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A Variational distributions

In this section we provide more details about the choices of variatiational distributions over the graph
structure.

A.1 Variational distribution: free vs smooth parameterizations

Similarly to the prior definition, our approximate posterior is of the form
4o(A) = [ [ as(Aij), with  gg(Aij) = Bern(Ay; | pij), pij > 0, (A1)

ij

where, henceforth, we use ¢ to denote all the parameters of the variational posterior. In the case where
pi; are free parameters then ¢ = {p;; }. We refer to this approach as the free parameterization We
have found experimentally that such a parameterization can make optimization of the evidence lower
bound (ELBO) wrt ¢ extremely difficult. Thus, one is forced to either use alternative representations
of the posterior, or continuous relaxations of the discrete prior and posterior distributions (see
appendix A.2). Intuitively, conditional independence in the posterior is a strong assumption and
small changes in p;; will compete with each other to explain the data. Consequently, any continuous
optimization algorithm will find it very challenging to find a good direction in this non-smooth
combinatorial space. Therefore, as an alternative, it is sensible to adopt a smooth parameterization:

pi; = 0(2] Zj + b + b; + ), 24, 2; € R {b;, s € R}, (A.2)
i,j =1,...,N, where o(z) = (1 + exp(—z)) " is the logistic sigmoid function and d, < D is
the dimensionality of the parameters z, z. As we see, the same representation is shared across the
columns and rows of A’s Bernoulli parameters, which addresses the combinatorial nature of the
optimization landscape of the free parameterization. We note that this parameterization is referred to

in the matrix-factorization and link-prediction literature as low-rank [16, 15] or dot-product [12]. In
this case the variational parameters are ¢ = {{z;, Z;, b; }, s}.

A.2 Variational distribution: discrete vs relaxed

We have defined above a variational distribution which naturally models the discrete nature of the
adjacency matrix A. Our goal is to estimate the parameters ¢ of the posterior ¢4 (A) via maximization
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of the ELBO. For this purpose we can use the so-called score function method [17], which provides
an unbiased estimator of the gradient of an expectation of a function using Monte Carlo (MC) samples.
However, it is now widely accepted that, because of its generality, the score function estimator can
suffer from high variance [18].

Therefore, as an alternative to the score function estimator, we can use the so-called re-
parameterization trick [11, 19], which generally exhibits lower variance. Unfortunately, the re-
parameterization trick is not applicable to discrete distributions so we need to resort to continuous
relaxations. In this work we use Concrete distributions as proposed by Jang et al. [8], Maddi-
son et al. [14]. In particular, we denote our binary Concrete posterior distribution with location
parameters \;; > 0 and temperature 7 > 0 as g¢(A;;) = BinConcrete(A4;; | Ai;, 7). Analo-
gously, as discussed in Maddison et al. [14], in order to maintain a lower bound during variational
inference we also relax our prior so that p(A;;) = BinConcrete(A;; [ Af;,7,). In this case the
variational parameters are the parameters of the Concrete distribution which can be, as in the discrete
case, free parameters ¢ = {\;;} or have a smooth parameterization analogous to that in eq. A.2,

i.e. \ij = exp(zl'z; + b; + b; + s) and, consequently, ¢ = {{z;,b;}, s}.

B Binary discrete distributions

The Kullback-Leibler (KL) divergence between two Bernoulli distributions ¢(a | p) and p(a | p°) can
be computed as

KL [g(a|p) || p(a|p?)] = pllog p — log p°] + (1 — p)[log(1 — p) — log(1 — p)]. (B.1)

C Binary concrete distributions

In this section we give details of the re-parameterization used for the implementation of our algorithm
when both the prior and the approximate posterior are relaxed via the binary Concrete distribution
[14, 8].

C.1 Summary of Bernoulli relaxation transformations

log A\;; 1
A;; ~ BinConcrete(\;j,7) &  A;; =0(By;), Bi; ~ Logistic <0g3’ ) : (C.1)
T T
log A\;; 1 log \;; + L _
B;; ~ Logistic <Ogj, > & By = M, L ~ Logistic(0, 1); (C.2)
T T T

L ~ Logistic(0,1) < L=0¢ Y(U):=logU —log(1 —U), U ~ Uniform(0,1). (C.3)

In summary, we have
log As; + U_l(U)

A;; ~ BinConcrete(\;;,7) & Ajj=o0 ( ) U ~ Uniform(0, 1).

o
(C4)
C.2 Re-parameterized ELBO
With the results above, it is easy to see that we can write the ELBO as:
_ (A
Counold) = B4y ) [lowa (Y7 | X, &)~ 1og %22 () ©s)
[ 0 4o, (0(B))
=E,, . logpe(Y° | X,0(B)) — log ————=- (C.6)
sorte [lopo OB Zhow,(1m))
[ o 9o, 7 (B)
=E 1 Y| X,0(B)) —log=———-|. C.7
9, (B) | ng@( | 70( )) og f'ro (B) ( )
where
logA\;; 1 log Ay, 1
gd),‘r(Bij) = LOgiStiC (B” ‘ 08 Aij s > y fTo (Bz]) = LOgiStiC (BZJ | & J 5 ) . (CS)
T T To To



Table 1: Datasets used in the experiments. Train/Valid/Test correspond the the training/validation/test
set sizes. Label rate refers to the ratio of the training set size over the total number of nodes.

Dataset Type Nodes Edges Classes  Features  Train/Valid/Test — Label rate
CORA Citation network 2,708 5,278 7 1,433 140/500/1,000 0.052
CITESEER Citation network 3,327 4,676 6 3,703 120/500/1,000 0.036
POLBLOGS  Blog network 1,222 16,717 2 N/A 122/275/825 0.10
PUBMED Citation network 19,717 44338 3 500 60/500/1,000 0.003

C.3 Importance-weighted ELBO

For the relaxed version of our algorithm (that uses binary Concrete distributions), in which we cannot
compute the KL term in the ELBO analytically, we use the importance-weighted ELBO, which has
been shown to perform better than the standard ELBO, be a tighter bound of the marginal likelihood
and related to variational inference in an augmented space [2, 5]:

1 dg,r(A)
Y| log P (A) , (C.9)

IW-ELBO = Z LMEjy, ¢ [logp(ynva)
Yn€Y?

where LME4, ,(h(A)) is the log-mean-exp operator of function h(A) over samples of A, i.e.
LMEa,., = log % Zle exp(h(A(S))) with Aj.g = (A(l), . ,A(S)) and A®) ~ go.~(A).

D Implementation and computational complexity

We implement our approach using TensorFlow [1] for efficient GPU-based computation and also
use some components of TensorFlow Probability [4]>. The time complexity of our algorithm
can be derived from considering the two main components of the ELBO in eq. 5, namely the KL
divergence term and the expected log likelihood (ELL) term. We focus here on one-hidden layer graph
convolutional network (GCN) (apart from the output layer) with dimensionality Q = Q") along with
a smooth (dot product) parameterization of the posterior. We recall that NV is the number of nodes, D
is the dimensionality of the input features X, d is the dimensionality of posterior parameters Z, C' is
the number of classes and .S is the number of samples from the variational posterior used to estimate
the required expectations.

KL divergence term: We require to compute O(N?) individual KL divergences, which can be
trivially parallelized. In the case of the smooth parameterization, for both the discrete and the relaxed
cases, we need to compute the dot-product between the latent representations for each each A;; which
is O(d,) and gradient information must be aggregated for each z;, z;. While for a discrete posterior
these individual KL terms can be computed exactly (as shown in appendix B), for the continuous
relaxation we need to resort to MC estimation over .S samples. Aggregation over samples can also be
parallelized straightforwardly.

ELL term: Computing the ELL using a 2-layer GCN as in eq. 1 requires O(NDQ + S(NQC +
N2Q+ N2C)) for the continuous case. However, in the discrete case it only requires doing a forward
pass over the standard GCN architecture .S times, hence being linear in the number of edges, i.e.
O(S|€1DQC), where |£] is the expected number of edges sampled from the posterior, assuming
sparse-dense matrix multiplication is exploited.

E Datasets

Table 1 gives details of the datasets used in our experiments. Training/Valid/Test refer to the default
training/validation/test set sizes. However, as mentioned in § 4, we adopt a similar approach to that
of Franceschi et al. [6] where the training set is augmented with approximately 50% of the validation
set.

2Code available at https://github. com/ebonilla/VGCN.
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F Full details of experimental set-up

Unless stated explicitly below, all the optimization-based methods were trained up to a maximum of
5,000 epochs using the ADAM optimizer [10] with an initial learning rate of 0.001. Hyper-parameter
exploration was done via grid search and model selection carried out via cross-validation using the
accuracy on the validation set. For standard GCN and our method we use a two-layer GCN as given
in eq. 1 with a 16-unit hidden layer. We train standard GCN as done by Kipf and Welling [13] so as
to minimize the cross-entropy loss, using dropout and L2 regularization, Glorot weight initialization
[7] and row-normalization of input-feature vectors. As with our method, we set the dropout rate to
0.5 and the regularization parameter in {5 x 1072, 5 x 1074}.

For our method, we carried posterior estimation over the adjacency matrix and MAP estimation of
the GCN-likelihood parameters so as to maximize the ELBO in eq. 5. Hyper-parameters for GCN-
estimation were the same as above. To construct the prior over the adjacency matrix we followed
the procedure explained in § 2.2 with p; = {0.25,0.5,0.75,0.99}, pp = 1075, 7, = {0.1,0.5},
7 = {0.1,0.5,0.66} and 8 = {1074,1073,1072,1}. We initialized the posterior to the same
smoothed probabilities in the prior and used Siin = 3 and Sprea = 16 samples for estimating
the required expectations for training and predictions, respectively. In the no-graph case all the
methods explored k-nearest neighbor graphs (K-NNGs) with & = {10,20} and distance metrics
{cosine, Minkowski}.

For learning discrete structures (LDS) we used the code provided by the authors®, which carries
out bilevel optimization of the regularized cross-entropy loss and does model selection based on
the validation accuracy using grid search across a range of parameters such as learning rates (for
inner and outer objectives), number of neighbors and distance metrics. Similarly, for graph Gaussian
process4(GGP) and ensemble graph convolutional network (EGCN) we used the code provided by the
authors®.

For robust GCN (RGCN) we used the code provided by the authors>. For all experiments, we used
the default parameters as described in [22]. Specifically, we used 2 hidden graph convolutional layers
with 32 units each and dropout 0.6. All models were trained for a maximum 200 epochs with early
stopping (20 epochs patience) using the ADAM optimizer and an initial learning rate of 0.01.

We used our own implementation of graph attention network (GAT) and sample-and-aggregate
(GRAPHSAGE). GAT used an architecture identical to the one described in Velickovié et al. [21].
The first layer consists of K = 8 attention heads computing F' = 8 features, followed by an
exponential linear unit (ELU) nonlinearity. The second layer is used for classification that computes
C features (where C' is the number of classes), followed by a softmax activation. L2 regularization
with A = 0.0005 and 0.6 dropout was used. The implementation of GRAPHSAGE used mean
aggregator functions and sampled the neighborhood at a depth of K = 2 with neighborhood sample
size of S7 = 25,5, = 10 and batch size of 50. The model was trained with 0.5 dropout and L2
regularization with A = 0.0005.

G Complete set of results for the adversarial setting

Here we include the complete set of experiments for the 7 attacked graphs removing 2000, 1000, and
500 edges as well as adding 500, 1000, 2000, and 5000 edges to the ground truth graphs. Figure 1
shows the results for all graphs.

On the citation networks, CITESEER and CORA, our proposed variational graph convolutional
network (VGCN) outperforms all other Bayesian and non-Bayesian methods, especially in the case
of adding edges. On the POLBLOGS network that is lacking node features, all methods perform
similarly with GGP having a small edge in the cases of adding 2000 and 5000 edges. Our method,
displays the lowest variance across all datasets.

*https://github.com/lucfra/LDS-GNN.

*nttps://github.com/yincheng/GGP for GGP and https://github.com/huawei-noah/BGCN for
EGCN.

“https://zw-zhang.github.io/files/2019_KDD_RGCN.zip
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Figure 1: Results for the adversarial setting on attributed graphs CITESEER (top), CORA (middle),
and (featureless graph) POLBLOGS (bottom): Accuracy on the test set across ten attacked graphs
at each attack setting such that negative values indicate removing edges and positive values adding
edges. We compare our method (VGCN) with competing algorithms.

H Low-rank vs free parameterizations

Figure 2 compares the low-rank parameterization vs the free parameterization of our model, where
we used a latent representation of dimensionality d, = 100. Our goal is to analyze whether a much
more compact representation can yield similar results to those obtained by the free parameterization.
For the citation networks used, the number of latent variables with the low-rank parameterization is
N x 2 xd, =~ 6 x 10, whereas with the free parameterization we have N x (N —1)/2 ~ 4.5 x 10°
latent variables. i.e. in this setting, the low-rank parameterization has an order of magnitude fewer
latent variables. We see, in fig. 2, that although the low-rank parameterization can in some cases



achieve a performance close to that of the free-parameterization, it also has a much higher variance
and in most cases the resulting solution is considerably poorer. Nevertheless, we believe that factors
such as initialization can improve the performance of the low-rank parameterization significantly and
leave a much more thorough study of this for future work.

I Discrete vs relaxed

Besides the number of latent variables used to represent the posterior, we also want to investigate
the effect of using the discrete Bernoulli distributions along with the score function estimators
versus the relaxed binary Concrete distributions and the reparameterization trick. Figure 3 shows the
performance of these two approaches on the citations networks under study and the no-graph case
when using only S = 3 posterior samples for prediction. We see that there is not much difference
between the two approaches, although the relaxed version exhibits some outliers on CITESEER
(which is ameliorated when using S = 16 samples) and the discrete version has slightly higher
variance on CORA. However, as we see in fig. 4, the relaxed version converges much faster than the
discrete version, hence our selection of the former for our main results.

Figure 5 shows results of the discrete vs relaxed parameterization in the adversarial setting for the
CITESEER and CORA datasets. Both models were trained for a maximum 5000 epochs with hyper-
parameter optimization and model selection as described in appendix F. In the adversarial setting,
there is an advantage to using the relaxed parameterization as it clearly outperforms the discrete one
across all attack settings and both datasets. The difference in performance is more pronounced for
CITESEER. Lastly, the relaxed parameterization exhibits lower variance across all graphs.

J The Effect of the number of posterior samples on predictions

Figure 6 shows results for our model when using S = 3 and S = 16 samples from the posterior
when making predictions. We observe that, as expected, using more posterior samples does improve
performance and that the additional gains of using more samples are worthwhile if the computational
constrains can be satisfied.

K The influence of the KL term during training

As mentioned in the main paper, we scaled the KL term by a dampening factor 5 < 1 so that it does
not dominate the likelihood term in the ELBO. We have analyzed this KL-dampening factor on the
adversarial experiments across all datasets. Figure 7 shows how frequently each factor was selected
through cross-validation with 3 = {1,1072,1073, 10~} being selected {32%, 35%, 21%, 12%} of
the time, respectively. Along with the performance benefits shown in the main paper, this confirms
that KL regularization resulting from variational inference does have an effect. Lastly, we have found
that even when (3 is very small, the KL term still has an effect as it can be several orders of magnitude
larger than the ELL.

L Posterior analysis in the adversarial setting

Similar to the analysis in § 4.4 of the main paper for the no-graph case, here we look at the posterior
changes for a representative experiment in the adversarial setting. Figure 8 shows the difference
between the final posterior probabilities obtained by our algorithm and the prior probabilities, which
were also used to initialize the posterior. We see that our model manages to effectively turn off/turn
on a significant number of links.

M Additional examples of learned graphs

Following on from § 4.4 of the main paper, we visualize additional communities of the CITESEER
citation network with added edges and the corresponding latent graph inferred using our approach.
We show four communities in fig. 9. As before, on the left we denote the edges from the original
graph in solid lines and the added edges in dashed red lines; on the right is the corresponding complete
graph with edge opacity drawn proportionally to the limit posterior probabilities.
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The test accuracy of our method (VGCN) using a free parameterization with discrete Bernoulli
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Figure 7: Histogram of KL-dampening factor 3 selected using cross-validation for experiments using
the CITESEER, CORA, and POLBLOGS datasets, where 5 = 1 accounts for no dampening of the
KL term in the ELBO.

1034

COUNTS

101 4

-0.2 0.0 0.2 0.4 0.6
POSTERIOR - PRIOR

Figure 8: Posterior changes in the adversarial setting on CITESEER. The difference in the limit
probabilities computed as the zero-temperature limit of the final variational posterior distributions
over each adjacency entry. Only showing those probabilities that changed significantly from the prior,
which had a maximum value of 0.25 and a minimum value of 10~°. The total number of changed
probabilities was 9, 504.

Furthermore, let E’ denote the set of added edges. If we have inferred a posterior that suppresses the
negative influence of these added edges, we would expect that {7, j} € E’ implies p(A;;) < /2. On
the right, we highlight in red every edge {7, j} € E’ where p(A;;) > 1/2. We can see that such cases
are few and far between, even in communities predominantly consisting of added edges (e.g. row 3).

N Results using random data splits

It was argued in [20] that model evaluation using pre-existing data train/validation/test splits produces
overconfident estimates of a GNN model’s performance. It is thus suggested that random splits of
the data should be instead used. Here we have repeated the experiments outlined in section G using
random splits and show the results in fig. 10. We have used the same random splits to evaluate all
competing methods.

Comparing the results shown in fig. 1 and fig. 10, we notice that there is a small drop in performance
for all methods and across all attack settings. However, overall our VGCN method continues to
outperform the others especially in the setting of adding a large number of false edges. The EGCN
method has a small advantage over VGCN when removing 2000 and 1000 edges on both datasets;
however, we note that the variance of EGCN has also increased considerably when compared to the
results using the fixed splits as shown in fig. 1. Overall, our original conclusions about the benefits of
VGCN in the case of attacked graphs remain true regardless of how the given data is split for training
and validation.



O Mini-batch training

We explored mini-batch training employing the approach of [3]. Mini-batch training permits applying
our method to larger datasets where the full-batch method would result in out-of-memory errors.
An additional benefit is also an order reduction in the number of model parameters through a block-
diagonal approximation of the given graph; this approach is referred to as vanilla cluster-GCN in [3].
We decompose the auxiliary graph into m non-overlapping subgraphs using the METIS [9] algorithm.
Then, we optimise the VGCN parameters using mini-batch SGD considering each subgraph as a
mini-batch.

Figure 11 shows the performance of our method using mini-batch training with a block-diagonal
approximation on the PUBMED dataset in the adversarial setting. The statistics for the PUBMED
dataset are shown in Table 1. We can see that this is a much larger dataset than CORA and CITESEER.
In the adversarial setting, we consider attacks that add or remove edges proportionally to the total
number of edges in the ground truth graph such that we remove approximately 50% of the edges
or add 50% or 100% of edges. For these experiments we limited the search space for the hyper-
parameters to the following: GCN regularisation in {5 x 1073,5 x 107*}, p; = {0.25,0.5,0.75},
B = {102,103}, 7, = {0.5}, and 7 = {0.5,0.66}. Finally, we reduced the given graph to 20
non-overlapping graphs.

In fig. 11 we compare VGCN with GCN, GAT, and RGCN. We see that in the case of attacks that
add edges to the graph, our VGCN method outperforms all others. In the case of attacks that remove
edges, all methods have similar performance although VGCN displays a small performance drop and
higher variance. This can easily be explained as an artifact of the block-diagonal approximation that
forces VGCN to consider a much smaller set of edges than the other methods. That is, the number of
edges removed are both the attacked ones as well as the between-subgraph edges.
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Figure 9: Left: Communities in the original graph from the adversarial CITESEER experiment with
node labels distinguished by colors and added edges denoted by red dashes. Right: Learned graph

with edge opacity proportional to limit posterior probabilities. Added edges with probability greater
than 12 are highlighted red.
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Figure 10: Results for the adversarial setting on attributed graphs CITESEER (top), CORA (bottom)
using random splits of the data into train/validation/test sets: Accuracy on the test set across ten
attacked graphs at each attack setting such that negative values indicate removing edges and positive
values adding edges. We compare our method (VGCN) with competing algorithms.
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Figure 11: Results using mini-batch training with a block-diagonal approximation of the auxiliary
graph on the Pubmed dataset in the adversarial setting.
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