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Abstract

Swap regret, a generic performance measure of online decision-making algo-
rithms, plays an important role in the theory of repeated games, along with a
close connection to correlated equilibria in strategic games. This paper shows an
Ω(
√
TN logN)-lower bound for swap regret, where T and N denote the numbers

of time steps and available actions, respectively. Our lower bound is tight up to
a constant, and resolves an open problem mentioned, e.g., in the book by Nisan
et al. [28]. Besides, we present a computationally efficient reduction method that
converts no-external-regret algorithms to no-swap-regret algorithms. This method
can be applied not only to the full-information setting but also to the bandit setting
and provides a better regret bound than previous results.

1 Introduction

Online decision-making has been extensively studied owing to its wide range of applications to
online learning [32], repeated game [11; 21], and algorithmic game theory [28]. In this study, we
consider an online decision-making problem with a finite set of actions [N ] = {1, 2, . . . , N}, where
N denotes the number of actions. In each time step t ∈ {1, 2, . . .}, the environment chooses the loss
vector `t = (`t1, . . . , `

t
N )> ∈ [0, 1]N , while a player chooses an action it ∈ [N ] without knowledge

of `t, and incur a loss of `tit for the chosen action. After choosing an action, the player gets feedback
information regarding the loss vector `t. Two different settings are pondered in terms of feedback.
The full-information setting allows the player to observe all entries of `t, whereas the bandit setting
reveals only the loss `tit for the chosen action. This study deals with the adaptive adversary model,
i.e., `t may behave adversarially depending on the actions i1, . . . , it−1 chosen so far.

External regret, or simply regret, is a typical measure of the performance of online decision-making
algorithms, which is defined to be the difference between cumulative losses for the algorithms and
for the single best action in retrospect. Algorithms achieving external regret of sublinear order in
T are called no-external-regret algorithms, where T denotes the total number of time steps. This
no-external-regret property implies that the averaged performance of chosen actions converges to,
or are superior to, that for any single action. It is duly recognized that expected external regrets of
O(
√
T logN) can be achieved in the full-information setting [4; 18], and of O(

√
TN) in the bandit

setting [5].

Swap regret [9] is an alternative performance measure that compares the cumulative loss for the
algorithm and that for swapped action sequences generated by arbitrary modification rules F : [N ]→
[N ]. To define swap regret, we produce a sequence of swapped actions F (i1), F (i2), . . . , F (iT ),
and evaluate the difference between cumulative losses for these action sequences and the original
sequence, which can be expressed as RT (F ) =

∑T
t=1(`tit − `tF (it)). Swap regret is defined as the

maximum of RT (F ) over all NN functions F from [N ] to [N ]. If an algorithm has a swap-regret
bound of sublinear in T , it is termed a no-swap-regret algorithm. This property is stronger than the
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Table 1: Bounds for swap regret. Lower bounds apply both to the full-information setting and to the
bandit setting.

Feedback Upper bound, computational cost Lower bound

Full-info. O(
√
TN logN), poly-time [9; 27] Ω(

√
TN) [9]

Bandit O(
√
TN3 logN), poly-time [9] Ω(

√
TN logN) (Theorem 1)

O(
√
TN2 logN), exp-time [33]

O(
√
TN2), poly-time (Theorem 2)

no-external-regret property, i.e., no-swap-regret algorithms are also no-external-regret algorithms.
In fact, F can be a function that maps all actions to a single action i ∈ [N ], which implies that
swap regret is an upper bound of external regret. Whereas, the no-external-regret property does not
guarantee the property of no-swap-regret [34]. A major application of no-swap-regret algorithms
can be found in the field of the algorithmic game theory. For any strategic games, given a no-swap-
regret algorithm, one can construct an algorithm for computing approximately correlated equilibria
[16; 20; 22].

Blum and Mansour [9] and Stoltz [33] have provided no-swap-regret algorithms, both for the full-
information setting and for the bandit setting, as can be seen in Table 1. The algorithms by Blum and
Mansour [9] are based on reduction methods that, given no-external-regret algorithms A, convert
it to a no-swap-regret algorithm that calls A as subroutines. For the full-information setting, their
approach achieves O(

√
TN logN)-swap regret, while they have shown that the swap regret is at

least Ω(
√
TN) in the worst case. The gap of

√
logN -factor between the upper and lower bounds

has remained, and removing this gap has been mentioned as an open problem, e.g., in Chapter 4 of
the book by Nisan et al. [28] and in the thesis of Stoltz [33]. For bandit setting, Blum and Mansour
[9] proposed an algorithm that achieves swap regret of O(

√
TN3 logN), and Stoltz [33] achieved

O(
√
TN2 logN).

Our contribution

This study’s contribution is two-fold: one is a tight lower bound for swap regret, and the other is
a novel efficient method for achieving no-swap-regret. The first result can be summarized in the
following theorem:

Theorem 1. Suppose that N ≥ 264 and 4N logN ≤ T ≤ N 3/2/(28 logN). There exists an
adaptive environment for which any randomized online algorithm suffers swap regret bounded as

E

[
max

F :[N ]→[N ]
RT (F )

]
≥ 2−11

√
TN logN.

The proof of this theorem is given in Section 4. This theorem shaves off the above-mentioned
O(
√

logN)-gap between the upper and lower bounds for swap regret. The concluding analysis
indicates that the minimax optimal bound for swap regret is Θ(

√
TN logN), and that there is no

room for improving O(
√
TN logN)-swap-regret algorithms, except for constant factors.

Remark. The assumption of T = Ω(N logN) in Theorem 1 is inevitable to prove an Ω(
√
TN logN)-

lower bound, as the swap regret is at most O(T ) from the definition. The other assumption of
T = O(N 3/2/ logN) can be relaxed to T = O(N2−o(1)) via a minor modification to the proof.
We should, however, note that the latter assumption is stronger than for the previous Ω(

√
TN)-

lower bound [9], in which T ≤ 1√
N

exp(N/288) is assumed. We conjecture that the assumption of

T = O(N 3/2/ logN) in Theorem 1 can be removed by a more sophisticated analysis.

To prove Theorem 1, we refine the analysis of the Ω(
√
NT )-lower bound given by Blum and Mansour

[9]. They pondered an adaptive environment in which each loss follows a Bernoulli distribution
of parameter 1/2 independently for most actions and time steps. Here, it can be observed that
under the assumption that the chosen actions are balanced, i.e., if there are Ω(N) actions each of

which is chosen in Ω(T/N) time steps, the expected swap regret is at least Ω(N ·
√

T
N logN) =
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Ω(
√
TN logN). This follows from the fact that the expectation of the loss `tit is 1/2 independent of

the algorithm, and an extreme value analysis providing that the minimum of N independent variables
following binomial distribution Bi(n, 1/2) is n/2− Ω(

√
n logN) asymptotically (corresponding to

minj∈[N ]

∑
t∈[T ]:it=i `

t
j , where n = ni := |{t ∈ [T ] : it = i}| and j = F (i)). However, without the

assumption of “balanced choice”, e.g., if the algorithm chooses a single action in all time steps, then
the derived lower bound is only Ω(

√
T logN). To ensure the algorithm’s decision to be balanced,

Blum and Mansour [9] modified the environment so that actions chosen Ω(T/N) times so far are
blocked, i.e., returns the loss of 1. Then, it can be inferred that the chosen actions are balanced.
Indeed, if the assumption does not hold the algorithm must choose blocked actions Ω(T ) times,
which causes Ω(T )-swap regret. In this modified environment, however, the extreme value analysis
used above cannot be applied as yet because the value of

∑
t∈[T ]:it=i `

t
j does not follow the binomial

distribution if the j-th action is blocked. Noting that there can be O(N) blocked actions, if actions
with lowest losses are blocked, we have minj∈[N ]

∑
t∈[T ]:it=i `

t
j = ni/2− Ω(

√
ni), which provide

Ω(
√
TN)-lower bound for swap regret as shown in [9].

In this present study, we improve upon the analysis to provide an Ω(
√
TN logN)-lower bound, by

showing that the probability that “good” actions are blocked for most actions i is sufficiently small.
More precisely, we show that minj∈[N ]

∑
t∈[T ]:it=i `

t
j = ni/2− Ω(

√
ni log(

√
N)) holds for Ω(N)

actions i with a high probability, which is concluded from a combination of a property of order
statistics, a union bound, and concentration inequalities.

The other contribution of this study can be summarized as follows:
Theorem 2. Suppose that there exists an r(T )-external-regret (in expectation) algorithm A for N
actions, where we assume r(T ) to be a concave function in T . Suppose that the computational
time taken to run A for T time steps is bounded by InitA + T · StepA.1 Then, we can construct an
algorithm B for which the expected swap regret is bounded by N · r(T/N). The total time complexity
of B is bounded by (N · InitA + T · StepA +O(T · SDN )), where SDN stands for the time taken to
compute a stationary distribution of a given Markov chain with N states.2

A constructive proof of this theorem is given in Section 5. We note that this theorem can be applied
both to the full-information setting and to the bandit setting, i.e., if A works for the bandit setting,
then so B is. Because there is an O(

√
NT )-external-regret algorithm for the bandit problem [5],

the above theorem implies that the expected swap regret of O(N
√
T ) can be achieved. As can be

seen in Table 1, the regret bound is better than the existing bound shown by Stoltz [33] and can be
achieved by a computationally efficient algorithm. Besides, the reduction method here is more generic
and efficient, compared to the ones proposed by Blum and Mansour [9]. More precisely, reduction
methods given in [9; 27] require additional assumptions referred to as data-dependent (first-order)
bounds for external-regret [1; 7; 12; 24], which is a refined bound depending on the cumulative
loss (or reward) rather than the number of rounds. In contrast to these existing reduction methods,
the proposed reduction method in Theorem 2 works without assumptions of data-dependent regret
bound forA. In addition, existing no-swap-regret algorithms presented in [9] require a computational
time of (N · InitA + NT · StepA + O(T · SDN )) in the notation of Theorem 2. On the other
hand, our algorithm’s time complexity regarding StepA is only (T · StepA), which improves upon
the previous results with a factor in N . The algorithm proposed by Mohri and Yang [27] runs in
(N · InitA +NT · StepA +O(N2T log T ))-time, which includes an O(N2T log T )-term in place
of O(T · SDN ). This time complexity is incomparable to ours in general, though ours is superior
under the condition of StepA = Ω(N1+Ω(1)).

Our reduction method for proving Theorem 2 is inspired by [9] as well. Similar to their reduction
methods, our algorithm uses N copies of a no-external-regret algorithm A1, . . . ,AN , and decides an
output distribution computed as a stationary distribution of a Markov chain defined by the output
distributions by A1, . . . ,AN . A key idea to improve the genericity and efficiency is the sampling
technique to choose an instance from copies that is fed the observed information. In our method, only
a chosen instance gets the feedback and updates its output distribution, and the other instances do not
update their distributions. This improves computational efficiency and makes the analysis simpler:

1InitA and StepA mean A’s time complexity of the initialization and that per time step, respectively.
2We may assume SDN is almost O(N2). In fact, as shown by Cohen et al. [13], we can approximately

compute a stationary distribution of a given Markov chain in Õ(m+N1+o(1))-time ignoring logarithmic factors,
where m represents the number of nonzero entries of its transition matrix.
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meaning better regret bounds are obtained under assumptions on regret bounds with respect to T ,
without input-dependent bounds.

2 Related Work

Online decision-making problems with finite actions have been well studied in the context of the
expert problem [11], and form the basis for some ensemble learning algorithms including Adaboost
[18]. For the problem with full information, the multiplicative weight update (MWU) method [4]
achieves O(

√
T logN)-external regret, which is minimax optimal. Indeed, it is known that the

external regret is Ω(
√
T logN) in the worst case, and hence, there is no room to improve the external

regret in terms of worst-case external regret (for details see, e.g., [11]). Some additional assumptions
help us to have improved regret bounds. For example, if the cumulative loss

∑T
t=1 `

t
i for each action

i is bounded by M , O(
√
M logN)-external regret [12; 24], which is called a first-order regret bound,

can be achieved. This first-order regret bound is used in [9; 27] to achieve O(
√
TN logN)-swap

regret.

Online decision-making with finite action based on bandit information, called multi-armed bandit
problems, has been extensively studied not only for stochastic settings but also for adversarial settings
[23]. For the adversarial multi-armed bandit problems, Auer et al. [7] showed that MWU approach
works well and provides O(

√
TN logN)-external regret. They provided a lower bound of Ω(

√
TN),

which left a gap of an O(
√

logN)-factor. Audibert and Bubeck [5] shaved off this gap by providing
an algorithm with O(

√
TN)-expected external regret.

Swap regret, which was introduced by [9], is closely related to internal regret [15; 16; 17]. Internal
regret is defined similarly to swap regret: it is defined as the maximum of RT (F ) over F ∈ Φin =
{Fij | i, j ∈ [N ], i 6= j} where Fij : [N ] → [N ] is defined by Fij(i) = j and Fij(k) = k for
k ∈ [N ] \ {i}, while swap regret is defined with Φsw := {F : [N ] → [N ]}, i.e., all functions
from [N ] to [N ]. Because it holds that (internal regret) ≤ (swap regret) ≤ N × (internal regret),
any no-internal-regret algorithms are no-external-regret, and vice versa (for details see, e.g., [11]).
Stoltz and Lugosi [35] have introduced a more general notion called Φ-regret, which is defined by
maxF∈Φ E[RT (F )] for an arbitrary class Φ of functions. These have been extensively studied in
much literature [3; 19; 22; 26; 27]. Rakhlin et al. [30] provided a more general framework including
Φ-regret, which immediately recovers O(

√
T logN)-bounds for internal and external regret and an

O(
√
TN logN)-bound for swap regret. Their framework, however, does not provide tight lower

bounds for internal and swap regrets.

The importance of swap regret and internal regret is owing to the connection to correlated equilibria
in strategic games [8]. Foster and Vohra [16] have shown that, if all players in a strategic game
with finite actions follow a no-internal-regret algorithm then their averaged empirical distributions
converge to correlated equilibrium. For this connection, a more detailed analysis of computational
aspects is given by Hazan and Kale [22]. This connection implies that correlated equilibria are
computationally tractable, in contrast to that mixed Nash equilibria are hard to compute [14; 31]. In
this context, lower bounds for swap regret provides limitations of the computational efficiency of
regret-minimization approaches to correlated equilibrium.

3 Problem Statement

Let N and T denote the numbers of actions and time steps. The repeated decision-making problem
proceeds as follows: In each time step t ∈ [T ] := {1, 2, . . . , T}, a player chooses a probability
distribution pt = (pt1, . . . , p

t
N )> ∈ ∆N := {p ∈ [0, 1]N : ‖p‖1 = 1} over the action space [N ], and

picks an action it ∈ [n] following pt. After choosing the action, the player gets feedback regarding
the loss vector `t = (`t1, . . . , `

t
N )> ∈ [0, 1]N , and incurs the loss of `tit for the chosen action. The

environment may choose loss vectors `t that depends on the probability distributions p1, . . . , pt and
the past actions i1, . . . , it−1 chosen by the player.

For switching functions F : [N ]→ [N ], which are arbitrary functions from the action space to itself,
we define RT (F ) by RT (F ) =

∑T
t=1(`tit − `tF (it)). The (expected) external regret is defined as the

maximum of (the expectation of) RT (F ) over F ∈ Φex = {Fi | [N ] → {i} | i ∈ [N ]}, where Fi
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denotes the functions that map all actions to single-action i, for each i ∈ [N ]. The swap regret is
defined similarly for F ∈ Φsw = {F : [N ]→ [N ]}, where Φsw is the set of all NN functions from
[N ] to [N ].

4 Proof for Lower Bound

In this section, we provide a proof of Theorem 1. We first describe the environment introduced in
[9], in which the player must choose actions in a balanced manner in order to avoid large (linear)
regret. For this environment, Blum and Mansour [9] showed that the swap regret is Ω(

√
TN)

when the chosen actions are balanced. Under the same condition, we refine their analysis to show
Ω(
√
TN logN).

4.1 Environment construction

We introduce the adaptive environment proposed by Blum and Mansour [9]. We suppose that T and
N satisfy the assumptions in Theorem 1. Further, we suppose that N is a multiple of 64 and that N
is a square number for simplicity.3 Denote N ′ = N/2. For i ∈ [N ′] and t ∈ [T ], let `′ti ∈ {0, 1}
follow Bernoulli distributions of parameter 1/2 independently, i.e., `′ti = 0 with probability 1/2 and
`′ti = 1 with probability 1/2. For i ∈ [N ′ + 1, 2N ′], fix `′ti = 1/2 for all t ∈ [T ]. The actual loss
`ti is identical to `′ti at the beginning of games, but is set to 1 if the action i is chosen at least 8T/N
times so far, i.e., `ti is defined by

`ti =

{
`′ti if |{s ∈ [t− 1] | is = i}| < 8T/N,
1 otherwise

for all i ∈ [N ] and t ∈ [T ]. The action whose loss is fixed to 1 is termed blocked.

To analyze the swap regret, we introduce some notations. For each action i ∈ [N ], let Ti and
ni denote the set of time steps in which the algorithm chooses the i-th action and its size, i.e.,
Ti = {t ∈ [T ] | it = i} and ni = |Ti|, respectively. Let B ⊆ [N ] denote the set of actions that are
blocked at the end of the T -th time step, i.e., B = {i ∈ [N ] | ni ≥ 8T/N}. Since

∑N
i=1 ni = T , the

number |B| of blocked actions is at most N/8. For i, j ∈ [N ], let Lij and L′ij denote the sums of `tj
and `′tj for t ∈ Ti, respectively, i.e., Lij =

∑
t∈Ti `

t
j and L′ij =

∑
t∈Ti `

′t
j . Since `′tj = `tj holds for

j ∈ [N ] \B and t ∈ [T ], we have L′ij = Lij if j ∈ [N ] \B. By means of these notations, the swap
regret can be expressed as follows:

max
F

RT (F ) = max
F

N∑
i=1

∑
t∈Ti

(`ti − `tF (i)) =

N∑
i=1

max
j∈[N ]

∑
t∈Ti

(`ti − `tj) =

T∑
t=1

`tit −
N∑
i=1

min
j∈[N ]

Lij . (1)

Since E[`ti] ≥ E[`′ti ] = 1/2 for all t ∈ [T ] and i ∈ [N ] and since it is independent of `′t, we have

E
[∑T

t=1 `
t
it

]
≥ T/2. Hence, we have

E
[
max
F

RT (F )
]
≥ T

2
−E

[
N∑
i=1

min
j∈[N ]

Lij

]
≥ T

2
−E

[
N∑
i=1

min
j∈[N ]\B

L′ij

]
(2)

where the second inequality follows from the fact that L′ij = Lij for j ∈ [N ] \B.

Let Tu denote the number of time steps at which the player chooses a blocked action, i.e.,

Tu =

N∑
i=1

max

{
0, ni −

8T

N

}
=
∑
i∈B

(
ni −

8T

N

)
. (3)

From the definition of B and `t, we have the following result:
Lemma 1 ([9]). If E[Tu] ≥ T/16, we have E[maxF R

T (F )] ≥ T/32. If E[Tu] ≤ T/16, the set
S ⊆ [N ] of actions defined by

S = {i ∈ [N ] | ni ≥ T/(4N)} (4)

satisfies |S| ≥ N/16 with probability at least 1/2.
3This assumption can easily be relaxed.
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This Lemma implies, intuitively, that the player needs to avoid choosing blocked actions in order
not to suffer large regret, and that, when the player chooses blocked actions at most T/16 times, the
chosen actions are balanced, i.e., there are Ω(N) actions that are chosen Ω(T/N) times.

Blum and Mansour [9] showed Ω(
√
TN)-regret lower bound on the basis of Lemma 1 combined

with (2). Their analysis can be summarized as follows: From Lemma 1, it suffices to ponder the
case of E[Tu] ≤ T/16, and then |S| ≥ N/16 with a positive probability. For any fixed {Ti}Ni=1 such
that |S| ≥ N/16, we can show that ni/2−E[minj∈[N ]\B L

′
ij ] = Ω(

√
ni) under some assumption.

Indeed, when Ti is fixed, L′ij :=
∑
t∈Ti `

′
ij follows a binomial distributionBi(ni, 1/2) independently

for i ∈ [N ] and j ∈ [N ′]. Since |B| ≤ N/8, the value minj∈[N ′]\B L
′
ij is at most the (N/8 + 1)-th

smallest value amongN/2 independent samples fromBi(ni, 1/2), which is ni/2−Ω(
√
ni) with high

probability. Combining this discussion and (2), we have E
[
maxF R

T (F )
]
≥ T/2−

∑N
i=1(ni/2−

Ω(
√
ni)) = Ω

(∑N
i=1

√
ni

)
. Since ni = Ω(T/N) for any i ∈ S from the definition (4) of S and

since we may assume |S| = Ω(N) from Lemma 1, we have E
[
maxF R

T (F )
]
≥
∑N
i=1

√
ni ≥∑

i∈S
√
ni = Ω(N

√
T/N) = Ω(

√
TN).

4.2 Refined analysis

We refine the analysis to present a tighter lower bound. In contrast to the previous work [9] that has
evaluated minj∈[N ]\B L

′
ij separately for each i, this subsection analyzes the sum of this for i ∈ [N ].

A key lemma for showing the tight lower bound is the following:

Lemma 2. Fix {Ti}Ni=1 such that |S| ≥ N
16 . Then,

∑N
i=1 minj∈[N ]\B L

′
ij ≤ T

2 −
√
TN logN

512 holds
with probability at least 1− 2 exp(−N 3/2/128) (w.r.t. the randomness of (`′ti )i∈[N ],t∈T ).

We note that Lemma2 is not about posterior distribution conditioned on {Ti}Ni=1, but we regard the
value

∑N
i=1 minj∈[N ]\B L

′
ij as a function in {`t}Tt=1 for a fixed {Ti}Ni=1. Hence, we may assume the

losses follow i.i.d. Bernoulli distributions in the proof of Lemma 2.

By combining (2), Lemma 1 and Lemma 2, and by using the union bound over all possible choices
of {Ti}Ni=1, we obtain Theorem 1 as follows.

Proof of Theorem 1. From Lemma 1 combined with the assumption of T ≥ 4N logN , if E[Tu] ≥
T/16, we have E[maxF R

T (F )] ≥ T/32 ≥
√
TN logN/16. In the following, we assume E[Tu] ≤

T/16. From Lemma 2 and the union bound, since the number of realizable patterns of {Ti}Ni is at
most NT , it holds for arbitrary fixed {Ti}Ni=1 satisfying |S| ≥ N/16 that

∑N
i=1 minj∈[N ]\B L

′
ij ≤

T/2 −
√
TN logN/512, with probability at least 1 − NT · 2 exp(−N 3/2/128) = 1 −

2 exp(−N 3/2/128 + T logN) ≥ 3/4, where the last inequality follows from the assumptions of
T ≤ N 3/2/(256 logN) and N ≥ 264. Since {Ti}Ni=1 satisfies |S| ≥ N/16 with probability at least
1/2 from Lemma 1, we have

∑N
i=1 minj∈[N ]\B L

′
ij ≤ T/2−

√
TN logN/512 with probability at

least 1/4. From this and the fact that
∑N
i=1 minj∈[N ]\B L

′
ij ≤ T/2 holds with probability one, we

have E
[∑N

i=1 minj∈[N ]\B L
′
ij ≤ T/2

]
≤ T/2 −

√
TN logN/2056. Combining this and (2), we

obtain E
[
maxF R

T (F )
]
≥
√
TN logN/2056.

In the remainder of this section, we provide a proof sketch for Lemma 2. Fix {Ti}ni=1 such that
|S| ≥ N/16. Let σi : [N ′]→ [N ′] be a permutation over [N ′] such that L′iσi(1) ≤ L

′
iσi(2) ≤ · · · ≤

L′iσi(N ′)
. If such σi is not unique, we choose a permutation satisfying the above condition uniformly

at random, independently for i ∈ [N ]. We denote σi[n] = {σi(1), σi(2), . . . , σi(n)} ⊆ [N ′] for
i ∈ [N ] and n ∈ [N ′]. Define V ⊆ S and U(B′) ⊆ [N ] for B′ ⊆ [N ] by

V =

{
i ∈ S | L′

iσi(
√
N)
≤ ni

2
−
√
ni logN

8

}
, U(B′) =

{
i ∈ [N ] | σi[

√
N ] ⊆ B′

}
(5)

Using concentration inequalities [10] for independent random variables and anti-concentration
inequalities for binomial distributions (see, e.g., Proposition 7.3.2. of [25]), we obtain the following:

Lemma 3. With probability at least 1− exp(−N 3/2/128), We have |V | ≥ 3N/64.
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Lemma 4. With probability at least 1− exp(−N 3/2/128), for any B′ ⊆ [N ′] such that |B′| ≤ N/8,
|U(B′)| ≤ N/64 holds.

The proofs of these lemmas are provided in the appendix. By combining Lemmas 3 and 4, we obtain
Lemma 2 as follows:

Proof of Lemma 2. For any B′ and i, if σi[
√
N ] is not included in B′, we have minj∈[N ]\B′ Lij ≤

Liσi(
√
N). Hence, from the definition of V and U(B′), for any i ∈ V \ U(B′), we have

minj∈[N ]\B′ L
′
ij ≤ ni/2−

√
ni logN/8. Combining this and the fact that minj∈[N ]\B L

′
ij ≤ ni/2

for all i ∈ [N ], we obtain

N∑
i=1

min
j∈[N ]\B

L′ij =
∑

i∈V \U(B)

min
j∈[N ]\B

L′ij +
∑

i∈[N ]\(V \U(B))

min
j∈[N ]\B

L′ij

≤
∑

i∈V \U(B)

(
ni
2
−
√
ni logN

8

)
+

∑
i∈[N ]\(V \U(B))

ni
2

=
T

2
−

∑
i∈V \U(B)

√
ni logN

8

≤ T

2
− |V \ U(B)| · 1

8

√
T logN

4N
=
T

2
− |V \ U(B)|

16

√
T logN

N

where the second equality follows from
∑N
i=1 ni = 1, and the last inequality follows from V ⊆ S

and the definition (4) of S. From Lemmas 3 and 4, it holds with probability 1− 2 exp(−N 3/2/128)
that |V \ U(B)| ≤ N/32. Combining this and the above, we obtain Lemma 2.

5 Randomized Efficient Reduction from External to Swap Regret

This section provides a generic and efficient reduction method that offers a no-swap-regret algorithm
given no-external-regret algorithms. Such methods have been provided by Blum and Mansour [9],
which achieve swap regret of O(N · r(T )),4 given an r(T )-external-regret algorithm, for the full-
information setting as well as for the bandit setting. Our reduction method provides anO(N ·r(T/N))-
swap-regret bound. If r(T ) = Θ(

√
T ) (ignoring dependency on N ), our swap-regret bound is

O(
√
N · r(T )). which matches the tight regret bound in the full-information setting, and improves

over the state-of-the-art in the bandit setting.

Our reduction method is similar to one by Blum and Mansour [9], except for that ours employs a
two-step randomization technique. The method starts with instantiating N copies A1, . . . ,AN of
no-external-regret algorithms A. For all i ∈ [N ], let ti denote the current time step for Ai, and let
qtii ∈ ∆N be its output distribution. Let pt = (pt1, . . . , p

t
N )> ∈ ∆N to be a distribution satisfying

pt =

N∑
i=1

ptiq
ti
i . (6)

Such pt can be interpreted as a stationary distribution of a Markov chain over [N ] of which transition
probabilities are given by (qt11 , . . . , q

tN
N ), and can be computed efficiently [13]. In the reduction

method by Blum and Mansour [9], after returning it ∼ pt and getting the feedback of `t, each
instance Ai is fed the loss of pti`

t and the time step ti is incremented for all i ∈ [N ]. Our method
adopts a different strategy to feed the loss to no-external-regret algorithms: We pick jt ∈ [N ] from
the distribution pt, and then, after returning the action it ∼ qtjj for j = jt, feed the loss `t (or `tit in
the bandit setting) to Ajt . Instances Ai for i ∈ [N ] \ {jt} are not updated in this time step. We note
that, from (6), it follows pt marginalizing jt ∼ pt. Our method is summarized in Algorithm 1. The
output of Algorithm 1 has the following regret bound:

Lemma 5. Suppose that A is an r(T )-external-regret algorithm, i.e., for arbitrary environments,

if kt is chosen by A, it hold for all i∗ ∈ [N ] and T that E
[∑T

t=1(`tkt − `ti∗)
]
≤ r(T ). Then, for

4This can be improved to O(
√
N · r(T )) under the assumption of the first-order regret bound, only for the

full-information setting, as shown in [9; 27].
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Algorithm 1 Reduction from external to swap regret
Require: No-external-regret algorithm A, the number N of actions.

1: Instantiate N copies A1, . . . ,AN of A, and initialize their time step by t1 = · · · = tN = 1.
2: for t = 1, 2, . . . do
3: Compute pt satisfying (6)
4: Choose jt ∼ pt.
5: Return it ∼ qtjj where j = jt, and get the feedback.
6: Feed the observed loss (`t in the full-information setting, or `tit in the bandit setting) into Ajt ,

increment tjt , and update the output distribution of Ajt .
7: end for

arbitrary F : [N ]→ [N ] and T , the output of Algorithm 1 satisfies

E

[
T∑
t=1

(`tit − `tF (it))

]
≤ max

{
N∑
i=1

r(Ti)

∣∣∣∣∣ Ti ∈ Z≥0,

N∑
i=1

Ti = T

}
. (7)

Proof. Since it and jt follows the same distribution pt from (6), it holds for any fixed F that

E

[
T∑
t=1

(`tit − `tF (it))

]
= E

[
T∑
t=1

(`tit − `tF (jt))

]
= E

[
N∑
i=1

∑
t∈Ui

(`tit − `tF (i))

]
, (8)

where we define Ui = {t ∈ [T ] | jt = i}. Fix i ∈ [N ] arbitrarily. In all time steps t ∈ Ui, the
conditional distribution of it given jt is determined byAi, and the loss is fed intoAi. Hence, from the
assumption of Lemma 5, we have E

[∑
t∈Ui(`

t
it − `tF (i))

]
≤ E [r(|Ui|)] for arbitrary F . Combining

this and (8), we have E
[∑T

t=1(`tit − `tF (it))
]
≤ E

[∑N
i=1 r(|Ui|)

]
. Since

∑N
i=1 |Ui| = T from the

definition of Ui, we get the bound of (7).

This lemma immediately leads to the regret bound in Theorem 2.

Proof of Theorem 2. Assuming r(T ) be a concave function, we can bound the right-hand side of
(7) as follows:

∑N
i=1 r(Ti) = N · 1

N

∑N
i=1 r(Ti) ≤ N · r

(
1
N

∑N
i=1 Ti

)
= N · r

(
T
N

)
, where we

applied Jensen’s inequality with the aid of the assumption that r is concave.

The computational time of Algorithm 1 depends on that of A. Let InitA and StepA to denote the
times taken to initialize A, and to update the output distribution of A, respectively. In the first
step of Algorithm 1, the computational time of N · InitA is consumed to initialize A1, . . . ,AN .
In each iteration, we compute a stationary distribution of a Markov chain with N states, which
consumes SDN time, and update the output distribution of one of instances A1, . . . ,AN , which
requires StepA time. Summarizing the above, the overall time complexity of Algorithm 1 is bounded
by N · InitA + T · (StepA + SDN ).

Theorem 2 implies that there exists a computationally efficient algorithm that achieves swap regret
of O(

√
TN2) in the bandit setting. In fact, when we choose A to be computationally efficient

multi-armed bandit algorithms with expected external regret bounded by O(
√
TN), e.g., the ones by

Audibert and Bubeck [5]; Zimmert and Seldin [36], Algorithm 1 leads to the following:
Corollary 1. In the bandit setting, there is a polynomial-time algorithm that achieves
maxF E

[∑T
t=1(`tit − `tF (it))

]
= O(

√
TN2).

6 Conclusion

In this paper, we showed an Ω(
√
TN logN)-lower bound for the swap regret, which is tight up to

constant in the full-information setting. We also provided a computationally efficient algorithm for
swap-regret minimization, which can be applied to the full-information setting as well as the bandit
setting. As can be seen in Table 1, the tight bound for swap regret in the bandit setting is left as an

8



open question. To solve this, the technique for external-regret lower bounds [6] may be helpful. As
mentioned in Stoltz [33], tight bounds for internal regret would be an interesting question as well.
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A Proof of lemmas

A.1 Proof of Lemma 1

Proof. Since `′ti is independent of the player’s action it, and since E[`′
t
i] = 1/2 for all i ∈ [N ], we

have E[`′tit ] = 1/2. Hence, if it is not blocked at the time step t, we have E[`tit ] = 1/2. Further, if it

is blocked at the time step t, we have `tit = 1 from the definition of `tit . Hence, the cumulative loss
for the player can be expressed as

E

[
T∑
t=1

`tit

]
= E

[
(T − Tu) · 1

2
+ Tu · 1

]
=
T

2
+

1

2
E[Tu]. (9)

On the other hand, we have

E

[
N∑
i=1

min
j∈[N ]

Lij

]
≤ E

[
N∑
i=1

min
j∈[N ]\B

L′ij

]
≤ E

[
N∑
i=1

ni
2

]
=
T

2
, (10)

where the first inequality follows from Lij = L′ij for j ∈ [N ] \B, and the second inequality comes
from the fact that |B| ≤ N/8 and that L′ij = ni/2 for j ∈ [N ] \ [N ′], which follows from the
definition of `′ti . Combining (1), (9), and (10), we obtain

E
[
max
F

RT (F )
]

= E

[
T∑
t=1

`tit −
N∑
i=1

min
j∈[N ]

Lij

]
≥ E

[
T

2
+
Tu

2
− T

2

]
≥ E[Tu]

2
.

From this, if E[Tu] ≥ T/16, we have E
[
maxF R

T (F )
]
≥ T/32. Next, we assume that E[Tu] ≤

T/16. Then, from Markov’s inequality, Tu ≤ T/8 holds with probability at least 1/2. When
Tu ≤ T/8 holds, S ⊆ [N ] defined in (4) satisfies |S| ≥ N/16. Indeed, we have

Tu ≥
∑
i∈S

max {0, ni − 8T/N} ≥
∑
i∈S

ni −
8T |S|
N

= T −
∑

i∈[N ]\S

ni −
8T (|S|)
N

≥ T − T (N − |S|)
4N

− 8T (|S|)
N

= T

(
3

4
− 31|S|

4N

)
,

where the first inequality comes from (3), the first equality follows from
∑N
i=1 ni = T , and the

last inequality holds since ni < T/(4N) for i ∈ [N ] \ S follows from the definition (4) of S.
From the above inequality and the assumption of Tu ≤ T/8, we have 31|S|

4N ≥ 1
2 , which implies

|S| > N/16.

A.2 Preliminary for Lemmas 3 and 4

In this subsection, we provides (anti-)concentration inequalities that are used in the proof of Lemmas 3
and 4.
Lemma 6 (Section 2.13 of [10],[2; 29]). Let X be a random variable following a binomial distribu-
tion Bi(n, p), where p ∈ (0, 1). Then, for any λ ≥ 0, we have

Prob[X ≤ np− λ] ≤ exp

(
− λ2

2np

)
.

Proof. The random variable X can be expressed as X =
∑n
i=1 Yi, where Yi follows a Bernoulli

distribution of parameter p, respectively. Then, for arbitrary s > 0, we have

Prob [X ≤ np− λ] = Prob

[
n∑
i=1

(Yi − p) ≤ −λ

]
= Prob

[
exp

(
−s

n∑
i=1

(Yi − p)

)
≥ exp (sλ)

]

≤ 1

exp (sλ)
E

[
exp

(
−s

n∑
i=1

(Yi − p)

)]
=

1

exp (sλ)
(E [exp (−s(Y1 − p))])n ,
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where the inequality follows from Markov’s inequality, and the last equality holds since Y1, . . . , Yn
follow i.i.d. distributions. We can bound E[exp(−s(Y1 − p))] as follows:

E [exp(−s(Y1 − p))] = p exp(−s(1− p)) + (1− p) exp(ps) = exp(ps)(p exp(−s) + 1− p)

≤ exp(ps)

(
p

(
1− s+

s2

2

)
+ 1− p

)
= exp(ps)

(
1− ps+

ps2

2

)
≤ exp(sp) exp

(
−ps+

ps2

2

)
= exp

(
ps2

2

)
,

where the first inequality follows from exp(−x) ≤ 1−x+x2/2 for x ≤ 0, and the second inequality
comes from 1 + x ≤ exp(x) for x ∈ R. Combining the above two displayed inequalities, we obtain

Prob [X ≤ np− λ] ≤ exp

(
nps2

2
− sλ

)
= exp

(
np

2

(
s− λ

np

)2

− λ2

2np

)
.

Since this inequality holds for arbitrary s > 0, by setting s = λ
2np we obtain the first inequality in

Lemma 6.

Lemma 7. LetX1, X2, . . . , Xn be independent random variables following Bernoulli distributions of
parameters p1, p2, . . . , pn respectively, i.e., Xi = 1 with probability pi and Xi = 0 with probability
(1− pi) for each i ∈ [n]. Suppose that there exists p ∈ [0, 1] for which pi are bounded as pi ≤ p for
all i ∈ [n]. Then, for any k ∈ [n], we have

Prob

[
n∑
i=1

Xi ≥ k

]
≤ 2npk.

Proof. By using the union-bound technique, we obtain the following:

Prob

[
n∑
i=1

Xi ≥ k

]
= Prob [∃S ⊆ [n], |S| ≥ k, ∀i ∈ S, Xi = 1]

≤
∑

S⊆[n]: |S|≥k

Prob [∀i ∈ S,Xi = 1] =
∑

S⊆[n]: |S|≥k

∏
i∈S

pi

≤
∑

S⊆[n]: |S|≥k

p|S| ≤
∑

S⊆[n]: |S|≥k

pk ≤ 2npk,

where the first inequality follows from the union bound, the second equality follows from the assump-
tion that X1, X2, . . . , Xn are independent, and the second inequality follows from the assumption of
pi ≤ p.

Lemma 8. Let k and m be positive integers satisfying 2k ≤ m+ 1. We then have(
2m

m− k

)
≥ 22m

2
√
m

exp

(
−2 log 2 · k2

m+ 1

)
,

(
2m− 1

m− k

)
≥ 22m−1

2
√
m

exp

(
−2 log 2 · k(k − 1)

m+ 1

)
.

(11)

Proof. From the definition of binomial coefficients, we have(
2m

m− k

)
=

(2m)!

(m− k)!(m+ k)!
=

(2m)!

m!m!

m!

(m− k)!

m!

(m+ k)!
=

(
2m

m

) k∏
i=1

m− k + i

m+ i

=

(
2m

m

) k∏
i=1

(
1− k

m+ i

)
≥
(

2m

m

) k∏
i=1

(
1− k

m+ 1

)
=

(
2m

m

)(
1− k

m+ 1

)k
≥
(

2m

m

)
exp

(
−2 log 2 · k

m+ 1

)k
=

(
2m

m

)
exp

(
−2 log 2 · k2

m+ 1

)
,
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where the second inequality follows from 1 − x ≥ exp(−2 log 2 · x) for x ∈ [0, 1/2] and that
0 ≤ k/(m + 1) ≤ 1/2. The binary coefficient

(
2m
m

)
is bounded from below by 22m

2
√
m

. Indeed, we
have(

2m

m

)
=

(2m)!

m!m!
=

m∏
i=1

2i− 1

i
·
m∏
i=1

2i

i
= 22m

m∏
i=1

(
2i− 1

2i

)
≥ 22m · 1

2

m∏
i=2

√
i− 1

i
=

22m

2
√
m
,

(12)

where the inequality can be confirmed as
(

2i−1
2i

)2
= 4i2−4i+1

4i2 ≥ 4i2−4i
4i2 = i−1

i . Combining the
above two inequalities, we obtain the first inequality in (11). Similarly, we have(

2m− 1

m− k

)
=

(
2m− 1

m

)
(m− 1)!

(m− k)!

m!

(m+ k − 1)!

=

(
2m− 1

m

) k−1∏
i=1

m− k + i

m+ i
=

(
2m− 1

m

) k−1∏
i=1

(
1− k

m+ 1

)
≥
(

2m− 1

m

)
exp

(
−2 log 2 · k(k − 1)

m+ 1

)
≥ 22m−1

2
√
m

exp

(
−2 log 2 · k(k − 1)

m+ 1

)
,

where the last inequality follows from(
2m− 1

m

)
=

m∏
i=1

2i− 1

i
·
m−1∏
i=1

2i

i
= 22m−1

m∏
i=1

(
2i− 1

2i

)
≥ 22m−1 · 1

2

m∏
i=2

√
i− 1

i
=

22m−1

2
√
m
.

Lemma 9 (Propostion 7.3.2. of [25]). Let X be a random variable following a binomial distribution
Bi(n, 1/2). For any λ ∈ [0, n/8], we have

Prob
[
X ≤ n

2
− λ
]
≥ 1

15
exp

(
−16λ2

n

)
.

Proof. We first suppose that n is even, and denote n = 2m. Let r be an arbitrary integer such that
2r ≤ m+ 1. If X ∼ B(n, 1/2), we have

Prob
[
X ≤ n

2
− λ
]

=
1

2n

m∑
k=dλe

(
2m

m+ k

)
≥ 1

2n

r∑
k=dλe

(
2m

m+ k

)

≥ 1

2
√
m

r∑
k=dλe

exp

(
−2 log 2 · k2

m+ 1

)
≥ r − dλe+ 1

2
√
m

exp

(
−2 log 2 · r2

m+ 1

)
,

(13)

where the second inequality follows from (11). Let r = dλe−1+d
√
m/4e. We then have 2r ≤ m+1

from the assumption of λ ∈ [0, n/8] and n = 2m. Hence, from (13), we have

Prob
[
X ≤ n

2
− λ
]
≥ 1

8
exp

(
−2 log 2 · r2

m+ 1

)
≥ 1

8
exp

(
−4 log 2 · (λ+ 1)2

m
− log 2

4

)
, (14)

where the last inequality follows from

r2 ≤
(
λ+ 1 +

√
m

4

)2

≤ 2

(
(λ+ 1)2 +

(√
m

4

)2
)

= 2(λ+ 1)2 +
m

8
.

Since we have 4 log 2 · (λ + 1)2/m + log 2/4 ≤ 8λ2/m + 1/2 under the condition of λ ≥ 2 or
m ≥ 32, (14) implies

Prob
[
X ≤ n

2
− λ
]
≥ 1

8
exp

(
−4 log 2 · (λ+ 1)2

m
− log 2

4

)
≥ 1

8
exp

(
−8λ2

m
− 1

2

)
≥ 1

15
exp

(
−8λ2

m

)
(15)

13



if λ ≤ 2 or m ≥ 32 hold. Otherwise, i.e., if we assume λ < 2 and m < 32, we have

Prob
[
X ≤ n

2
− λ
]
≥ 1

2
√
m

exp

(
−2 log 2 · (dλe)2

m+ 1

)
≥ 1

15
, (16)

where the first inequality follows from (13) with r = dλe and the second inequality comes from the
assumption of 0 ≤ λ ≤ n/8 = m/4 and can be confirmed by a simple calculation. From (15) and
(16), we have

Prob
[
X ≤ n

2
− λ
]
≥ 1

15
exp

(
−8λ2

m

)
=

1

15
exp

(
−16λ2

n

)
for all λ ∈ [0, n/8], assuming n is even. Next, we consider the case of odd n. Denote n = 2m− 1.
Then we have

Prob
[
X ≤ n

2
− λ
]

=
1

2n

m∑
k=dλ+1/2e

(
2m− 1

m− k

)
≥ 1

2n

r∑
k=dλ+1/2e

(
2m− 1

m− k

)

≥ 1

2
√
m

r∑
k=dλ+1/2e

exp

(
−2 log 2 · k(k − 1)

m+ 1

)

≥ r − dλ+ 1/2e+ 1

2
√
m

exp

(
−2 log 2 · r(r − 1)

m+ 1

)
(17)

for arbitrary integer r such that 2r ≤ m + 1. Let r = dλ + 1/2e − 1 + d
√
m/4e. We then have

2r ≤ m+ 1 from the assumption of λ ∈ [0, n/8] and n = 2m− 1. Hence, from (17), we have

Prob
[
X ≤ n

2
− λ
]
≥ 1

8
exp

(
−2 log 2 · r(r − 1)

m+ 1

)
≥ 1

8
exp

(
−4 log 2 · (λ+ 1)2

m
− log 2

4

)
,

(18)

where the second inequality follows from

r(r − 1) ≤
(
r − 1

2

)2

≤
(
λ+ 1 +

√
m

4

)2

≤ 2(λ+ 1)2 +
m

8
.

Assuming λ ≥ 2 or m ≥ 32,

Prob
[
X ≤ n

2
− λ
]
≥ 1

8
exp

(
−4 log 2 · (λ+ 1)2

m
− log 2

4

)
≥ 1

8
exp

(
−8λ2

m
− 1

2

)
≥ 1

15
exp

(
−16λ2

n

)
(19)

where the first inequality follows from (18) and the second inequality follows from the assumption
of λ ≥ 2 or m ≥ 32, and the last inequality follows from n = 2m− 1 and exp(−1/2) ≥ 8/15. If
λ < 2 and m < 32, we have

Prob
[
X ≤ n

2
− λ
]
≥ 1

2
√
m

exp

(
−2 log 2 · dλ+ 1/2edλ− 1/2e

m+ 1

)
≥ 1

15
(20)

where the first inequality follows from (17) with r = dr + 1/2e and the last inequality follows from
the assumption of λ ≤ n/8 = (2m− 1)/8 and a simple calculation. From (19) and (20), we obtain
the desired inequality for the case of odd n.

Lemma 10. Let X1, . . . , XN be independent random variables following binomial distributions
Bi(n, 1/2). Suppose that k ∈ [N ] and α satisfy 1 < α < exp(n/4) and 15α(k − 1) ≤ N . Let
Xσ(k) be the k-th smallest value among X1, . . . , XN . Then, with probability at least 1− exp(k −
1−N/(30α)), it holds that Xσ(k) < n/2−

√
n logα/4.

Proof. From Lemma 9, we have

p := Prob

[
Xi ≤

n

2
−
√
n logα

4

]
≥ 1

15α
(21)
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for all i ∈ [N ]. Define S ⊆ [N ] by S = {i ∈ [N ] | Xi ≤ n/2 −
√
n logα/4}. Then |S|

follows a binomial distribution Bi(n, p) since Xi are independent for all i ∈ [N ]. Since Xσ(k) >

n/2−
√
n logα/4 if and only if |S| < k, we obtain

Prob

[
Xσ(k) >

n

2
−
√
n logα

4

]
= Prob [|S| < k] ≤ exp

(
− (k − 1−Np)2

2Np

)
≤ exp

(
k − 1− Np

2

)
≤ exp

(
k − 1− N

30α

)
,

where the first inequality follows from Lemma 6, and the last inequality follows from (21).

A.3 Proof of Lemma 3

Proof. Since Lij follow binomial distributions Bi(ni, 1/2) independently for i ∈ [N ] and j ∈ [N ′],
from Lemma 10 with α = N 1/4 and k =

√
N , we have

Prob

[
L′
iσi(
√
N)
≥ ni

2
−
√
ni logN

8

]
≤ exp

(√
N − N ′

30N1/4

)
≤ exp

(
−N

3/4

120

)
, (22)

where the last inequality follows from N ′ = N/2 and the assumption of N ≥ 264. Since
{L′

iσi(
√
N)
}i∈S are independent, from (22) and Lemma 7, we have

Prob

[
|V | < 3N

64

]
= Prob

[
|S \ V | ≥ |S| − 3N

64

]
≤ Prob

[∣∣∣∣{i ∈ S | L′iσ(
√
N)
≥ ni

2
−
√
ni logN

8

}∣∣∣∣ ≥ N

64

]
≤ 2|S| exp

(
−N

64
· N

3/4

120

)
≤ exp

(
|S| − N

64
· N

3/4

120

)
≤ exp

(
−N

3/2

128

)
,

where the first inequality follows from |S| ≥ N/16 and the definition (5) of V , the second inequality
follows from (22) and Lemma 7, and the last inequality follows from |S| ≤ N and the assumption of
N ≥ 264.

A.4 Proof of Lemma 4

Proof. Since σi follows a uniform distribution over the set of all permutations over [N ′], σi[
√
N ]

follows a uniform distribution over
([N ′]√

N

)
. Hence, for any fixed B′ such that |B′| ≤ N/8, we have

Prob
[
σi[
√
N ] ⊆ B′

]
≤
(|B′|√

N

)(
N ′√
N

) ≤ ( |B′|
N ′

)√N
≤
(

1

4

)√N
≤ exp(−

√
N), (23)

where the third inequality follows from |B′| ≤ N/8 and N ′ = N/2. Since {σi[
√
N ]}i∈[N ] are

independent, from Lemma 7, it holds for fixed B′ ⊆ [N ] with |B′| ≤ N/8 that

Prob

[
|U(B′)| ≥ N

64

]
= Prob

[
|{i ∈ [N ] | σi[

√
N ] ⊆ B′}| ≥ N

64

]
≤ 2N exp

(
−
√
N · N

64

)
≤ exp

(
N − N 3/2

64

)
.

Since this holds for any B′ ⊆ [N ] such that |B′| ≤ N/8, by the union bound, we have

Prob

[
∃B′ ⊆ [N ], |B′| ≤ N

8
, |U(B′)| ≥ N

64

]
≤ 2N exp

(
N − N 3/2

64

)
≤ exp

(
2N − N 3/2

64

)
≤ exp

(
−N

3/2

128

)
,

where the last inequality follows from the assumption of N ≥ 264.
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