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Abstract

We consider the setting where players run the Hedge algorithm or its optimistic1

variant [27] to play an n-action game repeatedly for T rounds.2

• For two-player games, we show that the regret of optimistic Hedge decays at3

rate O(1/T 5/6), improving the previous bound of O(1/T 3/4) by [27].4

• In contrast, we show that the convergence rate of vanilla Hedge is no better5

than O(1/
√
T ), addressing an open question posed in [27].6

For general m-player games, we show that the swap regret of each player decays at7

O(m1/2(n log n/T )3/4) when they combine optimistic Hedge with the classical8

external-to-internal reduction of Blum and Mansour [6]. Via standard connec-9

tions, our new (swap) regret bounds imply faster convergence to coarse correlated10

equilibria in two-player games and to correlated equilibria in multiplayer games.11

1 Introduction12

Online algorithms for regret minimization play an important role in many applications in machine13

learning where real-time sequential decision making is crucial [19, 7, 26]. A number of algorithms14

have been developed, including Hedge / Multiplicative Weights [2], Mirror Decent [19], Follow the15

Regularized / Perturbed Leader [20], and their power and limits against an adversarial environment16

have been well understood: The average (external) regret decays at a rate ofO(1/
√
T ) after T rounds,17

which is known to be tight for any online algorithm.18

What happens if players in a repeated game run one of these algorithms? Given that they are now19

running against similar algorithms over a fixed game, could the regret of each player decay signifi-20

cantly faster than 1/
√
T ? This was answered positively in a sequence of works [9, 24, 27]. Among21

these results, the one that is most relevant to ours is that of Syrgkanis, Agarwal, Luo and Schapire22

[27]. They showed that if every player in a multiplayer game runs an algorithm that satisfies the23

RVU (Regret bounded by Variation in Utilities) property, then the regret of each player decays at24

O(1/T 3/4). Can this bound be further improved?25

Besides regret minimization, understanding no-regret dynamics in games is motivated by connections26

with various equilibrium concepts [15, 13, 12, 18, 6, 17, 22]. For example, if every player runs an27

algorithm with vanishing regret, then the empirical distribution must converge to a coarse correlated28

equilibrium [7]. Nevertheless, to converge to a more preferred correlated equilibrium [3], a stronger29

notion of regrets called swap regrets (see Section 2) is required [13, 18, 6]. The minimization of30

swap regrets under the adversarial setting was studied by Blum and Mansour [6]. They gave a generic31

reduction from regret minimization algorithms which led to a tight O(
√
n log n/T )-bound for the32

average swap regret. A natural question is whether a speedup similar to that of [27] is possible for33

swap regrets in the repeated game setting.34
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Our contributions: Faster convergence of swap regrets. We give the first algorithm that achieves35

an average swap regret that is significantly lower than O(1/
√
T ) under the repeated game setting.36

This algorithm, denoted by BM-Optimistic-Hedge, combines the external-to-internal reduction of37

[6] with the optimistic Hedge algorithm [24, 27] as its regret minimization component. (Optimistic38

Hedge can be viewed as an instantiation of the optimistic Follow the Regularized Leader algorithm;39

see Section 2.) We show that if every player in a repeated game of m players and n actions40

runs BM-Optimistic-Hedge, then the average swap regret is at most O(m1/2(n log n/T )3/4); see41

Theorem 5.1 in Section 5. Via the relationship between correlated equilibria and swap regrets, our42

result implies faster convergence to a correlated equilibrium. When specialized to two-player games,43

the empirical distribution of players running BM-Optimistic-Hedge converges to an ε–correlated44

equilibrium after O(n log n/ε4/3) rounds, improving the O(n log n/ε2) bound of [6].45

Our main technical lemma behind Theorem 5.1 shows that strategies produced by the algorithm46

of [6] with optimistic Hedge moves very slowly in `1-norm under the adversarial setting (which47

in turn allows us to apply a stability argument similar to [27]). This came as a surprise because48

a key component of the algorithm of [6] each round is to compute the stationary distribution of a49

Markov chain, which is highly sensitive to small changes in the Markov chain. We overcome this50

difficulty by exploiting the fact that Hedge only incurs small multiplicative changes to the Markov51

chain, which allows us to bound the change in the stationary distribution using the classical Markov52

chain tree theorem. We further demonstrate the power of this technical ingredient by deriving another53

fast no-swap regret algorithm, based on a folklore algorithm in [7] and optimistic predictions (see54

Appendix D). Both of these two algorithms enjoy the benefits of faster convergence when playing55

with each other, while remain robust against adversaries (see Corollary 5.4 in Appendix C).56

Our contributions: Hedge in two-player games. In addition we consider regret minimization in a57

two-player game with n actions using either vanilla or optimistic Hedge. We show that optimistic58

Hedge can achieve an average regret of O(1/T 5/6), improving the bound O(1/T 3/4) by [27] for59

two-player games; see Theorem 3.1 in Section 3. In contrast, we show that even under this game-60

theoretic setting, vanilla Hedge cannot asymptotically outperform the O(1/
√
T ) adversarial bound;61

see Theorem 4.1 in Section 4. This addresses an open question posed by [27] concerning the62

convergence rate of vanilla Hedge in a repeated game.63

The key step in our analysis of optimistic Hedge is to show that, even under the adversarial setting,64

the trajectory length of strategy movements (in their squared `1-norm) can be bounded using that of65

cost vectors (in `∞-norm); see Lemma 3.2. (Intuitively, it is unlikely for the strategy of optimistic66

Hedge to change significantly over time while the loss vector stays stable.) This allows us to build a67

strong relationship between the trajectory length of each player’s strategy movements, and then use68

the RVU property of optimistic Hedge to bound their individual regrets.69

Our lower bounds for vanilla Hedge use three very simple 2× 2 games to handle different ranges of70

the learning rate η. For the most intriguing case when η is at least Ω(1/
√
n) and bounded from above71

by some constant, we study the zero-sum Matching Pennies game and use it to show that the overall72

regret of at least one player is Ω(
√
T ). Our analysis is inspired by the result of [5] which shows that73

the KL divergence of strategies played by Hedge in a two-player zero-sum game is strictly increasing.74

For Matching Pennies, we start with a quantitative bound on how fast the KL divergence grows in75

Lemma 4.3. This implies the existence of a window of length
√
T during which the cost of one of the76

player grows by Ω(1) each round; the zero-sum structure of the game allows us to conclude that at77

least one of the players must have regret at least Ω(
√
T ) at some point in this window.78

1.1 Related work79

Initiated by Daskalakis, Deckelbaum and Kim [9], there has been a sequence of works that study80

no-regret learning algorithms in games [24, 27, 14, 29]. Daskalakis et. al. [9] designed an algorithm81

by adapting Nesterov’s accelerated saddle point algorithm to two-player zero-sum games, and showed82

that if both players run this algorithm then their average regrets decay at rate O(1/T ), which is83

optimal. Later Rakhlin and Sridharan [23, 24] developed a simple and intuitive family of algorithms,84

i.e. optimistic Mirror Descent and optimistic Follow the Regularized Leader, that incorporate85

predictions into the strategy. They proved that if both players adopt the algorithm, then their average86

regrets also decay at rate O(1/T ) in zero sum games. Syrgkanis et. al. [27] further strengthened87

this line of works by showing that in a general m-player game, if every player runs an algorithm88

that satisfies the RVU property then the average regret decays at rate O(1/T 3/4). Syrgkanis et.89

2



al. [27] also considered the convergence of social welfare and proved an even faster rate of O(1/T )90

in smooth games [25]. Foster et. al. [14] extended [27] and showed that if one only aims for an91

approximately optimal social welfare, then the class of algorithms allowed can be much broader.92

Recently, Daskalakis and Panageas [11] proved the last iteration convergence of optimistic Hedge93

in zero-sum game, i.e., instead of averaging over the trajectory, they showed that optimistic Hedge94

converges to a Nash equilibrium in a zero-sum game.95

There is also a growing body of works [21, 5, 4, 8] on the dynamics of no-regret learning over96

games in the last few years. Most of these works studied the dynamics of no-regret learning from97

a dynamical system point of view and provided qualitative intuition on the evolution of no-regret98

learning. Among them, [4] is most relevant, in which Bailey and Piliouras proved an Ω(
√
T ) lower99

bound on the convergence rate of online gradient descent [30] for the 2× 2 Matching Pennies game.100

However, we remark that their lower bound only works for online gradient descent and they need101

to fix the learning rate η to 1. Our lower bound for vanilla Hedge in two-player games holds for102

arbitrary learning rates.103

2 Preliminary104

Notation. Given two positive integers n ≤ m, we use [n] to denote {1, . . . , n} and [n : m] to denote105

{n, . . . ,m}. We use DKL(p‖q) to denote the KL divergence with natural logarithm.106

Repeated games and regrets. Consider a game G played between m players, where each player107

i ∈ [m] has a strategy space Si with |Si| = n and a loss function Li : S1 × · · · × Sm → [0, 1] such108

that Li(s) is the loss of player i for each pure strategy profile s = (s1, . . . , sn) ∈ S1 × · · · × Sm. A109

mixed strategy for player i is a probability distribution xi over Si, where the jth action is played with110

probability xi(j). Given a mixed (or pure) strategy profile x = (x1, . . . , xm) (or s = (s1, . . . , sm)),111

we write x−i (or s−i) to denote the profile after removing xi (or si, respectively).112

We consider the scenario where the m players play G repeatedly for T rounds. At the beginning of113

each round t, t ∈ [T ], each player i picks a mixed strategy xti and let xt = (xt1, . . . , x
t
m) be the mixed114

strategy profile. We consider the full information setting where each player observes the expected loss115

of all her actions. Formally, player i observes a loss vector `ti with `ti(j) = Es−i∼xt
−i

[Li(j, s−i)],116

and her expected loss is given by 〈xti, `ti〉. At the end of round T , the regret of player i is117

regretiT =
∑
t∈[T ]

〈xti, `ti〉 − min
j∈[n]

∑
t∈[T ]

`ti(j), (1)

i.e., the maximum gain one could have obtained by switching to some fixed action. A stronger notion118

of regret, referred as swap regret, is defined as119

swap-regretiT =
∑
t∈[T ]

〈xti, `ti〉 −min
φ

∑
t∈[T ]

∑
j∈[n]

xti(j) · `ti(φ(j)), (2)

where the minimum is over all nn (swap) functions φ : [n]→ [n] that swap action j with φ(j). The120

swap regret equals the maximum gain one could have achieved by using a fixed swap function over121

its past mixed strategies.122

Hedge. Consider the adversarial online model where a player has n actions and picks a distribution
xt over them at the beginning of each round t. During round t the player receives a loss vector `t and
pays a loss of 〈xt, `t〉. The vanilla Hedge algorithm [16] with learning rate η > 0 starts by setting x1

to be the uniform distribution and then keeps applying the following updating rule to obtain xt+1

from xt and the loss vector `t at the end of round t: for each action j ∈ [n],

xt+1(j) =
xt(j) · exp(−η · `t(j))∑

k∈[n] x
t(k) · exp(−η · `t(k))

.

On the other hand, the optimistic Hedge algorithm can be obtained from the optimistic follow the123

regularized leader proposed by [24, 27], and have the following updating rule:124

xt+1(j) =
xt(j) · exp(−η(2`t(j)− `t−1(j))∑

k∈[n] x
t(k) · exp(−η(2`t(k)− `t−1(k))

, (3)

with `0 = 0 being the all-zero vector. We have the following regret bound for optimistic Hedge.125
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Lemma 2.1 ([24, 27]). Under the adversarial setting, optimistic Hedge satisfies126

regretT ≤
2 log n

η
+ η

∑
t∈[T ]

‖`t − `t−1‖2∞ −
1

4η

∑
t∈[T ]

‖xt+1 − xt‖21. (4)

3 Optimistic Hedge in Two-Player Games127

In this section we analyze the performance of the optimistic Hedge algorithm when it is used by two128

players to play a (general, not necessarily zero-sum) n× n game repeatedly.129

Theorem 3.1. Suppose both players in a two-player game run optimistic Hedge for T rounds with130

learning rate η = (log n/T )1/6. Then the individual regret of each player is O(T 1/6 log5/6 n).131

We assume without loss of generality that T ≥ log n; otherwise, the regret of each player is trivially132

at most T ≤ T 1/6 log5/6 n. The following lemma is essential to our proof of Theorem 3.1. Consider133

the adversarial online setting where a player runs optimistic Hedge for T rounds. The lemma bounds134

the trajectory length of the strategy movement using that of cost vectors.135

Lemma 3.2. Suppose that a player runs optimistic Hedge with learning rate η for T rounds. Let136

`0, `1, . . . , `T be the cost vectors with `0 = 0 and x1, . . . , xT be the strategies played. Then137 ∑
t∈[2:T ]

‖xt − xt−1‖21 ≤ O(log n) +O(η + η2)
∑

t∈[T−1]

‖`t − `t−1‖∞. (5)

We delay the proof of Lemma 3.2 to Appendix A and use it to prove Theorem 3.1.138

Proof of Theorem 3.1 assuming Lemma 3.2. Let G = (A,B) be the game, where A,B ∈ [0, 1]n×n139

denote the cost matrices of the first and second players, respectively. We use xt and yt to denote140

strategies played by the two players and use `tx and `ty to denote their cost vectors in the tth round.141

So we have `tx = Ayt and `ty = BTxt. Therefore, we have for each t ≥ 2:142

‖`ty − `t−1
y ‖∞ = ‖BT (xt − xt−1)‖∞ ≤ ‖xt − xt−1‖1 and (6)

‖`tx − `t−1
x ‖∞ = ‖A(yt − yt−1)‖∞ ≤ ‖yt − yt−1‖1.

Without loss of generality it suffices to bound the regret of the second player. Set η = (log n/T )1/6143

with T ≥ log n so that η ≤ 1. We have144

regretyT ≤
2 log n

η
+ η

∑
t∈[T ]

‖`ty − `t−1
y ‖2∞ −

1

4η

∑
t∈[T ]

‖yt+1 − yt‖21 Lemma 2.1

≤ 2 log n

η
+ η + η

∑
t∈[2:T ]

‖xt − xt−1‖21 −
1

4η

∑
t∈[2:T+1]

‖`tx − `t−1
x ‖2∞ using (6)

≤ 2 log n

η
+ η + η

O(log n) +O(η)
∑

t∈[T−1]

‖`tx − `t−1
x ‖∞


− 1

4η

∑
t∈[T−1]

‖`tx − `t−1
x ‖2∞ +

1

4η
Lemma 3.2

= O

(
log n

η

)
+

∑
t∈[T−1]

(
O(η2) · ‖`tx − `t−1

x ‖∞ −
1

4η
· ‖`tx − `t−1

x ‖2∞
)

≤ O
(

log n

η

)
+ T ·O(η5) = O

(
T 1/6 log5/6 n

)
.

This finishes the proof of the theorem.145
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4 Lower Bounds for Hedge in Two-Player Games146

We prove lower bounds for regrets of players when they both run the vanilla Hedge algorithm. We147

show that even in games with two actions, vanilla Hedge cannot perform asymptotically better than148

its guaranteed regret bound of O(
√
T ) under the adversarial setting.149

Theorem 4.1. Suppose two players run the vanilla Hedge algorithm to play a two-action game with150

initial strategy (0.4, 0.6). Then for any sufficiently large T and any learning rate η > 0, there is a151

game such that at least one player has regret Ω(
√
T ) after T ′ rounds for some T ′ ∈ [T : T +

√
T ].152

Remark 4.2. Theorem 4.1 shows that even if players have a good estimation about the number of153

rounds to play (i.e., between T and T +
√
T ), vanilla Hedge with any learning rate η(T ) > 0 picked154

using T cannot promise to achieve a regret bound that is asymptotically lower than O(
√
T ) for every155

round T ′ ∈ [T : T +
√
T ]. We would like to point out that the use of (0.4, 0.6) as the initial strategy156

instead of the uniform distribution is not crucial but only to simplify the construction and analysis.157

Let T be a sufficiently large integer. We will use three games Gi = (A,Bi), i ∈ {1, 2, 3}, to handle158

three cases of the learning rate η, where159

A =

(
1 −1
−1 1

)
, B1 =

(
−1 1
1 −1

)
, B2 =

(
1 1
1 1

)
and B3 =

(
1 −1
−1 1

)
.

We use G2 to handle the case when η ≤ 64/(c0
√
T ) (see Appendix B.1) where c0 ∈ (0, 1] is a160

constant introduced below in Lemma 4.3. We use G3 to handle the case when η ≥ 3 (see Appendix161

B.2). The most intriguing case is when the learning rate η is between 64/(c0
√
T ) and 3. For this case162

we use the Matching Pennies game G1 = (A,B1).163

Let xt and yt denote strategies played in round t by the first and second players, respectively. Let164

x? = y? = (0.5, 0.5). The proof for this case relies on the following lemma, which shows that the165

KL divergence between (x?, y?) and (xT , yT ) after T rounds is at least Ω(
√
Tη)).166

Lemma 4.3. Suppose players run vanilla Hedge for T rounds with η : 16/
√
T ≤ η ≤ 3. Then

DKL(x?‖xT ) +DKL(y?‖yT ) ≥ c0
√
Tη, for some constant c0 ∈ (0, 1].

We are now ready to prove Theorem 4.1 for the main case when 64/(c0
√
T ) ≤ η ≤ 3.167

Proof of Theorem 4.1 for the main case. For convenience we let xt = xt(1) (or yt = yt(1)) denote168

the probability of playing the first action in xt (or yt, respectively). We first describe the high level169

idea behind the proof. Since we know the KL divergence is at least c0
√
Tη at time T by Lemma 4.3,170

at least one of xT and yT is extremely close to either 0 or 1. Assume without loss of generality that171

this is the case for xT . As a result, the probability of the first player playing the first action will not172

change much for the next
√
T rounds. Consequently, during the next

√
T rounds, one of the players173

must keep losing and the other player will keep winning. This can be used to show that one of the174

two players must have regret at least Ω(
√
T ) at some point T ′ between T and T +

√
T .175

To make this more formal, let `tx (or `ty) denote the cost vector of the first (or the second) player at
round t and define Ltx and Lty to be the total loss up to round t of the two players:

Ltx =
∑
τ∈[t]

〈xτ , `τx〉 and Lty =
∑
τ∈[t]

〈yτ , `τy〉.

Since G1 = (A,B1) is zero-sum, we have 〈xτ , `τx〉+ 〈yτ , `τy〉 = 0 and thus, Ltx+Lty = 0. Moreover,
noting that the sum of two rows of A is zero, the first player can always guarantee an overall loss
of at most 0 when playing the best fixed action in hindsight. Therefore, regretxt ≥ Ltx and similarly
regretyt ≥ Lty . Combining this with Ltx + Lty = 0, we have

max
{

regretxt , regretyt

}
≥ |Ltx| = |Lty|.

To finish the proof, it suffices to show that176 ∣∣LT ′x ∣∣ =
∣∣LT ′y ∣∣ ≥ Ω(

√
T ), for some T ′ ∈ [T : T +

√
T ]. (7)
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Let L = c0
√
T/8 ≤

√
T . We have from Lemma 4.3 that the KL divergence is at least c0

√
Tη (using

η ≥ 64/(c0
√
T ) > 16/

√
T ). We assume without loss of generality that DKL(x?‖xT ) ≥ c0

√
Tη/2.

We further assume without loss of generality that the second term is larger:

1

2
· log

1

2(1− xT )
≥ c0

√
Tη

4
.

It follows that xT is very close to 1: xT ≥ 1− exp(−c0
√
Tη/2), and we use this to show that xT+τ177

remains close to 1 for all τ ∈ [L]. To see this is the case, we note that178

xT+τ

1− xT+τ
≥ exp(−2ητ) · xT

1− xT
≥ 1

2
· exp

(
−2ηL+

c0
√
Tη

2

)
=

1

2
· exp

(
c0
√
Tη

4

)
≥ 3,

where we used η ≥ 64/(c0
√
T ) in the last inequality. This implies xT+τ ≥ 3/4 for all τ ∈ [L].179

Now we turn our attention to the second player. Given that xT+τ ≥ 3/4 for all τ ∈ [L], yT+τ keeps
growing for all τ ∈ [L]. As a result there is an interval I ⊆ [L] such that (i) every yT+τ , τ ∈ I , lies
between 1/4 and 3/4; (ii) every yT+τ before I is smaller than 1/4; and (iii) every yT+τ after I is
larger than 3/4. Using a similar argument, we show that I cannot be too long. Letting ` and r be the
left and right endpoints of I , we have

3 ≥ yr
1− yr

≥ exp

(
η(r − `)

2

)
· y`

1− y`
≥ exp

(
η(r − `)

2

)
· 1

3
.

As a result, we have (r − `) ≤ 6/η ≤ (3/32) · c0
√
T and thus, either (i) or (ii) is of length at least180

Ω(L). We focus on the case when (ii) is long; the other case can be handled similarly.181

Summarizing what we have so far, there is an interval J = [α : β] ⊆ [L] of length Ω(L) such that for182

every τ ∈ J , both xT+τ and yT+τ are at least 3/4. This implies that the total loss of the first player183

grows by Ω(1) each round and thus, LT+β
x − LT+α

x ≥ Ω(L). Therefore, either |LT+α
x | ≥ Ω(L) or184

|LT+β
x | ≥ Ω(L). This finishes the proof of (7) using L = Ω(

√
T ) and the proof of the theorem.185

5 Faster Convergence of Swap Regrets186

Under the adversarial online model, Blum and Mansour [6] gave a black-box reduction showing187

that any algorithm that achieve good regrets can be converted into an algorithm that achieves good188

swap regrets. In this section we show that if every player in a repeated game runs their algorithm189

with optimistic Hedge as its core, then the swap regret of each player can be bounded from above by190

O((n log n)3/4(mT )1/4), where m is the number of players and n is the number of actions.191

We start with an overview on the reduction framework of [6], which we will refer to as the BM192

algorithm. Let S = [n] be the set of available actions. Given an algorithm ALG that achieves good193

regrets, the BM algorithm instantiates n copies ALG1, . . . , ALGn of ALG over S. At the beginning of194

each round t = 1, . . . , T , the BM algorithm receives a distribution qti over S from ALGi for each195

i ∈ [n], and plays xt, which is the unique distribution over S that satisfies xt = xtQt, where Qt is196

the n× n matrix with row vectors qt1, . . . , q
t
n. After receiving the loss vector `t, the BM algorithm197

experiences a loss of 〈xt, `t〉 and distributes xt(i) · `t to ALGi as its loss vector in round t.198

We are now ready to state our main theorem of this section:199

Theorem 5.1. Suppose that every player in a repeated game runs the BM algorithm with optimistic200

Hedge as ALG and sets the learning rate of the latter to be η = (n log n/(m2T ))1/4. Then the swap201

regret of each player is O((n log n)3/4 · (m2T )1/4).202

For convenience we refer to the BM algorithm with optimistic Hedge as BM-Optimistic-Hedge203

in the rest of the section. We first combine the analysis of [6] for the BM algorithm and Lemma 3204

to obtain the following bound for the swap regret of BM-Optimistic-Hedge under the adversarial205

setting, in terms of the total path length of cost vectors the player’s mixed strategies:206

Lemma 5.2. Suppose that a player runs BM-Optimistic-Hedge with η > 0 for T rounds. Then207

swap-regretT ≤
2n log n

η
+ 2η

(
T∑
t=2

‖xt − xt−1‖21 +

T∑
t=1

‖`t − `t−1‖2∞

)
, where `0 = 0.
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Q =

(
1− ε ε
ε′ 1− ε′

)
x =

(
1

k + 1

k

k + 1

)
vs Q =

(
1− ε′ ε′

ε 1− ε

)
x =

(
k

k + 1

1

k + 1

)
Figure 1: Let ε′ = ε/k. Additive perturbations may change the stationary distribution dramatically.

The proof can be found in Appendix C.1. For the repeated game setting, we have for each t ≥ 2,

‖`ti − `t−1
i ‖∞ ≤ ‖x

t
−i − xt−1

−i ‖1 ≤
∑
j 6=i

‖xtj − xt−1
j ‖1

where the last inequality used the fact that both xt−i and xt−1
−i are product distributions. Combining it208

with Lemma 5.2, we can bound the swap regret of each player i ∈ [m] in the game by209

swap-regretiT ≤
2n log n

η
+ 2η + 2ηm

∑
j∈[m]

T∑
t=2

‖xtj − xt−1
j ‖

2
1. (8)

We prove the following main technical lemma in the rest of the section, which states that the mixed210

strategy xt produced by BM-Optimistic-Hedge under the adversarial setting moves very slowly211

(by at most O(η) in `1-distance each round). Theorem 5.1 follows by combining Lemma 5.2 and 5.3.212

Lemma 5.3. Suppose that a player runs BM-Optimistic-Hedge with rate η : 0 < η ≤ 1/6 under213

the adversarial setting. Then we have ‖xt − xt−1‖1 ≤ O(η) for all t ≥ 2.214

Proof of Theorem 5.1 Assuming Lemma 5.3. Let η = (n log n)1/4(m2T )−1/4. For the special case215

when η > 1/6, the swap regret of each player is trivially at most T = O((n log n)3/4 · (m2T )1/4).216

Assuming η ≤ 1/6, by Lemma 5.2 we have from (8) that217

swap-regretiT ≤
2n log n

η
+ 2η + 2ηm2T ·O(η2) = O

(
(n log n)3/4 · (m2T )1/4

)
.

This finishes the proof of the theorem.218

The proof of Lemma 5.3 can be found in Appendix C.2. Here we give a high-level description of its219

proof. Given that BM-Optimistic-Hedge runs n copies of optimistic Hedge with rate η, we know220

that mixed strategies proposed by each ALGi move very slowly: ‖qti − q
t−1
i ‖1 ≤ O(η). However,221

it is not clear whether this translates into a similar property for xt since the latter is obtained by222

solving xt = xtQt. Equivalently, xt can be viewed as the stationary distribution of the Markov223

chain Qt composed by strategies of each individual expert ALGi, and its dependency on Qt is highly224

nonlinear. While there is a vast literature on the perturbation analysis of Markov chains, many results225

require additional assumptions on the underlying Markov chain (e.g. bounded eigenvalue gap) and226

are not well suited for our setting here. Indeed, it is easy to come up with examples showing that the227

stationary distrbution is extremely sensitive to small additive perturbations (see Figure 1). As a result228

one cannot hope to prove Lemma 5.3 based on the property ‖qti − q
t−1
i ‖1 ≤ O(η) only.229

We circumvent this difficulty by noting that optimistic Hedge only incurs small multiplicative pertur-230

bations on the Markov chain (see Claim C.5), i.e., each entry of Qt differs from the corresponding231

entry of Qt−1 by no more than a small multiplicative factor of the latter. We present in Lemma C.2232

an analysis on stationary distributions of Markov chains under multiplicative perturbations, based on233

the classical Markov chain tree theorem, and then use it to prove Lemma 5.3.234

We further prove that one can design a wrapper for BM-Optimistic-Hedge that is robust against235

adversarial opponents:236

Corollary 5.4. There is an algorithm BM-Optimistic-Hedge∗ with the following guarantee. If all237

players run BM-Optimistic-Hedge∗, then the swap regret of each individual is Õ(n3/4(m2T )1/4);238

if the player is facing adversaries, then the swap regret is still at most Õ((nT )1/2 + n3/4(m2T )1/4).239

The proof is similar to Corollary 16 in [27]; we present it in Appendix C.3 for completeness.240

7



In the appendix we give two more extensions to our results on swap regrets.241

1. In Appendix D, we show that incorporating optimistic Hedge into a folklore algorithm242

from [7] can also achieve faster convergence of swap regrets, with a slightly worse243

dependence on n. Interestingly, our analysis of this algorithm also crucially relies on the244

perturbation analysis of stationary distributions of Markov chains.245

2. In Appendix E, we study the convergence to the approximately optimal social welfare246

(following the definition in [14]) with no-swap regret algorithms, and prove that O(1/T )247

holds for a wide range of no-swap regret algorithms.248

6 Discussion249

In this paper, we studied the convergence rate of regrets of the Hedge algorithm and its optimistic250

variant in two-player games. We obtained a strict separation between vanilla Hedge and optimistic251

Hedge, i.e., 1/
√
T vs. 1/T 5/6. We also initiated the study on algorithms with faster convergence252

rates of swap regrets in general multiplayer games and obtained an algorithm with average regret253

O(m1/2(n log n/T )3/4) , improving over the classic result of Blum and Mansour [6].254

Our work led to several interesting future directions:255

• Our faster convergence result for optimistic Hedge currently only works for two-player256

games. Can we extend it to multiplayer games? Second, what is the optimal convergence257

rate for optimistic Hedge and other no-regret algorithms? even for two-player games?258

• Regarding swap regrets, it is easy to generalize the result in Section 5 to any algorithm that259

(1) satisfies the RVU property and (2) makes only multiplicative changes on strategies each260

iteration. These include optimistic Hedge and optimistic multiplicative weights. However,261

our current analysis does not apply to general optimistic Mirror Descent or Follow the262

Regularized Leader. Can we still prove faster convergence of swap regrets via the reduction263

of [6] without requiring (2) on the regret minimization algorithm? or does there exist some264

natural gap between these algorithms and optimistic Hedge / multiplicative weights?265

• For our result in Appendix E on the convergence to the approximately optimal social266

welfare, can this fast convergence result be extended to the (exact) optimal social welfare267

setting (follow the definition in [27])?268

• Can we achieve similar convergence rates under partial information models? such as those269

considered in [24, 14, 29].270
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A Missing proof from Section 3340

Proof of Lemma 3.2 For each t ∈ [2 : T ], we apply Pinsker’s inequality to have341

1

2
· ‖xt − xt−1‖21 ≤ DKL(xt−1‖xt) =

∑
i∈[n]

xt−1(i) · log

(
xt−1(i)

xt(i)

)

=
∑
i∈[n]

xt−1(i) · log

∑
j∈[n]

exp
(
−η
(
2`t−1(j)− `t−2(j)

))
· xt−1(j)


+
∑
i∈[n]

xt−1(i) · η
(
2`t−1(i)− `t−2(i)

)

= log

∑
j∈[n]

exp
(
−η
(
2`t−1(j)− `t−2(j)

))
· xt−1(j)

+ η〈xt−1, 2`t−1 − `t−2〉

, Φt + η〈xt−1, 2`t−1 − `t−2〉, (9)

where we recall `0 = 0. The third step follows from the updating rule of optimistic Hedge. Letting342

Lt =
∑
i∈[t] `

i, next we use induction to prove the following claim for each k = 1, . . . , T :343

∑
t∈[k]

Φt = log

∑
j∈[n]

x1(j) · exp
(
−ηLk−1(j)− η`k−1(j)

) . (10)

The base case holds trivially, as Φ1 = 0. Suppose the above holds for k. Then for k + 1 we have344

k+1∑
t=1

Φt =

k∑
t=1

Φt + Φk+1

= log

∑
j∈[n]

x1(j) · exp
(
−ηLk−1(j)− η`k−1(j)

)+ log

∑
i∈[n]

exp
(
−η
(
2`k(i)− `k−1(i)

))
· xk(i)


= log

∑
i∈[n]

exp
(
−η
(
2`k(i)− `k−1(i)

))
· xk(i)

 ·
∑
j∈[n]

x1(j) · exp
(
−ηLk−1(j)− η`k−1(j)

)
= log

∑
i∈[n]

exp
(
−η
(
2`k(i)− `k−1(i)

))
· x1(i) · exp

(
−ηLk−1(i)− η`k−1(i)

)
= log

∑
i∈[n]

x1(i) · exp
(
−ηLk(i)− η`k(i)

) ,

where the third step follows from345

xk(i) =
x1(i) · exp

(
−ηLk−1(i)− η`k−1(i)

)∑
j∈[n] x

1(j) · exp (−ηLk−1(j)− η`k−1(j))
.
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Now we have (recall that Φ1 = 0)346

1

2 ln 2

∑
t∈[2:T ]

‖xt − xt−1‖21 ≤
∑
t∈[2:T ]

(
Φt + η〈xt−1, 2`t−1 − `t−2〉

)

= log

∑
j∈[n]

1

n
· exp

(
−ηLT−1(j)− η`T−1(j)

)+
∑
t∈[2:T ]

η〈xt−1, 2`t−1 − `t−2〉

≤ − min
j∈[n]

(
ηLT−1(j) + η`T−1(j)

)
+
∑
t∈[2:T ]

η〈xt−1, 2`t−1 − `t−2〉

≤ − η min
j∈[n]

LT−1(j) + η
∑

t∈[T−1]

〈xt, `t〉+ η
∑

t∈[T−1]

〈xt, `t − `t−1〉

≤ η

2 log n

η
+ η

∑
t∈[T−1]

‖`t − `t−1‖2∞

+ η
∑

t∈[T−1]

〈xt, `t − `t−1〉

≤ 2 log n+ η2
∑

t∈[T−1]

‖`t − `t−1‖2∞ + η
∑

t∈[T−1]

‖`t − `t−1‖∞

≤ 2 log n+ (η + η2)
∑

t∈[T−1]

‖`t − `t−1‖∞.

The first step follows from Eq. (9) and the second step follows from Eq. (10). The fifth step follows347

from Lemma 2.1. This finishes the proof of the lemma.348

B Missing proof from Section 4349

B.1 Case when the learning rate is small350

We handle the case when η ≤ 64/(c0
√
T ) = O(1/

√
T ) with the following lemma:351

Lemma B.1. Suppose both players run vanilla Hedge on game G2 = (A,B2) with learning rate352

η = O(1/
√
T ). Then the regret of the first player is at least Ω(

√
T ) after T rounds.353

Proof. The loss of player 2 is invariant to the strategy of player 1. Thus her strategy stays at (0.4, 0.6).354

Hence, for any t ∈ [T ], the loss for player 1 is always ` = (−0.2, 0.2) and we have355

xt(1) =
0.4 · exp(0.2ηt)

0.4 · exp(0.2ηt) + 0.6 · exp(−0.2ηt)
and

xt(2) =
0.6 · exp(−0.2ηt)

0.4 · exp(0.2ηt) + 0.6 · exp(−0.2ηt)
.

One can verify that when t ≤ 1/2η, we have xt(1) ≤ 0.5 ≤ xt(2). Therefore, the regret is356

regretxT =
∑
t∈[T ]

〈xt, `〉 −
∑
t∈[T ]

`(1) ≥
1/2η∑
t=1

〈xt, `〉 −
1/2η∑
t=1

`(1) ≥ 0 +
1

2η
· 0.2 = Ω(

√
T ).

Thus we complete the proof.357

B.2 Case when the learning rate is large358

We next work on the case when η ≥ 3. Recall that we write xt = xt(1) and yt = yt(1).359

Lemma B.2. Suppose both players run vanilla Hedge on game G3 = (A,B3) with learning rate360

η ≥ 3 Then the regret of the first player is at least Ω(T ) after T rounds.361
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Proof. Intuitively, (A,B3) is a cooperation game, and it is beneficial for both players if they choose362

to cooperate on one single action (by playing either (1, 2) or (2, 1)). However, when the learning rate363

is too large, they actually mismatch in every iterations. Formally, we have364

xt+1 =
xt · exp(η(1− 2yt))

xt · exp(η(1− 2yt)) + (1− xt) · exp(η(2yt − 1))

=
xt · exp(η(1− 2xt))

xt · exp(η(1− 2xt)) + (1− xt) · exp(η(2xt − 1))
.

The second step follows from xt = yt for all t because A = B3 in the game. Motivated by this, we365

define a sequence a0, a1, . . . where a0 = x0 = 0.4 and366

at+1 =
(1− at) · exp(η(2at − 1))

at · exp(η(1− 2at)) + (1− at) · exp(η(2at − 1))
, for each t ≥ 0.

Then at = xt if t is even and at = 1− xt when t is odd. Furthermore, by Claim B.3 below, we have367

η exp(−2η) ≤ at ≤ 0.4 for all t when η ≥ 3. Hence, we have368

regretxT ≥
∑
t∈[T ]

〈xt, `tx〉 =
∑
t∈[T ]

(2xt − 1)2 =
∑
t∈[T ]

(2at − 1)2 ≥ Ω(T ).

This finishes the proof of the lemma.369

Claim B.3. When η ≥ 3, we have η exp(−2η) ≤ at ≤ 0.4 for all t ≥ 0.370

Proof. We prove by induction on t. The base case holds trivially for t = 0. Suppose the inequality371

holds up to t. Then for t+ 1, we have372

at+1

1− at+1
=

1− at
at

· exp
(
η(4at − 2)

)
, f(at).

By simple calculation, we know that f(at) takes maximium at η exp(−2η) or 0.4. Thus,373

at+1

1− at+1
≤ max

{
f(0.4), f(η exp(−2η))

}
≤ 2

3
,

which implies that at+1 ≤ 0.4. The second step above follows from374

f(0.4) =
3

2
· exp(−0.4η) ≤ 2

3
,

using η ≥ 3 and375

f
(
η exp(−2η)

)
≤ 1

η
exp(2η) · exp

(
4η2 exp(−2η)− 2η

)
=

1

η
· exp

(
4η2 exp(−2η)

)
≤ 2

3
.

Moreover, f(at) takes minimum at the smaller solution a of 4ηa(1− a) = 1. Thus,376

at+1

1− at+1
≥ 1− a

a
· exp

(
η(4a− 2)

)
≥ 4

3
· η exp(−2η),

where the second step used exp(η(4a− 2)) ≥ exp(−2η), a ≤ 1/2η and a ≤ 1/3. This shows that377

at+1 ≥ η exp(−2η) using η ≥ 3, and finishes the induction.378

B.3 Proof of Lemma 4.3379

Note that the Matching Pennies game G1 = (A,B1) is zero-sum. It is known (see [5]) that the KL380

divergence of vanilla Hedge in zero-sum games is strictly increasing. We give a careful analysis on381

its increment each round when playing G1. (Recall that x? = y? = (0.5, 0.5).)382

Lemma B.4. Suppose both players run vanilla Hedge with η ≤ 3 on G1. Then for each t ≥ 0,383

DKL(x?‖xt+1) +DKL(y?‖yt+1)−
(
DKL(x?‖xt) +DKL(y?‖yt)

)
≥ e−7η2xt(1− xt)(2yt − 1)2 + e−7η2yt(1− yt)(2xt − 1)2.
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Proof. Focusing on the first player, we have384

DKL(x?‖xt+1)−DKL(x?‖xt)

=
∑
i∈[2]

x?(i) · log

(
x?(i)

xt+1(i)

)
−
∑
i∈[2]

x?(i) · log

(
x?(i)

xt(i)

)

=
∑
i∈[2]

x?(i) · log

(
xt(i)

xt+1(i)

)

=
∑
i∈[2]

x?(i) · η`t(i) +
∑
i∈[2]

x?(i) · log

∑
j∈[2]

xt(j) · exp(−η`t(j))


= log

∑
j∈[2]

xt(j) · exp(−η`t(j))


= log

(
xt · exp(−η(2yt − 1)) + (1− xt) · exp(−η(1− 2yt))

)
≥ xt · (−η(2yt − 1)) + (1− xt) · (−η(1− 2yt)) +

1

2e6
xt(1− xt)

(
e−η(2yt−1) − e−η(1−2yt)

)2

≥ η(2yt − 1)(1− 2xt) + e−7η2xt(1− xt)(2yt − 1)2. (11)

The third step follows from the updating rule of vanilla Hedge. The fourth step uses x?(1) = x?(2) =385

0.5 and `t(1) + `t(2) = (2yt − 1) + (1− 2yt) = 0. The sixth step uses the fact that f(x) = − log x386

is e−6-strongly convex on (0, e3). Similarly, we can prove387

DKL(y?‖yt+1)−DKL(y?‖yt) ≥ η(2xt − 1)(2yt − 1) + e−7η2yt(1− yt)(2xt − 1)2. (12)

The lemma follows by combining (11) and (12).388

We are now ready to prove Lemma 4.3.389

Proof of Lemma 4.3. We first prove that within O(1/η2) steps, the KL divergence DKL(x?‖xt) +390

DKL(y?‖yt) becomes at least 20. The proof follows directly from Lemma B.4, as for any t with391

DKL(x?‖xt) +DKL(y?‖yt) ≤ 20, we have392

DKL(x?‖xt+1) +DKL(y?‖yt+1)−
(
DKL(x?‖xt) +DKL(y?‖yt)

)
≥ e−7η2xt(1− xt)(2yt − 1)2 + e−7η2yt(1− yt)(2xt − 1)2 ≥ Ω(η2). (13)

The second step follows from the fact that both xt and yt are bounded away from 0 and 1 given the393

divergence at t is at most 20; it also used max{|2xt − 1|, |2yt − 1|} ≥ 0.2 given that the divergence394

is strictly increasing.395

Let T0 = O(1/η2) be the first time when the divergence becomes at least 20. If T/2 ≤ T0, it follows396

from (13) that the divergence at T is Ω(Tη2) = Ω(
√
Tη) using the assumption that η ≥ 16/

√
T . So397

we focus on the case T0 ≤ T/2 and thus, T = T0 + L with L ≥ T/2. We prove398

Claim B.5. At round t = T0 + τ2, the KL divergence has DKL(x?‖xt) +DKL(y?‖yt) ≥ 10−10τη.399

Setting τ =
√
T/2 so that T0 + τ2 ≤ T , we have

DKL(x?‖xT ) +DKL(y?‖yT ) ≥ Ω(
√
Tη),

and this finishes the proof of the lemma.400

Proof of Claim B.5. We proceed to use induction on τ . The cases with τ ≤ 16/η holds trivially as401

the KL divergence at T0 is already at least 20. For the induction step, suppose the claim holds up to k402

for some k ≥ 64/η at time t0 = T0 + k2. We show that at time T0 + (k + 1)2 the KL divergence403

is at least 10−10(k + 1)η. Without loss of generality, we assume that xt0 , yt0 ≥ 0.5; the other three404

cases can be handled similarly. In this region, xt with t = t0 + 1, . . . will keep decreasing and yt405

will keep increasing, until the moment when xt drops below 0.5.406
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Let t2 denote the first round t2 > t0 such that xt ≤ 0.5. We first show that it will take no more407

than k/2 rounds for xt to drop below 0.5: t2 − t0 ≤ k/2. To this end, we use t1 to denote the first408

round t1 ≥ t0 such that yt ≥ 3/4 and note that t1 ≤ t2 (since otherwise at t = t2 − 1, we have409

1/2 ≤ yt ≤ 3/4 and 1/2 ≤ xt ≤ e6 in order for xt to go below 1/2 with η ≤ 3 in the next round;410

this contradicts with the fact that the KL divergence is at least 20 after T0).411

We break the proof of t2 − t0 ≤ k/2 into two phases: t1 − t0 ≤ k/4 and t2 − t1 ≤ k/4.412

Phase 1. First we prove that it takes no more than k/4 steps for yt to get larger than 3/4. To this413

end, we notice that for all t ∈ [t0 : t1 − 1], we have yt ≤ 3/4 and thus, xt ≥ 3/4 since the KL414

divergence is at least 20. During all these rounds the loss vector `ty of the second player satisfies415

`ty(1) ≤ −3/4 + 1/4 ≤ −0.5 and `ty(2) ≥ 0.5. Thus we have (using 0.5 ≤ yt0 ≤ yt1−1 ≤ 3/4)416

3 ≥ yt1−1

1− yt1−1
≥ exp

(
η(t1 − t0 − 1)

)
· yt0

1− yt0
≥ exp

(
η(t1 − t0 − 1)

)
.

Thus t1 − t0 ≤ (2/η) + 1 ≤ k/4 using k ≥ 64/η and η ≤ 3.417

Phase 2. Next we prove that, starting from t1, it takes less than k/4 steps for xt to drop below 0.5.418

Note that for each t ∈ [t1 : t2 − 1], the loss vector `tx of the first player satisfies `tx(1) ≥ 0.5 and419

`tx(2) ≤ −0.5. Moreover, we assume without loss of generality that 1− xt1 ≥ exp(−(k + 1)η/20);420

otherwise the KL divergence at t1 is already bigger than 10−10(k + 1)η and we are done. Therefore,421

1 ≤ xt2−1

1− xt2−1
≤ exp

(
− η(t2 − t1 − 1)

)
· xt1

1− xt1
≤ exp

(
η(−(t2 − t1 − 1) + (k + 1)/20)

)
Thus t2 − t1 ≥ 1 + (k + 1)/20 ≤ k/4 using k ≥ 64/η ≥ 64/3.422

Now we are at time t2 and we examine the next R = 3/η ≤ k/2 rounds [t2 : t2 +R]; these are the
rounds where we will gain a lot in the KL divergence. Given that xt2 just dropped below 1/2, we
have xt2 ≥ 0.5 · exp(−2η) and thus, for every t ∈ [t2 : t2 +R],

xt ≥ xt2 · exp(−2η ·R) ≥ 0.5 · e−12.

Consequently, we have423

(
DKL(x?‖xt2+R) +DKL(y?‖yt2+R)

)
−
(
DKL(x?‖xt2) +DKL(y?‖yt2)

)
≥

t2+R−1∑
t=t2

e−7η2xt(1− xt)(2yt − 1)2 + e−7η2yt(1− yt)(2xt − 1)2

≥
t2+R−1∑
t=t2

e−7η2xt(1− xt)(2yt − 1)2 ≥ 3

η
· e−7η2 · 1

4
e−12 · 1

4
≥ 10−10η.

So we conclude that after at most k/4 + k/4 + k/2 = k steps, the KL divergence increase at least424

10−10η. Thus at time T0 + k2 + k ≤ T0 + (k+ 1)2, the KL divergence is at least 10−10kη+ 10−10η425

= 10−10(k + 1)η. This finishes the induction and the proof of the claim.426

C Missing proof from Section 5427

C.1 Proof of Lemma 5.2428

Fix any swap function φ : [n]→ [n]. By Lemma 2.1, every ALGj achieves low regret. Thus,429

∑
t∈[T ]

〈qtj , xt(j)`t〉 ≤
∑
t∈[T ]

xt(j) · `t(φ(j)) +
2 log n

η
+ η

∑
t∈[T ]

‖xt(j)`t − xt−1(j)`t−1‖2∞, (14)
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where we used xt = Qtxt, set `0 = 0 and x0 = 1/n = x1. Consequently, we have430 ∑
t∈[T ]

〈xt, `t〉 =
∑
t∈[T ]

〈xtQt, `t〉 =
∑
t∈[T ]

∑
j∈[n]

〈xt(j)qtj , `t〉 =
∑
j∈[n]

∑
t∈[T ]

〈qtj , xt(j)`t〉

≤
∑
j∈[n]

∑
t∈[T ]

xt(j) · `t(φ(j)) +
2 log n

η
+ η

∑
t∈[T ]

‖xt(j)`t − xt−1(j)`t−1‖2∞


=
∑
t∈[T ]

∑
j∈[n]

xt(j) · `t(φ(j)) +
2n log n

η
+ η

∑
t∈[T ]

∑
j∈[n]

‖xt(j)`t − xt−1(j)`t−1‖2∞

where the first inequality follows from (14). Furthermore, we have (using ‖`t‖∞ ≤ 1 and ‖xt‖1 = 1)431 ∑
j∈[n]

‖xt(j)`t − xt−1(j)`t−1‖2∞ ≤
∑
j∈[n]

(
‖xt(j)`t − xt−1(j)`t‖∞ + ‖xt−1(j)`t − xt−1(j)`t−1‖∞

)2

≤ 2
∑
j∈[n]

‖xt(j)`t − xt−1(j)`t‖2∞ + 2
∑
j∈[n]

‖xt−1(j)`t − xt−1(j)`t−1‖2∞

= 2
∑
j∈[n]

(
xt(j)− xt−1(j)

)2 ‖`t‖2∞ + 2
∑
j∈[n]

(xt−1(j))2‖`t − `t−1‖2∞

= 2
(
‖xt − xt−1‖22 · ‖`t‖2∞ + ‖xt−1‖22 · ‖`t − `t−1‖2∞

)
≤ 2
(
‖xt − xt−1‖21 + ‖`t − `t−1‖2∞

)
We can combine all these inequalities (and note that x0 = x1) to finish the proof of the lemma.432

C.2 Proof of Lemma 5.3433

We start the proof of Lemma 5.3 with the following definition.434

Definition C.1. Given Markov chains Q,Q′ ∈ Rn×n, we say Q′ is (η1, . . . , ηn)-approximate to Q435

if (1− ηi)q′i,j ≤ qi,j ≤ (1 + ηi)q
′
i,j for every i, j ∈ [n], where we write Q = (qi,j) and Q′ = (q′i,j).436

We are ready to state our perturbation analysis on ergodic1 Markov chains.437

Lemma C.2. Given two ergodic Markov chains Q and Q′, where Q′ is (η1, . . . , ηn)-approximate to438

Q, the stationary distribution p, p′ of Q and Q′, respectively, satisfy ‖p− p′‖1 ≤ 8
∑n
i=1 ηi.439

The proof of Lemma C.2 relies on the classical Markov chain tree theorem (see [1]). To state it we440

need the following definition.441

Definition C.3. SupposeQ is an ergodic Markov chain andG = (V,E) with V = [n] is the weighted442

directed graph associated with Q. We say a subgraph T of G is a directed tree rooted at i ∈ [n] if (1)443

T does not contain any cycles and (2) Node i has no outgoing edges, while every other node j ∈ [n]444

has exactly one outgoing edge. For each node i ∈ [n], we write Ti to denote the set of all directed445

trees rooted at node i. We further define446

Σi =
∑
T∈Ti

∏
(a,b)∈T

qa,b and Σ =
∑
i∈[n]

Σi,

i.e., the weight of T is the product of its edge weights and Σi is the sum of weights of trees in Ti.447

We can now formally state the Markov chain tree theorem.448

Theorem C.4 (Markov chain tree theorem; see [1]). Suppose Q is an erogidc Markov chain and p is449

its stationary distribution. Then we have pi = Σi/Σ for every i ∈ [n].450

We now use the Markov chain tree theorem to prove Lemma C.2.451

1Note that Qt used in BM-Optimistic-Hedge is always ergodic.
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Proof of Lemma C.2. Note that the lemma is trivial when
∑n
i=1 ηi > 1/4 so we assume without loss452

of generality that
∑n
i=1 ηi ≤ 1/4. For any i ∈ [n], we have453

Σi =
∑
T∈Ti

∏
(a,b)∈T

qa,b ≤
∑
T∈Ti

∏
(a,b)∈T

(1 + ηa)q̃a,b

≤
∏
j∈[n]

(1 + ηj)
∑
T∈Ti

∏
(a,b)∈T

q′a,b =
∏
j∈[n]

(1 + ηj) · Σ′i ≤

1 + 2
∑
j∈[n]

ηj

Σ′i. (15)

The third step holds because for any tree T ∈ Ti, each node, other than node i, appears exactly once454

as a when calculating the weight of T . The last step follows from the fact that when
∑n
i=1 ηi ≤ 1/4,455 ∏

j∈[n]

(1 + ηj) ≤
∏
j∈[n]

eηj = e
∑

j∈[n] ηj ≤ 1 + 2
∑
j∈[n]

ηj .

Similarly, we have456

Σi ≥
∑
T∈Ti

∏
(a,b)∈T

(1− ηa)q̃a,b ≥
∏
j∈[n]

(1− ηj) · Σ′i ≥

1− 2
∑
j∈[n]

ηj

Σ′i. (16)

The last inequality holds since, for
∑n
j=1 ηj ≤ 1/2, we have457

∏
j∈[n]

(1− ηj) ≥
∏
j∈[n]

e−2ηj = exp

−2
∑
j∈[n]

ηj

 ≥ 1− 2
∑
j∈[n]

ηj .

Since Σ =
∑
i Σi, we have (1− 2

∑
i ηi) Σ̃ ≤ Σ ≤ (1 + 2

∑
i ηi) Σ̃. Applying Theorem C.4,458

‖p− p′‖1 =
∑
i∈[n]

|pi − p′i| =
∑
i∈[n]

∣∣∣Σi/Σ− Σi
′/Σ′

∣∣∣ ≤ ∑
i∈[n]

∣∣∣Σi/Σ− Σi
/

Σ′
∣∣∣+

∑
i∈[n]

∣∣∣Σi/Σ′ − Σ′i
/

Σ′
∣∣∣

≤
∑
i∈[n]

2
∑n
i=1 ηi

1− 2
∑n
i=1 ηi

∣∣∣Σi/Σ∣∣∣+
∑
i∈[n]

2
∑
j∈[n]

ηj ·
∣∣∣Σ′i/Σ′∣∣∣ ≤ 6

∑
i∈[n]

ηi.

This finishes the proof of the lemma.459

Finally we prove Lemma 5.3:460

Proof of Lemma 5.3. We start with the following claim, which states that entries of Qt and Qt−1461

only differs by a small multiplicative factor.462

Claim C.5. Suppose that the learning rate η ≤ 1/6 and let x0 = 1/n = x1. Then for any t ≥ 2, Qt463

is a (η1, . . . , ηn)-approximate to Qt−1, where ηj = 2ηxt−2(j) + 4ηxt−1(j) for each j ∈ [n].464

Combing Claim C.5 and Lemma C.2, we have465

‖xt − xt−1‖1 ≤ 8
∑
j∈[n]

ηj = 8
∑
j∈[n]

(
2xt−2(j) + 4xt−1(j)

)
η = 48η.

This finishes the proof of Lemma 5.3.466

Proof of Claim C.5. Let x0 = 1/n = x1. By the updating rule of optimisitic Hedge, we have for467

any t ≥ 2, i, j ∈ [n] that468

qtj(i) =
exp(−η(2xt−1(j)`t−1(i)− xt−2(j)`t−2(i))) · qt−1

j (i)∑
k∈[n] exp(−η(2xt−1(j)`t−1(k)− xt−2(j)`t−2(k))) · qt−1

j (k)

≤
exp(ηxt−2(j)) · qt−1

j (i)∑
k∈[n] exp(−2ηxt−1(j)) · qt−1

j (k)

= exp
(
ηxt−2(j) + 2ηxt−1(j)

)
· qt−1
j (i)

≤ (1 + 2ηxt−2(j) + 4ηxt−1(j)) · qt−1
j (i).
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The second step follows from `t ∈ [0, 1]n and the last step follows from exp(a) ≤ 1+2a for a ≤ 1/2.469

The other side holds similarly:470

qtj(i) =
exp(−η(2xt−1(j)`t−1(i)− xt−2(j)`t−2(i))) · qt−1

j (i)∑
k∈[n] exp(−η(2xt−1(j)`t−1(k)− xt−2(j)`t−2(k))) · qt−1

j (k)

≥
exp(−2ηxt−1(j)) · qt−1

j (i)∑
k∈[n] exp(ηxt−2(j)) · qt−1

j (k)

= exp
(
− ηxt−2(j)− 2ηxt−1(j)

)
· qt−1
j (i)

≥ (1− ηxt−2(j)− 2ηxt−1(j)) · qt−1
j (i).

Thus completing the proof.471

C.3 Proof of Corollary 5.4472

The algorithm works as follow. We set

η =
(n log n)1/4

m1/2T 1/4

and Br = 1 at initialization, for any player i ∈ [m] and τ = 1, . . . , T473

1. Play xti according to BM-Optimistic-Hedge, and receive `ti.474

2. If
∑τ
t=2 ‖`ti − `

t−1
i ‖2∞ +

∑τ
t=2 ‖xti − x

t−1
i ‖21 ≥ Br.475

(a) Update Br+1 = 2Br, r ← r + 1, ηr = min
{√

n logn
Br

, η
}

.476

(b) Start a new run of BM-Optimistic-Hedge with learning rate ηr.477

For any round r, we use Tr to denote its final iteration and478

Ir =

Tr∑
t=Tr−1+1

‖xti − xt−1
i ‖

2
1 +

Tr∑
t=Tr−1+1

‖`ti − `t−1
i ‖

2
∞.

Then we have479

swap-regretTr−1+1:Tr
≤ 2n log n

ηr
+ 2ηr

 Tr∑
t=Tr−1+1

‖xti − xt−1
i ‖

2
1 +

Tr∑
t=Tr−1+1

‖`ti − `t−1
i ‖

2
∞


≤ 2(n log n)3/4 · T 1/4m1/2 + 2

√
n log nBr + 2ηr · Ir

≤ 2(n log n)3/4 · T 1/4m1/2 + 2
√
n log nBr + 2

√
2n log nIr

≤ 2(n log n)3/4 · T 1/4m1/2 + 4
√

2n log nIr

≤ 2(n log n)3/4 · T 1/4m1/2 + 4
√

2n log n ·

√√√√( T∑
t=2

‖xti − x
t−1
i ‖21 +

T∑
t=2

‖`ti − `
t−1
i ‖2∞

)
The first step follows from Lemma 5.2, the second step follows from the definition of Ir and the fact480

1

ηr
≤ 1

η
+

√
Br

n log n
=

m1/2T 1/4

(n log n)1/4
+

√
Br

n log n

The third step follows from ηr ≤
√

n logn
Br

≤
√

n logn
Ir/2

, and the last step comes from
√
Br ≤

√
2Ir.481

Since the number of round is at most O(log T ), we have482

swap-regretT ≤ log T

2(n log n)3/4T 1/4m1/2 + 4
√

2n log n ·

√√√√2

(
T∑
t=1

‖xti − x
t−1
i ‖21 +

T∑
t=1

‖`ti − `
t−1
i ‖2∞

)
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If all players adopt the algorithm, then we know their learning rate is no greater than η = (n logn)1/4

m1/2T 1/4 ,483

thus we know ‖xti − x
t−1
i ‖1 ≤ O(η) = O

(
(n logn)1/4

m1/2T 1/4

)
(see Lemma 5.3) and ‖`ti − `

t−1
i ‖∞ ≤484 ∑

j 6=i ‖xtj − x
t−1
j ‖1 ≤ m ·O(η) = O

(
m1/2(n logn)1/4

T 1/4

)
. Thus the swap regret is at most485

O
(

(n log n)3/4m1/2T 1/4 log T
)
.

If the player is facing an adversary, then ‖xti − x
t−1
i ‖1 ≤ 2 and ‖`ti − `

t−1
i ‖∞ ≤ 1, thus we conclude486

its regret is at most487

O
(√

n log nT log T + (n log n)3/4m1/2T 1/4 log T
)
.

D Another no swap regret algorithm488

We prove the optimistic variant of a folklore algorithm, originally appeared in [7], could also achieve489

fast convergence of swap regret. Our perturbation analysis again plays a key role in the regret analysis.490

Define Φ to be all swap functions that map [n] to [n]. We have |Φ| = nn. For any φ ∈ Φ, define the491

swap matrice Sφ as: Sφi,j = 1 if φ(i) = j and Sφi,j = 0 otherwise. It is easy to see that Sφ contains492

exactly one 1 each row.493

[7] treats each swap matrice Sφ as an expert, and run Hedge algorithm on all nn swap matrices. At494

time t, the output strategy pt is determined by these experts via solving a fix point problem2. The495

optimisitic variant of [7] is shown in Algorithm 1. We first analysis the regret,496

Algorithm 1
1: for t = 1, 2, . . . , do
2: Play pt and receive the loss vector lt.
3: Update

qt+1(φ) =
xt(φ) exp(−η(2xtSφ`t − xt−1Sφ`t−1))∑
φ∈Φ x

t(φ) exp(−η(2xtSφ`t − xt−1Sφ`t−1))
∀φ ∈ Φ

4: Compute xt+1 = xt+1Q(t+1), where

Q(t+1) =
∑
φ∈Φ

qt+1(φ)Sφ.

5: end for

Lemma D.1. Algorithm 1 achieves regret497

swap-regretT ≤
n log n

η
+ 2η

T∑
t=2

‖xt − xt−1‖21 + 2η

T∑
t=2

‖`t − `t−1‖2∞.

2The algorithm is not efficient in general. However, we can turn it into an effiecient one by considering only
n2 swap matrices that are equal to indentical mapping except for one coordinate. The regret bound will only
blow up by a

√
n factor.
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Proof. According to the updating rule, for any φ ∈ Φ, we have498

swap-regretT =

T∑
t=2

〈xt, `t〉 −max
φ∈Φ

T∑
t=2

xtSφ`t

=

T∑
t=2

〈xtQ(t), `t〉 −max
φ∈Φ

T∑
t=2

xtSφ`t

=

T∑
t=2

∑
φ∈Φ

xt(qt(φ)Sφ)`t −max
φ∈Φ

T∑
t=2

xtSφ`t

=

T∑
t=2

∑
φ∈Φ

qt(φ) · xtSφ`t −max
φ∈Φ

T∑
t=2

xtSφ`t

≤ n log n

η
+ η

T∑
t=2

max
φ∈Φ

∣∣xtSφ`t−1 − xt−1Sφ`t−1
∥∥2

≤ log n

η
+ 2η

T∑
t=2

‖xt − xt−1‖21 + 2η
T∑
t=2

‖`t − `t−1‖2∞.

The fifth step follows the regret bound of optimistic Hedge and the last step follows from the fact that499

for any φ ∈ Φ,500 ∣∣xtSφ`t − xtSφ`t∣∣2 =
∣∣xtSφ`t − xt−1Sφ`t + xt−1Aφ`

t − xt−1Sφ`t−1
∣∣2

≤ 2
∣∣xtSφ`t − xt−1Sφ`t|2 + 2|xt−1Sφ`t − xt−1Sφ`t−1

∣∣2
= 2〈xt − xt−1, Sφ`t〉+ 2〈xt−1Sφ, `t − lt−1〉
≤ 2‖xt − xt−1‖21‖Sφ`t‖2∞ + 2‖xt−1Sφ‖1‖`t − `t−1‖2∞
≤2‖xt − xt−1‖21 + 2‖`t − `t−1‖2∞.

Thus completing the proof.501

It remains to show that the environment is stable. Again, since xt is the stationary distribution of502

Q(t), we only need some perturbation analysis on Q(t). In particular, we have503

Lemma D.2. For any t, Q(t) is (6η, . . . , 6η) approximate to Q(t+1).504

Proof. For any φ, we have505

qt+1(φ) =
qt(φ) exp(−η(2xtAφ`

t − xt−1Aφ`
t−1))∑

φ∈Φ q
t(φ) exp(−η(2xtAφ`t − xt−1Aφ`t−1))

≤ qt(φ) exp(η)∑
φ∈Φ q

t(φ) exp(−2η)

≤ (1 + 6η)qt(φ)

Similarly, we have506

qt+1(φ) =
qt(φ) exp(−η(2xtAφ`

t − xt−1Aφ`
t−1))∑

φ∈Φ q
t(φ) exp(−η(2xtAφ`t − xt−1Aφ`t−1))

≥ qt(φ) exp(−2η)∑
φ∈Φ q

t(φ) exp(η)

≥ (1− 6η)qt(φ)

Thus, for any i, j ∈ [n], we have507

Q
(t+1)
i,j =

∑
φ∈Φ

qt+1(φ)Sφi,j ≤ (1 + 6η)
∑
φ∈Φ

qt(φ)Sφi,j = (1 + 6η)Q
(t)
i,j
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and508

Q
(t+1)
i,j =

∑
φ∈Φ

qt+1(φ)Sφi,j ≥ (1− 6η)
∑
φ∈Φ

qt(φ)Sφi,j ≥ (1− 6η)Q
(t)
i,j

Thus we conclude Q(t) is (6η, . . . , 6η) approximate to Q(t+1).509

Combining the above results, we have510

Theorem D.3. Suppose every player uses Algorithm 1 and choose η = O
(

( logn
nm2T )1/4

)
, then each511

individual’s swap regret is at most O
(
m1/2n5/4(log n)3/4T 1/4

)
.512

Proof. By Lemma D.1, for any palyer i ∈ [m], we have513

swap-regretT ≤
n log n

η
+ 2η

T∑
t=2

‖xti − xt−1
i ‖

2
1 + 2η

T∑
t=2

‖`ti − `t−1
i ‖

2
∞

≤n log n

η
+ 2η

T∑
t=2

‖xt − xt−1‖21 + 2mη

T∑
t=2

∑
j 6=i

‖xtj − xt−1
j ‖

2
1

where wt denotes the other player’s strategy. Moreover, since Q(t−1) is (6η, . . . , 6η) approximates514

to Q(t), we know515

‖xti − xt−1
i ‖1 ≤ 8 ·

n∑
i=1

6η = O(nη)

holds for any i. Thus we have516

swap-regretT ≤
n log n

η
+ 2η

T∑
t=2

‖xt − xt−1‖21 + 2mη

T∑
t=2

∑
j 6=i

‖xtj − xt−1
j ‖

2
1

≤ n log n

η
+O(η3n2m2T ).

Choosing η = O
(

( logn
nm2T )1/4

)
, the regret is517

swap-regretT = O
(
n5/4(log n)3/4T 1/4m1/2

)
.

518

E Price of anarchy519

In this section, we show that a large class of no swap regret algorithm satisfies the low approximate520

regret property (see Definition E.2). Thus when all players adopt such algorithm, they experience fast521

convergence to an approximately optimal social welfare in smooth games (see Definition E.1). In522

particular, we show that the average social welfare converges to an approximately optimal welfare523

at rate O(1/T ). The proof in this section is straightforward, our aim is to point out that such fast524

convergence rate generally holds for no-swap regret algorithms. We first introduce the smooth game.525

Recall L(x) =
∑
i∈[m] Li(x) is the summation of each individual’s loss under strategy profile x.526

Definition E.1 (Smooth game). A cost minimization game is (λ, µ)-smooth if for all strategy profiles527

x and x?,
∑
i Li(x?i , x−i) ≤ λ · L(x?) + µ · L(x).528

A wide range of games belongs to smooth game, including routing games, auctions, etc. We refer529

interested reader to [25] for detailed coverage.530

We next introduce the definition of low approximate regret.531
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Definition E.2 (Low approximate regret [14]). A learning algorithm satisfies the low approximate532

regret property for given parameters (ε, A(n)) , if533

(1− ε)
T∑
t=1

〈xt, `t〉 ≤ min
i
L(i) +

A(n)

ε
.

Lemma E.3. The BM reduction transfers the low approximate regret property. In particular, if we534

reduce from a no external regret algorithm satisfying low approximate regret with(ε, A(n)), then the535

no swap regret algorithm satisfies low approximate regret with (ε, nA(n)).536

Proof. For any fixed i, using the low approximate regret property, we know537

(1− ε)
T∑
t=1

〈qtj , xt(j)`t〉 ≤ min
i′

T∑
t=1

xt(j)`t(i′) +
A(n)

ε
≤

T∑
t=1

xt(j)`t(i) +
A(n)

ε
.

Consequently, we have538

(1− ε)
T∑
t=1

〈xt, `t〉 = (1− ε)
T∑
t=1

〈xtQ(t), `t〉

= (1− ε)
T∑
t=1

n∑
j=1

〈xt(j)qtj , `t〉

= (1− ε)
n∑
j=1

T∑
t=1

〈qtj , xt(j)`t〉

≤
n∑
j=1

(
T∑
t=1

xt(j)`t(i) +
A(n)

ε

)

=

T∑
t=1

n∑
j=1

xt(j)`t(i) +
nA(n)

ε

=

T∑
t=1

`t(i) +
nA(n)

ε
.

Thus concluding the proof.539

A direct corollary of Lemma E.3 and Theorem 3 in [14] is540

Theorem E.4. In a (λ, µ)-smooth game, if all players use no swap regret algorithm generated from541

BM reduction and a no external regret algorithm satisfying low approximate regret property with542

parameter ε and A(n) = log n, then we have543

1

T

T∑
t=1

L(xt) ≤
λ

1− µ− ε
·OPT +

m

T
· 1

1− µ− ε
· n log n

ε
.

where OPT denotes the optimal social welfare, i.e., minx L(x).544
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