
Supplementary Material

A Two time-scale stochastic approximation result from Borkar [4,
Chapter 6]

We provide here a well-established convergence result that we use to establish our main results. The
result is taken from a work on stochastic approximation [4] and is used to establish convergence of
two time-scale algorithms. Let

ut+1 ← ut + αt
(
F (ut,vt) + mt+1

)
(7a)

vt+1 ← vt + βt(G(ut,vt) + nt+1), (7b)

denote two coupled iterations of a stochastic approximation algorithm, where ut ∈ Rp and vt ∈ Rq
for all t. We consider the following assumptions:

(A) F : Rp ×Rq → Rp and G : Rp ×Rq → Rq are both Lipschitz continuous functions;

(B) The step size sequences {αt, t ∈ N } and {βt, t ∈ N }, are such that

∞∑
t=0

αt =∞
∞∑
t=0

α2
t <∞,

∞∑
t=0

βt =∞
∞∑
t=0

β2
t <∞,

and αt = o(βt).

(C) {mt, t ∈ N } and {nt, t ∈ N } are two martingale difference sequences w.r.t. the σ-algebra
Ft generated by { (uτ ,vτ ,mτ ,nτ ), τ = 0, . . . , t }. Furthermore, there exist constants
cm, cn such that for all t ≥ 0

E
[
‖mt+1‖2|Ft

]
≤ cm(1 + ‖ut‖2 + ‖vt‖2),

E
[
‖nt+1‖2|Ft

]
≤ cn(1 + ‖ut‖2 + ‖vt‖2).

We then have the following result [4].

Theorem 3. Assume that, for every u ∈ Rp, the ordinary differential equation (o.d.e.)

v̇t = G(u,vt)

has a unique, globally asymptotically stable equilibrium λ(u), where λ : Rp → Rq is Lipschitz
continuous. Further assume that the o.d.e.

u̇t = F
(
ut,λ(ut)

)
has a unique, globally asymptotically stable equilibrium u∗ ∈ Rp. Then, under Assumptions (A)
through (C), the coupled iterations (7) converge w.p.1 to (u∗,λ(u∗)) as long as supt‖ut‖ <∞ and
supt‖vt‖ <∞ w.p.1.

B Proof of Theorem 1

This appendix provides a more detailed proof of Theorem 1, carefully establishing each of the
technical conditions required for the application of Theorem 3. We establish a number of intermediate
results (Propositions 1 through 4) that establish the key properties of the mean fields F and G and
the martingale difference sequences {mt } and {nt } defined in the main text. We then establish, in
Propositions 5 and 6, the stable behavior for the relevant o.d.e..
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B.1 Preliminaries

For convenience, we repeat herein the relevant definitions from the main text. Our algorithm is
defined by the two coupled updates

ut+1 ← ut + αt
(
φ(xt, at)Qvt

(xt, at)− ut
)
, (4a)

vt+1 ← vt + βtφ(xt, at)δt, (4b)
where

δt = rt + γ max
a′∈A

Qut
(x′t, a

′)−Qvt
(xt, at).

We assume that

(I) For all t, (xt, at, x
′
t, rt) is sampled from B = { (xi, ai, x

′
i, ri), i ∈ N0 } according to a fixed

distribution µ over B. Moreover, the next-state distribution x′ is such that µ(x′ | x, a) =
P(x′ | x, a) for each x′ ∈ X and the reward distribution r is such that Eµ [r | x, a] =
R(x, a).

(II) The matrix Eµ
[
φ(xt, at)φ

T (xt, at)
]

is non-singular and ‖φ(x, a)‖2 ≤ 1, for all pairs
(x, a) ∈ X ×A.

(III) The step size sequences {αt, t ∈ N } and {βt, t ∈ N }, verify
∞∑
t=0

αt =∞,
∞∑
t=0

α2
t <∞,

∞∑
t=0

βt =∞,
∞∑
t=0

β2
t <∞,

and, moreover, αt = o(βt).

We define the mean fields

F (ut,vt)
def
= Eµ

[
φ(xt, at)φ

T (xt, at)
]
vt − ut, (8a)

G(ut,vt)
def
= Eµ [φ(xt, at)δt | ut,vt] . (8b)

and the martingale differences

mt+1
def
=
(
φ(xt, at)φ

T (xt, at)vt − ut
)
− F (ut,vt), (9a)

nt+1
def
= φ(xt, at)δt −G(ut,vt). (9b)

Finally, we consider the σ-algebra

Ft
def
= σ({ (uτ ,vτ ,mτ ,nτ ), τ = 0, . . . , t }).

For the upcoming results, it is important to emphasize that, from Assumption (I), the sequence
(xt, at, rt, x

′
t) is i.i.d., generated by a fixed distribution µ and thus independent from Ft itself. Unless

otherwise noted, ‖·‖ refers to the standard 2-norm in RK .

B.2 Lipschitz continuity of F and G

We start by establishing F to be Lipschitz continuous.
Proposition 1. The function F : RK ×RK → RK , defined in (8a), is Lipschitz continuous.

Proof. We constructively show that for some cF ≥ 0, and for all u,v,w, z ∈ RK ,
‖F (u,v)− F (w, z)‖ ≤ cF ‖(u,v)− (w, z)‖.

We have that

‖F (u,v)− F (w, z)‖ ≤
∥∥∥Eµ [φ(xt, at)φ

T (xt, at)
]

(v − z)
∥∥∥+ ‖u−w‖

≤
∥∥∥Eµ [φ(xt, at)φ

T (xt, at)
]∥∥∥‖v − z‖+ ‖u−w‖
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where the first inequality follows from the triangle inequality, and the second follows from the
Cauchy-Schwarz inequality. Using Jensen’s inequality and the fact that ‖φ(x, a)‖2 ≤ 1, we have that∥∥∥Eµ [φ(xt, at)φ

T (xt, at)
]∥∥∥ ≤ Eµ

[∥∥∥φ(xt, at)φ
T (xt, at)

∥∥∥]
= Eµ

[
sup
‖x‖=1

∥∥∥φ(xt, at)φ
T (xt, at)x

∥∥∥]

≤ Eµ

[
sup
‖x‖=1

‖φ(xt, at)‖
∣∣∣φT (xt, at)x

∣∣∣]
≤ 1.

This yields

‖F (u,v)− F (w, z)‖ ≤ ‖v − z‖+ ‖u−w‖ ≤
√
K‖(u,v)− (w, z)‖,

and the proof is complete.

We now establish a similar result for G.

Proposition 2. The function G : RK ×RK → RK , defined in (8b), is Lipschitz continuous.

Proof. We want to show that, for some cG ≥ 0,

‖G(u,v)−G(w, z)‖2 ≤ cG‖(u,v)− (w, z)‖2,

for any fixed u,v,w, z ∈ RK . Following along the lines of the proof of Proposition 1, we get

‖G(u,v)−G(w, z)‖

≤
∥∥∥∥Eµ [γφ(xt, at)(max

a′∈A
φT (x′t, a

′)u−max
a′∈A

φT (x′t, a
′)w)

]∥∥∥∥+
∥∥∥Eµ [φ(xt, at)φ

T (xt, at)(v − z)
]∥∥∥

≤ γEµ
[
‖φ(xt, at)‖

∣∣∣∣max
a′∈A

φT (x′t, a
′)u−max

a′∈A
φT (x′t, a

′)w

∣∣∣∣]+
∥∥∥Eµ [φ(xt, at)φ

T (xt, at)
]∥∥∥‖v − z‖

≤ γEµ
[
‖φ(xt, at)‖max

a′∈A

∣∣∣φT (x′t, a
′)(u−w)

∣∣∣]+ ‖v − z‖

≤ γEµ
[
‖φ(xt, at)‖max

a′∈A

∥∥∥φT (x′t, a
′)
∥∥∥‖(u−w)‖

]
+ ‖v − z‖

≤ γEµ
[
‖φ(xt, at)‖max

a′∈A

∥∥∥φT (x′t, a
′)
∥∥∥] ‖u−w‖+ ‖v − z‖

≤ γ‖(u,v)− (w, z)‖,

and the proof is complete.

B.3 Square integrability of {mt } and {nt }

We start with the following preliminary result.

Lemma 4. The sequence { (mt,Ft), t ∈ N } defined in (9a) is a martingale difference sequence.

Proof. To verify that { (mt,Ft), t ∈ N } is a martingale difference sequence, we must verify that
the following conditions hold for every t:

• E [‖mt‖] <∞;

• E [mt+1 | Ft] = 0.
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For the first bullet, we have that

E [‖mt+1‖] = E
[∥∥∥(φ(xt, at)φ

T (xt, at)− Eµ
[
φ(xt, at)φ

T (xt, at)
])

vt

∥∥∥] .1
Using the Cauchy-Schwartz inequality and the linearity of the expectation, we get

E [‖mt+1‖] ≤ E
[∥∥∥φ(xt, at)φ

T (xt, at)− Eµ
[
φ(xt, at)φ

T (xt, at)
]∥∥∥]E [‖vt‖]

≤ E
[∥∥∥φ(xt, at)φ

T (xt, at)
∥∥∥+

∥∥∥Eµ [φ(xt, at)φ
T (xt, at)

]∥∥∥]E [‖vt‖] .

Repeating the steps from the proof of Proposition 1, it follows that

E
[∥∥∥φ(xt, at)φ

T (xt, at)
∥∥∥] ≤ 1,

yielding
E [‖mt+1‖] ≤ 2E [‖vt‖] <∞,

since vt is constructed by a finite number of algebraic operations over finite quantities.2

To finish the proof, it remains to show that E [mt+1 | Ft] = 0. We have that

E [mt+1|Ft] = E
[(
φ(xt, at)φ

T (xt, at)− Eµ
[
φ(xt, at)φ

T (xt, at)
] )
vt | Ft

]
= E

[
φ(xt, at)φ

T (xt, at)− Eµ
[
φ(xt, at)φ

T (xt, at)
]
| Ft

]
vt

=
(
E
[
φ(xt, at)φ

T (xt, at) | Ft
]
− E

[
Eµ
[
φ(xt, at)φ

T (xt, at)
]
| Ft

] )
vt

=
(
Eµ
[
φ(xt, at)φ

T (xt, at)
]
− Eµ

[
φ(xt, at)φ

T (xt, at)
] )
vt

= 0.

For the sequence {nt }, we have a similar result.
Lemma 5. The sequence { (nt,Ft), t ∈ N } defined in (9b) is a martingale difference sequence.

Proof. As in the proof of Lemma 4, the following must hold:

• E [‖nt‖] <∞;

• E [nt+1 | Ft] = 0.

Writing down the expression for nt, we get

E [‖nt+1‖] = E [‖φ(xt, at)δt − Eµ [φ(xt, at)δt | ut,vt]‖]
≤ E [‖φ(xt, at)δt‖+ ‖Eµ [φ(xt, at)δt | ut,vt]‖] ,

where the inequality follows from the triangle inequality. Using Jensen’s inequality, we then get

E [‖nt+1‖] ≤ E [‖φ(xt, at)δt‖+ Eµ [‖φ(xt, at)δt‖ | ut,vt]] <∞,

where the last inequality follows from the fact that all terms are bounded.

To show that E [nt+1 | Ft] = 0, we can write

E [nt+1|Ft] = E [φ(xt, at)δt − Eµ [φ(xt, at)δt | ut,vt] | Ft]
= E [φ(xt, at)δt | Ft]− E [Eµ [φ(xt, at)δt | ut,vt] | Ft]
= Eµ [φ(xt, at)δt | ut,vt]− Eµ [φ(xt, at)δt | ut,vt]
= 0.

1Since we are not conditioning on Ft, vt is treated as a random variable.
2Note that this does not imply, however, that supt‖vt‖ <∞.
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Endowed with Lemmas 4 and 5, we proceed to establishing square-integrability of {mt } and {nt }.
Proposition 3. There exists cm > 0 such that, for any t > 0,

E
[
‖mt+1‖2 | Ft

]
≤ cm(1 + ‖ut‖2 + ‖vt‖2).

Proof. From the definition, we get

E
[
‖mt+1‖2 | Ft

]
= E

[∥∥∥(φ(xt, at)φ
T (xt, at)− Eµ

[
φ(xt, at)φ

T (xt, at)
])

vt

∥∥∥2

| Ft
]

≤ E
[(∥∥∥(φ(xt, at)φ

T (xt, at)
∥∥∥+

∥∥∥Eµ [φ(xt, at)φ
T (xt, at)

]∥∥∥)2

‖vt‖2 | Ft
]

≤ 4‖vt‖2

≤ 4(1 + ‖ut‖22 + ‖vt‖22).

For {nt }, we get a similar result.
Proposition 4. There exists cn > 0 such that, for any t > 0,

E
[
‖nt+1‖2 | Ft

]
≤ cn(1 + ‖ut‖2 + ‖vt‖2).

Proof. Note that

E
[
‖nt+1‖2 | Ft

]
= E

[
‖φ(xt, at)δt − Eµ [φ(xt, at)δt | ut,vt]‖2 | Ft

]
≤ E

[
(‖φ(xt, at)δt‖+ ‖E [φ(xt, at)δt | ut,vt]‖)2 | Ft

]
= 4E

[
‖φ(xt, at)δt‖2 | Ft

]
.

Breaking down the right-hand side, we get

E
[
‖φ(xt, at)δt‖2 | Ft

]
= E

[∥∥∥∥φ(xt, at)(rt + γ max
a′∈A

φT (x′t, a
′)ut − φT (xt, at)vt)

∥∥∥∥2

| Ft

]

≤ E

[
‖φ(xt, at)‖2

∣∣∣∣rt + γ max
a′∈A

φT (x′t, a
′)ut − φT (xt, at)vt)

∣∣∣∣2 | Ft
]

≤ E
[
ρ+ (

∣∣∣∣γ max
a′∈A

φT (x′t, a
′)ut

∣∣∣∣+
∣∣∣φT (xt, at)vt

∣∣∣)2 | Ft
]

≤ E
[
ρ+ (γ max

a′∈A

∥∥∥φT (xt, a
′)
∥∥∥‖ut‖+

∥∥∥φT (xt, at)
∥∥∥‖vt‖)2 | Ft

]
≤ ρ+ (‖ut‖+ ‖vt‖)2

≤ cn(1 + ‖ut‖2 + ‖vt‖2),

where cn depends on ρ and K.

B.4 Stability of the o.d.e.

Propositions 1 through 4 establish that our algorithm verifies the technical assumptions of Theorem 3.
It remains to show that the remaining conditions of theorem also hold—namely, the stability of the
associated o.d.e. and the boundedness of the iterates ut and vt.
Proposition 5. For any fixed u ∈ RK , the ordinary differential equation

v̇t = G(u,vt) (10)

has a unique, globally asymptotically stable equilibrium λ(u), where λ : RK → RK is Lipschitz
continuous.
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Proof. For a given u, v∗ ∈ RK is an equilibrium of the o.d.e. (10) if

G(u,v∗) = 0

or, equivalently, if

v∗ = Σ−1
µ Eµ

[
φ(xt, at)

(
rt + γ max

a′∈A
φT (x′t, a

′)u
)]
.

That such equilibrium exists for any u follows from the fact that Σµ is non-singular, as required by
Assumption (II). Define λ : RK → RK as

λ(u) = Σ−1
µ Eµ

[
φ(xt, at)

(
rt + γ max

a′∈A
φT (x′t, a

′)u
)]
.

To see that the function λ thus defined is Lipschitz continuous, we note that

‖λ(u)− λ(u′)‖ =

∥∥∥∥Σ−1
µ Eµ

[
γφ(xt, at)(max

a′∈A
φT (x′t, a

′)u−max
a′∈A

φT (x′t, a
′)u′)

]∥∥∥∥
≤
∥∥Σ−1

µ

∥∥∥∥∥∥Eµ [γφ(xt, at)(max
a′∈A

φT (x′t, a
′)u−max

a′∈A
φT (yt, a

′)u′)

]∥∥∥∥.
Using Jensen’s inequality, we get

‖λ(u)− λ(u′)‖ ≤
∥∥Σ−1

µ

∥∥Eµ [∥∥∥∥γφ(xt, at)(max
a′∈A

φT (x′t, a
′)u−max

a′∈A
φT (x′t, a

′)u′)

∥∥∥∥]
≤
∥∥Σ−1

µ

∥∥Eµ [γ‖φ(xt, at)‖max
a′∈A

∣∣∣φT (x′t, a
′)(u− u′)

∣∣∣]
≤
∥∥Σ−1

µ

∥∥Eµ [γ‖φ(xt, at)‖max
a′∈A

∥∥∥φT (x′t, a
′)
∥∥∥] ‖u− u′‖

≤ cλ‖u− u′‖,

for some cλ > 0.

Finally, to show that, given u, λ(u) is a globally asymptotically stable equilibrium for the o.d.e. (10),
we define the candidate Lyapunov function LG : RK → R as

LG(v) =
1

2
‖v − λ(u)‖2.

The proof is complete as long as

1. LG(v) ≥ 0 for all v ∈ RK ;

2. LG(v) = 0 if and only if v = λ(u);

3. L̇G(v) ≤ 0 for all v ∈ RK ;

4. L̇G(v) = 0 if and only if v = λ(u).

The first two properties follow directly from the definition of LG. As for the last two, we start by
explicitly writing L̇G, to get

L̇G(v)
def
=

d

dt
LG(v) =

K∑
k=1

∂LG
∂vk

Gk(u,v) = (v − λ(u))TG(u,v)

Hence,

L̇G(v) = (v − λ(u))TEµ
[
φ(xt, at)(rt + γmax

a′∈A
φT (x′t)u− φ

T (xt, at)v)

]
= (v − λ(u))T

(
Eµ
[
φ(xt, at)(rt + γmax

a′∈A
φT (x′t, a

′)u− φT (xt, at)v)

]
−G(u,λ(u))

)
,
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where we used the fact that G(u,λ(u)) = 0. Then, after some shuffling, we finally get

= (v − λ(u))TEµ
[
φ(xt, at)φ

T (xt, at)(λ(u)− v)
]

= −(v − λ(u))TΣµ(v − λ(u)) ≤ 0,

where the last inequality comes from the fact that Eµ
[
φ(xt, at)φ

T (xt, at)
]

is an auto-covariance
matrix and, as such, positive definite. The conclusion follows.

Next, we present a similar result for the slower o.d.e.
Proposition 6. The ordinary differential equation

u̇t = F (ut,λ(ut)) (11)

has a unique, globally asymptotically stable equilibrium u∗ ∈ RK .

Proof. We start by establishing the existence of at least one equilibrium. A vector u∗ ∈ RK is an
equilibrium for the o.d.e. (11) if

F (u∗,λ(u∗)) = 0

or, equivalently, if

u∗ = Eµ
[
φ(xt, at)(rt + γ max

a′∈A
φT (x′t, a

′)u∗)

]
.

Define H ′ : RK → RK as

H ′(u) = Eµ
[
φ(xt, at)(rt + γ max

a′∈A
φT (x′t, a

′)u)

]
.

Then, the equilibria for the o.d.e. (11) correspond to the fixed points of H ′. By showing H ′ to be a
contraction, Banach’s fixed point theorem ensures existence of a single fixed point, thus establishing
both the existence and unicity of an equilibrium for (11). Given any z,w ∈ RK ,

‖H ′(w)−H ′(z)‖

=

∥∥∥∥Eµ [φ(xt, at)(rt + γ max
a′∈A

φT (x′t, a
′)w)

]
− Eµ

[
φ(xt, at)[rt + γ max

a′∈A
φT (x′t, a

′)z]

]∥∥∥∥
=

∥∥∥∥Eµ [γφ(xt, at)(max
a′∈A

φT (x′t, a
′)w −max

a′∈A
φT (x′t, a

′)z)

]∥∥∥∥.
Using Jensen’s inequality,

‖H(w)−H(z)‖ ≤ Eµ
[∥∥∥∥γφ(xt, at)(max

a′∈A
φT (x′t, a

′)w −max
a′∈A

φT (x′t, a
′)z)

∥∥∥∥]
= Eµ

[
γ‖φ(xt, at)‖

∣∣∣∣max
a′∈A

φT (x′t, a
′)w −max

a′∈A
φT (x′t, a

′)z

∣∣∣∣]
≤ Eµ

[
γ‖φ(xt, at)‖max

a′∈A

∣∣∣φT (x′t, a
′)w − φT (x′t, a

′)z
∣∣∣]

= Eµ
[
γ‖φ(xt, at)‖max

a′∈A

∣∣∣φT (x′t, a
′)(w − z)

∣∣∣]
≤ Eµ

[
γ‖φ(xt, at)‖max

a′∈A

∥∥∥φT (x′t, a
′)
∥∥∥‖w − z‖]

≤ γ‖w − z‖.

It follows that there is, in fact, a unique equilibrium u∗ for the o.d.e. To show that it is globally
asymptotically stable, we again use Lyapunov’s second method. We define the candidate Lyapunov
function LF : RK → R as

LF (u) =
1

2
‖u− u∗‖2.

Once again, the conclusion follows as long as
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1. LF (u) ≥ 0 for all u ∈ RK ;

2. LF (u) = 0 if and only if u = u∗;

3. L̇F (u) ≤ 0 for all u ∈ RK ;

4. L̇F (u) = 0 if and only if u = u∗.

The first two follow directly from the definition of LF . As for the last two,

L̇F (u) = (u− u∗)TF (u,λ(u))T

= (u− u∗)TEµ
[
γφ(xt, at)(max

a′∈A
φT (x′t, a

′)u−max
a′∈A

φT (x′t, a
′)u∗)

]
− ‖u− u∗‖2,

where we used the fact that F (u∗,λ(u∗)) = 0. Using Jensen’s inequality, we get

L̇F (u) ≤ ‖u− u∗‖Eµ
[∥∥∥∥γφ(xt, at)(max

a′∈A
φT (x′t, a

′)u−max
a′∈A

φT (x′t, a
′)u∗)

∥∥∥∥]− ‖u− u∗‖2
≤ γEµ

[
‖φ(xt, at)‖max

a′∈A

∥∥∥φT (x′t, a
′)
∥∥∥] ‖u− u∗‖2 − ‖u− u∗‖2

≤ γ‖u− u∗‖2 − ‖u− u∗‖2

≤ (γ − 1)‖u− u∗‖2 ≤ 0.

The conclusion follows.

C Boundedness of ut and vt

We conclude by establishing the boundedness of the iterates vt and ut under Assumptions (I) through
(III). To do that, we use the following result.
Theorem 6 ([5]). Given the algorithm

wt+1 = wt + αt
(
H(wt) + mt+1

)
,

where

1. The function H : RK → RK is Lipschitz continuous. Moreover, defining Hr : RK → RK

as

Hr(w) =
H(rw)

r
,

there is a function H∞ : RK → RK such that

lim
r→∞

Hr(w) = H∞(w)

for all w ∈ RK .

2. The origin is a globally asymptotically stable equilibrium of the o.d.e.

ẇt = H∞(wt).

3. The sequence {mt, t ∈ N } is a martingale difference sequence and verifies, for all t ≥ 0

E
[
‖mt+1‖2 | Ft

]
≤ c0(1 + ‖wt‖2)

for some c0 > 0.

4. The sequence {αt, t ∈ N } verifies
∞∑
t=0

αt =∞,
∞∑
t=0

α2
t <∞.
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Then, with probability 1, supt‖wt‖ <∞.

Following [4], we analyze each iterate of the algorithm separately. In particular, we analyze the faster
iteration by treating the slower as stationary and analyze the slower iteration by treating the faster as
if in equilibrium.

For a fixed u ∈ RK , let

Gc(v) =
G(u, cv)

c
.

We have the following result.
Lemma 7. There is a limiting function G∞ : RK → RK such that

lim
c→∞

Gc(v) = G∞(v),

and the origin is an asymptotically stable equilibrium for the o.d.e

v̇t = G∞(vt).

Proof. Replacing the definition of Gc, we get

lim
c→∞

Gc(v) = lim
c→∞

G(u, cv)

c

= lim
c→∞

1

c
Eµ
[
φ(xt, at)

(
rt + γ max

a′∈A
φT (x′t, at)u− cφ

T (xt, at)v

)]
= −Σµv.

Therefore, letting G∞(v) = −Σµv, the o.d.e.

v̇t = G∞(vt) = −Σµv.

is linear and time-invariant. Since Σµ is positive definite, it is immediate that the origin is a globally
asymptotically stable equilibrium.

Noting that all other conditions follow directly from Assumptions (I) through (III) and Propositions 1
through 6, we can now apply Theorem 6 to get the following conclusion.
Proposition 7. Under assumptions (I) through (III), supt‖vt‖ <∞ almost surely.

For the slower iterate, we consider that the faster has converged, and define

Fc(u) =
F (cu,λ(cu))

c
.

We have the following counterpart to Lemma 7.
Lemma 8. There is a limiting function F∞ : RK → RK such that

lim
c→∞

Fc(u) = F∞(u),

and the origin is an asymptotically stable equilibrium for the o.d.e

u̇t = F∞(ut).

Proof. Replacing the definition of Fc, we get

lim
c→∞

Fc(u) = lim
c→∞

1

c

(
Eµ
[
φ(xt, at)φ

T (xt, at)
]
λ(cu)− cu

)
= γEµ

[
φ(xt, at) max

a′∈A
φT (x′t, a

′)u

]
− u.

Let us then define

F∞(u) = γEµ
[
φ(xt, at) max

a′∈A
φT (x′t, a

′)u

]
− u.

Consider the candidate Lyapunov function L(u) = 1
2‖u‖

2
2. The conclusion of the lemma follows by

showing that
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1. L(u) ≥ 0 for all u ∈ RK ;

2. L(u) = 0 if and only if u = 0;

3. L̇(u) ≤ 0 for all u ∈ RK ;

4. L̇(u) = 0 if and only if u = 0.

The first two conditions follow directly from the definition of L. As for the last two, we observe that

L̇(u) = uTF∞(u)

= uT
(
γEµ

[
φ(xt, at) max

a′∈A
φT (x′t, a

′)u

]
− u

)
= γuTEµ

[
φ(xt, at) max

a′∈A
φT (x′t, a

′)u

]
− ‖u‖2.

Using Jensen’s inequality, we get

L̇(u) ≤ γ‖u‖Eµ
[∥∥∥∥φ(xt, at) max

a′∈A
φT (x′t, a

′)u

∥∥∥∥]− ‖u‖2
≤ γ‖u‖Eµ

[
‖φ(xt, at)‖

∣∣∣∣max
a′∈A

φT (x′t, a
′)u

∣∣∣∣]− ‖u‖2
≤ γ‖u‖Eµ

[
‖φ(xt, at)‖max

a′∈A

∣∣∣φT (x′t, a
′)u
∣∣∣]− ‖u‖2

≤ γ‖u‖Eµ
[
‖φ(xt, at)‖max

a′∈A

∥∥∥φT (x′t, a
′)
∥∥∥‖u‖]− ‖u‖2

≤ (γ − 1)‖u‖2 ≤ 0.

The proof is complete.

Finally, again resorting to Theorem 6, we can state the following proposition.
Proposition 8. supt‖ut‖1 <∞ almost surely.
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