A DisARM Derivation

To finish the derivation of Eq. 6, we need to compute

$$\mathbb{E}_{q(z|b,\tilde{b})} \left[\nabla_{\theta} \log q_{\theta}(z) \right] = \mathbb{E}_{q(z|b,\tilde{b})} \left[1 - \frac{2 \exp(-(z - \alpha_{\theta}))}{1 + \exp(-(z - \alpha_{\theta}))} \right] \nabla_{\theta} \alpha_{\theta}$$
(10)
$$= \mathbb{E}_{q(u|b,\tilde{b})} \left[2u - 1 \right] \nabla_{\theta} \alpha_{\theta} = \left(2 \mathbb{E}_{q(u|b,\tilde{b})} \left[u \right] - 1 \right) \nabla_{\theta} \alpha_{\theta},$$

where we have used the change of variables $z = \log(u) - \log(1 - u) + \alpha_{\theta}$, and thus $u = \sigma(z - \alpha_{\theta})$. This is a common reparameterization of a Logistic variable in terms of a Uniform variable, so when $z \sim \text{Logistic}(\alpha_{\theta}, 1)$, then $u \sim \text{Uniform}(0, 1)$. Thus, the joint distribution $q(u, b, \tilde{b})$ is generated by sampling $u \sim \text{Uniform}(0, 1)$ and setting $b = \mathbb{1}_{z>0} = \mathbb{1}_{1-u<\sigma(\alpha_{\theta})}$ and $\tilde{b} = \mathbb{1}_{\tilde{z}>0} = \mathbb{1}_{u<\sigma(\alpha_{\theta})}$. Conditioning on b, \tilde{b} imposes constraints on the value of u, hence $q(u|b, \tilde{b})$ is a truncated Uniform variable. To compute $\mathbb{E}_{q(u|b,\tilde{b})}[u]$, it suffices to enumerate the possibilities:

- b = 0, $\tilde{b} = 0$ implies $\sigma(\alpha_{\theta}) < u < \sigma(-\alpha_{\theta})$, which is symmetric around $\sigma(0) = \frac{1}{2}$, so $\mathbb{E}_{a(u|b,\tilde{b})}[u] = \frac{1}{2}$.
- b = 1, $\tilde{b} = 1$ implies $\sigma(-\alpha_{\theta}) < u < \sigma(\alpha_{\theta})$, which is symmetric around $\sigma(0) = \frac{1}{2}$, so $\mathbb{E}_{a(u|b,\tilde{b})}[u] = \frac{1}{2}$.
- b = 0, $\tilde{b} = 1$ implies $u < \min(\sigma(-\alpha_{\theta}), \sigma(\alpha_{\theta})) = \sigma(-|\alpha_{\theta}|) = 1 \sigma(|\alpha_{\theta}|)$. Thus, $1 - \sigma(|\alpha_{\theta}|)$

$$\mathbb{E}_{q(u|b,\tilde{b})}\left[u\right] = \frac{1 - \sigma(|\alpha_{\theta}|)}{2}$$

•
$$b = 1$$
, $\tilde{b} = 0$ implies $u > \max(\sigma(-\alpha_{\theta}), \sigma(\alpha_{\theta})) = \sigma(|\alpha_{\theta}|)$. Thus,

$$\mathbb{E}_{q(u|b,\tilde{b})}[u] = \frac{1 + \sigma(|\alpha_{\theta}|)}{2}.$$

Combining the cases, we have that

$$2\mathbb{E}_{q(u|b,\tilde{b})}\left[u\right] - 1 = (-1)^{b} \mathbb{1}_{b \neq \tilde{b}} \sigma(|\alpha_{\theta}|).$$

B Interpolated Estimator

Depending on the properties of the function, antithetic samples can result in *higher* variance estimates compared to an estimator based on the same number of independent samples. This can be resolved by constructing an *interpolated estimator*.

Let $q_{\theta}^{A}(b, \tilde{b})$ be the antithetic Bernoulli distribution and $q_{\theta}^{I}(b, \tilde{b})$ by the independent Bernoulli distribution. Explicitly, when $p = \sigma(\alpha_{\theta}) < 0.5$, we have

$$q_{\theta}^{A}(b,\tilde{b}) = \begin{cases} 1-2p & b=\tilde{b}=0, \\ 0 & b=\tilde{b}=1, \\ p & \text{o.w.}, \end{cases}$$

and when $p \geq 0.5$

$$q_{\theta}^{A}(b,\tilde{b}) = \begin{cases} 0 & b = \tilde{b} = 0, \\ 2p - 1 & b = \tilde{b} = 1, \\ 1 - p & \text{o.w.} \end{cases}$$

Let $\beta \in [0,1]$ and define $q_{\theta}^{\beta}(b,\tilde{b},i) = q^{\beta}(i)q_{\theta}(b,\tilde{b}|i)$ with $q^{\beta}(i) = \text{Bernoulli}(\beta)$ and $q_{\theta}(b,\tilde{b}|i) = iq_{\theta}^{A}(b,\tilde{b}) + (1-i)q_{\theta}^{I}(b,\tilde{b})$.

Then, the interpolated estimator is

$$\begin{split} g_{\text{Interpolated}}^{\beta}(b,\tilde{b}) &= \mathbb{E}_{q_{\theta}^{\beta}(i|b,\tilde{b})} \left[ig_{\text{DisARM}}(b,\tilde{b}) + (1-i)g_{\text{LOO}}(b,\tilde{b}) \right] \\ &= q_{\theta}^{\beta}(i=1|b,\tilde{b})g_{\text{DisARM}}(b,\tilde{b}) + q_{\theta}^{\beta}(i=0|b,\tilde{b})g_{\text{LOO}}(b,\tilde{b}), \end{split}$$

where explicitly

$$g_{\text{LOO}}(b,\tilde{b}) = \frac{1}{2} \left((f(b) - f(\tilde{b}) \nabla_{\theta} \log q_{\theta}(b) + (f(\tilde{b}) - f(b)) \nabla_{\theta} \log q_{\theta}(\tilde{b}) \right).$$

Note that when $\beta = 0$, $g_{\text{Interpolated}}^{\beta}$ reduces to g_{LOO} and when $\beta = 1$, it reduces to g_{DisARM} . To compute $q^{\beta}(i|b, \tilde{b})$, we use Bayes rule to rewrite it as

$$q^{\beta}(i=1|b,\tilde{b}) = \frac{\beta q^{A}(b,b)}{(1-\beta)q^{I}(b,\tilde{b}) + \beta q^{A}(b,\tilde{b})},$$

in terms of known values.

From the definition, we have

$$\begin{split} \mathbb{E}_{q^{\beta}_{\theta}(b,\tilde{b})} \left[g^{\beta}_{\text{Interpolated}}(b,\tilde{b}) \right] &= \mathbb{E}_{q^{\beta}_{\theta}(b,\tilde{b},i)} \left[ig_{\text{DisARM}}(b,\tilde{b}) + (1-i)g_{\text{LOO}}(b,\tilde{b}) \right] \\ &= \beta \mathbb{E}_{q^{A}_{\theta}(b,\tilde{b})} \left[g_{\text{DisARM}}(b,\tilde{b}) \right] + (1-\beta) \mathbb{E}_{q^{I}_{\theta}(b,\tilde{b})} \left[g_{\text{LOO}}(b,\tilde{b}) \right], \end{split}$$

so because g_{DisARM} and g_{LOO} are unbiased, $g_{\text{Interpolated}}^{\beta}$ is also unbiased. Because this estimator is unbiased for any choice of $\beta \in [0, 1]$, we can optimize β to reduce variance as in (Ruiz et al. 2016; Tucker et al. 2017) and thus automatically choose the coupling which is favorable for the function under consideration.

C Algorithm for Training Multi-layer Bernoulli VAE

For hierarchical VAEs, we use an inference network of the form $q_{\theta}(\mathbf{b}|x) = \prod_{t} q_{\theta}(\mathbf{b}_{t}|\mathbf{b}_{t-1}) = \prod_{t} \text{Bernoulli}(\mathbf{b}_{t}; \alpha_{\theta}(\mathbf{b}_{t-1}))$, where \mathbf{b}_{t} is the set of binary latent variables for the *t*-th layer (with $\mathbf{b}_{0} = x$ for convenience). The algorithm for computing the DisARM gradient estimator is summarized in Algorithm 1.

Algorithm 1: DisARM gradient estimator for a T-stochastic-hidden-layer binary network

```
input : A mini-batch x of data.
 Initialize q_{\theta} = 0.
 \mathbf{b}_0 = \boldsymbol{x}.
Sample \boldsymbol{u}_{1:T} \sim \prod \text{Uniform}(0,1)
// Sample trunk.
for t = 1:T do
       \mathbf{b}_t = \mathbb{1}_{1-u_t < \sigma(\alpha_\theta(\mathbf{b}_{t-1}))}.
end
for t = 1:T do
          // Antithetic sampling.
          \tilde{\boldsymbol{b}}_t = \mathbb{1}_{u_t < \sigma(\alpha_{\theta}(\mathbf{b}_{t-1}))}.
// Sample branch.
          Sample \tilde{\boldsymbol{b}}_{t+1:T} \sim q_{\theta}(\cdot | \tilde{\boldsymbol{b}}_t).
          f_{\Delta} = f(\boldsymbol{b}_{0:t-1}, \boldsymbol{b}_{t:T}) - f(\boldsymbol{b}_{0:t-1}, \tilde{\boldsymbol{b}}_{t:T}).
          g_{\theta} \mathrel{+}= \frac{1}{2} f_{\Delta} \sum_{i} \left( \left( (-1)^{\tilde{\boldsymbol{b}}_{ti}} \mathbb{1}_{\boldsymbol{b}_{ti} \neq \tilde{\boldsymbol{b}}_{ti}} \sigma(|(\alpha_{\theta}(\boldsymbol{b}_{t-1}))_{i}|) \right) \nabla_{\theta}(\alpha_{\theta}(\boldsymbol{b}_{t-1}))_{i} \right).
end
 Return g_{\theta}.
```

D Experimental Details

Input images to the networks were centered with the global mean of the training dataset. For the nonlinear network activations, we used leaky rectified linear units (LeakyReLU, Maas et al., 2013) activations with the negative slope coefficient of 0.3 as in (Yin and Zhou, 2019). The parameters of the inference and generation networks were optimized with Adam (Kingma and Ba, 2015) using learning rate 10^{-4} . The logits for the prior distribution p(b) were optimized using SGD with learning

rate 10^{-2} as in (Yin and Zhou, 2019). For RELAX, we initialize the trainable temperature and scaling factor of the control variate to 0.1 and 1.0, respectively. The learned control variate in RELAX was a single-hidden-layer neural network with 137 LeakyReLU units. The control variate parameters were also optimized with Adam using learning rate 10^{-4} .

E Additional Experimental Results

Figure 5: Comparing gradient estimators for the toy problem (Section 5.1). We plot the trace of the estimated Bernoulli probability $\sigma(\phi)$, the estimated gradients, and the variance of the estimated gradients. The variance is measured based on 5000 Monte-Carlo samples at each iteration.

In Appendix Figure 5, we compare gradient estimators for the toy problem Section 5.1, for which the exact gradient is

$$(1-2p_0)\sigma(\phi)(1-\sigma(\phi)).$$

Trace plots for the estimated probability $\sigma(\phi)$ and the estimated gradients are similar for the three estimators, REINFORCE LOO, ARM and DisARM. However, DisARM exhibits lower variance than REINFORCE LOO and ARM, especially as the problem becomes harder with increasing ϕ .

Figure 6: Training a Bernoulli VAE by maximizing the ELBO using DisARM (red), RELAX (blue), REINFORCE LOO (orange), and ARM (green). Both MNIST and Omniglot were dynamically binarized. We report the ELBO on training set (left column), the 100-sample bound on test set (middle column) and the variance of gradients (right column) for linear (top row) and nonlinear (bottom row) models. The mean and standard error (shaded area) are estimated given 5 runs from different random initializations.

Figure 7: Training 2/3/4-layer Bernoulli VAE on MNIST and FashionMNIST using DisARM, RELAX, REINFORCE LOO, and ARM. We report the ELBO on the training set (left), the 100-sample bound on the test set (middle), and the variance of the gradient estimator (right).

Figure 8: Training a Bernoulli VAE by maximizing the multi-sample variational bound with DisARM and VIMCO. We report the training and test multi-sample bound and the variance of the gradient estimators for the linear (a) and nonlinear (b) models. We evaluate the model on three datasets: MNIST, FashionMNIST and Omniglot, with dynamic binarization.

Table 2: Results for models trained by maximizing the ELBO. We report the mean and the standard error of the mean for the ELBO on the training set and of the 100-sample bound on the test set. The results we computed based on 5 runs from different random initializations and the standard error of the mean. The best performing method (up to the standard error) for each task is in bold.

		Train ELBO				
Dynamic MNIST	REINFORCE LOO	ARM	DisARM	RELAX		
Linear	-116.57 ± 0.15	-117.66 ± 0.04	-116.30 ± 0.08 102.56 \pm 0.10	-115.93 ± 0.15		
Fashion MNIST	-102.43 ± 0.12	-107.32 ± 0.28	-102.30 ± 0.19	$ -102.53 \pm 0.15$		
Linear Nonlinear	$-256.33 \pm 0.14 \\ -\textbf{237.66} \pm \textbf{0.11}$	$\begin{array}{c} -256.80 \pm 0.16 \\ -241.30 \pm 0.10 \end{array}$	$-255.97 \pm 0.07 \\ -237.77 \pm 0.08$	$\begin{vmatrix} -255.83 \pm 0.03 \\ -238.23 \pm 0.17 \end{vmatrix}$		
Omniglot						
Linear Nonlinear	$-121.66 \pm 0.10 \\ -115.26 \pm 0.15$	$\begin{array}{c} -122.45 \pm 0.10 \\ -118.76 \pm 0.05 \end{array}$	$\begin{array}{c} -121.15\pm0.12\\ -115.08\pm0.11\end{array}$	$\begin{vmatrix} -120.79 \pm 0.09 \\ -116.56 \pm 0.15 \end{vmatrix}$		
Test 100-sample bound						
	Te	st 100-sample bound	1			
Dynamic MNIST	Te REINFORCE LOO	st 100-sample bound	l DisARM	RELAX		
Dynamic MNIST Linear Nonlinear	$\begin{array}{c} \mbox{Te} \\ \mbox{REINFORCE LOO} \\ \mbox{-109.25} \pm 0.09 \\ \mbox{-97.41} \pm 0.09 \end{array}$	$\frac{\text{st 100-sample bound}}{\text{ARM}} \\ \hline \\ -109.70 \pm 0.05 \\ -101.15 \pm 0.39 \\ \hline \end{array}$	$\frac{1}{109.13 \pm 0.04}$ -97.52 ± 0.11	$\begin{array}{r c} \hline \\ \hline \\ \hline \\ \hline \\ -108.76 \pm 0.06 \\ -97.76 \pm 0.11 \\ \hline \end{array}$		
Dynamic MNIST Linear Nonlinear Fashion MNIST	Te REINFORCE LOO -109.25 ± 0.09 -97.41 ± 0.09	$\frac{\text{ARM}}{-109.70 \pm 0.05} \\ -101.15 \pm 0.39$	$\frac{1}{109.13 \pm 0.04} \\ -97.52 \pm 0.11$			
Dynamic MNIST Linear Nonlinear Fashion MNIST Linear Nonlinear	Te REINFORCE LOO -109.25 ± 0.09 -97.41 ± 0.09 -252.55 ± 0.12 -236.94 ± 0.09			$\begin{array}{r c c c c c c c c c c c c c c c c c c c$		
Dynamic MNIST Linear Nonlinear Fashion MNIST Linear Nonlinear Omniglot	Te REINFORCE LOO -109.25 ± 0.09 -97.41 ± 0.09 -252.55 ± 0.12 -236.94 ± 0.09		$\begin{array}{c} \hline \\ \hline \\ \hline \\ -109.13 \pm 0.04 \\ -97.52 \pm 0.11 \\ \hline \\ \hline \\ -252.30 \pm 0.05 \\ -237.02 \pm 0.07 \\ \hline \end{array}$	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$		

		Train ELBO				
Dynamic MNIST	REINFORCE LOO	ARM	DisARM	RELAX		
2-Layer	-106.34 ± 0.10	-107.90 ± 0.10	-105.88 ± 0.04	$ -105.48 \pm 0.04$		
3-Layer	-102.13 ± 0.09	-103.76 ± 0.11	-101.63 ± 0.09	-101.22 ± 0.09		
4-Layer	-101.22 ± 0.09	-102.82 ± 0.08	-100.96 ± 0.07	-99.86 ± 0.07		
Fashion MNIST						
2-Layer	-244.67 ± 0.16	-245.76 ± 0.11	-244.04 ± 0.06	$ -243.42\pm0.11$		
3-Layer	-239.88 ± 0.03	-241.21 ± 0.12	-239.64 ± 0.06	-239.41 ± 0.07		
4-Layer	-238.86 ± 0.09	-239.99 ± 0.04	-238.49 ± 0.08	-238.23 ± 0.08		
Omniglot						
2-Layer	-116.81 ± 0.08	-117.74 ± 0.14	-116.38 ± 0.10	-115.45 ± 0.08		
3-Layer	-115.20 ± 0.08	-116.18 ± 0.13	-114.81 ± 0.09	-113.83 ± 0.06		
4-Layer	-114.83 ± 0.13	-116.01 ± 0.14	-114.09 ± 0.09	$ -113.64 \pm 0.14$		
Test 100-sample bound						
	Tes	t 100-sample bound	1			
Dynamic MNIST	Tes REINFORCE LOO	t 100-sample bound	DisARM	RELAX		
Dynamic MNIST 2-Layer	Tes REINFORCE LOO -99.45 ± 0.07	$\frac{100\text{-sample bound}}{\text{ARM}}$ -100.31 ± 0.07	$\frac{1}{10000000000000000000000000000000000$	RELAX		
Dynamic MNIST 2-Layer 3-Layer	$\begin{array}{c} \text{Tes} \\ \hline \\ \textbf{REINFORCE LOO} \\ \hline \\ -99.45 \pm 0.07 \\ -95.40 \pm 0.05 \end{array}$		$\begin{tabular}{ c c c c c } \hline DisARM \\ \hline -99.12 \pm 0.05 \\ -95.08 \pm 0.04 \\ \hline \end{tabular}$	$\begin{array}{c} \hline \\ \hline \\ \hline \\ -98.65 \pm 0.03 \\ -94.53 \pm 0.06 \end{array}$		
Dynamic MNIST 2-Layer 3-Layer 4-Layer	Tes REINFORCE LOO -99.45 ± 0.07 -95.40 ± 0.05 -94.72 ± 0.06	$\begin{array}{r} {} t \ 100 \text{-sample bound} \\ \hline \\ \hline \\ \hline \\ -100.31 \pm 0.07 \\ -96.47 \pm 0.07 \\ -95.84 \pm 0.09 \end{array}$	$\begin{tabular}{ c c c c c } \hline DisARM \\ \hline -99.12 ± 0.05 \\ -95.08 ± 0.04 \\ -94.60 ± 0.04 \\ \hline -94.60 ± 0.04 \\ \hline \end{tabular}$	$\begin{array}{r c} \hline \\ \hline \\ \hline \\ -98.65 \pm 0.03 \\ -94.53 \pm 0.06 \\ -93.34 \pm 0.04 \end{array}$		
Dynamic MNIST 2-Layer 3-Layer 4-Layer Fashion MNIST	Tes REINFORCE LOO -99.45 ± 0.07 -95.40 ± 0.05 -94.72 ± 0.06		$\begin{tabular}{ c c c c c } \hline DisARM \\ \hline -99.12 \pm 0.05 \\ -95.08 \pm 0.04 \\ -94.60 \pm 0.04 \\ \hline \end{tabular}$	$\begin{array}{c} \hline \text{RELAX} \\ \hline -98.65 \pm 0.03 \\ -94.53 \pm 0.06 \\ -93.34 \pm 0.04 \end{array}$		
Dynamic MNIST 2-Layer 3-Layer 4-Layer Fashion MNIST 2-Layer	Tes REINFORCE LOO -99.45 ± 0.07 -95.40 ± 0.05 -94.72 ± 0.06 -241.98 ± 0.14	$\begin{array}{r} \mbox{t 100-sample bound} \\ \hline \mbox{ARM} \\ \hline \mbox{-100.31 \pm 0.07} \\ \mbox{-96.47 \pm 0.07} \\ \mbox{-95.84 \pm 0.09} \\ \hline \\ \hline \mbox{-242.58 \pm 0.11} \end{array}$	$\begin{tabular}{ c c c c c } \hline DisARM & & \\ \hline -99.12 \pm 0.05 \\ -95.08 \pm 0.04 \\ -94.60 \pm 0.04 \\ \hline \\ -241.42 \pm 0.05 \\ \hline \end{tabular}$	$\begin{array}{r c} \hline \\ \hline \\ \hline \\ \hline \\ -98.65 \pm 0.03 \\ -94.53 \pm 0.06 \\ -93.34 \pm 0.04 \\ \hline \\ \hline \\ -240.84 \pm 0.08 \\ \hline \end{array}$		
Dynamic MNIST 2-Layer 3-Layer 4-Layer Fashion MNIST 2-Layer 3-Layer	Tes REINFORCE LOO -99.45 ± 0.07 -95.40 ± 0.05 -94.72 ± 0.06 -241.98 ± 0.14 -237.80 ± 0.06	$\begin{tabular}{ c c c c c } \hline ARM \\ \hline -100.31 ± 0.07 \\ -96.47 ± 0.07 \\ -95.84 ± 0.09 \\ \hline -242.58 ± 0.11 \\ -238.59 ± 0.13 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c }\hline \hline DisARM & & \\ \hline -99.12 \pm 0.05 & \\ -95.08 \pm 0.04 & \\ -94.60 \pm 0.04 & \\ \hline -241.42 \pm 0.05 & \\ -237.59 \pm 0.09 & \\ \hline \end{tabular}$	$\begin{array}{r c} \hline \\ \hline \\ \hline \\ \hline \\ -98.65 \pm 0.03 \\ -94.53 \pm 0.06 \\ -93.34 \pm 0.04 \\ \hline \\ \hline \\ -240.84 \pm 0.08 \\ -237.32 \pm 0.08 \\ \hline \end{array}$		
Dynamic MNIST2-Layer3-Layer4-LayerFashion MNIST2-Layer3-Layer4-Layer	Tes REINFORCE LOO -99.45 ± 0.07 -95.40 ± 0.05 -94.72 ± 0.06 -241.98 ± 0.14 -237.80 ± 0.06 -237.09 ± 0.07	$\begin{tabular}{ c c c c c } \hline ARM \\\hline -100.31 ± 0.07 \\ -96.47 ± 0.07 \\ -95.84 ± 0.09 \\\hline -242.58 ± 0.11 \\ -238.59 ± 0.13 \\ -237.72 ± 0.05 \\\hline \end{tabular}$	$\begin{tabular}{ c c c c c }\hline \hline DisARM \\ \hline -99.12 ± 0.05 \\ -95.08 ± 0.04 \\ -94.60 ± 0.04 \\ \hline -241.42 ± 0.05 \\ -237.59 ± 0.09 \\ -236.78 ± 0.09 \\ \hline -236.78 ± 0.09 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c }\hline RELAX \\ \hline -98.65 ± 0.03\\ -94.53 ± 0.06\\ -93.34 ± 0.04\\ \hline -240.84 ± 0.08\\ -237.32 ± 0.08\\ -236.43 ± 0.10\\ \hline -236.43 ± 0.10\\$		
Dynamic MNIST 2-Layer 3-Layer 4-Layer Fashion MNIST 2-Layer 3-Layer 4-Layer Omniglot	Tes REINFORCE LOO -99.45 ± 0.07 -95.40 ± 0.05 -94.72 ± 0.06 -241.98 ± 0.14 -237.80 ± 0.06 -237.09 ± 0.07	$\begin{array}{r} {\rm t\ 100\text{-sample\ bound}}\\ \hline \\ \hline \\ {\rm ARM}\\ \hline \\ -100.31\pm0.07\\ -96.47\pm0.07\\ -95.84\pm0.09\\ \hline \\ \hline \\ -242.58\pm0.11\\ -238.59\pm0.13\\ -237.72\pm0.05\\ \hline \end{array}$	$\begin{tabular}{ c c c c c }\hline \hline DisARM \\ \hline -99.12 \pm 0.05 \\ -95.08 \pm 0.04 \\ -94.60 \pm 0.04 \\ \hline -241.42 \pm 0.05 \\ -237.59 \pm 0.09 \\ -236.78 \pm 0.09 \\ \hline \end{tabular}$	$\begin{array}{r l} \hline \\ \hline \\ \hline \\ \hline \\ -98.65 \pm 0.03 \\ -94.53 \pm 0.06 \\ -93.34 \pm 0.04 \\ \hline \\ \hline \\ -240.84 \pm 0.08 \\ -237.32 \pm 0.08 \\ -236.43 \pm 0.10 \\ \hline \end{array}$		
Dynamic MNIST2-Layer3-Layer4-LayerFashion MNIST2-Layer3-Layer4-LayerOmniglot2-Layer	Tes REINFORCE LOO -99.45 ± 0.07 -95.40 ± 0.05 -94.72 ± 0.06 -241.98 ± 0.14 -237.80 ± 0.06 -237.09 ± 0.07 -112.92 ± 0.04	$\begin{array}{r} \mbox{t 100-sample bound} \\ \hline \mbox{ARM} \\ \hline \mbox{-100.31 \pm 0.07} \\ \mbox{-96.47 \pm 0.07} \\ \mbox{-95.84 \pm 0.09} \\ \hline \mbox{-242.58 \pm 0.11} \\ \mbox{-238.59 \pm 0.13} \\ \mbox{-237.72 \pm 0.05} \\ \hline \mbox{-113.39 \pm 0.10} \end{array}$	$\begin{tabular}{ c c c c c } \hline DisARM & \\ \hline -99.12 \pm 0.05 \\ -95.08 \pm 0.04 \\ -94.60 \pm 0.04 & \\ \hline -241.42 \pm 0.05 \\ -237.59 \pm 0.09 \\ -236.78 \pm 0.09 & \\ \hline -112.64 \pm 0.06 & \\ \hline \end{tabular}$	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$		
Dynamic MNIST2-Layer3-Layer4-LayerFashion MNIST2-Layer3-Layer4-LayerOmniglot2-Layer3-Layer3-Layer	Tes REINFORCE LOO -99.45 ± 0.07 -95.40 ± 0.05 -94.72 ± 0.06 -241.98 ± 0.14 -237.80 ± 0.06 -237.09 ± 0.07 -112.92 ± 0.04 -111.52 ± 0.07	$\begin{tabular}{ c c c c c } \hline ARM \\ \hline -100.31 ± 0.07 \\ -96.47 ± 0.07 \\ -95.84 ± 0.09 \\ \hline -242.58 ± 0.11 \\ -238.59 ± 0.13 \\ -237.72 ± 0.05 \\ \hline -113.39 ± 0.10 \\ -112.01 ± 0.09 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c }\hline \hline DisARM & \\ \hline -99.12 \pm 0.05 \\ -95.08 \pm 0.04 \\ -94.60 \pm 0.04 & \\ \hline -241.42 \pm 0.05 \\ -237.59 \pm 0.09 \\ -236.78 \pm 0.09 & \\ \hline -112.64 \pm 0.06 \\ -111.25 \pm 0.08 & \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline RELAX \\ \hline -98.65 ± 0.03\\ -94.53 ± 0.06\\ -93.34 ± 0.04\\ \hline -240.84 ± 0.08\\ -237.32 ± 0.08\\ -236.43 ± 0.10\\ \hline -111.87 ± 0.09\\ -110.22 ± 0.06\\ \hline \end{tabular}$		

Table 3: Results for training Bernoulli VAEs with 2/3/4 stochastic hidden layers. We report the mean and the standard error of the mean for the ELBO on training set and of the 100-sample bound on the test set. The results are computed based on 5 runs with different random initializations. The best performing methods (up to standard error) for each task is in bold.

Table 4: Train and test variational lower bounds for models trained using the multi-sample objective. We report the mean and the standard error of the mean computed based on 5 runs from different random initializations. The best performing method (up to the standard error) for each task is in bold. To provide a computationally fair comparison between VIMCO 2K-samples and DisARM K-pairs, we report the 2K-sample bound for both, even though DisARM optimizes the K-sample bound.

Train multi-sample bound						
Dynamic MNIST	DisARM 1-pair	VIMCO 2-samples	DisARM 10-pairs	VIMCO 20-samples		
Linear Nonlinear	$\begin{array}{c} -114.06\pm0.13\\ -100.80\pm0.11\end{array}$	$\begin{array}{c} -115.80 \pm 0.08 \\ -101.14 \pm 0.10 \end{array}$	$\begin{array}{c} -108.61 \pm 0.08 \\ -93.89 \pm 0.06 \end{array}$	$\begin{array}{c} -109.40 \pm 0.07 \\ -94.52 \pm 0.05 \end{array}$		
Fashion MNIST						
Linear Nonlinear	$-254.15 \pm 0.09 \\ -236.91 \pm 0.10$	$-255.41 \pm 0.10 \\ -\textbf{236.41} \pm \textbf{0.10}$	$\begin{array}{c} -247.77 \pm 0.08 \\ -231.34 \pm 0.06 \end{array}$	$\begin{array}{c} -249.60 \pm 0.11 \\ -232.01 \pm 0.08 \end{array}$		
Omniglot						
Linear Nonlinear	$-119.89 \pm 0.06 \\ -114.45 \pm 0.06$	$-121.66 \pm 0.08 \\ -114.18 \pm 0.07$	$ \begin{vmatrix} -116.70 \pm 0.03 \\ -108.29 \pm 0.04 \end{vmatrix} $	$-117.68 \pm 0.07 \\ -108.37 \pm 0.05$		
Test multi-sample bound						
Dynamic MNIST	DisARM 1-pair	VIMCO 2-samples	DisARM 10-pairs	VIMCO 20-samples		
Linear Nonlinear	$\begin{array}{c} -113.63\pm0.13\\ -102.03\pm0.10\end{array}$	$\begin{array}{c} -115.31\pm 0.07 \\ -102.15\pm 0.11 \end{array}$	$ \begin{vmatrix} -108.18 \pm 0.08 \\ -94.78 \pm 0.07 \end{vmatrix} $	$-108.97 \pm 0.08 \\ -95.34 \pm 0.06$		
Fashion MNIST						
Linear Nonlinear	$-256.14 \pm 0.10 \\ -239.53 \pm 0.10$	$\begin{array}{c} -257.35 \pm 0.12 \\ -\textbf{238.99} \pm \textbf{0.11} \end{array}$	$ \begin{vmatrix} -249.71 \pm 0.10 \\ -233.82 \pm 0.08 \end{vmatrix} $	$-251.52 \pm 0.13 \\ -234.47 \pm 0.09$		
Omniglot						
Linear Nonlinear	$-120.23 \pm 0.07 \\ -118.96 \pm 0.07$	$-121.99 \pm 0.08 \\ -118.36 \pm 0.11$	$ \begin{vmatrix} -117.29 \pm 0.04 \\ -112.43 \pm 0.07 \end{vmatrix}$	$-118.29 \pm 0.07 \\ -112.42 \pm 0.07$		