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A Non-rigid Deformation Model

To represent the dense motion from a source to a target RGB-D frame, we adapt the embedded
deformation model of Sumner et al. [8]. We uniformly sample graph nodes V over the source RGB-D
frame (see Fig. 1), ensuring σ-coverage of the foreground object, i.e., the distance of every foreground
point to the nearest graph node is at most σ > 0 (we set σ = 0.05 m).

Figure 1: Given a an object in the source RGB-D frame, we define a deformation graph G over the
former. Nodes V (red spheres) are uniformly subsampled over the source RGB-D frame. Edges E
(green lines) are computed between nodes based on geodesic connectivity among the latter.

For every node vi ∈ V , we estimate its global translation vector tvi
∈ R3 and local rotation matrix

Rvi
∈ R3×3, represented in axis-angle notation as ωvi

∈ R3. Using the deformation parameters
T = (ωv1

, tv1
, . . . ,ωvN

, tvN
) a 3D point p ∈ R3 is deformed by interpolating the nodes’ motion:

Q(p, T ) =
∑
vi∈V

αp
vi

(eω̂vi (p− vi) + vi + tvi
). (1)

The weights αp
vi
∈ R are called skinning weights and measure the influence of each node on the

current point p. They are computed as in DoubleFusion [11]:

αp
vi

= Ce

1

2σ2
||vi−p||22

.

Here, C denotes the normalization constant, ensuring that skinning weights add up to one for point p:∑
vi∈V

αp
vi

= 1.

For each node vi ∈ V , we represent its rotation in axis-angle notation as ωvi
∈ R3. This rep-

resentation has singularities for larger angles, i.e., two different vectors ω and ω′ can represent
the same rotation (for example keeping the same axis and increasing the angle by 2π results in
identical rotation). To avoid singularities, we decompose the rotation matrix into eω̂vi = eε̂viRvi

with εvi = 0, therefore optimizing only for delta rotations that have rather small rotation angles.

B Differentiable Non-rigid Optimization

Our non-rigid optimization is based on the Gauss-Newton algorithm and minimizes an energy
formulation that is based on three types of residual components: the 2D reprojection term, the depth
term and the regularization term of the non-rigid deformation.

For a pixel u ∈ Πs ⊂ R2 and graph edge (vi,vj) ∈ E , we define such terms as:

ru2D(T ) = wu

(
πc(Q(pu, T ))− cu

)
rudepth(T ) = wu

(
[Q(pu, T )]z − [Pt(cu)]z

)
r
vi,vj
reg (T ) = eω̂vi (vj − vi) + vi + tvi − (vj + tvj ),
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where cu ∈ R2 and wu ∈ R represent the predicted correspondence and the importance weight,
respectively; and pu = π−1c (u, du) is a 3D point corresponding to the pixel u with depth value du.

The Gauss-Newton method is an iterative scheme. In every iteration n, we compute the Jacobian
matrix Jn and the residual vector rn, and get a solution increment ∆T by solving the normal
equations:

JTnJn∆T = −JTnrn.

The construction of the Jacobian matrix J ∈ R(3|C|+3|E|)×6N , consisting of par-
tial derivatives of the residual vector r3|C|+3|E| with respect to deformation parameters
T = (ωv1 , tv1 , . . . ,ωvN

, tvN
) ∈ R6N is detailed in Section B.1. The linear system is solved

using LU decomposition. To enable differentiation through the entire Gauss-Newton solver, we have
to ensure that the linear solve is differentiable. We detail the differentiable linear solve operation in
Section B.2.

B.1 Partial Derivatives

In the following, we derive the partial derivatives of the residual vector r with respect to εvi
and tvi

of every node vi, to construct the Jacobian matrix J.

To simplify notation, we define the rotation operator that takes as input an angular velocity vector
ε ∈ R3, rotation matrix R ∈ R3×3 and point p ∈ R3 and outputs the rotated point:

R(ε,R,p) = eε̂Rp.

To compute the partial derivative with respect to ε, we follow the derivation from Blanco [2]:

∂R(ε,R,p)

∂ε

∣∣∣∣
ε=0

= −R̂p

Here, the ·̂-operator creates a 3× 3 skew-symmetric matrix from a 3-dimensional vector.

The rotation operator R(ε,R,p) is a core part of the warping operator Q(p, T ). It follows that
partial derivatives of a warping operator Q(p, T ) with respect to εvi and tvi for every node vi can
be computed as

∂Q(p, T )

∂εvi

= −αp
vi
Rvi

(p− vi)
∧

,

∂Q(p, T )

∂tvi

= αp
vi
I.

Another building block of our optimization terms is the perspective projection πc with intrinsic
parameters c = (fx, fy, cx, cy):

πc : R3 → R2,

πc

([
x
y
z

])
=

fxxz + cx

fy
y

z
+ cy

 ,
whose partial derivatives with respect to the point p = (x, y, z)T are derived as

∂πc(p)

∂p
=

fxz 0 −
fxx

z2

0
fy

z
−
fyy

z2

 .
By applying the chain rule, derivatives of all three optimization terms are computed.
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Derivative of 2D reprojection term. For a pixel u ∈ Πs ⊂ R2 and its corresponding 3D point
pu, we derive partial derivatives of ru2D(T ) as follows:

∂ru2D(T )

∂εvi

= −wuα
pu
vi


fx

pzu
0 −

fxp
x
u

(pzu)2

0
fy

pzu
−
fyp

y
u

(pzu)2

Rvi
(pu − vi)
∧

,

∂ru2D(T )

∂tvi

= wuα
pu
vi


fx

pzu
0 −

fxp
x
u

(pzu)2

0
fy

pzu
−
fyp

y
u

(pzu)2

 .
Derivative of depth term. When computing the partial derivatives of the depth term rudepth(T ), we
need to additionally apply the projection to the z-component in the chain rule:

∂rudepth(T )

∂εvi

= −wuα
pu
vi

[0 0 1]Rvi
(pu − vi)
∧

,

∂rudepth(T )

∂tvi

= wuα
pu
vi

[0 0 1] .

Derivative of regularization term. For a graph edge (vi,vj) ∈ E , the partial derivatives of
r
vi,vj
reg (T ) with respect to εvi

, tvi
, εvj

, tvj
are computed as:

∂r
vi,vj
reg (T )

∂εvi

= −Rvi
(vj − vi)
∧

,
∂r

vi,vj
reg (T )

∂εvj

= 0,

∂r
vi,vj
reg (T )

∂tvi

= I ,
∂r

vi,vj
reg (T )

∂tvj

= −I.

B.2 Differentiable Linear Solve Operation

To simplify the notation, in the following we use A = JTnJn, b = −JTnrn and x = ∆T , which
results in the linear system of the form

Ax = b. (2)

For matrix A ∈ R6N×6N and vectors b ∈ R6N and x ∈ R6N we define the linear solve operation as

Λ : R6N×6N × R6N → R6N , (A,b) 7→ A−1b = x. (3)

In order to compute the derivative of the linear solve operation, we follow the analytic derivative
formulation of Barron and Poole [1]. If we denote the partial derivative of the loss L with respect to
linear system solution x as ∂L

∂x , we can compute the partial derivatives with respect to matrix A and
vector b as:

∂L
∂b

= A−1
∂L
∂x
,

∂L
∂A

=

(
A−1

∂L
∂x

)
xT = −

∂L
∂b

xT. (4)

Thus, the computation of ∂L∂b requires solving a linear system with matrix A. To solve this system,
we re-use the LU decomposition from the forward pass.

B.3 Ablations

We experimented with different design choices for our solver.

ARAP edge re-weighting. In non-rigid tracking, it is possible to weight ARAP terms for every
graph edge differently, depending on the distance between the nodes. In our method, we sample
nodes uniformly on the surface, thus, all edges have similar length (7.13± 1.38 cm). Hence, edge
re-weighting changes EPE 3D only marginally: 0.8% lower EPE 3D and 1.7% lower Graph Error 3D.
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Nearest-neighbor vs. bilinear depth sampling. When querying depth after predicting 2D corre-
spondences, we found bilinear sampling to perform better, with 5.8% lower EPE 3D and 6.29% lower
Graph Error 3D compared to nearest-neighbor sampling.

Influence of graph density. We sample graph nodes with 5 cm node coverage, which fits well
with our setup of 11 GiB for training. Using coarser graphs, with 10 cm and 15 cm node coverage
resulted in poorer performance: 5.49% and 8.33% higher EPE 3D, as well as 7.34% and 28.46%
higher Graph Error 3D, respectively. In turn, the memory footprint on the GPU during training (with
batch size 4) decreases with node coverage: 10 513 MiB, 6153 MiB and 5931 MiB for 5 cm, 10 cm
and 15 cm node coverage, respectively.

Number of optimization steps. We empirically found 3 solver iterations to be the best compromise
between performance and computational cost. Unrolling 3 solver iterations instead of 1 / 2, results
in 24.9% / 0.16% lower EPE 3D and 22.7% / 0.23% lower Graph Error 3D. Using 4 iterations only
improves slightly with respect to 3 (0.04% lower EPE 3D, 0.03% lower Graph Error 3D). More than
4 does not change performance notably.

Warp loss as a superset of graph loss. Note that since we sample graph nodes on depth maps,
the graph loss (Eq. 15 in the paper) is in practice a subset of the warp loss (Eq. 16 in the paper).
However, we found it to be a more general notation to disentangle them. For instance, this notation is
helpful for scenarios where graph nodes are not sampled on the RGB-D frame.

C Losses

In this section, we provide implementation details related to the training losses used for end-to-end
optimization. Following the architecture of Sun et al. [9], our correspondence prediction function
Φ computes a hierarchy of correspondence predictions, instead of only the correspondences at the
highest resolution. These predictions are used to compute the correspondence loss in a coarse-to-fine
fashion (see Section C.1). To achieve numerically stable optimization (Gauss-Newton solver) during
training, a ground-truth mask is needed for the graph loss. In Section C.2, we detail how to ensure
stable optimization by filtering invalid graph nodes.

In the ablation studies, we also included a comparison to a weight function Ψ that is trained in a
supervised manner (see Table 1 in the main paper). Section C.3 details the training of this baseline
using a supervised binary cross-entropy loss.

C.1 Coarse-to-fine Correspondence Loss

The design of our correspondence prediction function Φ follows the PWC-Net [9] architecture that
predicts the correspondences in a coarse-to-fine manner. Initially the correspondences are predicted
at a coarse resolution of 10× 7 px, and then refined to a resolution of 20× 14 px, etc. In total, there
are L = 5 levels in the correspondence hierarchy, and the finest level predictions are used in the
differentiable non-rigid optimization. The correspondence loss is applied on every level l, by bilinear
downsampling of the groundtruth correspondences C̃ to a coarser resolution, resulting in C̃l. Similarly,
the ground-truth mask matrix M̃C is downsampled to a coarser version M̃C

l

, to avoid propagating
gradients through invalid pixels. For each training sample (Is, It) and every level l, we therefore
compute ground-truth correspondences C̃l and the ground-truth mask matrix M̃C

l

. At every level l
the correspondence loss has the following form:

Llcorr(φ) = M̃C
l

( |Φlφ (Is, It)− C̃l|+ ε)q. (5)

With q < 1 (in our case q = 0.4) and ε being a small constant.

C.2 Numerically Stable Optimization

The non-rigid tracking optimization objective includes data (correspondence and depth) terms and a
regularization (ARAP) term. If we only use regularization term, the optimization problem becomes
ill-posed, since any rigid transformation of all graph nodes has no effect on the regularization term.
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In order to satisfy memory limits, we do not use all pixel correspondences C at training time, but
instead randomly sample 10k correspondences.

The edge set E of the deformation graph G = (V, E) is computed by connecting each graph node with
K = 8 nearest nodes, using geodesic distances on the depth map mesh as a metric. This can lead to
multiple disconnected graph components, i.e., different node clusters. To ensure the optimization
problem is well-defined, we ensure that we have a minimum number of correspondences in each node
cluster. In our experiments we filter out all node clusters with less than 2000 correspondences. This
filtering has to be reflected in the loss computation. Thus, we define the mask matrix M̃V to have
zeros for nodes from filtered clusters, which prevents gradient back-propagation through invalidated
graph nodes.

C.3 Supervised Weight Network Baseline

As a baseline, we introduce a model where we supervise the optimization of the weighting function Ψ.
The ground-truth correspondence weighting W̃ ∈ RH×W×1 for this supervision is generated by
comparing current correspondence predictions C against the ground-truth correspondences C̃. We
compare 3D distances between correspondences, using the target depth map Dt to query correspond-
ing depth values. A pixel in the ground-truth weighting W̃ is assigned a 1 or 0 depending on the
correspondence error. Optimal performance was achieved by assigning 1 to correspondences that are
at most 0.1 m away from groundtruth, and 0 to correspondences that are at least 0.3 m away from
groundtruth, without propagating any gradient through remaining correspondence weights. Binary
cross-entropy loss is used to optimize Ψ in this supervised setting.

D Reproducibility

D.1 Time and Memory Complexity

Correspondence Prediction Φ. Function Φ scales as a standard convolutional neural network
linearly with the number of pixels in the input image (both in time and memory complexity). The
number of layers and kernel sizes are independent of the input an, thus, constant. Our correspondence
prediction network Φ consists of 55 layers with a total number of 9.374M parameters. The processing
of an image of resolution 640× 480 takes 21.6 ms.

Correspondence Weighting Ψ. Function Ψ is a convolutional neural network with a fixed number
of layers and kernels, and, thus, has a complexity that is linear in the number of pixels of the input
image. In total the network consists of 316K learnable parameters that are distributed among 7 layers.
For a forward pass with an image of resolution 640× 480 the network takes 5.5 ms.

Differentiable Optimizer. Time and memory complexity of our differentiable Gauss-Newton
solver is dominated by two operations: matrix-matrix multiplication of JT and J and LU decomposi-
tion of JTJ matrix. For a matrix J ∈ R(3|C|+3|E|)×6N the matrix-matrix multiplication JTJ has a
time complexity of O(N2 · (|C|+ |E|)) and memory complexity of O(N · (|C|+ |E|)). We denoted
the number of correspondences with |C|, the number of graph edges with |E| and the number of graph
nodes with N . On the other hand, the time and memory complexity of LU decomposition of a matrix
JTJ ∈ R6N×6N is O(N3) and O(N2), respectively. Note that LU is dominated by matrix-matrix
multiplication; in theory there exist algorithms better then n3, like n2.376 based on the Copper-
smith–Winograd algorithm [4]. The total time complexity is, therefore, O(N2 · (|C|+ |E|) +N3)
and memory complexity is O(N · (|C|+ |E|) +N2).

D.2 Training Details

For reproducibility, the analysis of the achieved performance of the network with different training
runs is important. In the main paper (Table 1), we show an ablation study of our method and report
average test errors of 3 training runs. In Figure 2 the corresponding standard deviations are plotted.
As can be seen, the training of our network is stable and results in small variations in performance.
For all experiments we used an Intel Xeon 6240 Processor with 18 cores and an Nvidia GeForce RTX
2080Ti GPU. A typical power consumption of Nvidia 2080Ti GPU is around 280 Watts. Network
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Figure 2: Plots of non-rigid tracking EPE 3D (left) and Graph Error 3D (right) values, together with
standard deviation bars. Corresponds to Table 1 in the main paper.

experiments were run for 30k iterations with batch size 4, requiring in total about 14 hours till
convergence.

D.3 Keyframe-based Non-rigid Reconstruction

To achieve robust non-rigid reconstruction, we propose the usage of a keyframe-based strategy. We
explored different keyframe sampling, as shown in Table 1, and opted for sampling a keyframe every
50 frames in our setup. For every keyframe, the correspondences to the latest frame in the video are
predicted. Our neural non-rigid tracker provides us with correspondence cu and an importance weight
wu ∈ [0, 1] for every pixel u ∈ Πs ⊂ R2. We invalidate all correspondences of a keyframe with
wu < δ (we set δ = 0.35 in all experiments). In case of large occlusions between the current frame
and the keyframe, many correspondences are invalid. If 50% of the correspondences are invalid, we
completely ignore the keyframe, which leads to less outliers and faster runtime.

Table 1: We evaluate how the deformation error (mm) varies with the keyframe sampling. More
frames means lower keyframe sampling rate, i.e., larger frame-to-frame motion.

Keyframe density Deformation error (mm)

DeepDeform [3] (filtering w/ neighboring frames) 31.52
Ours: keyframe every 100 frames 30.70
Ours: keyframe every 75 frames 29.68
Ours: keyframe every 50 frames 28.72

In addition, we apply correspondence reweighting based on cycle consistencies. Specifically, we
enforce bi-directional consistency and multi-keyframe consistency. Bi-directional consistency enables
us to detect self-occlusions between a keyframe and current frame. Correspondences are predicted
in both directions keyframe-to-frame and frame-to-keyframe. If following the correspondence in
forward keyframe-to-frame and afterwards in backward frame-to-keyframe direction results in a 3D
error larger than 0.20 m, we reject the correspondence. For multi-keyframe consistency, multiple
keyframe-to-frame predictions are estimated that correspond to the same 3D point in the canonical
volume and the mean prediction value is computed. If any of the predictions is more than 0.15 m
away from the mean value, we reject all correspondences for a given 3D canonical point.

E Benchmark Results

In Figure 3 we provide a screenshot of the currently best-performing, non-rigid reconstruction methods
on the DeepDeform [3] benchmark. Please visit http://kaldir.vc.in.tum.de/deepdeform_
benchmark/benchmark_reconstruction.
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Figure 3: Screenshot of non-rigid reconstruction results on DeepDeform [3] benchmark (taken
on 11th June 2020).

F Additional Results

In the following, we present additional qualitative results of our method in comparison to state-of-
the-art methods. Figure 4 shows a comparison to Guo et al. [5]. As can be seen, our method better
handles non-rigid movements with fast motions (t-shirt) and occlusions (arm).

In Figure 5, we show the results of applying our method on test sequences of the DeepDeform
dataset [3], and compare to the results of Slavcheva et al. [7]. The reconstruction of our method leads
to more complete and smooth meshes. Note that the results of both methods [5] and [7] were kindly
provided by the authors.

We show qualitative reconstruction results of our method on VolumeDeform [6] sequences in Figure 6.
Our method can robustly reconstruct these RGB-D sequences, despite the fact that a Kinect sensor
was used to record them, whereas our training data was obtained using a Structure IO sensor. This
shows that our network predictions can generalize to a different structured-light sensor input.

We also compared to DoubleFusion [11] and BodyFusion [10], which focus on human body recon-
struction by assuming human body prior. We were able to compare on a sequence provided by [10],
and even without assuming any explicit shape or motion priors, we achieve competitive performance.
In particular, our method achieves an average tracking error of 0.0317 m, while BodyFusion and Dou-
bleFusion achieve 0.0227 m and 0.0221 m, respectively. Note that these methods cannot reconstruct
non-human sequences, unlike our approach.

Additionally, in Figure 7 we show texturing results, computed by aggregating color images over 100
frames of motion into a voxel grid.
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Figure 4: Qualitative comparison of our method to MonoFVV [5] (test sequences from [3]).

9



K
ill

in
gF

us
io

n
O

ur
s

t0 t1 t2 t3

t0 t1 t2 t3

In
pu

t
O

ur
s

K
ill

in
gF

us
io

n
In

pu
t

Figure 5: Qualitative comparison of our method to KillingFusion [7] (test sequences from [3]).
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Figure 6: Qualitative reconstruction results on VolumeDeform [6] sequences.
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Figure 7: Texturing results, computed by aggregating color images over 100 frames of motion into a
voxel grid.
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