
Supplement for Improved Variational Bayesian
Phylogenetic Inference with Normalizing Flows

A Subsplit Bayesian networks
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Figure 1: A simple subsplit Bayesian network for a leaf set that contains 4 species A, B, C and D.
Left: Examples of rooted phylogenetic trees. Middle: The corresponding SBN assignments. For
ease of illustration, subsplit (W,Z) is represented as W

Z in the graph. The dashed gray subgraphs
represent fake splitting processes where splits are deterministically assigned, and are used purely to
complement the networks such that the overall network has a fixed structure. Right: The SBN for
these examples. This figure is adapted from Zhang and Matsen IV (2019).

Subsplit Bayesian networks (SBNs) introduced by Zhang and Matsen IV (2018) provide a family
of flexible distributions on tree topologies. A subsplit Bayesian network BX on a leaf set X of size
N is a Bayesian network where the nodes take on subsplit or singleton clade values that represent
the local topological structures of trees (Figure 1). To encode a rooted tree topology to an SBN
representation, one can follow the splitting process (see the solid dark subgraphs in Figure 1, middle)
of the tree and assign the subsplits to the corresponding nodes along the way, resulting in a unique
subsplit decomposition of the tree topology. Given the subsplit decomposition of a rooted tree
τ = {s1, s2, . . .}, where s1 is the root subsplit, the SBN-induced tree probability of τ is

psbn(T = τ) = p(S1 = s1)
∏
i>1

p(Si = si|Sπi = sπi)

where Si denote the subsplit- or singleton-clade-valued random variables at node i and πi is the
index set of the parents of Si. As Bayesian networks, SBN-induced distributions are all naturally
normalized. We can also adjust the structures of SBNs for a wide range of expressive distributions, as
long as they remain valid directed acyclic graphs (DAGs). Although in practice, we find the simplest
SBN (the one with a full and complete binary tree structure as shown in Figure 1) is good enough.

The SBN framework also generalizes to unrooted trees, which are the most common type of phyloge-
netic trees. By viewing unrooted trees as rooted trees with unobserved roots and marginalizing out
the unobserved root node, we have the SBN probability estimates for unrooted trees

psbn(T u = τ) =
∑
s1∼τ

p(S1 = s1)
∏
i>1

p(Si = si|Sπi = sπi)

where ∼ means all root subsplits that are compatible with τ (i.e., root subsplits of the edges of τ ).

B More details on variational Bayesian phylogenetic inference

The family of approximating distributions used in variational Bayesian phylogenetic inference (VBPI)
is formed as Qφ,ψ = Qφ(τ) ·Qψ(q|τ), which is the product of an SBN-based distribution Qφ(τ)
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over the tree topologies and a diagonal Lognormal distribution Qψ(q|τ) over the branch lengths. The
best approximation is obtained by maximizing the multi-sample lower bound

φ∗,ψ∗ = arg min
φ,ψ

EQφ,ψ(τ1:K ,q1:K) log

(
1

K

K∑
i=1

p(Y |τ i, qi)p(τ i, qi)
Qφ(τ i)Qψ(qi|τ i)

)
where Qφ,ψ(τ1:K , q1:K) =

∏K
i=1Qφ(τ i)Qψ(qi|τ i). To parameterize SBNs in VBPI, we need a

sufficiently large subsplit support of CPTs (i.e., where the associate conditional probabilities are
allowed to take nonzero values) that covers favorable parent child subsplit pairs from trees with high
posterior probabilities. In practice, a simple bootstrap-based approach has been found effective for
providing such a support (Zhang and Matsen IV, 2019). Let Sr denote the set of root subsplits (e.g.,
the splits) in the support and Sch|pa denote the set of parent-child subsplit pairs in the support. The
CPTs can be defined via the softmax function as follows

p(S1 = s1) =
exp(φs1)∑
sr∈Sr

exp(φsr)
, p(Si = s|Sπi = t) =

exp(φs|t)∑
s∈S·|t exp(φs|t)

We can evaluate the SBN probabilities of tree topologies efficiently through a two pass algorithm
(Zhang and Matsen IV, 2018). Sampling from SBNs is also straightforward via ancestral sampling.

As the naive brute-force parameterization for the branch length distributions of different tree topolo-
gies requires a large number of parameters when the high-probability domain of the tree topology
posterior are diffuse, Zhang and Matsen IV (2019) amortized the branch length variational distribution
over different tree topologies via their shared local structures. For example, one can simply use
the splits of the edges on phylogenetic trees, and assign parameters for each split in Sr. A more
sophisticated parameterization that uses more tree-dependent information, i.e., primary subsplit pairs
(PSPs), has been found to provide better approximations across tree topologies.

C Proofs for permutation equivariance

C.1 Proof of proposition 1

Proof. For any permutation π, we have

zπ(i) = xπ(i) + γxπ(i)
a

(∑
i

wxπ(i)
xπ(i) + b

)
= xπ(i) + γxπ(i)

a

(∑
i

wxixi + b

)
.

Therefore, transformation in (5) is permutation equivariant. Let η =
∑
i wxixi + b,

∂z

∂x
= I + a′(η)γxw

T ⇒
∣∣∣∣det

∂z

∂x

∣∣∣∣ =
∣∣det(I + a′(η)γxw

T )
∣∣ =

∣∣∣∣∣1 + a′(η)
∑
i

γxiwxi

∣∣∣∣∣
When a = tanh, 0 < a′(η) < 1. Therefore, the transformation is invertible if

∑
i γxiwxi ≥ −1. To

satisfy this condition, we can use the same numerically stable parameterization as in Rezende and
Mohamed (2015). Note that the determinant of the Jacobian is permutation invariant.

C.2 Proof of proposition 2

Proof. Let π be a permutation of S and Sc, that is π(S) is a rearrangement of S and π(Sc) is a
rearrangement of Sc. Since the affine coupling transformation in (9) keeps Sc untouched, we have

zπ(e) = q̃π(e), ∀ e ∈ Sc

and ∀ e ∈ S,
zπ(e) = q̃π(e) exp

(
απ(e)(q̃π(Sc))

)
+ βπ(e)(q̃π(Sc))

= q̃π(e) exp
(
απ(e)(q̃Sc)

)
+ βπ(e)(q̃Sc).

The last equality is due to the permutation invariance of απ(e) and βπ(e) on Sc, which can be easily
verified as follows1

απ(e)(q̃π(Sc)) = (wα
π(e))

T ρ

 ∑
e′∈π(Sc)

q̃e′we′ + b

 = (wα
π(e))

T ρ

(∑
e′∈Sc

q̃e′we′ + b

)
= απ(e)(q̃Sc)

1We show the case of απ(e) here, and βπ(e) follows similarly.
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Therefore, the transformation in (9) is permutation equivariant on S and Sc.

D The lower bound for VBPI-NF

Let ψ̄ = (ψ,ψNF). By the change of variable formula (2), the density of the transformed branch
length approximation in VBPI-NF is

Qψ̄(q̃(L+1)|τ) = Qψ(q̃(0)|τ)

L∏
`=0

∣∣∣∣det
∂q̃(`+1)

∂q̃(`)

∣∣∣∣−1

(D.1)

where Qψ(q̃(0)|τ) is the density function of a diagonal Gaussian distribution and the last iterate
q̃(L+1) = exp(q̃(L)) maps the branch lengths back to the non-negative domain. The approximating
distribution in VBPI-NF then takes the following form

Qφ,ψ̄(q, τ) = Qφ(τ)Qψ̄(q|τ)

and we can compute the annealed version of the multi-sample lower bound (Burda et al., 2016; Mnih
and Rezende, 2016) as follows

L̃Kλn(φ,ψ,ψNF) = E
Qφ,ψ̄

(
τ1:K ,(q̃(L+1))

1:K
) log

 1

K

K∑
i=1

[
p
(
Y |τ i,

(
q̃(L+1)

)i)]λn
p
(
τ i,
(
q̃(L+1)

)i)
Qφ(τ i)Qψ̄

((
q̃(L+1)

)i |τ i)


= E
Qφ,ψ

(
τ1:K ,(q̃(0))

1:K
) log

 1

K

K∑
i=1

[
p
(
Y |τ i,

(
q̃(L+1)

)i)]λn
p
(
τ i,
(
q̃(L+1)

)i)
Qφ(τ i)Qψ

((
q̃(0)

)i |τ i) L∏
`=0

∣∣∣∣det
∂(q̃(`+1))

i

∂(q̃(`))
i

∣∣∣∣−1


The last equation is due to the law of the unconscious statistician (LOTUS). When L = 0 (no nor-
malizing flows involved), q̃(1) = exp(q̃(0)) follows the diagonal Lognormal distribution. Therefore,
the density in (D.1) is just the density function of the diagonal Lognormal distribution and the above
annealed multi-sample lower bound for VBPI-NF reduces to the annealed multi-sample lower bound
for VBPI (Zhang and Matsen IV, 2019).

E The VBPI-NF Alogrithm

Algorithm 1 The VBPI-NF algorithm
1: φ,ψ,ψNF ← Initialize parameters, n = 1
2: while not converged do
3: τ1, . . . , τK ← Random samples from the current SBN-based tree space approximating

distribution Qφ(τ) via ancestral sampling
4: ε1, . . . , εK ← Random samples from the multivariate standard normal distribution N (0, I)

5: g ← ∇φ,ψ,ψNFL̃Kλn(φ,ψ,ψNF; τ1:K , ε1:K) (Use any suitable Monte Carlo gradient esti-
mate, see Zhang and Matsen IV (2019) for examples)

6: φ,ψ,ψNF ← Update parameters using gradients g (e.g., SGA)
7: n← n+ 1
8: end while
9: return φ,ψ,ψNF
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