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1 Results and Implementation Details: Downsampled ImageNet

1.1 Experiments on ImageNet32×32

Implementation details. We use the same ResNeXt-29 architectures from the CIFAR experiments.
We use SGD with 0.9 momentum and a batch size of 1024 on 8 GPUs (128 per GPU). The weight
decay is 0.0005 and the initial learning rate 0.08. We train the models for 80 epochs and divide
the learning rate by a factor 5 at epoch 20, 40 and 60. We use the same data normalization and
augmentations as in [1].

Primal formulation. Using the same baseline architecture 1×128d as for the CIFAR experiments,
we train the model achieving the optimum, 37×10d, and report results in Table 1. Our optimal model
achieves lower top-1 and top-5 errors than the baseline ResNeXt architecture 3×64d derived in [5] at
a similar parameter budget. We use the same augmentations and learning rate schedule as [1].

Dual formulation. Using the same baseline 1×128d and optimally compact architecture 10×10d
derived for the CIFAR experiments, we observe a similar trend: our optimal model suffers lighter
top-1 and top-5 degradation than the Wide ResNet variant with a reduced parameter budget, with 2.8
times fewer parameters than the baseline. Sampling models on the dual curve with lower ρ such as
3×40d, we find models that suffer less than a percent drop in top-1 and top-5 error with a significantly
lower parameter count.

ρ Params Top-1 error Top-5 error
Wide ResNet 28-10 [1] - 37.1M 40.96 18.87
ResNet-29, 1×128d† 1 14.8M 40.61 17.82
ResNeXt-29, 3×64d† 1 14.4M 39.58 17.09
ResNeXt-29, 37×10d (Ours) 1 14.8M 38.41 16.13
Wide ResNet 28-5 [1] 1.6 9.5M 45.36 21.36
ResNeXt-29, 10×10d (Ours) 2.8 5.2M 43.36 19.65
ResNeXt-29, 3×40d (Ours) 1.8 8.0M 41.54 18.58

Table 1: Primal and dual results for ResNet baselines on ImageNet32×32. Top-1 and top-5
errors (in %) and model sizes are reported. The optimally smooth model, 37×10d, surpasses the
baseline architectures from [5] (indicated with †) with the same number of parameters. The optimally
compact model, 10×10d, achieves slightly degraded results but with 2.8 times fewer parameters.
Results are averaged over 5 runs.

1.2 Experiments on ImageNet64×64

Implementation details. In order to adapt the ResNeXt-29 architectures used for CIFAR-10/100 and
ImageNet32×32 to the resolution of ImageNet64×64, we add an additional stack of three residual
blocks following [1]. Following the general parametrization of ResNeXt [5], we multiply the width
of this additional stack of blocks by 2 and downsample the spatial maps by the same factor using a
strided convolution in the first residual block. We use SGD with 0.9 momentum and a batch size of
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512 on 8 GPUs (64 per GPU). The weight decay is 0.0005 and the initial learning rate 0.04. We train
the models for 60 epochs and divide the learning rate by a factor 5 at epoch 20, 30 and 40. We use
the same data normalization and augmentations as [1].

ρ Params Top-1 error Top-5 error
Wide ResNet 36-5 [1] - 37.6M 32.34 12.64
ResNet-38, 1×96d† 1 37.5M 29.36 10.10
ResNeXt-38, 2×64d† 1 39.0M 28.86 9.72
ResNeXt-38, 22×10d (Ours) 1 36.3M 28.34 9.38
ResNeXt-38, 8×10d (Ours) 2.3 16.3M 30.93 11.02
ResNet-38, 1×128d† 1 57.8M 28.56 9.67
ResNeXt-38, 3×64d† 1 56.1M 28.01 9.28
ResNeXt-38, 37×10d (Ours) 1 57.7M 27.24 8.74
ResNeXt-38, 10×10d (Ours) 3.0 19.1M 30.22 10.60

Table 2: Primal and dual results for ResNet baselines on ImageNet64×64. Top-1 and top-5
errors (in %) and model sizes are reported. The optimally smooth models, 22×10d and 37×10d,
surpass the baseline architectures from [5] (indicated with †) with the same number of parameters.
The optimally compact models, 8×10d and 10×10d, achieve slightly degraded results but with
significantly fewer parameters. Results are averaged over 5 runs.

2 Results on CIFAR-10

Results are shown in Fig. 1 and implementation details can be found in the main text in Sec. ??.
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Figure 1: Test errors (in %) on CIFAR-10. Clear correlation is observed between test error and
the primal curve. (a) Different models sitting on the primal curve. The model achieving the primal
minimum, 37×10d, achieves the best error. (b) Different models sitting on the dual curve. The model
10×10d achieves the dual maximum (ρ ≈ 3.3) and a slightly higher test error than the baseline with
3.3 times fewer parameters. Results are reported over 10 runs and shown with standard error bars.

3 FLOPs efficiency

Throughout the paper, we considered the parameter efficiency ρ defined as the ratio between the
number of parameters of the baseline model and the ensemble. Using this definition of efficiency,
models satisfying the primal objective were models with similar number of parameters. Instead of
using the parameter efficiency, we can consider FLOPs efficiency in the same way:

ρflop(m,n) ,
βflop
s

βflop
e (n)

=
βflop
s

mβflop(n)
, (1)
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where βflop
s and βflop

e are the number of FLOPs of the baseline model and the total number of FLOPs
in the ensemble respectively. We report results for the primal formulation on CIFAR-10/100 in
Table 3. We see that the model achieving the primal optimum, 44×8d, attains better test error on
CIFAR-10 and CIFAR-100 with similar number of FLOPs.

Model GFLOPs Params C10 C100
ResNet-29 1×128d [5]† 4.19 13.8M 4.08 19.39
ResNeXt-29 3×64d [5]† 4.15 13.3M 3.96 18.57
ResNeXt-29 44×8d (Ours) 4.20 12.7M 3.66 17.86
ResNeXt-29 60×6d (Ours)‡ 4.17 12.6M 3.73 18.04

Table 3: Results for ResNeXt-29 baselines on CIFAR-10/100 when keeping FLOPs constant
instead of # parameters. Test errors (in %) for CIFAR-10 (C10) and CIFAR-100 (C100) along with
model GFLOPs and sizes are reported. The optimally smooth model, 44×8d, surpasses the baselines
with the same number of FLOPs. † indicates we reproduced results on baseline architectures from the
cited paper, ‡ indicates models in the close vicinity of the optimum. Results are averaged over 10
runs.

4 Fitting α to a ResNet Block
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Figure 2: Estimating the variance of a ResNet block and fitting α. The Monte Carlo estimate is
calculated over 2000 trials and α is fitted following Algorithm 1.

5 Proofs of Lemma 1 and Theorem 1

Lemma 1 (Infinite ensemble). The following holds:

Ke(Θ)
a.s−→ K∞n as m→∞. (2)

Proof. Recall that the NTK of the ensemble is given by the mean:

Ke(X; Θ) =
1

m

m∑
j=1

Kn(X; θj). (3)

Note that expectation of each member in the average is identical and finite under Lebesgue integration:

K∞n (X) = E
θ
[Kn(X; θj)]. (4)

Since each member of the ensemble is sampled independently, we have from the strong law of large
numbers (LLN):

1

m

m∑
j=1

Kn(X; θj)
a.s−→ K∞n (X) as m→∞. (5)

Proving the claim.
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Theorem 1 (NTK evolution over time). Assuming analytic activation functions φ(·) with bounded
derivatives of all orders, and the L2 cost function , it holds for any finite t:

Ke(Θt)−Ke(Θ0) ∼ Op(
1

mn
) (6)

where the notation xn = Op(yn) states that xn/yn is stochastically bounded.

Proof. In the following proof, we assume for the sake of clarity our training data contains a single
example, so that Kn,Ke,Fn,Fe ∈ R. The results however hold in the general case. Throughout the
proof, we use Θt to denote the weights at time t, while Θ, θj denote the weights at initialization.

For analytic activation functions, the time evolved kernel Ke(Θt) is analytic with respect to t.
Therefore, at any time t we may approximate the kernel using Taylor expansion evaluated at t = 0:

Ke(Θt)−Ke(Θ) =

∞∑
r=1

∂rKe(Θ)

∂tr
tr

r!
. (7)

Similarly to the technique used in [4], we assume we may exchange the Taylor expansion with large
width and multiplicity limits. We now analyze each term in the Taylor expansion separately. Using
the ensemble NTK definition in the main text, the r-th order term of the ensemble NTK is given by:

∂rKe(Θ)

∂tr
=

1

m

m∑
j=1

∂rKn(θj)

∂tr
=

1

m

m∑
j=1

( ∂
∂t

)r
Kn(θj). (8)

Next we derive the time derivative operator ∂
∂t , under gradient flow and L2 loss. Given label y,

we can denote the residual terms Rj =
(
Fn(θj) − y√

m

)
∈ RN and the total model residual as

R(Θ) = 1√
m

∑m
j=1Rj , such that the L2 cost given by L = 1

2

(
R(Θ)

)2
.The model parameters in

this case evolve according to:

Θ̇ = −∇ΘL = −
(∂Fe(Θ)

∂Θ

)
R(Θ). (9)

The parameters of each model j in the ensemble evolve according to:

θ̇j = −∇θjL = −
(∂Fe(Θ)

∂θj

)
R(Θ) = − 1√

m

(∂Fn(θj)

∂θj

)
R(Θ). (10)

The time derivative operator ∂
∂t at t = 0 can be expanded as follows:

∂

∂t
=
〈

Θ̇,
∂

∂Θ

〉
=

m∑
j=1

〈
θ̇j ,

∂

∂θj

〉
(11)

Plugging the definition of θ̇j in Eq. 10 into Eq. 11 yields:

∂

∂t
= − 1√

m
R(Θ)

m∑
j=1

〈∂Fn(θj)

∂θj
,
∂

∂θj

〉
= − 1√

m
R(Θ)

m∑
j=1

Γ̂j (12)

where we have introduced the operator Γ̂j = 〈∂Fn(θj)
∂θj

, ∂
∂θj
〉. For each model j = j0 in the ensemble,

the r-th time derivative of its corresponding NTK at t = 0 is therefore given by:( ∂
∂t

)r
Kn(θj0) =

− 1√
m
R(Θ)

( m∑
j=1

Γ̂j

)r Kn(θj0) (13)

=

− 1

m

( m∑
j1,j=1

Rj1 Γ̂j

)r Kn(θj0) (14)

Denoting
x∏r

u=1Au = ArAr−1...A1 =
[
A
]r

, we can now expand the r-th derivative:( ∂
∂t

)r
Kn(θi0) =

(−1

m

)r m∑
j1...jr=1

 x∏r

u=1

(
Rju

m∑
j=1

Γ̂j

)Kn(θj0) =
(−1

m

)r m∑
j1...jr=1

ξj0...jr (15)
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where ξj0...jr =
[x∏r

u=1

(
Rju

∑m
j=1 Γ̂j

)]
Kn(θj0).

Using the notation ∀j,u, (Γ̂j)
uRj = R(u)

j , and noticing that Kn(θj),Rj depend only on θj , the
following hold:

∀j1 6=j2 , Γ̂j1Kn(θj2) = 0. (16)

∀u,j1 6=j2 , Γ̂j1R
(u)
j2

= 0. (17)

∀j , Γ̂jRj = Kn(θj). (18)

∀j,u,v, Γ̂jR(u)
j R

(v)
j = R(u+1)

j R(v)
j +R(u)

j R
(v+1)
j . (19)

where Eq. 19 is the application of the chain rule.

Using the above equalities, the terms ξj0...jr can be expressed as a sum over a finite set Sr as follows:

∀j0,,,jr , ξj0...jr =
∑
Sr

r∏
v=0

R(uv)
jv

, Sr := {uv}rv=0

∣∣∣∀0<v,0≤uv≤r−v
2≤u0≤r+1∑r
v=0 uv=r+1

(20)

Example: for r = 2, the term ξj0,j1,j2 is expanded as follows:

ξj0,j1,j2 =
[ x∏2

u=1

(
Rju

m∑
j=1

Γ̂j

)]
Kn(θj0) (21)

Expanding the multiplication and using Eq. 18:

ξj0,j1,j2 =
(
Rj2

m∑
j=1

Γ̂j

)(
Rj1

m∑
j=1

Γ̂j

)
R(1)
j0

(22)

Using the chain rule in Eq.19, and eliminating elements using Eq. 17:

ξj0,j1,j2 =
(
Rj2

m∑
j=1

Γ̂j

)
Rj1R

(2)
j0

= Rj2R
(1)
j1
R(2)
j0

+Rj2Rj1R
(3)
j0

(23)

We can now express the result in the formulation of Eq. 20

ξj0,j1,j2 =
∑
S2

2∏
v=0

R(uv)
jv

, S2 := {uv}2v=0

∣∣∣∀0<v,0≤uv≤2−v
2≤u0≤3∑2
v=0 uv=3

(24)

The r’th time derivative of the full ensemble Ke is given by:( ∂
∂t

)r
Ke =

1

m

m∑
j0=1

( ∂
∂t

)r
Kn(θj0) (25)

=
(−1)r

mr+1

m∑
j0...jr=1

ξj0...jr (26)

=
(−1)r

mr+1

m∑
j0...jr=1

∑
Sr

r∏
v=0

R(uv)
jv

(27)

= (−1)r
∑
Sr

r∏
v=0

(∑m
j=1R

(uv)
j

m

)
(28)

Note that for 0 ≤ u, the term R(u+1)
j represents the u’th time derivative of Kn(θj) under gradient

flow with the loss L = Rj . Using results1 from [2] on wide single fully connected models, we have

1In [2], the Op(n
−1) result was obtained using a conjecture, and demonstrated empirically to be tight. An

Op(n
−0.5) result of the same quantity is obtained rigorously in [3], which yields an asymptotic behaviour of

Op(n
−0.5m−1) for the ensemble.
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that ∀u>1 R(u)
j ∼ Op(n−1), andR(1)

j ∼ Op(1). Moreover, from the independence of the weights
∀j1 6=j2 , θj1 ⊥⊥ θj2 , it holds that ∀u,j1 6=j2 , Ruj1 ⊥⊥ R

u
j2

. Therefore, for any fixed r we may apply
the central limit theorem for large m on the terms in Eq. 28 individually:

(∑m
j=1R

(u)
j

m

)
∼


Op( 1√

mn
) u > 1

Op(1) u = 1

Op( 1√
m

) u = 0

(29)

Plugging back into Eq. 28 yields the desired result by noticing that 2 ≤ u0 and ur = 0:( ∂
∂t

)r
Ke ∼ Op(

1

nm
) (30)

6 Figure Illustrating Theorem 1
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Figure 3: Dynamics of the NTK during training as a function of width n and multiplicity m for (a)
baseline single model (b) ensemble (c) ensemble with a constant width n = 100, and multiplicity m
to match the number of parameters in the baseline (red). The NTK was computed for a single off-
diagonal entry for a depth L = 4 fully connected network trained on MNIST. The y axis corresponds
to the absolute change in log scale between the NTK value at initialization, and after training for
T = 100 epochs. As predicted in Theorem 1, the baseline model with m = 1, n = d2 and the
ensemble with m = n = d have equal mn, therefore exhibit similar correction of the NTK. In (c),
the change of the NTK becomes smaller than the baseline, as mn is considerably larger, although the
total parameter count is the same as the baseline.
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