
We would like to thank the reviewers for their positive and helpful feedback. We adress the main questions below.1

Typo: The result of Theorem 1 is on the expected norm of θ indeed, thank you for pointing this out.2

Technical Challenge for the dual-free analysis: Our algorithm is inspired from [33] in the sense that we choose3

specific Bregman divergences (with respect to the f∗ij) in order to obtain closed-form solutions of dual Bregman gradient4

steps as gradients of the primal functions ∇fij . Yet, [33] applies a randomized primal-dual algorithm with fixed5

Bregman divergences choice to a specific primal-dual formulation. Instead, we apply a generic randomized Bregman6

coordinate descent algorithm to a specific dual formulation (which has an augmented graph interpretation as explained7

in [11]). The main technical challenges that we faced were:8

• Computing the relative strong convexity / smoothness constants, which now depend on the topology of the9

graph since our decentralized dual formulation is more complex than the formulation from [33].10

• Proving convergence of Bregman Coordinate Descent in the relatively smooth setting. Although a similar11

algorithm is analyzed in Hanzely and Richtárik [2018], we give sharper results in the case of arbitrary sampling12

of blocks, and tightly adapt to the separability structure. This is crucial to our analysis since the probabilities to13

sample a local gradient and to communicate can be vastly different. Derivations can be found in Appendix A.14

• Proving Catalyst acceleration: Theorem 4 (Appendix B) controls dual variables but we apply Catalyst to the15

primal variables, which thus requires both primal and dual warm-start errors, which is done in Appendix C.16

Although dual-free SDCA is a dual approach in the spirit, the analysis in [33] is primal, which in particular explains17

why individual convexity is not needed. Yet, and although it leads to a related algorithm, our approach is different.18

When is ∇f∗ expensive to compute? For x ∈ Rd, ∇f∗(x) = argmaxy x
>y − f∗(y) so in general, computing the19

gradient of the conjugate is as hard as minimizing the function itself. Solving this subproblem requires inverting a d× d20

matrix for ridge regression, and it has no closed form solution for logistic regression. Although the dimensionality21

of the subproblems can be reduced in the case of stochastic algorithms for linear models, this leads to more complex22

implementations and increases numerical errors. In the MSDA implementation below, we obtained the dual gradients23

by solving each local subproblem up to precision 10−11 using accelerated gradient descent. Solving the subproblems24

with lower precision caused MSDA to plateau and not converge to the true optimum.25
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(a) Erdős-Rényi, σ = m · 10−5
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(b) Grid, σ = m · 10−5

0.0 0.5 1.0 1.5 2.0 2.5
Nb. of communications 1e4

10 9

10 7

10 5

10 3

10 1

Su
bo

pt
im

al
ity

Acc. DVR
DVR
Acc. EXTRA
EXTRA
MSDA
Acc. DVR, comm

(c) Grid, σ = m · 10−7

Figure 1: Experimental results for the RCV1 dataset with different graphs of size n = 81, with m = 2430 samples per
node, and with different regularization parameters.

Comparison with MSDA: Figure 1 presents the comparison between DVR and MSDA in terms of communication26

complexity. In Figure 1(c), Acc. DVR, comm (the brown line) refers to Accelerated DVR with Catalyst parameter27

chosen to favor communication complexity (as explained after Theorem 2). MSDA is the fastest algorithm as expected,28

but accelerated DVR is not too far behind, especially given the fact that it relies on generic Catalyst acceleration, which29

adds some complexity overhead. Therefore, the comparison with MSDA corroborates the fact that accelerated DVR is30

competitive with optimal methods in terms of communication while enjoying a drastically lower computational cost.31

We will make sure to insist on the points discussed in this rebuttal in a revised version of the paper.32
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