
Supplementary Material
GCN meets GPU:

Decoupling “When to Sample” from “How to Sample”

Organization. The appendix is organized as follows. In Section A, we provide the detailed
experimental setups and additional results. To reproduce the results reported in this paper, a pointer
to the code is provided as well. In Section B, we present a detailed summary of all notations used
throughout the paper. We provide the proof of Theorem 1 and Theorem 2, in Section C and Section D,
respectively. In Section E, we summarize the useful lemmas and theorems that facilitate our analysis.

A Detailed experimental setup

A.1 Hardware specifications and environment

We implement a unified platform to run the GCN models, with PyTorch 1.5 compiled with CUDA
10.2 and PyTorch Geometric [10] for sparse matrix operations. We run our experiments on a machine
equipped with Intel Xeon 6320 with 768GB RAM and NVIDIA Quadro RTX 8000 with 48GB
memory. While this GPU is capable of running most of the available datasets in full-batch, in our
experiments, we assume a limited memory budget, wherein the corresponding mini-batch adjacency
structure and node features need to be transferred to the GPU memory every iteration. For each
dataset, the mini-batch size is selected to be proportional to the size of the dataset to reflect this
limitation. For fair comparison we use the same budget on the sampling as well. To report the time,
we only measure the training phases on both CPU and GPU, which includes: sampling, transferring
data, and forward and backward pass.

Implementation code. The codes for our experiments are available at this repository. Please refer
to README.md for the instructions of how to install and run the codes.

A.2 Dataset details

In Table 3 we summarize the description of each dataset used to evaluate LAZYGCN. Also we show
the mini-batch size we use for the experiments in Table 2.

Table 3: Datasets description and mini-batch size used for the main experiment

Dataset Mini-batch Description

Pubmed [7] 4,096 Academic papers classified into categories based
on citations and content

PPI-Large [7] 8,192 Protein functions classified based on the interac-
tions of human tissue proteins

Flickr [7] 8,192 Images classified based on descriptions and com-
mon properties of online images

Reddit [30] 16,384 Online posts from reddit classified into communi-
ties based on users comments and links

Yelp [30] 65,536 Product classified into categories based on cus-
tomer reviews and relationship

Amazon [4] 65,536 Product classified into categories based on cus-
tomer reviews and relationship

12

https://github.com/MortezaRamezani/lazygcn

A.3 Ablation study

In this section we explore the effect of various parameters in LAZYGCN.

Comparing different values of recycle period size R. Similar to Figure 3 (b), in this experiment,
we compare the effect of various recycling period sizeR on the training loss per iteration for layerwise
sampling. In Figure 4, as R increases, the model will over-fit more on the selected recycling mini-
batches. However, as previously explained in Section 5, if R is not chosen aggressively large, the
models will quickly recover and will not hurt the performance.

0 50 100 150 200
Iterations

0.00

0.25

0.50

0.75

1.00

Tr
ai

n
L

os
s

R = 1
R = 2
R = 4
R = 8
R = 16

(a) Pubmed

0 50 100 150 200
Iterations

1

2

3

Tr
ai

n
L

os
s

R = 1
R = 2
R = 4
R = 8
R = 16

(b) Reddit

Figure 4: Comparison of training loss on Pubmed and Reddit for different recycling period size R.

Comparing various recycling growth rate ρ. Similar to previous experiment, in Figure 5, we
evaluate the validation score and training loss for various ρ values on two different datasets. Once
again, when ρ is large, the training loss can change drastically as new recycling mini-batch is created.
This can lead to lower accuracy as shown in Figure 5 for ρ = 4. Note that for Pubmed dataset, while
it seems that ρ = 2 shows less validation accuracy compared to ρ = 4, it is not the case, as it reaches
much higher validation accuracy in earlier iterations (e.g., 25 iterations).

0 50 100 150 200
Iterations

0.00

0.25

0.50

0.75

1.00

Tr
ai

n
L

os
s

0 50 100 150 200
Iterations

0.70

0.75

0.80

0.85

0.90

V
al

id
at

io
n

F1 ρ = 1.1
ρ = 1.2
ρ = 1.5
ρ = 2
ρ = 4

(a) Pubmed

0 50 100 150 200
Iterations

0

1

2

3

Tr
ai

n
L

os
s

0 50 100 150 200
Iterations

0.70

0.75

0.80

0.85

0.90

0.95

V
al

id
at

io
n

F1 ρ = 1.1
ρ = 1.2
ρ = 1.5
ρ = 2
ρ = 4

(b) Reddit

Figure 5: Comparison of training loss and validation accuracy for different ρ.

Effect of fixing inner-layers. Similar to Figure 3 (d), we compare the validation accuracy and
mean-square error of stochastic gradients for different values of S. As shown in Figure 6 and Figure 7,
fixing the inner layers inside the recycling epoch (e.g., as we do in LAZYGCN) results in a faster
convergence rate and a lower variance, when comparing to the case where we sample nodes also in
the inner layers. Note that for the sake of fair comparison, we use the same inner layer size for both
configurations. We can also observe that as the algorithm reaches to the final solution, the variance
shrinks, which matches our intuition of using large recycling steps later in optimization.

13

0.50

0.75

V
al

.F
1

Sampled inner
Fixed inner

0 50 100 150 200
Iterations

0.5

1.0
M

SE
of

G
ra

di
en

t

(a) S = 4096

0.50

0.75

V
al

.F
1

Sampled inner
Fixed inner

0 50 100 150 200
Iterations

0.5

1.0

M
SE

of
G

ra
di

en
t

(b) S = 8192

0.50

0.75

V
al

.F
1

Sampled inner
Fixed inner

0 50 100 150 200
Iterations

0.5

1.0

M
SE

of
G

ra
di

en
t

(c) S = 16384

Figure 6: Validation accuracy and mean-square error of stochastic gradients on Reddit dataset.

0.825

0.850

0.875

V
al

.F
1

Sampled inner
Fixed inner

0 50 100 150 200
Iterations

0.50

0.75

M
SE

of
G

ra
di

en
t

(a) S = 1024

0.84

0.86

V
al

.F
1

Sampled inner
Fixed inner

0 50 100 150 200
Iterations

0.25

0.50

0.75
M

SE
of

G
ra

di
en

t

(b) S = 2048

0.84

0.86

V
al

.F
1

Sampled inner
Fixed inner

0 50 100 150 200
Iterations

0.25

0.50

0.75

M
SE

of
G

ra
di

en
t

(c) S = 4096

Figure 7: Validation accuracy and mean-square error of stochastic gradients on Pubmed dataset.

Comparison of GCN training stages for LAZYGCN. In Table 4, we report the fraction of time
spends in each stage of training in LAZYGCN and the baseline on Reddit dataset. LAZYGCN greatly
improves the speed of training models and reduces both sampling time and transfer time. We can also
see the computation and transfer time become negligible compared to the time spent on sampling as
the size of input graphs increases, which is the key motivation for our proposal. This table also shows
that the additional overhead of sampling the subset in GPU is negligible.

Table 4: Comparison of time (second) spends in each stage of training 3-layer GCN on Reddit
dataset using different sampling techniques.

Sampling Transfer Computation Overhead

Reddit

Nodewise 845.21 22.73 13.13 -
Nodewise+LG 25.76 0.76 11.69 0.04

Layerwise 9.12 2.14 1.04 -
Layerwise+LG 0.56 0.06 0.98 0.04

Subgraph 4.66 1.58 0.98 -
Subgraph+LG 0.19 0.06 0.96 0.04

B Summary of notations

We summarize all notations used throughout the paper in Table 5. Furthermore, we introduce the
necessary notations for our theoretical analysis. First, we introduce the full-batch GCN which is
defined as gradient calculation using all inner nodes and full-batch as proposed in [15]. In addition,
we discuss sampling-based GCN which uses mini-batches for gradient calculation, and samples a
subset of neighbors to estimate the feature representation for nodes in the mini-batch. An example
of sampling-based GCN is [13]. Moreover, we introduce mini-batch GCN, which is defined as
using mini-batch for gradient calculation, but using all the neighbors to calculate the exact feature
representation for nodes in the mini-batch. Mini-batch GCN can be regarded as an intermediate
schema between the full-batch GCN and the sampling-based GCN, which is used for the the mean-
square error decomposition of stochastic gradient.

14

Table 5: Summary of notations used in this paper

G = (V, E) G denotes the graph consist of set of N = |V| nodes and M = |E| edges.
A Denotes the adjacency matrix corresponding to the graph G.
D Denotes the degree matrix corresponding to the graph G.
L, L̃(`) L denotes the full Laplacian matrix calculated by L = D−1/2AD−1/2 and L̃(`) is

a sampled Laplacian matrix sampled from L for the `th layer.
X, xi X denotes the node feature matrix for all N nodes where X = [x1, . . . ,xN].
yi Denotes the label vector in RC . For example, in binary classification task, yi ∈ RC

is a one-hot vector with C = 2.
W(`),θ,θk,r W(`) denotes the weight matrix for the `th graph convolution layer, θ :=

{W(1), . . . ,W(L)} denotes the stacked parameters, and θk,r denotes the weight for
the rth iteration in the kth recycling epoch.

H(`),Z(`) Z(`) denotes the node feature matrix for the `th layer before activation and H(`) =
σ(Z(`)) denotes the node feature matrix after the `th layer.

V(`)
k Denotes the ` layer nodes sampled at the beginning of each recycling epoch.
Vk,r Denotes a subset of nodes sampled from V(L)

k inside the kth recycling epoch.
S,B S = |V(L)

k | and B = |Vk,r|.
D, D̃ Suppose all nodes have the same number of neighbors. D is the number of neighbors

for each node and D̃ is the number of neighbors sampled during training.
K,R, T, ρ K denotes the number of recycling epoch, T =

∑K
k=1 ρ

kR is the number of
iterations for training, and ρ and R are parameters that control the size of recycling
epoch.

σ(·) σ(·) is the activation function, e.g., ReLU function.
φ(·,yi) φ(·,yi) is the loss function, e.g., cross-entropy loss

φ(zi,yi) = − log

(
exp(z>i yi)∑C
j=1 exp([zi]j))

)
,

where label vector yi is a one-hot vector.

Full-batch GCN. Suppose we are solving multi-class node classification problem. Given φ(zi,yi)
as the loss function (e.g., cross-entropy loss), zi ∈ RC as the final prediction of node i, and yi ∈ RC
as the label of node i. Let θ = {W}, then the loss function of full-batch GCN is defined as

L(θ) =
1

N

∑
i∈V

φ(zi,yi), zi =
∑

j∈N (i)

Li,j(W
>xj) (9)

where Laplacian matrix is defined as L = D−1A. Its corresponding objective function is defined as

F (θ) =
1

N

∑
i∈V

fi

(1

|N (i)|
∑

j∈N (i)

gj(θ)
)
, (10)

and its gradient is calculated by

∇F (θ) =
1

N

∑
i∈V
∇fi

(1

|N (i)|
∑

j∈N (i)

gj(θ)
)(1

|N (i)|
∑

j∈N (i)

∇gj(θ)
)
. (11)

Sampling-based GCN. The loss function of sampling-based GCN is defined as

L̃(θ) =
1

B

∑
i∈VB

φ(z̃i,yi), z̃i =
∑

j∈Ñ (i)

L̃i,j(W
>xj), (12)

15

where L̃i,j = (|N (i)|/|Ñ (i)|)Li,j for j ∈ Ñ (i) otherwise L̃i,j = 0. The stochastic gradient that
used to update the parameter is computed as

∇F̃B(θ) =
1

B

∑
i∈VB

∇fi
(1

|Ñ (i)|

∑
j∈Ñ (i)

gj(θ)
)(1

|Ñ (i)|

∑
j∈Ñ (i)

∇gj(θ)
)

(13)

Mini-batch GCN. The loss function of mini-batch GCN is defined as

L(θ) =
1

B

∑
i∈VB

φ(zi,yi), zi =
∑

j∈N (i)

Li,j(W
>xj), (14)

and the stochastic gradient that used to update the parameter is computed as

∇FB(θ) =
1

B

∑
i∈VB

∇fi
(1

|N (i)|
∑

j∈N (i)

gj(θ)
)(1

|N (i)|
∑

j∈N (i)

∇gj(θ)
)

(15)

C Proof of Theorem 1

The proof of Theorem 1 follows from the standard stochastic non-convex optimization, with the key
difference that unlike vanilla SGD where the stochastic gradient is an unbiased estimation of full
gradient, in sampling-based GCNs, the stochastic gradient is biased and the bias is controlled by the
number of neighbors sampled during training.

To ease the proof of the Theorem 1, we state few lemmas. We begin by the following lemma that
gives the Lipschitz continuous constant of the gradient of composite function F (θ), which plays an
important role in choosing the learning rate and the final convergence rate.
Lemma 3. Under Assumption 1, the gradient of F (θ) is Lipschitz continuous with constant

LF = LfGg + L2
gGf . (16)

The following lemma shows the mean-square error of stochastic gradients, which is the key factor in
convergence and leads to slow convergence rate when the mean-square error is large.
Lemma 4. Suppose objective function F (θ) has LF -Lipschitz continuous gradient and the expected
mean-square error of stochastic gradient F̃B(θt) to the full gradient∇F (θt) is defined as

∆ =
1

T

T∑
t=1

E
[∥∥∥∇F̃B(θt)−∇F (θt)

∥∥∥2
]
. (17)

Set step size η = min

{
3

2LF
,
√

E[F (θ1)]−E[F (θ?)]
LF ∆T

}
and for θ̃ = mint E [‖∇F (θt)‖], then we have

E[‖∇F (θ̃)‖2] ≤ O
(√

∆/T
)
. (18)

Next, we show that the mean-square error of stochastic gradient in sampling-based GCN can be
decomposed into feature approximation error Err1(t) and gradient approximation error Err2(t).

∆ :=
1

T

T∑
t=1

E
[∥∥∥∇F̃B(θt)−∇F (θt)

∥∥∥2
]

≤ 2

T

T∑
t=1

E
[∥∥∥∇F̃B(θt)−∇FB(θt)

∥∥∥2
]

︸ ︷︷ ︸
Err1(t)

+
2

T

T∑
t=1

E
[
‖∇FB(θt)−∇F (θt)‖2

]
︸ ︷︷ ︸

Err2(t)

,
(19)

where the inequality hold due to ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2 for any x,y. Then, in Lemma 5,
we provide an upper bound on the feature approximation error Err1(t) and, in Lemma 6, we pro-
vide an upper bound on the gradient approximation error Err2(t). The proof are based on matrix
concentration.

16

Lemma 5. Denote D̃ as the number of selected neighbors in the sampling and d as the dimension of
node features. With probability at least 1− δ we have

1

2
E
[∥∥∥∇F̃B(θ)−∇FB(θ)

∥∥∥2
]
≤ 16L2

fG
2
g

log(2d/δ)

D̃
+ 32G2

fL
4
g

log(2d/δ) + 1/4

D̃
. (20)

Lemma 6. Denote B as the size of mini-batch and d as the dimension of node features. With
probability at least 1− δ we have

1

2
E
[
‖∇FB(θ)−∇F (θ)‖2

]
≤ 32G2

f

log(2d/δ) + 1/4

B
. (21)

By plugging back the results in Lemma 5 and Lemma 6 back to Eq. 19, we have

∆ = O
(
L2
fG

2
g

log(2d/δ)

D̃

)
+O

(
G2
fL

4
g

log(2d/δ) + 1/4

D̃

)
+O

(
G2
f

log(2d/δ) + 1/4

B

)
. (22)

From Lemma 3 we know that
LF = LfGg + L2

gGf . (23)

Plugging the result back to Lemma 4 concludes the proof.

C.1 Proof of Lemma 3

We say function F (θ) has LF -Lipschitz continuous gradient if for any θ1 and θ2, we have the
following inequality

‖∇F (θ1)−∇F (θ2)‖ ≤ LF ‖θ1 − θ2‖. (24)

Our next step is to compute LF . Denote ∇F (θ1) as

∇F (θ1) =
1

N

∑
i∈V
∇fi

 1

D

∑
j∈N (i)

gj(θ1)

︸ ︷︷ ︸

A1(i)

 1

D

∑
j∈N (i)

∇gj(θ1)

︸ ︷︷ ︸

A2(i)

. (25)

and ∇F (θ2) as

∇F (θ2) =
1

N

∑
i∈V
∇fi

 1

D

∑
j∈N (i)

gj(θ2)

︸ ︷︷ ︸

B1(i)

 1

D

∑
j∈N (i)

∇gj(θ2)

︸ ︷︷ ︸

B2(i)

. (26)

Then we have

‖∇F (θ1)−∇F (θ2)‖ =

∥∥∥∥∥ 1

N

∑
i∈V

A1(i)A2(i)− 1

N

∑
i∈V

B1(i)B2(i)

∥∥∥∥∥
=

∥∥∥∥∥ 1

N

∑
i∈V

A1(i) (A2(i)−B2(i)) +
1

N

∑
i∈V

(A1(i)−B1(i))B2(i)

∥∥∥∥∥
≤
(a)

1

N

∑
i∈V
‖A1(i)‖‖A2(i)−B2(i)‖+

1

N

∑
i∈V
‖A1(i)−B1(i)‖‖B2(i)‖

≤
(b)

(LfGg + L2
gGf) ‖θ1 − θ2‖ ,

(27)
where the inequality (a) is due to ‖x+ y‖ ≤ ‖x‖+ ‖y‖ and ‖xy‖ ≤ ‖x‖‖y‖ for any x,y, and the
inequality (b) is due to the Assumption 1.

17

C.2 Proof of Lemma 4

For the ease of presentation, let us denote stochastic gradient as gt := ∇F̃B(θt) and full gradient as
∇F (θt).

By the update rule θt+1 = θt − ηgt we obtain,

F (θt+1)− F (θt) ≤ 〈∇F (θt),θt+1 − θt〉+
LF
2
‖θt+1 − θt‖2

= −η〈∇F (θt), gt〉+
LF
2
‖θt+1 − θt‖2

= −η〈∇F (θt),∇F (θt)−∇F (θt) + gt〉+
LF
2
‖θt+1 − θt‖2

= −η‖∇F (θt)‖2 − η〈∇F (θt), gt −∇F (θt)〉+
η2LF

2
‖gt‖2.

(28)

Adding and subtracting∇F (θt) to gt gives
‖gt‖2 = ‖gt −∇F (θt) +∇F (θt)‖2

= ‖gt −∇F (θt)‖2 + ‖∇F (θt)‖2 + 2〈∇F (θt), gt −∇F (θt)〉.
(29)

By plugging the above equality back, we get

F (θt+1)− F (θt) ≤
(
η2LF

2
− η
)
‖∇F (θt)‖2 +

(
η2LF − η

)
〈∇F (θt), gt −∇F (θt)〉

+
η2LF

2
‖gt −∇F (θt)‖2.

(30)

By using the fact that 2〈∇F (θt), gt −∇F (θt)〉 ≤ ‖∇F (θt)‖2 + ‖gt −∇F (θt)‖2, we have

F (θt+1)− F (θt) ≤
(
η2LF −

3

2
η

)
‖∇F (θt)‖2 +

(
η2LF −

1

2
η

)
‖gt −∇F (θt)‖2. (31)

Taking expectation on both side and rearranging the terms results in(
3

2
η − η2LF

)
E[‖∇F (θt)‖2] ≤ E[F (θt)]− E[F (θt+1)] +

(
η2LF −

1

2
η

)
E[‖gt −∇F (θt)‖2]

≤ E[F (θt)]− E[F (θt+1)] + η2LFE[‖gt −∇F (θt)‖2].
(32)

By summing up above inequality for all T iterations, denoting ∆ = 1
T

∑T
t=1 E[‖gt −∇F (θt)‖2],

and using the fact that F (θ?) ≤ F (θt+1) gives(
3

2
η − η2LF

) T∑
t=1

E[‖∇F (θt)‖2] ≤ E[F (θ1)]− E[F (θ?)] + Tη2LF∆. (33)

Dividing both side by T
(

3
2η − η

2LF
)

results in

1

T

T∑
t=1

E[‖∇F (θt)‖2] ≤
(

3

2
η − η2LF

)−1
(E[F (θ1)]− E[F (θ?)])

T
+ ∆

2η2LF
(3η − 2η2LF)

=
(
3η − 2η2LF

)−1 2 (E[F (θ1)]− E[F (θ?)])

T
+ ∆

2ηLF
(3− 2ηLF)

.

(34)

By choosing η = min

{
3

2LF
,
√

E[F (θ1)]−E[F (θ?)]
∆LFT

}
we have

1

T

T∑
t=1

E[‖∇F (θt)‖2] ≤ 1

η (3− 2ηLF)

2 (E[F (θ1)]− E[F (θ?)])

T
+ ∆

2ηLF
(3− 2ηLF)

≤ 1

η

2 (E[F (θ1)]− E[F (θ?)])

T
+ 2∆ηLF

≤ O
(√

∆/T
)
.

(35)

18

Since θ̃ is decided in a way that has minimum gradient, it follows

E[‖∇F (θ̃)‖2] ≤ O
(√

∆/T
)
, (36)

which gives the bound as stated in the lemma.

C.3 Proof of Lemma 5

By definition, we can bound E[‖∇F̃B(θ)−∇FB(θ)‖2] by adding and subtracting intermediate terms
inside such that each adjacent pair of products differ at most in one factor. To do so, recall the
definitions of∇FB(θ) and∇F̃B(θ) as

∇FB(θ) =
1

B

∑
i∈VB

∇fi

 1

D

∑
j∈N (i)

gj(θ)

︸ ︷︷ ︸

A1(i)

 1

D

∑
j∈N (i)

∇gj(θ)

︸ ︷︷ ︸

A2(i)

, (37)

and

∇F̃B(θ) =
1

B

∑
i∈VB

∇fi

 1

D̃

∑
j∈Ñ (i)

gj(θ)

︸ ︷︷ ︸

B1(i)

 1

D̃

∑
j∈Ñ (i)

∇gj(θ)

︸ ︷︷ ︸

B2(i)

. (38)

For simplicity, we denote EVB∼V
[
Ej∼N (i),∀i∈VB [·]

]
as E[·]. We have

E
[∥∥∥∇F̃B(θ)−∇FB(θ)

∥∥∥2
]

= E

∥∥∥∥∥ 1

B

∑
i∈VB

B1(i)B2(i)− 1

B

∑
i∈VB

A1(i)A2(i)

∥∥∥∥∥
2

≤
(a)

E
[
‖B1(i)B2(i)−A1(i)A2(i)‖2

]
≤
(b)

2E
[
‖B1(i)(B2(i)−A2(i))‖2

]
+ 2E

[
‖(B1(i)−A1(i))A2(i)‖2

]
≤
(c)

2E
[
‖B1(i)‖2

]
E
[
‖B2(i)−A2(i)‖2

]
+ 2E

[
‖B1(i)−A1(i)‖2

]
E
[
‖A2(i)‖2

]
,

(39)

where inequality (a) is due to ‖ 1
n

∑n
i=1 xi‖ ≤

1
n

∑n
i=1 ‖xi‖, inequality (b) is due to ‖x + y‖2 ≤

2‖x‖+ 2‖y‖, and inequality (c) is due to ‖xy‖ ≤ ‖x‖‖y‖.

(1) Considering E
[
‖B1(i)‖2

]
, we have

E
[
‖B1(i)‖2

]
= E

∥∥∥∥∥∥∇fi

 1

D̃

∑
j∈Ñ (i)

gj(θ)

∥∥∥∥∥∥
2
 ≤ L2

f . (40)

(2) Considering E
[
‖A2(i)‖2

]
, we have

E
[
‖A2(i)‖2

]
= E

∥∥∥∥∥∥ 1

D

∑
j∈N (i)

∇gj(θ)

∥∥∥∥∥∥
2
 ≤ L2

g. (41)

19

(3) Considering E
[
‖B1(i)−A1(i)‖2

]
, we have

E
[
‖B1(i)−A1(i)‖2

]
= E

∥∥∥∥∥∥∇fi

 1

D̃

∑
j∈Ñ (i)

gj(θ)

−∇fi
 1

D

∑
j∈N (i)

gj(θ)

∥∥∥∥∥∥
2

≤ G2
fE

∥∥∥∥∥∥ 1

D̃

∑
j∈Ñ (i)

gj(θ)− 1

D

∑
j∈N (i)

gj(θ)

∥∥∥∥∥∥
2

≤ 32G2
fL

2
g

log(2d/δ) + 1/4

D̃
,

(42)

where the last inequality is due to Lemma 12.

(4) Considering E
[
‖B2(i)−A2(i)‖2

]
, we have

E
[
‖B2(i)−A2(i)‖2

]
= E

∥∥∥∥∥∥ 1

D̃

∑
j∈Ñ (i)

∇gj(θ)− 1

D

∑
j∈N (i)

∇gj(θ)

∥∥∥∥∥∥
2

≤ 16G2
g

log(2d/δ)

D̃
,

(43)

where the last inequality is due to Lemma 12.

(6) By plugging Eq. 40, Eq. 41, Eq. 42, and Eq. 43 back to Eq. 39, with probability at least 1− δ, it
holds that:

E
[∥∥∥∇F̃B(θ)−∇FB(θ)

∥∥∥2
]
≤ 32L2

fG
2
g

log(2d/δ)

D̃
+ 64G2

fL
4
g

log(2d/δ) + 1/4

D̃
. (44)

C.4 Proof of Lemma 6

By definition, we know∇FB(θ) and ∇F (θ) are defined as

∇FB(θ) =
1

B

∑
i∈VB

∇fi

 1

D

∑
j∈N (i)

gj(θ)

︸ ︷︷ ︸

A1(i)

 1

D

∑
j∈N (i)

∇gj(θ)

︸ ︷︷ ︸

A2(i)

, (45)

∇F (θ) =
1

N

∑
i∈V
∇fi

 1

D

∑
j∈N (i)

gj(θ)

︸ ︷︷ ︸

A1(i)

 1

D

∑
j∈N (i)

∇gj(θ)

︸ ︷︷ ︸

A2(i)

. (46)

For simplicity, we denote EVS∼V
[
Ej∼N (i),∀i∈VB | VB∼VS [·]

]
as E[·].

E
[
‖∇FB(θ)−∇F (θ)‖2

]
≤ E

∥∥∥∥∥ 1

B

∑
i∈VB

A1(i)A2(i)− 1

N

∑
i∈V

A1(i)A2(i)

∥∥∥∥∥
2

≤ 32G2
f

log(2d/δ) + 1/4

B
,

(47)

where the last inequality is due to Lemma 12.

20

D Proof of Theorem 2

The proof of the Theorem 2 is similar to the proof of Theorem 1, with a key difference: unlike
vanilla sampling-based GCN that samples mini-batch nodes and inner-layer nodes every iteration, in
LAZYGCN, we only perform mini-batch nodes and inner-layer nodes sampling at the beginning of
each recycling epoch, then sample mini-batch nodes with fixed inner layer nodes during the recycling
stage. The proof of Theorem 2 is based on the following lemmas.

The following lemma shows that the mean-square error of stochastic gradient is the key factor in
convergence and leads to slow convergence rate when the mean-sqaure error is large.
Lemma 7. Suppose objective function F (θ) has LF -Lipschitz continuous gradient and the expected
mean-square error of stochastic gradient F̃B(θt) to the full gradient∇F (θt) is bounded by

∆ =
1

T

T∑
t=1

E
[∥∥∥F̃B(θt)−∇F (θt)

∥∥∥2
]
. (48)

By choosing step size η = min
{

3
2LF

,
√

E[F (θ1)]−E[F (θ?)]

LF (
∑K

k=1 ρ
kR∆k)

}
, for θ̃ = mint E [‖∇F (θt)‖] we have

E[‖∇F (θ̃)‖2] ≤ O

√∑K

k=1 ρ
kR∆k

T

 . (49)

Similar to the analysis of vanilla sampling-based GCN training, the mean-square error of stochastic
gradient in LAZYGCN can also be decomposed into feature approximation error Err1(t) and gradient
approximation error Err2(t).

∆ :=
1

T

T∑
t=1

E
[∥∥∥∇F̃B(θt)−∇F (θt)

∥∥∥2
]

≤ 2

T

T∑
t=1

E
[∥∥∥∇F̃B(θt)−∇FB(θt)

∥∥∥2
]

︸ ︷︷ ︸
Err1(t)

+
2

T

T∑
t=1

E
[
‖∇FB(θt)−∇F (θt)‖2

]
︸ ︷︷ ︸

Err2(t)

,
(50)

where the inequality hold due to ‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2 for any x,y.

Then, we show in the following lemma that, comparing to vanilla sampling-based GCN training,
fixing the inner layer sampling inside each recycling epoch will not hurt the feature approximation
error.
Lemma 8 (Lemma 1 in main text). Denote D̃ as the number of selected neighbors in the sampling
and d as the dimension of node features. With probability at least 1− δ, we have

1

2
E
[∥∥∥∇F̃B(θ)−∇FB(θ)

∥∥∥2
]
≤ 16L2

fG
2
g

log(2d/δ)

D̃
+ 32G2

fL
4
g

log(2d/δ) + 1/4

D̃
. (51)

The following lemma shows that sampling mini-batches VB(t) from a subset of nodes VS(k) instead
of all nodes will not result in a large gradient approximation error if the size of VS(k) is large enough.
Lemma 9 (Lemma 2 in main text). Consider the setting where we sample a mini-batch of size B
from a subset of S nodes uniformly at random instead of sampling from N nodes. With probability at
least 1− δ we have

1

2
E
[
‖∇FB(θ)−∇F (θ)‖2

]
≤ 16G2

f

log(2d/δ) + 1/4

B
+ 16G2

f

log(2d/δ) + 1/4

S
. (52)

Plugging the results in Lemma 8 and Lemma 9 into Eq. 50 yields:

∆ = O
(
L2
fG

2
g

log(2d/δ)

D̃

)
+O

(
G2
fL

4
g

log(2d/δ) + 1/4

D̃

)
+O

(
G2
f

log(2d/δ) + 1/4

B

)
+O

(
G2
f

log(2d/δ) + 1/4

S

)
,

(53)

where we use O(·) to hide the constants. By Lemma 3 we know that
LF = LfGg + L2

gGf . (54)
By plugging the Eq. 53 and Eq. 54 back to Lemma 7, we conclude the proof.

21

D.1 Proof of Lemma 7

Recall from the proof of Lemma 4 that we denote stochastic gradient as gt := ∇F̃B(θ) and full
gradient as∇F (θ). From Eq. 32 in the proof of Lemma 4, we know that(

3

2
η − η2LF

)
E[‖∇F (θt)‖2] ≤ E[F (θt)]− E[F (θt+1)] +

(
η2LF −

1

2
η

)
E[‖gt −∇F (θt)‖2]

≤ E[F (θt)]− E[F (θt+1)] + η2LFE[‖gt −∇F (θt)‖2].
(55)

Recall that our algorithm runs K recycling epochs Tk for k = 1 to K and the size of each recycling
epoch is |Tk| = ρkR. Let ∆k = E[‖gt −∇F (θt)‖2] for any t ∈ Tk. Then, by summing up above
inequality for all T iterations, we have(

3

2
η − η2LF

) T∑
t=1

E[‖∇F (θt)‖2] ≤ E[F (θ1)]− E[F (θ?)] + η2LF

K∑
k=1

ρkR∆k. (56)

Dividing both side by T
(

3
2η − η

2LF
)

results in

1

T

T∑
t=1

E[‖∇F (θt)‖2] ≤
(

3

2
η − η2LF

)−1
(E[F (θ1)]− E[F (θ?)])

T
+

2η2LF
∑K
k=1 ρ

kR∆k

(3η − 2η2LF)T

=
(
3η − 2η2LF

)−1 2 (E[F (θ1)]− E[F (θ?)])

T
+

2ηLF
∑K
k=1 ρ

kR∆k

(3− 2ηLF)T
.

(57)

By choosing η = min
{

3
2LF

,
√

E[F (θ1)]−E[F (θ?)]

LF (
∑K

k=1 ρ
kR∆k)

}
and noting that θ̃ is decided in a way that has

minimum gradient we have

E[‖∇F (θ̃)‖2] ≤ 1

T

T∑
t=1

E[‖∇F (θt)‖2]

≤ 1

η

2 (E[F (θ1)]− E[F (θ?)])

T
+

2ηLF
∑K
k=1 ρ

kR∆k

T

≤ O

√∑K

k=1 ρ
kR∆k

T

 ,

(58)

which gives the bound as stated.

Remark 1. Consider a total budget of T fresh mini-batch samplings for vanilla GCNs. When we use
fixed size recycling stages, i.e., ρ = 1, the obtained rate for LAZYGCN reduces to

√
∆LAZYGCN /T ,

the same as convergence rate of SGCN, but with a difference in the mean-square error of stochastic
gradients, i.e., ∆LAZYGCN versus ∆SGCN. For ρ > 1, the size of recycling stages will gradually
increases, resulting in a decrease in the number of samplings K required, which in turn shortens
the total training time. Besides, as the training progresses, the mean-square error of stochastic
gradient will gradually decrease as the gradient decreases. Therefore, a careful gradual increase in
the recycling stage size will not cause a sharp increase of ∆LAZYGCN .

D.2 Proof of Lemma 8

By definition, we know∇FB(θ) and ∇F̃B(θ) are defined as

∇FB(θ) =
1

B

∑
i∈VB

∇fi

 1

D

∑
j∈N (i)

gj(θ)

︸ ︷︷ ︸

A1(i)

 1

D

∑
j∈N (i)

∇gj(θ)

︸ ︷︷ ︸

A2(i)

, (59)

22

∇F̃B(θ) =
1

B

∑
i∈VB

∇fi

 1

D̃

∑
j∈Ñ (i)

gj(θ)

︸ ︷︷ ︸

B1(i)

 1

D̃

∑
j∈Ñ (i)

∇gj(θ)

︸ ︷︷ ︸

B2(i)

. (60)

For simplicity, we denote EVS∼V
[
Ej∼N (i),∀i∈VB | VB∼VS [·]

]
as E[·].

E
[∥∥∥∇F̃B(θ)−∇FB(θ)

∥∥∥2
]

= E

∥∥∥∥∥ 1

B

∑
i∈VB

B1(i)B2(i)− 1

B

∑
i∈VB

A1(i)A2(i)

∥∥∥∥∥
2

≤
(a)

E
[
‖B1(i)B2(i)−A1(i)A2(i)‖2

]
≤
(b)

2E
[
‖B1(i)(B2(i)−A2(i))‖2

]
+ 2E

[
‖(B1(i)−A1(i))A2(i)‖2

]
≤
(c)

2E
[
‖B1(i)‖2

]
E
[
‖B2(i)−A2(i)‖2

]
+ 2E

[
‖B1(i)−A1(i)‖2

]
E
[
‖A2(i)‖2

]
,

(61)

where inequality (a) is due to ‖ 1
n

∑n
i=1 xi‖ ≤

1
n

∑n
i=1 ‖xi‖, inequality (b) is due to ‖x + y‖2 ≤

2‖x‖+ 2‖y‖, and inequality (c) is due to ‖xy‖ ≤ ‖x‖‖y‖.

(1) Considering E
[
‖B1(i)‖2

]
, we have

E
[
‖B1(i)‖2

]
= E

∥∥∥∥∥∥∇fi

 1

D̃

∑
j∈Ñ (i)

gj(θ)

∥∥∥∥∥∥
2
 ≤ L2

f . (62)

(2) Considering E
[
‖A2(i)‖2

]
, we have

E
[
‖A2(i)‖2

]
= E

∥∥∥∥∥∥ 1

D

∑
j∈N (i)

∇gj(θ)

∥∥∥∥∥∥
2
 ≤ L2

g. (63)

(3) Considering E
[
‖B1(i)−A1(i)‖2

]
, we have

E
[
‖B1(i)−A1(i)‖2

]
= E

∥∥∥∥∥∥∇fi

 1

D̃

∑
j∈Ñ (i)

gj(θ)

−∇fi
 1

D

∑
j∈N (i)

gj(θ)

∥∥∥∥∥∥
2

≤ G2
fE

∥∥∥∥∥∥ 1

D̃

∑
j∈Ñ (i)

gj(θ)− 1

D

∑
j∈N (i)

gj(θ)

∥∥∥∥∥∥
2

≤ 32G2
fL

2
g

log(2d/δ) + 1/4

D̃
,

(64)

where the last inequality is due to Lemma 12.

(4) Considering E
[
‖B2(i)−A2(i)‖2

]
, we have

E
[
‖B2(i)−A2(i)‖2

]
= E

∥∥∥∥∥∥ 1

D̃

∑
j∈Ñ (i)

∇gj(θ)− 1

D

∑
j∈N (i)

∇gj(θ)

∥∥∥∥∥∥
2

≤ 16G2
g

log(2d/δ)

D̃
,

(65)

23

where the last inequality is due to Lemma 12.

(6) By plugging Eq. 62, Eq. 63, Eq. 64, and Eq. 65 back to Eq. 61, it holds that with probability at
least 1− δ

E
[∥∥∥∇F̃B(θ)−∇FB(θ)

∥∥∥2
]
≤ 32L2

fG
2
g

log(2d/δ)

D̃
+ 64G2

fL
4
g

log(2d/δ) + 1/4

D̃
. (66)

D.3 Proof of Lemma 9

We define the objective function for sampling a mini-batch of size B from a subset of S nodes
uniformly at random instead of sampling from N nodes as FS and its gradient as∇FS(θ). Now we
have

∇FB(θ) =
1

B

∑
i∈VB

∇fi

 1

D

∑
j∈N (i)

gj(θ)

︸ ︷︷ ︸

A1(i)

 1

D

∑
j∈N (i)

∇gj(θ)

︸ ︷︷ ︸

A2(i)

, (67)

∇FS(θ) =
1

S

∑
i∈VS

∇fi

 1

D

∑
j∈N (i)

gj(θ)

︸ ︷︷ ︸

A1(i)

 1

D

∑
j∈N (i)

∇gj(θ)

︸ ︷︷ ︸

A2(i)

, (68)

∇F (θ) =
1

N

∑
i∈V
∇fi

 1

D

∑
j∈N (i)

gj(θ)

︸ ︷︷ ︸

A1(i)

 1

D

∑
j∈N (i)

∇gj(θ)

︸ ︷︷ ︸

A2(i)

. (69)

For simplicity, we denote EVS∼V
[
Ej∼N (i),∀i∈VB | VB∼VS [·]

]
as E[·].

Then, we have

E
[
‖∇FB(θ)−∇F (θ)‖2

]
= E

[
‖∇FB(θ)−∇FS(θ)‖2

]
+ E

[
‖∇FS(θ)−∇F (θ)‖2

]
+ 2E [〈∇FB(θ)−∇FS(θ),∇FS(θ)−∇F (θ)〉]

=
(a)

E

∥∥∥∥∥ 1

B

∑
i∈VB

A1(i)A2(i)− 1

S

∑
i∈VS

A1(i)A2(i)

∥∥∥∥∥
2

+ E

∥∥∥∥∥ 1

S

∑
i∈VS

A1(i)A2(i)− 1

N

∑
i∈V

A1(i)A2(i)

∥∥∥∥∥
2

≤
(b)

32G2
f

log(2d/δ) + 1/4

B
+ 32G2

f

log(2d/δ) + 1/4

S
,

(70)

where the equality (a) is due to E [∇FB(θ)−∇FS(θ)] = E [∇FS(θ)−∇F (θ)] = 0 and inequality
(b) is due to Lemma 12.

E Useful Theorems and Lemmas

In this section we present a host of lemmas that are used in presentation of the proofs. We start by the
following results that exhibit the sums of independent random vectors and matrices provide normal
concentration near its mean in a range determined by the variance of the sum.

Theorem 3 (Vector Bernstein Inequality [12]). Let x1, ..,xn be independent random vectors with
common dimension d and assume that each one is centered, uniformly bounded, and the variance is
bounded, i.e.,

E[xj] = 0 and ‖xj‖ ≤ µ as well as ‖E[x2
j]‖ ≤ σ2. (71)

24

Let introduce the sum of n vectors as

z =
1

n

n∑
j=1

xj , (72)

then we have

P(‖z‖ ≥ ε) ≤ 2d · exp

(
−n · ε

2

8σ2
+

1

4

)
. (73)

Theorem 4 (Matrix Bernstein Inequality [12]). LetX1, ..,Xn be independent random matrices with
common dimension d× d and assume that each one is centered, uniformly bounded, and the variance
is bounded, i.e.,

E[Xj] = 0 and ‖Xj‖ ≤ µ as well as ‖E[X2
j]‖ ≤ σ2. (74)

Let introduce the sum of n matrices as

Z =
1

n

n∑
j=1

Xj , (75)

then we have

P(‖Z‖ ≥ ε) ≤ 2d · exp

(
−n ·min

{
ε2

4σ2
,
ε

2µ

})
. (76)

The following lemma arises from the vector Bernstein inequality in Theorem 3, which consistutes a
non-asymptotic bound on the function that has a vector as output that holds with high probability.

Lemma 10 (Lemma 6 in [16]). Let the sub-sampled function defined as

VS(θ) =
1

S

∑
i∈S

Vj(θ), E [VS(θ)] = V (θ), (77)

where Vj(θ) ∈ Rd is ρ-Lipschitz continuous for all j. For ε ≤ 2ρ, we have with probability at least
1− δ that

‖VS(θ)− V (θ)‖ ≤ 4
√

2ρ

√
log(2d/δ) + 1/4

S
. (78)

The following lemma arises from the matrix Bernstein inequality in Theorem 4, which consistutes a
non-asymptotic bound on the function that has a matrix as output that holds with high probability.

Lemma 11 (Lemma 8 in [16]). Let the sub-sampled function defined as

MS(θ) =
1

S

∑
j∈S

Mj(θ), E [MS(θ)] = M(θ), (79)

where Mj(θ) ∈ Rd×d is ρ-Lipschitz continuous for all j. For ε ≤ 4ρ, we have with probability at
least 1− δ that

‖MS(θ)−M(θ)‖ ≤ 4ρ

√
log(2d/δ)

S
. (80)

The following lemma provides a high probability upper-bound using vector concentration inequality
in Lemma 10 and matrix concentration inequality in Lemma 11 on the function approximation
variance and gradient approximation variance, respectively.

Lemma 12. Consider the setting where we sample a mini-batch of size B from a subset of S nodes
uniformly at random instead of sampling from N nodes. Let D̃ as the number of the selected

25

neighbors in the sampling. With probability at least 1− δ we have∥∥∥∥∥∥ 1

D̃

∑
j∈Ñ (i)

gj(θ)− Ej∼N (i) [gj(θ)]

∥∥∥∥∥∥ ≤(a)
4
√

2Lg

√
log(2d/δ) + 1/4

D̃
, for any i ∈ V,

∥∥∥∥∥∥ 1

D̃

∑
j∈Ñ (i)

∇gj(θ)− Ej∼N (i) [∇gj(θ)]

∥∥∥∥∥∥ ≤(b) 4Gg

√
log(2d/δ)

D̃
, for any i ∈ V,

∥∥∥∥∥ 1

B

∑
i∈VB

∇fi(g(θ))− Ei∼VS [∇fi(g(θ))]

∥∥∥∥∥ ≤(c) 4
√

2Gf

√
log(2d/δ) + 1/4

B
, for any VB ⊆ VS ,∥∥∥∥∥ 1

S

∑
i∈VS

∇fi(g(θ))− Ei∈V [∇fi(g(θ))]

∥∥∥∥∥ ≤(d)
4
√

2Gf

√
log(2d/δ) + 1/4

S
, for any VS ⊆ V.

(81)

E.1 Proof of Lemma 10

The proof is generalized from the proof of Lemma 6 in [16]. Since the expectation of the random
matrices need to be zero, we first center the individual matrices

Xj = Vj(θ)− V (θ), ∀i ∈ S. (82)

Since Vj(θ) is ρ-Lipschitz continuous, we have for all i ∈ S,

‖Xj‖ = ‖Vj(θ)− V (θ)‖ ≤ 2ρ, (83)

and
‖Xj‖2 = ‖Vj(θ)− V (θ)‖2 ≤ 4ρ2. (84)

Therefore, for any ε ≤ 2ρ, we are in the small deviation regime of Bernstein’s bound with a
sub-Gaussian tail. Then, by using Theorem 3 and plugging back

1

S

∑
i∈S

Vj(θ)− V (θ), (85)

we have

P

∥∥∥∥∥∥ 1

S

∑
j∈S

Vj(θ)− V (θ)

∥∥∥∥∥∥ ≥ ε
 ≤ 2d · exp

(
− ε

2B

32ρ2
+

1

4

)
. (86)

Finally, let δ as the upper bound of Bernstein inequality

δ = 2d · exp

(
− ε

2B

32ρ2

)
. (87)

Therefore, we have

ε = 4
√

2ρ

√
log(2d/δ) + 1/4

S
. (88)

E.2 Proof of Lemma 11

The proof is generalized from the proof of Lemma 8 in [16]. Since the expectation of the random
matrices need to be zero, we first center the individual matrices

Xj = Mj(θ)−M(θ), ∀i ∈ S. (89)

Since Mj(θ) is ρ-Lipschitz continuous, we have for all i ∈ S,

‖Xj‖ = ‖Mj(θ)−M(θ)‖ ≤ 2ρ, (90)

26

and
‖Xj‖2 = ‖Mj(θ)−M(θ)‖2 ≤ 4ρ2. (91)

Therefore, for any ε ≤ 4ρ, we are in the small deviation regime of Bernstein’s bound with a
sub-Gaussian tail. Then, by using Theorem 4 and plugging back

1

S

∑
j∈S

Mj(θ)−M(θ), (92)

we have

P

∥∥∥∥∥∥ 1

S

∑
j∈S

Mj(θ)−M(θ)

∥∥∥∥∥∥ ≥ ε
 ≤ 2d · exp

(
− ε

2B

16ρ2

)
. (93)

Finally, let δ as the upper bound of Bernstein inequality

δ = 2d · exp

(
− ε

2B

16ρ2

)
. (94)

Therefore, we have

ε = 4ρ

√
log(2d/δ)

S
. (95)

E.3 Proof of Lemma 12

The proof of inequality (a) follows from Lemma 10. Specifically, let S = Ñ (i) of size S = D̃,
and let Vj(θ) = gj(θ) for any j ∈ Ñ (i). By the Lipschitz continuous assumption, we know that
Vj(θ) ∈ Rd is Lg-Lipschitz continuous. Therefore, by Lemma 10, we have

‖VS(θ)− V (θ)‖ =

∥∥∥∥∥∥ 1

D̃

∑
j∈Ñ (i)

gj(θ)− Ej∼N (i) [gj(θ)]

∥∥∥∥∥∥ ≤ 4
√

2Lg

√
log(2d/δ) + 1/4

D̃
. (96)

For (b), noting that ∇gj(θ) is a matrix with dimension d × d, we can apply matrix Bernstein
inequality in Lemma 11 to bound the deviation of averaged matrices over D̃ from its expected value.
Let S = Ñ (i) of size S = D̃, and let Mj(θ) = ∇gj(θ) for any j ∈ Ñ (i). By the Lipschitz
continuous assumption, we know that Mj(θ) ∈ Rd×d is Gg-Lipschitz continuous. Therefore, we
have

‖MS(θ)−M(θ)‖ =

∥∥∥∥∥∥ 1

D̃

∑
j∈Ñ (i)

∇gj(θ)− Ej∼N (i) [∇gj(θ)]

∥∥∥∥∥∥ ≤ 4Gg

√
log(2d/δ)

D̃
. (97)

The inequalities in (c) and (d) follow similarly.

27

	Introduction
	Background
	Proposed algorithm
	Theoretical analysis
	Convergence analysis for LazyGCN

	Experimental evaluation
	Primary results
	Ablation study

	Conclusion
	Detailed experimental setup
	Hardware specifications and environment
	Dataset details
	Ablation study

	Summary of notations
	Proof of Theorem 1
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6

	Proof of Theorem 2
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9

	Useful Theorems and Lemmas
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 12

