^{2}+\sigma^{2}\right) u_{j} \leq t\right\}+\mathbb{P}\left\{\left(\left\|\theta_{1}-\theta_{1}^{*}\right\|^{2}+\sigma^{2}\right) u_{1}>t\right\},
\end{align*}
$$

where (i) holds for all $t \geq 0$. For the first term, we use the concentration property of Chi-squared random variables. Using the fact that $\left\|\theta_{j}-\theta_{1}^{*}\right\| \geq\left\|\theta_{j}^{*}-\theta_{1}^{*}\right\|-\left\|\theta_{j}-\theta_{j}^{*}\right\| \geq \frac{3}{4} \Delta$, we have

$$
\begin{equation*}
\mathbb{P}\left\{\left(\left\|\theta_{j}-\theta_{1}^{*}\right\|^{2}+\sigma^{2}\right) u_{j} \leq t\right\} \leq \mathbb{P}\left\{\left(\frac{9}{16} \Delta^{2}+\sigma^{2}\right) u_{j} \leq t\right\} \tag{13}
\end{equation*}
$$

Similarly, using the initialization condition, $\left\|\theta_{1}-\theta_{1}^{*}\right\| \leq \frac{1}{4} \Delta$, the second term of equation (12) can be simplified as

$$
\begin{equation*}
\mathbb{P}\left\{\left(\left\|\theta_{1}-\theta_{1}^{*}\right\|^{2}+\sigma^{2}\right) u_{1}>t\right\} \leq \mathbb{P}\left\{\left(\frac{1}{16} \Delta^{2}+\sigma^{2}\right) u_{1}>t\right\} \tag{14}
\end{equation*}
$$

Based on the above observation, we now choose $t=n^{\prime}\left(\frac{5}{16} \Delta^{2}+\sigma^{2}\right)$. Recall that $\rho:=\frac{\Delta^{2}}{\sigma^{2}}$. Then the inequlity (13) can be rewritten as

$$
\mathbb{P}\left\{\left(\left\|\theta_{j}-\theta_{1}^{*}\right\|^{2}+\sigma^{2}\right) u_{j} \leq t\right\} \leq \mathbb{P}\left\{\frac{u_{j}}{n^{\prime}}-1 \leq-\frac{4 \rho}{9 \rho+16}\right\}
$$

According to the concentration results for standard Chi-squared distribution [41], we know that there exists universal constants c_{1} and c_{2} such that

$$
\begin{equation*}
\mathbb{P}\left\{\left(\left\|\theta_{j}-\theta_{1}^{*}\right\|^{2}+\sigma^{2}\right) u_{j} \leq t\right\} \leq c_{1} \exp \left(-c_{2} n^{\prime}\left(\frac{\rho}{\rho+1}\right)^{2}\right) \tag{15}
\end{equation*}
$$

Similarly, the inequality (14) can be rewritten as

$$
\mathbb{P}\left\{\left(\left\|\theta_{1}-\theta_{1}^{*}\right\|^{2}+\sigma^{2}\right) u_{1}>t\right\} \leq \mathbb{P}\left\{\frac{u_{1}}{n^{\prime}}-1>\frac{4 \rho}{\rho+16},\right\}
$$

and again according to the concentration of Chi-squared distribution, there exists universal constants c_{3} and c_{4} such that

$$
\begin{equation*}
\mathbb{P}\left\{\left(\left\|\theta_{1}-\theta_{1}^{*}\right\|^{2}+\sigma^{2}\right) u_{1}>t\right\} \leq c_{3} \exp \left(-c_{4} n^{\prime}\left(\frac{\rho}{\rho+1}\right)^{2}\right) \tag{16}
\end{equation*}
$$

The proof can be completed by combining (12), (15) and (16).

A. 2 Proof of Lemma 2

According to Theorem 5.39 of [40], we have with probability at least $1-2 \exp \left(-c_{1} \max \{d, N\}\right)$,

$$
\|X\|_{o p} \leq c \max \{\sqrt{d}, \sqrt{N}\}
$$

where c and c_{1} are universal constants. As for $\left\|X^{\top} \epsilon\right\|$, we first condition on X. According to the Hanson-Wright inequality [33], we obtain for every $t \geq 0$

$$
\begin{equation*}
\mathbb{P}\left(\left|\left\|X^{\top} \epsilon\right\|-\sigma\left\|X^{\top}\right\|_{F}\right|>t\right) \leq 2 \exp \left(-c \frac{t^{2}}{\sigma^{2}\left\|X^{\top}\right\|_{o p}^{2}}\right) \tag{17}
\end{equation*}
$$

Using Chi-squared concentration [41], we obtain with probability at least $1-2 \exp (-c d N)$,

$$
\|X\|_{F} \leq c \sqrt{d N}
$$

Furthermore, using the fact that $\left\|X^{\top}\right\|_{o p}=\|X\|_{o p}$ and substituting $t=\sigma \sqrt{d N}$ in (17), we obtain with probability at least $1-c_{2} \exp \left(-c_{3} \min \{d, N\}\right)$,

$$
\left\|X^{\top} \epsilon\right\| \leq c_{4} \sigma \sqrt{d N}
$$

B Proof of Theorem 2

The proof of this theorem is similar to that of the linear model. We begin with a single-step analysis.

B. 1 Analysis for a single step

Suppose that at a certain step, we have model parameters $\theta_{j}, j \in[k]$ for the k clusters. Assume that $\left\|\theta_{j}-\theta_{j}^{*}\right\| \leq \frac{1}{4} \sqrt{\frac{\lambda}{L}} \Delta$, for all $j \in[k]$.

Probability of erroneous cluster identity estimation: We first calculate the probability of erroneous estimation of worker machines' cluster identity. We define the events $\mathcal{E}_{i}^{j, j^{\prime}}$ in the same way as in Appendix A. and have the following lemma.
Lemma 3. Suppose that worker machine $i \in S_{j}^{*}$. Then there exists a universal constants c_{1} such that for any $j^{\prime} \neq j$,

$$
\mathbb{P}\left(\mathcal{E}_{i}^{j, j^{\prime}}\right) \leq c_{1} \frac{\eta^{2}}{\lambda^{2} \Delta^{4} n^{\prime}}
$$

and by union bound

$$
\mathbb{P}\left(\overline{\mathcal{E}_{i}}\right) \leq c_{1} \frac{k \eta^{2}}{\lambda^{2} \Delta^{4} n^{\prime}}
$$

We prove Lemma 3 in Appendix B. 3 . Now we proceed to analyze the gradient descent iteration. Without loss of generality, we focus on θ_{1}. We have

$$
\left\|\theta_{1}^{+}-\theta_{1}^{*}\right\|=\left\|\theta_{1}-\theta_{1}^{*}-\frac{\gamma}{m} \sum_{i \in S_{1}} \nabla F_{i}\left(\theta_{1}\right)\right\|
$$

where $F_{i}(\theta):=F_{i}\left(\theta ; Z_{i}\right)$ with Z_{i} being the set of data points on the i-th worker machine that we use to compute the gradient, and S_{1} is the set of indices returned by Algorithm 1 corresponding to the first cluster. Since

$$
S_{1}=\left(S_{1} \cap S_{1}^{*}\right) \cup\left(S_{1} \cap \overline{S_{1}^{*}}\right)
$$

and the sets are disjoint, we have

$$
\left\|\theta_{1}^{+}-\theta_{1}^{*}\right\|=\|\underbrace{\theta_{1}-\theta_{1}^{*}-\frac{\gamma}{m} \sum_{i \in S_{1} \cap S_{1}^{*}} \nabla F_{i}\left(\theta_{1}\right)}_{T_{1}}-\underbrace{\frac{\gamma}{m} \sum_{i \in S_{1} \cap \overline{S_{1}^{*}}} \nabla F_{i}\left(\theta_{1}\right)}_{T_{2}}\| .
$$

Using triangle inequality, we obtain

$$
\left\|\theta_{1}^{+}-\theta_{1}^{*}\right\| \leq\left\|T_{1}\right\|+\left\|T_{2}\right\|,
$$

and we control both the terms separately. Let us first focus on $\left\|T_{1}\right\|$.

Bound $\left\|T_{1}\right\| \quad$ We first split T_{1} in the following way:

$$
\begin{equation*}
T_{1}=\underbrace{\theta_{1}-\theta_{1}^{*}-\widehat{\gamma} \nabla F^{1}\left(\theta_{1}\right)}_{T_{11}}+\widehat{\gamma}(\underbrace{\nabla F^{1}\left(\theta_{1}\right)-\frac{1}{\left|S_{1} \cap S_{1}^{*}\right|} \sum_{i \in S_{1} \cap S_{1}^{*}} \nabla F_{i}\left(\theta_{1}\right)}_{T_{12}}) \tag{18}
\end{equation*}
$$

where $\widehat{\gamma}:=\gamma \frac{\left|S_{1} \cap S_{1}^{*}\right|}{m}$. Let us condition on S_{1}. According to standard analysis technique for gradient descent on strongly convex functions, we know that when $\widehat{\gamma} \leq \frac{1}{L}$,

$$
\begin{equation*}
\left\|T_{11}\right\|=\left\|\theta_{1}-\theta_{1}^{*}-\widehat{\gamma} \nabla F^{1}\left(\theta_{1}\right)\right\| \leq\left(1-\frac{\widehat{\gamma} \lambda L}{\lambda+L}\right)\left\|\theta_{1}-\theta_{1}^{*}\right\| \tag{19}
\end{equation*}
$$

Further, we have $\mathbb{E}\left[\left\|T_{12}\right\|^{2}\right]=\frac{v^{2}}{n^{\prime}\left|S_{1} \cap S_{1}^{*}\right|}$, which implies $\mathbb{E}\left[\left\|T_{12}\right\|\right] \leq \frac{v}{\sqrt{n^{\prime}\left|S_{1} \cap S_{1}^{*}\right|}}$, and thus by Markov's inequality, for any $\delta_{0}>0$, with probability at least $1-\delta_{0}$,

$$
\begin{equation*}
\left\|T_{12}\right\| \leq \frac{v}{\delta_{0} \sqrt{n^{\prime}\left|S_{1} \cap S_{1}^{*}\right|}} \tag{20}
\end{equation*}
$$

We then analyze $\left|S_{1} \cap S_{1}^{*}\right|$. Similar to the proof of Theorem 1 , we can show that $\left|S_{1} \cap S_{1}^{*}\right|$ is large enough. From Lemma 3 and using our assumption, we see that the probability of correctly classifying any worker machine i, given by $\mathbb{P}\left(\mathcal{E}_{i}\right)$, satisfies $\mathbb{P}\left(\mathcal{E}_{i}\right) \geq \frac{1}{2}$. Recall $p=\min \left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$, and we obtain $\left|S_{1} \cap S_{1}^{*}\right| \geq \frac{1}{4} p_{1} m$ with probability at least $1-2 \exp (-c p m)$. Let us condition on $\left|S_{1} \cap S_{1}^{*}\right| \geq \frac{1}{4} p_{1} m$ and choose $\gamma=1 / L$. Then $\widehat{\gamma} \leq 1 / L$ is satisfied, and on the other hand $\widehat{\gamma} \geq \frac{p}{4 L}$. Plug this fact in (19), we obtain

$$
\begin{equation*}
\left\|T_{11}\right\| \leq\left(1-\frac{p \lambda}{8 L}\right)\left\|\theta_{1}-\theta_{1}^{*}\right\| \tag{21}
\end{equation*}
$$

We then combine 20) and 21) and have with probability at least $1-\delta_{0}-2 \exp (-c p m)$,

$$
\begin{equation*}
\left\|T_{1}\right\| \leq\left(1-\frac{p \lambda}{8 L}\right)\left\|\theta_{1}-\theta_{1}^{*}\right\|+\frac{2 v}{\delta_{0} L \sqrt{p m n^{\prime}}} \tag{22}
\end{equation*}
$$

Bound $\left\|T_{2}\right\| \quad$ Let us define $T_{2 j}:=\sum_{S_{1} \cap S_{j}^{*}} \nabla F_{i}\left(\theta_{1}\right), j \geq 2$. We have $T_{2}=\frac{\gamma}{m} \sum_{j=2}^{k} T_{2 j}$. We condition on S_{1} and first analyze $T_{2 j}$. We have

$$
\begin{equation*}
T_{2 j}=\left|S_{1} \cap S_{j}^{*}\right| \nabla F^{j}\left(\theta_{1}\right)+\sum_{i \in S_{1} \cap S_{j}^{*}}\left(\nabla F_{i}\left(\theta_{1}\right)-\nabla F^{j}\left(\theta_{1}\right)\right) \tag{23}
\end{equation*}
$$

Due to the smoothness of $F^{j}(\theta)$, we know that

$$
\begin{equation*}
\left\|\nabla F^{j}\left(\theta_{1}\right)\right\| \leq L\left\|\theta_{1}-\theta_{j}^{*}\right\| \leq 3 L \tag{24}
\end{equation*}
$$

where we use the fact that $\left\|\theta_{1}-\theta_{j}^{*}\right\| \leq\left\|\theta_{j}^{*}\right\|+\left\|\theta_{1}^{*}\right\|+\left\|\theta_{1}-\theta_{1}^{*}\right\| \leq 1+1+\frac{1}{4} \sqrt{\frac{\lambda}{L}} \Delta \leq 3$. In addition, we have

$$
\mathbb{E}\left[\left\|\sum_{i \in S_{1} \cap S_{j}^{*}} \nabla F_{i}\left(\theta_{1}\right)-\nabla F^{j}\left(\theta_{1}\right)\right\|^{2}\right]=\left|S_{1} \cap S_{j}^{*}\right| \frac{v^{2}}{n^{\prime}}
$$

which implies

$$
\mathbb{E}\left[\left\|\sum_{i \in S_{1} \cap S_{j}^{*}} \nabla F_{i}\left(\theta_{1}\right)-\nabla F^{j}\left(\theta_{1}\right)\right\|\right] \leq \sqrt{\left|S_{1} \cap S_{j}^{*}\right|} \frac{v}{\sqrt{n^{\prime}}},
$$

and then according to Markov's inequality, for any $\delta_{1} \in(0,1)$, with probability at least $1-\delta_{1}$,

$$
\begin{equation*}
\left\|\sum_{i \in S_{1} \cap S_{j}^{*}} \nabla F_{i}\left(\theta_{1}\right)-\nabla F^{j}\left(\theta_{1}\right)\right\| \leq \sqrt{\left|S_{1} \cap S_{j}^{*}\right|} \frac{v}{\delta_{1} \sqrt{n^{\prime}}} . \tag{25}
\end{equation*}
$$

Then, by combining (24) and (25), we know that with probability at least $1-\delta_{1}$,

$$
\begin{equation*}
\left\|T_{2 j}\right\| \leq 3 L\left|S_{1} \cap S_{j}^{*}\right|+\sqrt{\left|S_{1} \cap S_{j}^{*}\right|} \frac{v}{\delta_{1} \sqrt{n^{\prime}}} \tag{26}
\end{equation*}
$$

By union bound, we know that with probability at least $1-k \delta_{1}$, 26) applies to all $j \neq 1$. Then, we have with probability at least $1-k \delta_{1}$,

$$
\begin{equation*}
\left\|T_{2}\right\| \leq \frac{3 \gamma L}{m}\left|S_{1} \cap \overline{S_{1}^{*}}\right|+\frac{\gamma v \sqrt{k}}{\delta_{1} m \sqrt{n^{\prime}}} \sqrt{\left|S_{1} \cap \overline{S_{1}^{*}}\right|} . \tag{27}
\end{equation*}
$$

According to Lemma 3, we know that

$$
\mathbb{E}\left[\left|S_{1} \cap \overline{S_{1}^{*}}\right|\right] \leq c_{1} \frac{\eta^{2} m}{\lambda^{2} \Delta^{4} n^{\prime}}
$$

Then by Markov's inequality, we know that with probability at least $1-\delta_{2}$,

$$
\begin{equation*}
\left|S_{1} \cap \overline{S_{1}^{*}}\right| \leq c_{1} \frac{\eta^{2} m}{\delta_{2} \lambda^{2} \Delta^{4} n^{\prime}} \tag{28}
\end{equation*}
$$

Now we combine (27) with and obtain with probability at least $1-k \delta_{1}-\delta_{2}$,

$$
\begin{equation*}
\left\|T_{2}\right\| \leq c_{1} \frac{\eta^{2}}{\delta_{2} \lambda^{2} \Delta^{4} n^{\prime}}+c_{2} \frac{v \eta \sqrt{k}}{\delta_{1} \sqrt{\delta_{2}} \lambda L \Delta^{2} \sqrt{m} n^{\prime}} \tag{29}
\end{equation*}
$$

Combining (22) and 29, we know that with probability at least $1-\delta_{0}-k \delta_{1}-\delta_{2}-2 \exp (-c p m)$,

$$
\begin{equation*}
\left\|\theta_{1}^{+}-\theta_{1}^{*}\right\| \leq\left(1-\frac{p \lambda}{8 L}\right)\left\|\theta_{1}-\theta_{1}^{*}\right\|+\frac{2 v}{\delta_{0} L \sqrt{p m n^{\prime}}}+c_{1} \frac{\eta^{2}}{\delta_{2} \lambda^{2} \Delta^{4} n^{\prime}}+c_{2} \frac{v \eta \sqrt{k}}{\delta_{1} \sqrt{\delta_{2}} \lambda L \Delta^{2} \sqrt{m} n^{\prime}} \tag{30}
\end{equation*}
$$

In the following, we let $\delta_{3}:=\delta_{0}+k \delta_{1}+\delta_{2}+2 \exp (-c p m)$, and

$$
\varepsilon_{0}=\frac{2 v}{\delta_{0} L \sqrt{p m n^{\prime}}}+c_{1} \frac{\eta^{2}}{\delta_{2} \lambda^{2} \Delta^{4} n^{\prime}}+c_{2} \frac{v \eta \sqrt{k}}{\delta_{1} \sqrt{\delta_{2}} \lambda L \Delta^{2} \sqrt{m} n^{\prime}}
$$

Let us simplify this expression. We first choose $\delta \in(0,1)$ as the failure probability of the entire algorithm. Then, we choose

$$
\delta_{0}=\frac{p \lambda \delta}{C k L \log \left(m n^{\prime}\right)}, \quad \delta_{1}=\frac{p \lambda \delta}{C k^{2} L \log \left(m n^{\prime}\right)}, \quad \delta_{2}=\frac{p \lambda \delta}{C k L \log \left(m n^{\prime}\right)}
$$

for some constant $C>0$ that is large enough. In addition, since we assume that $p \gtrsim \frac{\log \left(m n^{\prime}\right)}{m}$, we have $\exp (-c p m) \leq 1 / \operatorname{poly}\left(m n^{\prime}\right) \lesssim \frac{p \lambda \delta}{k L \log \left(m n^{\prime}\right)}$. Consider all these facts, we obtain

$$
\begin{align*}
& \delta_{3}=\frac{4 p \lambda \delta}{C k L \log \left(m n^{\prime}\right)} \tag{31}\\
& \varepsilon_{0} \lesssim \frac{v k \log \left(m n^{\prime}\right)}{p^{3 / 2} \lambda \delta \sqrt{m n^{\prime}}}+\frac{\eta^{2} L k \log \left(m n^{\prime}\right)}{p \lambda^{3} \delta \Delta^{4} n^{\prime}}+\frac{v \eta k^{3} \sqrt{L} \log ^{3 / 2}\left(m n^{\prime}\right)}{p^{3 / 2} \lambda^{5 / 2} \delta^{3 / 2} \Delta^{2} \sqrt{m} n^{\prime}} \tag{32}
\end{align*}
$$

In addition, by union bound, we know that with probability at least $1-k \delta_{3}$, for all $j \in[k]$,

$$
\begin{equation*}
\left\|\theta_{j}^{+}-\theta_{j}^{*}\right\| \leq\left(1-\frac{p \lambda}{8 L}\right)\left\|\theta_{j}-\theta_{j}^{*}\right\|+\varepsilon_{0} \tag{33}
\end{equation*}
$$

B. 2 Convergence of the algorithm

We now analyze the convergence of the entire algorithm. First, we can verify that as long as

$$
\begin{equation*}
\varepsilon_{0} \leq \frac{p}{32}\left(\frac{\lambda}{L}\right)^{3 / 2} \Delta \tag{34}
\end{equation*}
$$

we can guarantee that $\left\|\theta_{j}^{+}-\theta_{j}^{*}\right\| \leq \frac{1}{4} \sqrt{\frac{\lambda}{L}} \Delta$. We can also verify that as long as there is

$$
\begin{equation*}
\Delta \geq \widetilde{\mathcal{O}}\left(\max \left\{\left(n^{\prime}\right)^{-1 / 5}, m^{-1 / 6}\left(n^{\prime}\right)^{-1 / 3}\right\}\right) \tag{35}
\end{equation*}
$$

using the definition of ε_{0} in (32), we know that (34) holds. Here, in the $\widetilde{\mathcal{O}}$ notation, we omit the logarithmic factors and quantities that does not depend on m and n^{\prime}. In this case, we can iteratively apply (33) for T iterations and obtain that with probability at least $1-k T \delta_{3}$,

$$
\left\|\theta_{j}^{(T)}-\theta_{j}^{*}\right\| \leq\left(1-\frac{p \lambda}{8 L}\right)^{T}\left\|\theta_{j}^{(0)}-\theta_{j}^{*}\right\|+\frac{8 L}{p \lambda} \varepsilon_{0}
$$

Then, we know that when we choose

$$
\begin{equation*}
T=\frac{8 L}{p \lambda} \log \left(\frac{p \lambda \Delta}{32 \varepsilon_{0} L}\right) \tag{36}
\end{equation*}
$$

we have

$$
\left(1-\frac{p \lambda}{8 L}\right)^{T}\left\|\theta_{j}^{(0)}-\theta_{j}^{*}\right\| \leq \exp \left(-\frac{p \lambda}{8 L} T\right) \frac{1}{4} \sqrt{\frac{\lambda}{L}} \Delta \leq \frac{8}{p} \sqrt{\frac{L}{\lambda}} \varepsilon_{0}
$$

which implies $\left\|\theta_{j}^{(T)}-\theta_{j}^{*}\right\| \leq \frac{16 L}{p \lambda} \varepsilon_{0}$. Finally, we check the failure probability. The failure probability is

$$
k T \delta_{3} \leq \frac{8 k L}{p \lambda} \log \left(\frac{p \lambda \Delta}{32 \varepsilon_{0} L}\right) \frac{4 p \lambda \delta}{C k L \log \left(m n^{\prime}\right)}=\frac{32 \delta}{C} \frac{\log \left(\frac{p \lambda \Delta}{32 \varepsilon_{0} L}\right)}{\log \left(m n^{\prime}\right)} \leq \delta \frac{\log \left(\frac{1}{\varepsilon_{0}}\right)}{\log \left(\left(m n^{\prime}\right)^{C / 32}\right)}
$$

On the other hand, according to (32), we know that

$$
\frac{1}{\varepsilon_{0}} \leq \widetilde{\mathcal{O}}\left(\max \left\{\sqrt{m n^{\prime}}, n^{\prime}\right\}\right)
$$

then, as long as C is large enough, we can guarantee that $\left(m n^{\prime}\right)^{C / 32}>\frac{1}{\varepsilon_{0}}$, which implies that the failure probability is upper bounded by δ. Our final error floor can be obtained by redefining

$$
\varepsilon:=\frac{16 L}{p \lambda} \varepsilon_{0}
$$

B. 3 Proof of Lemma 3

Without loss of generality, we bound the probability of $\mathcal{E}_{i}^{1, j}$ for some $j \neq 1$. We know that

$$
\mathcal{E}_{i}^{1, j}=\left\{F_{i}\left(\theta_{1} ; \widehat{Z}_{i}\right) \geq F_{i}\left(\theta_{j} ; \widehat{Z}_{i}\right)\right\}
$$

where \widehat{Z}_{i} is the set of n^{\prime} data points that we use to estimate the cluster identity in this iteration. In the following, we use the shorthand notation $F_{i}(\theta):=F_{i}\left(\theta ; \widehat{Z}_{i}\right)$. We have

$$
\mathbb{P}\left(\mathcal{E}_{i}^{1, j}\right) \leq \mathbb{P}\left(F_{i}\left(\theta_{1}\right)>t\right)+\mathbb{P}\left(F_{i}\left(\theta_{j}\right) \leq t\right)
$$

for all $t \geq 0$. We choose $t=\frac{F^{1}\left(\theta_{1}\right)+F^{1}\left(\theta_{j}\right)}{2}$. With this choice, we obtain

$$
\begin{align*}
\mathbb{P}\left(F_{i}\left(\theta_{1}\right)>t\right) & =\mathbb{P}\left(F_{i}\left(\theta_{1}\right)>\frac{F^{1}\left(\theta_{1}\right)+F^{1}\left(\theta_{j}\right)}{2}\right) \tag{37}\\
& =\mathbb{P}\left(F_{i}\left(\theta_{1}\right)-F^{1}\left(\theta_{1}\right)>\frac{F^{1}\left(\theta_{j}\right)-F^{1}\left(\theta_{1}\right)}{2}\right) \tag{38}
\end{align*}
$$

Similarly, for the second term, we have

$$
\begin{equation*}
\mathbb{P}\left(F_{i}\left(\theta_{j}\right) \leq t\right)=\mathbb{P}\left(F_{i}\left(\theta_{j}\right)-F^{1}\left(\theta_{j}\right) \leq-\frac{F^{1}\left(\theta_{j}\right)-F^{1}\left(\theta_{1}\right)}{2}\right) \tag{39}
\end{equation*}
$$

Based on our assumption, we know that $\left\|\theta_{j}-\theta_{1}\right\| \geq \Delta-\frac{1}{4} \sqrt{\frac{\lambda}{L}} \Delta \geq \frac{3}{4} \Delta$. According to the strong convexity of $F^{1}(\cdot)$,

$$
F^{1}\left(\theta_{j}\right) \geq F^{1}\left(\theta_{1}^{*}\right)+\frac{\lambda}{2}\left\|\theta_{j}-\theta_{1}^{*}\right\|^{2} \geq F^{1}\left(\theta_{1}^{*}\right)+\frac{9 \lambda}{32} \Delta^{2}
$$

and according to the smoothness of $F^{1}(\cdot)$,

$$
F^{1}\left(\theta_{1}\right) \leq F^{1}\left(\theta_{1}^{*}\right)+\frac{L}{2}\left\|\theta_{1}-\theta_{1}^{*}\right\|^{2} \leq F^{1}\left(\theta_{1}^{*}\right)+\frac{L}{2} \frac{\lambda}{16 L} \Delta^{2}=F^{1}\left(\theta_{1}^{*}\right)+\frac{\lambda}{32} \Delta^{2}
$$

Therefore, $F^{1}\left(\theta_{j}\right)-F^{1}\left(\theta_{1}\right) \geq \frac{\lambda}{4} \Delta^{2}$. Then, according to Chebyshev's inequality, we obtain that $\mathbb{P}\left(F_{i}\left(\theta_{1}\right)>t\right) \leq \frac{64 \eta^{2}}{\lambda^{2} \Delta^{4} n^{\prime}}$ and that $\mathbb{P}\left(F_{i}\left(\theta_{j}\right) \leq t\right) \leq \frac{64 \eta^{2}}{\lambda^{2} \Delta^{4} n^{\prime}}$, which complete the proof.

