
The following supplementary appendices accompany All your loss are belong to Bayes.

A Symbols

Y
.
= {−1, 1}, real-valued labels

Y∗ .
= {0, 1}, Boolean labels

ℓ, ℓν (proper) loss, loss depending on source ν
L (conditional) Bayes risk

−L′, χ canonical link, composite link
σ sigmoid function
ν source

G,Gν margin loss, margin loss depending on source ν
DG Bregman divergence with (convex) generator G
G⋆ Legendre conjugate (G differentiable)

ν0;µ, γ ISGP constant; prior mean, prior precision (of constant)
f ;w GP function and Mercer weights

k(·, ·);ϕ,Λ GP kernel, kernel basis, kernel eigenvalues
M size of the Mercer expansion
ψ positive-definite integral of the kernel feature’s outer product

Θ collected ISGP hyper-parameters i.e. γ, µ, k(·, ·) + likelihood params
Γ

.
= {w, ν0} collected ISGP parameters

q approximate posterior distribution

Γ̂, Σ̂Γ approximate posterior mean, covariance (here, of Γ)

α univariate Gaussian likelihood precision
β generalised linear model weight vector

B On the Origin Problem and an Alternative Solution

Here we discuss the role of the random intercept ν0 in Definition 2 and offer an alternative formulation.

While the integration and squaring transformations guarantee monotonicity, the question remains
where to integrate from. To see this, omit the random intercept ν0, denote by r the l.h.s. lower limit

of integration, and define ν(r)(x) =
∫ x

r
f2(z) dz. For GP distributed f , this construction induces

an artefact in the distribution for ν(r), which is roughly speaking the fact that ν(r)(r) = 0 with
probability one.

In the main text, we alleviate this issue by introducing the random intercept ν0. We offer here an
alternative solution, the idea of which is to shift the starting point of integration outside the domain
of interest. Assume without loss of generality that the domain of interest is the positive real line.

Concretely, the alternative formulation would model ν̂(r)(x) as, for r ≤ 0,

ν̂(r)(x) =

∫ x

r

f2(z) dz − µ(r)

f ∼ GP(k(·, ·)) ⇔
{
f(·) = w⊤ϕ(·)
w ∼ N(0,Λ),

where we choose µ(r)
.
= E

[ ∫ 0

r
f2(z) dz

]
in order to ensure that the prior mean at the origin is zero

(i.e. E
[
νr(0)

]
= 0), while r < 0 controls the prior variance at the origin. In other words, we simply

integrate f2 from outside of the domain of interest.

Given the result (10), for stationary kernels this is equivalent to defining

ν̂(r)(x) = w⊤ψ(x+ r)w − r × k(0, 0),

with w and k of Definition 2 and (7), respectively, and ψ(x) defined by (9).

This parsimonious approach allows to dispense with the a priori Gaussian intercept ν0, but is
appropriate only for data which is known to lie on e.g. the positive real line, since νr(r) = −µ(r)
with probability one.
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C Proof of Theorems 2 and 4

⊲ Proof of Theorem 2 – (i) we rewrite (3) using χ = ν−1 ◦ g for a function g that we want to elicit as
the canonical link of a proper loss (i.e. negative the derivative of its Bayes risk). From (2), g must
satisfy

g−1(x) =
G′(−ν−1(x))

G′(−ν−1(x)) +G′(ν−1(x))
, (16)

Since G is decreasing and convex, its derivative is negative increasing. ν−1 is increasing because
ν is, and so the right-hand side of (16) is increasing with values in the [0, 1] interval, furthermore
having g−1(0) = 1/2. Its inverse g is therefore also increasing in the interval [0, 1] and its derivative
can therefore be used as weight function to craft a proper loss ℓ following e.g. [RW10, Theorem
1], yielding for this loss g = −L′, as claimed for point (i). The proof of (ii) is immediate: as
G is convex and classification calibrated, it satisfies G′(0) < 0 [BJM06, Thm. 6], implying
G′

ν(0) = ρ(0)G′(0) < 0 since ρ(x)
.
= 1/ν′(ν−1(x)) > 0, assuming wlog |f | ≪ ∞ almost

everywhere. This implies Gν classification calibrated [BJM06, Thm. 6].

⊲ Proof of Theorem 4 – Our proof uses (1) and (3). We consider a proper canonical loss ℓ(y, x)
where x denotes a real-valued prediction. Because a Bregman divergence is always convex in its left
parameter, we have

E(x,y)

[
ℓ(y, (−L′)−1(x))

]
= E(x,y)

[
D(−L)⋆

(
x‖ − L′(y∗)

)]

= E(x,y)

[
D(−L)⋆

(
Eν [ν(x)] ‖ − L′(y∗)

)]

≤ E(x,y),ν

[
D(−L)⋆

(
ν(x)‖ − L′(y∗)

)]
= E(x,y),ν

[
ℓν(y, χ

−1(x))
]
,

as claimed.

D Inference with Integrated Squared Gaussian Processes

(Additional Details)

Recall that we denote the parameters Γ and the hyper-parameters Θ. The Laplace approximation to
the marginal likelihood is then

log p(D|θ) ≈ log q(D|θ) .
= log p(D, Γ̂)− 1

2
log detH.

in terms of the Hessian of (11). Optimising this expression with respect to θ is non-trivial since Γ̂
depends on θ. We employ the generic approach from [SF06], which uses automatic differentiation to
achieve the same result as — while avoiding the manual gradient calculations of — the usual approach
in the GP literature (see e.g. [RW05, §3.4]).

We first use the total derivative to decompose

∇θ log q(D|θ) = ∂

∂θ
log q(D|θ) +

(
∂

∂θ
Γ̂

)⊤
∂

∂Γ

∣∣∣∣
Γ=Γ̂

log q(D|θ),

where we may show using the implicit function theorem that

∂

∂θ
Γ̂ = −H−1 ∂2

∂Γ∂θ⊤

∣∣∣∣
Γ=Γ̂

log p(D,Γ).

In line with [SF06], we employ automatic differentiation to compute both H (as a function of Γ),
and then to differentiate log q(D|θ) (which is a function of detH). In summary, the entire marginal
likelihood maximisation procedure requires only i) the (trivial) implementation of the log prior and
log likelihood functions, ii) automatic differentiation software such as [PGM+19] (to be invoked in
three different ways3), and iii) , non-linear optimisation software.

3These include: 1) differentiating log p(Γ|D) with respect to Γ for maximum a posteriori optimisation, 2)
computing the Hessian w.r.t. Γ, H , and 3) differentiating 1

2
log detH w.r.t. Θ for maximum marginal likelihood

optimisation — see [SF06] for the details.
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Figure 3: Regression with a prior that is a) a Gaussian process and b) our integrated squared Gaussian
process of section 3. We use (Laplace approximate) maximum marginal likelihood hyper-parameters
along with our novel trigonometric kernel of subsection 4.3 in both cases.

⊲ Computational Complexity. For likelihood functions of the form given at the top of Section 4.1
we may use (8) to compute ν(xn). As a result, although inference under the ISGP prior may appear
challenging due to the integral in Definition 2, the log posterior can be evaluated in only O(M2N)
time, where M is the size of the basis and N is the number of data points. This is the usual cost
for sparse GP approximations with M basis functions (or inducing points). The choice of squared
transformation in Definition 2 makes this possible.

D.1 Likelihood Functions

For concreteness, and to specify the parameterisations we employ, we complete this section by
introducing the two univariate likelihood functions used throughout the paper.
⊲ Gaussian Likelihood for Regression. Here we have yn ∈ R, n = 1, 2, . . . , N , and

log p(yn|ν(xn),Θ) = logN(yn|ν(xn), α
−1) (17)

=
1

2
log(α)− 1

2
log(2π)− α

2

(
ν0 +w

⊤ψ(xn)w − yn
)2

, (18)

where for simplicity (and since our model is discriminative) we neglect to notate conditioning on x
both above and, as appropriate, throughout. This model is illustrated on the r.h.s. of Figure 3.
⊲ Sigmoid-Bernoulli Likelihood for Classification. Here we let yn ∈ {0, 1}, and

p(yn|ν(xn),Θ) = Bernoulli
(
yn|(−L′)−1 ◦ ν(xn)

)
, (19)

where Bernoulli(y|ρ) = ρy(1 − ρ)1−y, and we are composing with the logistic sigmoid
(−L′)−1(ν) = 1/(1 + exp(−ν)). The above likelihood function may be expanded analogously to
(18), to obtain a readily implementable form.

E Trigonometric Kernel

(Additional Details)

⊲ Closed form k(x, z). Although we do not require it, the kernel is available in closed form.

Letting d = c |x− z| we have

k(x, z) =
b
(
ae

iπd(2M+3)
2 + ae

iπd
2 − eiπd(M+1) − eiπd − 2aMe

iπd(M+2)
2

(
a cos

(
πd
2

)
− 1
))

2aMe
iπd(M+1)

2

(
aeiπd − (a2 + 1) e

iπd
2 + a

) ,

and for M → ∞,

k(x, z) =
b

2

(
a

a− exp( iπd2 )
+

1

a exp(a− iπd
2 )− 1

)
.
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⊲ Closed form ψ. The integrals needed for ψ(x) ∈ R
M×M of (9) are, for the pairs of sine terms,

∫ x

0

sin
(
πmcz

)
sin
(
πncz

)
dz =

{
x
2 − sin(2πcmx)

4πcm m = n
n sin(πcmx) cos(πcnx)−m cos(πcmx) sin(πcnx)

πcm2−πcn2 m 6= n,

for the pairs of cosine terms,

∫ x

0

cos
(
πmcz

)
cos
(
πncz

)
dz =

{
x
2 + sin(2πcmx)

4πcm m = n
m sin(πcmx) cos(πcnx)−n cos(πcmx) sin(πcnx)

πcm2−πcn2 m 6= n,

and for the mixed terms,

∫ x

0

sin
(
πmcz

)
cos
(
πncz

)
dz =

{
sin2(πcmx)

2πcm m = n
−n sin(πcmx) sin(πcnx)−m cos(πcmx) cos(πcnx)+m

πcm2−πcn2 m 6= n.

F Nyström Approximation

Our trigonometric kernel of Section 4.3 is ideally suited to inference under the ISGP model, in that
it admits efficient computation of the matrix ψ(x) of (9). There is another more subtle condition
which must be satisfied, however, in order for our Laplace approximate hyper-parameter optimisation
procedure to be efficient. That is, only the spectrum Λ may depend on the hyper-parameters of the
kernel, while the basis ϕ(x) must be fixed. Due to these requirements the tempting and popular
Nyström approximation [Nys28] is generally insufficient, and our trigonometric kernel is therefore
essential for tractable inference under the ISGP model.

In the remainder of this section we investigate an alternative approach based on the Nyström ap-
proximation to the kernel. In many GP inference problems, this approximation method is applicable
to a rather wide range of kernels. Here however, we require the integral for ψ(x), which is not
generally available. Fortunately, as we now demonstrate, these terms are available in closed form for
the Gaussian kernel.

Nonetheless, a drawback of the Nyström method remains as — unlike our Trigonometric kernel — the
hyper-parameters of the kernel affect the basis ϕ(x), not just the spectrum. This dependence renders
the optimisation of our marginal likelihood approximation in Section 4.1 prohibitively expensive
in general — for fixed hyper-parameters the Nyström method may be useful, however, and for
completeness we derive the key expressions here.

The above drawback may be partly alleviated in certain cases, however. Indeed, given the univariate-
ness of the ISGP, one length scale and one output scale parameter should suffice as the kernel
hyper-parameters. Then, a finite difference approximation of the marginal likelihood derivatives
should be within an (albeit very large) constant factor of the corresponding computation time for the
trigonometric kernel.
⊲ General Setup. The Nyström idea is to note that the ϕi, λi pairs are eigenfunctions of the integral
operator (see [RW05] section 4.3) on the reproducing kernel Hilbert space H(k) induced by k,

Tk : H(k) → H(k)

f 7→ Tkf
.
=

∫

x∈Ω

k(x, ·)f(x)p(x) dx,

where p may be freely chosen provided it has an appropriate support. The idea of the Nyström
approximation [Nys28] to Tk is to draw M samples X = {x1, x2, . . . , xM} from p and define

the Monte Carlo approximation T
(X)
k g

.
= 1

M

∑
x∈X k(x, ·)g(x). Then the eigenfunctions and

eigenvectors of Tk may be approximated via the eigenvectors e
(mat)
i and eigenvalues λ

(mat)
i of

k(X,X), as (we abuse the notation so that k(X,X) is an M ×M matrix of kernel evaluations, etc.)

ϕ
(X)
i (z)

.
=

√
M/λ

(mat)
i k(X, z)⊤e

(mat)
i

λ
(X)
i

.
= λ

(mat)
i /M.
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For our setting, we further require (in addition to the usual matrix eigendecomposition algorithm),
the following integral

(ψ(x))ij =

∫ x

0

ϕ
(X)
i (z)ϕ

(X)
j (z) dz

=
M

λ
(mat)
i λ

(mat)
j

e
(mat)
i

⊤
∫ x

0

K(z,X)⊤K(z,X) dz

︸ ︷︷ ︸
.
=ψk,X(x)∈RM×M

e
(mat)
j . (20)

⊲ Squared Exponential Kernel. Although a Mercer decomposition is available in closed form (see
e.g. [RW05]) for the popular kernel

k(x, z) = b exp
(
− a

2
(x− z)2

)
,

it turns out that the integrals we require for ψ are challenging for that decomposition. Fortunately the
Nyström approximation is convenient, since the key term in (20) is given by

(ψk,X(t))
ij
=

∫ t

0

k(xi, z)k(xj , z) dz

=
b2
√
π

2
√
a

exp
(a
4
(xi − xj)

2
)(

erfi
(√a

2
(xi + xj)

)
− erfi

(√a

2
(xi + xj − 2t)

))
.
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Figure 4: Visualisation of our trigonometric kernel of Section 4.3, and the ψ(z) of (9) induced by it.
M is (half) the number of basis functions. The remaining hyper-parameters are a = 1.2, b = 1 and
c = 1. See the labels on the figures for details.
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Figure 5: A toy regression problem with ISGP prior and Gaussian likelihood function. Upper plot:
The posterior predictive distribution for ν, our inferred monotonic function, along with the ground
truth function and training data points. Middle plot: The posterior predictive distribution for our f
of Definition 2, which is the square root of the derivative of ν, along with ± the square root of the
derivative of the ground truth function. Lower plot: Similar to the middle plot but with the squared
transformation included. We use maximum marginal likelihood parameters with the trigonometric
kernel of subsection 4.3, and a kernel scale parameter of c = 1/100, so that the inferred functions are
periodic with period 200.
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Figure 6: A zoomed out version of Figure 5.
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Figure 7: Visualising the log marginal likelihood for the problem of Figure 5 (and Figure 6). We
computed the maximum marginal likelihood parameters using the method of subsection 4.1. Then
we varied each hyper-parameter about this optimal value (represented by the greed dots), holding
the others fixed. With the exception of the extremely flat lowest plot (for the prior variance γ
of the intercept ν0, which is expected to have a flat marginal posterior), the marginal likelihood
optimisation finds a stable local minimum. Note that for clarity the vertical axis labels neglect to
notate conditioning on certain variables.
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Figure 8: A toy classification problem with ISGP prior and Bernoulli likelihood function. Upper
plot: The posterior predictive distribution for ν (our inferred monotonic function) along with the
ground truth function and training data points (with binary labels represented by two distinct y-
values). Lower plot: The posterior predictive distribution for the inverse link function σ ◦ ν, where
σ(ν) = 1/(1 + exp(−ν)) is a shorthand for the sigmoid function (inverse canonical link of the log
loss).
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(a) logistic regression

(b) GP linkgistic regression

(c) ISGP linkgistic regression

Figure 9: The inverse link function for logistic regression (upper), GP linkgistic regression (lower)
and ISGP linkgistic regression (lower), on the Fashion-MNIST task of class 3 (dress) vs. the rest. The
x-axis is the input to the (inverse) link function, which is equal to the output of the generalised linear
model, i.e. xn = β⊤zn as per Section 4.2.
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