Supplementary Material of A Matrix Chernoff Bound for Markov Chains
and Its Application to Co-occurrence Matrices

A Convergence Rate of Co-occurrence Matrices

A.1 Proof of Claim

Claim 1 (Properties of Q). If P is a regular Markov chain, then Q satisfies:

1. Q is a regular Markov chain with stationary distribution oy .... ur)y = TuoPugur ** Pup_1urs

2. The sequence (X1,--- X_r) is a random walk on Q starting from a distribution p such that
Plug, ur) = ¢7L0P7l07u1 e PUT—ly“T’ and ”p”o- = ||¢||1r

3. V0 > 0, the §-mixing time of P and Q satisfies 7(Q) < 7(P) + T
4. 3P with A\(P) < 1 s.t. the induced Q has \(Q) = 1, i.e. Q may have zero spectral gap.

Proof. We prove the fours parts of this Claim one by one.

Part 1 To prove Q is regular, it is sufficient to show that 3Ny, VYnq, > Ny, (v, - -+ ,vr) can reach
(ug,- -+ ,ur) at ny steps. We know P is a regular Markov chain, so there exists No > T s.t., for any
ng > N, vp can reach ug at exact ng step, i,e., there is a no-step walk s.t. (vp, wq, -+, Wp,—1,Up)
on P. This induces an ny-step walk from (vg, -+ ,v7) t0 (Wpy—T41,** , Wny—1, Ug). Take further
T step, we can reach (ug, - -+, ur), S0 we construct a ny = ng + 1" step walk from (vg, - ,vr) to
(ug, - - - ur). Since this is true for any no > Na, we then claim that any state can be reached from any
other state in any number of steps greater than or equal to a number N; = N» + T'. Next to verify o
such that o'(y,,... ur) = TugPug,us *** Pur_1 up 18 the stationary distribution of Markov chain @,

O (ug,-- ,uT)Q(uow' sur),(wo, - ,wr)
(uo, -+ ur)€S

= Z Tug Pug,wo Pwg,wr s+ s Pwg _swr_y Pur_y wr
uo:(ug,wo, -, wr—1)€S
= (Z Tug Puo,'wo) Py wyy s Pop_ywr i Py wr
uo

:ﬂ-wonO,wly e ’RUT—%“’T—IR“T—L“’T = Owq,- ,wr-
Part 2 Recall (vy,--- ,vy) is a random walk on P starting from distribution ¢, so the probability
we observe X1 = (v1,--- ,0741) 1S Pu, Poy vy Popop = P(v1,- wrsr)s 1-€ X1 is sampled
from the distribution p. Then we study the transition probability from X; = (v, - ,vi47) tO
Xiv1 = (Vig1, -+ ,Vigr41), Whichis P, . 0, ., = Qx, x,.,. Consequently, we can claim
(Xi,--+,Xp_7) is arandom walk on Q. Moreover,

Z p?uo,m ,ur) _ Z (¢u0Puo,u1 e RLT,l,uT)Z

71-uo‘Pu(MH '“PuT—lv“T

2
Il = ’
(ug, - ,up)€ES (w0, sur) (ug, - ,up)€ES

o o
= E =0 E Py Pugp_qup = § : * = H(ﬁHi—v
- Tug Tug

(ug,u1, - ,ur)€ES ug
which implies ||p||, = ||® .-

Part 3 For any distribution y on S, define @ € R” such that z; = Z(Ul o or1,0)€S Yor, wra i
Easy to see x is a probability vector, since & is the marginal probability of y. For convenience, we
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assume for a moment the x, y, o, 7w are row vectors. We can see that:

HyQ P)+T—1 _ _ % HyQT(P)JrTfl g

HTV 1

1 ( T(P)+T—1
=z yQ - 0)

1 T(P
:i E (wP ( )) Py, vy Por g op = Ty Poyus - Por o
vy

1
=3, 2 @)

v1

Pv17v2 e R’T—lﬂvT

thvz o .P'UTflv’UT
(vi, v )ES

TV

( PT(P)) — T, zP™®) _ 7rH = HmPT<P) — 7rH <.
1

=3l
which indicates 7(Q) < T(P) +T-1<7(P)+T.

Part 4 This is an example showing that A(Q) cannot be bounded by A(P) — even though P has
A(P) < 1, the induced Q may have A(Q) = 1. We consider random walk on the unweighted

undirected graph and 7' = 1. The transition probability matrix P is:

0 1/3 1/3 1/3
/2 0 1/2 0
1/3 1/3 0 1/3
/2 0 1/2 0

P=

with stationary distribution w = [0.3 0.2 0.3 0.2]T and A(P) = 2. When T’ = 1, the induced
Markov chain @ has stationary distribution 7, , = 7, Py = d—mdi = 5 where m = 5 is the
number of edges in the graph. Construct y € RIS| such that
L (uv)=(0,1),
Y(u,w) = -1 (’LL, U) = (053)7

0 otherwise.

The constructed vector ¢y has norm

Y(u,v)Y(u,v) Yo,1)¥Y0,1) Y(0,3)Y(0,3)
Il =V ge = | 3 =/ + —2v/m.

(woes @) 9(0,1) 0(0,3)

And it is easy to check y L o, since (y,0), = Z(W))ES %y()“”) = Y0,1) T Y(0,3) = 0. Let
x = (y*Q)", we have for (u,v) € S:
1 (u,v) = (1,2),

m(“v'l’) = -1 (Uv U) = (372)7
0 otherwise.

This vector has norm:

T (u,0)T(u,v) Y,2)Y1,2) Y(3,2)Y(3,2)
lel, = Vizae = [ 3 \/ + —2m

(u,v)ES J(U v) 0(112) 0(372)

Thus we have % = 1. Taking maximum over all possible y gives A(Q) > 1. Also note that

fact that A\(Q) < 1, 50 AMQ) =1 O

A.2 Proof of Claim

Claim 2 (Properties of f). The function f in Equationsatisﬁes (1) Y xesoxf(X)=0;(2) f(X)
is symmetric and || f(X)||, < 1,VX € S.
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Proof. Note that Equation [2]is indeed a random value minus its expectation, so naturally Equation 2]
has zero mean, i.e., ) v g 0x f(X) = 0. Moreover, || f(X)]|, < 1 because

T
| e
)+ 225 (i it + 27 ||n|2)>

T

1Ol < 5 (Z =X

1 T T
2<§:|a44§:a4) =1.

r=1 r=1
where the first step follows triangle inequaity and submultiplicativity of 2-norm, and the third
step follows by (1) |[e;e] ||, = 1; (2) [[TI||, = ||diag(w)|, < 1 for distribution 7; (3) || P||, =
1T, = 1. =

-
€0 €y,

-
€v,.€y

]

A.3  Proof of Corollary 1]

Corollary 1 (Co-occurrence Matrices of HMMSs). For a HMM with observable states y; € Y and
hidden states x, € X, let P(y;|x:) be the emission probability and P(x41|z:) be the hidden state
transition probability. Given an L-step trajectory observations from the HUM, (y1,--- ,yr), one
needs a trajectory of length L = O(7(log | Y| + log 7) /€2) to achieve a co-occurrence matrix within
error bound e with high probability, where T is the mixing time of the Markov chain on hidden states.

Proof. A HMM can be model by a Markov chain P on Y x X such that P(y;11,2¢11|ye, Tt) =
P(ys+1|zes1)P(x¢s1|2ze). For the co-occurrence matrix of observable states, applying a similar
proof like our Theorem [2|shows that one needs a trajectory of length O(7(P)(log | V| +log 7(P))/€?)
to achieve error bound € with high probability. Moreover, the mixing time 7(P) is bounded by the
mixing time of the Markov chain on the hidden state space (i.e., P(z¢+1]7t)). O

B Matrix Chernoff Bounds for Markov Chains

B.1 Preliminaries

Kronecker Products If A is an M7 x N; matrix and B is a My x Ny matrix, then the Kronecker
product A ® B is the MsM; x Ni N5 block matrix such that

Al,lB AlleB
AB=| - :
Ay, B -+ Ay, N, B

Kronecker product has the mixed-product property. If A, B, C, D are matrices of such size that one
can from the matrix products AC and BD, then (A ® B)(C ® D) = (AC) ® (BD).

Vectorization For a matrix X € C?*%, vec(X) € C? denote the vertorization of the matrix X, s.t.
vec(X) = D e 2jelq Xi.j€i ® €, which is the stack of rows of X. And there is a relationship

between matrix multiplication and Kronecker product s.t. vec(AX B) = (A ® BT) vec(X).

Matrices and Norms For a matrix A € CV*¥_ we use AT to denote matrix transpose, use A to
denote entry-wise matrix conjugation, use A* to denote matrix conjugate transpose (A* = AT =
— . . .

A ). The vector 2-norm is defined to be ||z||, = v/&*x, and the matrix 2-norm is defined to be
Az,

lllly -

HAHZ = IMaXpeCN x40

We then recall the definition of inner-product under 7r-kernel in Section 2} The inner-product
under m-kernel for CV is (z,y) = y*II "'z where II = diag(n), and its induced mw-norm

|z||,. = \/{z,z),.. The above definition allow us to define a inner product under 7-kernel on C¥ 4,

Definition 1. Define inner product on CN? under m-kernel to be (@, Y). =¥y" (H_1 ® Id2) x.

Remark 1. Forx,y € CN andp,q € (Cd2, then inner product (under m-kernel) between x @ p and
Y ® q can be simplified as

(zRpYR@r=(yoq) M '0l:) (zop) =y ') (¢'p) = (=,y)x(p q).
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Remark 2. The induced m-norm is |||, = \/(x, ). When x = y ® w, the m-norm can be
simplified to be: |[z]| . = \/{y @ w,y @ w) . = /(Y y)=(w, w) = |y [[w]l,-

Matrix Exponential The matrix exponential of a matrix A € C?xd is defined by Taylor expansion
exp(A) = ijog ’;‘—,] And we will use the fact that exp(A) @ exp(B) = exp(A® I + I ® B).
Golden-Thompson Inequality We need the following multi-matrix Golden-Thompson inequality
from from Garg et al. [10].

Theorem 4 (Multi-matrix Golden-Thompson Inequality, Theorem 1.5 in [10]]). Let H,--- Hy be k
Hermitian matrices, then for some probability distribution y on [— 5 z

5 5
log <I& |:exp <§;Hj> ><i/zlog< [Hexp< ;

1 ,"ﬁ
) H ( )] ) dp(9).
B.2 Proof of Theorem[3

Theorem 3 (A Real-Valued Version of Theorem[I)). Let P be a regular Markov chain with state space
[N], stationary distribution 7 and spectral expansion \. Let f : [N] — R4 be a function such
that (1) Vv € [N], f(v) is symmetric and || f(v)[ly < 17 (2) 3-, ez Tof(v) = 0. Let (v1, -+, vp)

denote a k-step random walk on P starting from a distribution ¢ on [N). Then given € € (0,1),

P e (135100 ) 2 < ol s (1200770
: [Amm (,1 Zf(w)) < ] < 1l  exp (~(*(1 = k/72).

Proof. Due to symmetry, it suffices to prove one of the statements. Let ¢ > 0 be a parameter to be

chosen later. Then
k
[ max < Zf (v5) ) >e|l =P |:Amax <Zf(vj)> > ke
j=1
k
T [ <t2f(vj)>
j=1

k .
_ Ev, oo oy [Tr [exp (t 2o f(v]))H '
- exp (tke)
The second inequality follows Markov inequality.

> exp (tke):| 3)

Next to bound E,, ... ,, {Tr [exp (t EJ L f(vg)

” Using Theoreml we have:
k
log <Tr exp <th(vj)>:|> log (T H

) H exp (S5 tr(wn) )| | dute)
j=1 Jj=1
where the second step follows by concavity of log function and the fact that 11(¢) is a probability

Lo /: [lj ( ' )Hexp( <’ ))]duw),
distribution on [—%, Z]. This implies
))]du(¢)> -

e o (15 10 (/ [Hexp( o) e (5

Note that ||z[|,, < d"/?~* |||, for p € (0,1), choosing p = 7/4 we have

<Tr exp <Zt2f(vj)> ) ’ déf1 Tr [exp (th (v5) >:|
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Combining the above two equations together, we have

us

exp (Zti f@wﬂ <ot [F [1:[ ) 1f[kexp (e;tf(vj))} (o). @

Tr

s
Write €% = + ib with 72 + b2 = |y + i8] = |e?¢|” = 1:

Lemma 1 (Analogous to Lemma 4.3 in [10]). Let P be a regular Markov chain with state space [N |
with spectral expansion \. Let f be a function f : [N] — R4*? such that (1) ZUG[N] o f(v) = 0;

(2) [|f(v)|ly < 1and f(v) is symmetric, v € [N]. Let (v1,- - - ,vy) denote a k-step random walk on
P starting from a distribution ¢ on [N]. Then for any t > 0,~v > 0,b > 0 such that t*>(v*> + b%) < 1

and t\/7? + b2 < %, we have

E |:Tr [ﬁ exp (W) jljkexl3 (W)H < 1l dexp (kﬁ(nﬂ 152 <1+ - f ,\)>

j=1

Assuming the above lemma, we can complete the proof of the theorem as:

= (i)

(&)

6i¢ ’

<% [ gl dexp (sz

il
2

o_ T 2 8 3
—|l¢ll.. 4>~ F exp <kt (1 oy A)) /7 du(6)
2—% 2 8
=|¢|,.d exp (kzt (1+ﬁ))

where the first step follows Equation 4} the second step follows by swapping E and [, the third
step follows by Lemma |1} the forth step follows by |ei¢’| = 1, and the last step follows by p is a

probability distribution on [—%, Z] so [ _%1 du(p) =1
2

Finally, putting it all together:

’ [Am" (iiﬂvﬂ) ] < Bl e (s

IN

exp (tke)
efn o (260570
- exp (tke)
6l @ % exp (k (26)° (14 125))
- exp (tke)
= ¢l 27 exp <<i)2 ke2(1 - )\)2% 7 ? S k:(l ;6>\)66>

< Il @ exp (—ke*(1 = A)/72).

where the first step follows by Equation [3] the second step follows by Equation [5} the third step
follows by choosing ¢ = (1 — A)e/36. The only thing to be check is that ¢ = (1 — A)e/36 satisfies
t ’}/2+b2:t§7 (1—X)e

li\A.Recallthate<land)\gl,wehavet:TS%§%~ O
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B.3 Proof of Lemmall]

Lemma 1 (Analogous to Lemma 4.3 in [10]). Let P be a regular Markov chain with state space [N |
with spectral expansion \. Let f be a function f : [N] — R4*? such that (1) ZUG[N] o f(v) = 0;
(2) | f(v)|ly < 1and f(v) is symmetric, v € [N]. Let (v1,- - - ,vy) denote a k-step random walk on
P starting from a distribution ¢ on [N]. Then for any t > 0,~v > 0,b > 0 such that t*>(y* + b%) < 1

and t\/7% + b* < 152, we have

o [ (2252 Pl (2] a0 1425

j=1

Proof. Note that for A, B € C**?, ((A ® B)vec(I;),vec(I;)) = Tr [AB']. By letting A =
. NN T .
T (20020 s 5 = ([T (00)) I (o) e

trace term in LHS of Lemma [llbecomes

He (M4 [ o (020 —ib))]

j=k

6)

k

- < (Hlexp (MO0 o [T (W)) Vec(,d)7vec(,d)> |

By iteratively applying (A® B)(C ® D) = (AC) ® (BD), we have

JHleXp (W) ®ﬁe p<W>
() <%>>

where we define

(1>

HM”J’

j=1

Mvj Y exp (w> ® exp ( — ’Lb ) (7)

Plug it to the trace term, we have

[H exp (M) geXP (tf(”ﬂ)(;)] <<H Mv1> vee(Ly), vee( Id)>

Jj=1

Next, taking expectation on Equation [6] gives

[ [ﬁe (tfvj ’y-i—zb))f[ (tvaQ—ib)>”
=E [< (EM >Vec (L), vec(Iy) >] ®)

k
< |:H MUJ:| vec(Iq) Vec(Id)> .

Jj=1

We turn to study E,,, ... ,, [H =1 Mvj] , which is characterized by the following lemma:

Lemma 2. Let E 2 dlag(Ml,Mz, . My) € CNE*N& gpg P 2 P [, € RV XN,
For a random walk (vy, - -+ ,vy) such that vy is sampled from an arbitrary probability distribution

¢ on[N], Ey ... v, |:H?:1 MUJ} = (pIp)" ((Eﬁ)kilE) (1 ® Iz2), where 1 is the all-ones

vector.

Proof. (of Lemma We always treat EP as ablock matrix, s.t.,

M, Pl -+ PinIg P M, --- P nM;

EP = : : = : . :
My | [Pvaly -+ PnnIg PnyiMy -+ PnNnMny
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Le., the (u, v)-th block of EP, denoted by (EIS)U,U, is P, ,M,.
k k
Uk |;H MU]':| = Z boy Py vy - ka—lavk H Mvj
i=1 j=1
Z¢U1Z v1, U2le)“'z(ka—lakaUk—l)ka

vy v
- Z¢v1 Z EP v1 v3 Z(EP)W,UG. o 'Z(EPE)Uk—hvk
Vo v3 Vi

_ZQMZ(EPI“ g )

Vi

=(¢ele) (BP)'E) 16 1z)

V1,V

Given Lemma 2] Equation 8] becomes:

(¢ ©I2) ((EP )E 1E) 10 1p), vec(Id)>

<EU1 1;[ U]]vec I.) vec(Id)>
(
(

( (EP)*~ 1E) 1® Ip) vec(Ly), (¢®Idz)vec(1d)>
(¢

< EP'C 'E )1®vec (Iq)) 7r®vec(1d)>

The third equality is due to (x, Ay) = (A*z,y). The forth equality is by setting C = 1 (scalar) in
(A® B)(C ® D) =(AC) ® (BD). Then

ﬁex (tfvj 7+1b>He (tfvj lb))]]

<((Ep)k 1E) (1® vec(la)), ¢ @ VeC(Id)>

—(¢ ® vec(Ia)) ( (EP)"~ 1E) (1 ® vec(I4))

Tr

= (¢ ® vec(1a))" ((EP)k 1E) (PTI'm) ® (L2 Lo vee(I4)))

=(¢p @ vec(Iq))" (Eﬁ)k (' ® Iz) (7 @ vec(la)) & (m @ vec(la), z) , »

AN PN
where we define zg = ¢ ® vec(Iy) and z, = (zg (EP) > = (zzflEP> . Moreover, by

Remark L we have |7 @ vec(Iy)||,. = |||, [[vec(Ia)|ly = V/d and llzoll, = l|¢ ® vec(Iq)|,. =
@ lvec(a)lly, = |l v

Definition 2. Define linear subspace U = {71' QW,w € c® }

Remark 3. {7 ® e;,i € [d?]} is an orthonormal basis of U. This is because (7 @ €;, ™ ® €;)x =
(7, ) (ei, ej) = &;; by Remarkl | where 0;; is the Kronecker delta.

Remark 4. Given x = y @ w. The projection of & on toU is x| = (1*y) (7 @ w). This is because
d? d2
zl = Z(y QW,TRe)x(TRe;) = Z<y7 T)m(w, e:) (7 ® ei) = (17y) (7 @ w).
i=1 i=1
We want to bound
(@ vec(lq), 2k) . = <7r @ vec(Iy), zir + 2 > <7r ® vec(Iq), z,!>

T

< szl <] = Va4,
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As zj, can be expressed as recursively applying operator E and P on 20, we turn to analyze the
effects of EZ and P operators.

Definition 3. The spectral expansion of Pis defined as )\(15) £ MaXg | 1,220 2y,

T2,
Lemma 3. A\(P) = A\(P).

Proof. First show A(P) > A(P). Suppose the maximizer of A\(P) £ MAXy | 7 y£0 % is

y € C"ie., ||[(y*P)*||. = MP) ||lyll,.- Construct x = y ® o for arbitrary non-zero o € ce.
Easy to check that z L U because (x, ™ @ W), = (y, ™)x (0, w) = 0, where the last equality is

due to y L 7. Then we can bound H (m*ﬁ) H such that

|(=P)

= HP*:L'
L

=P ©Le)(y® o), = (Py)®oll,
=" P)"|| ol = A(P) lyll, lloll, = A(P) [l .

(=

which indicate for z = y®o, % = A(P). Taking maximum over all z gives A(P) > A(P).

Next to show A(P) > A(P). For V& € CV9* such that & 1 U/ and & # 0, we can decompose it to
be

T T T2 g2
xro ‘Td2+1 :Ed2+2 Toq2 N
=] . | = . ® e + . Rex+-+ | . |Qept) miee,
T Nd2 T(N—-1)d2+1 T(N-1)d2+2 T Nd2
A T . 2 . 2
where we define ¢; = [mz e x(N—l)d2+i} for i € [d?]. We can observe that x; L 7,4 € [d?],

because for Vj € [d?], we have

a2 d2 a2
0= (@, 7Qe;)r = <sz Qe ®e,7-> =Y (@i®e,mRe)), = (@m)x(eie;) = (T, T)n,

i=1 i=1 i=1

which indicates z; L 7, j € [d?]. Furthermore, we can also observe that x; ® e;,i € [d?] is pairwise
orthogonal. This is because for Vi, j € [d?], (z; ® e;, T; ® €;)x = (x;, ;)= (€i,€;) = &;j, which

suggests us to use Pythagorean theorem such that ||z||>. = Z;il |2 © ei]|2 = Zfil .. [les]l3.
N\ ¥
We can use similar way to decompose and analyze (:C*P) :
d2

2
(m*f’) = Z (P"@Ip)(z;®e;) = Z(P*mi) ® e;.

i=1
where we can observe that (P*x;) ® e;,i € [d?] is pairwise orthogonal. This is because for
VL] € [d2], we have <(P*£L'Z) [ ei,(P*wj) 4 €j>ﬂ- = <P*wi7P*wj).,,<ei,ej> = (5” Again,
applying Pythagorean theorem gives:

~\ * (2 dz dz
[ 2) [ = S iz ol = 3 @ Py el
=1 i=1
d? d?
< STAMP)? a2 Jleil; = AP)? (Z i |2 |e¢|§> = A(P)? ||z||2,
i=1 =1

which indicate that for Va such that | U/ and  # 0, we have % < A(P), or equivalently
MP) < \(P).
Overall, we have shown both A(P) > A(P) and A\(P) < A(P). We conclude \(P) = A(P). [
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Lemma 4. (The effect of p operator) This lemma is a generalization of lemma 3.3 in [6]].
1. Yy € U, then (y*ﬁ) =y.

2. Yy L U, then (y*f’)* LU, and H (y*ﬁYHﬂ_ <MYl

Proof. First prove the Part 1 of lemmald] Vy = 7 @ w € U:
YP=(n"0w)(Palp)=(n"P)®wilz) = 0w =y,

where third equality is becase 7r is the stationary distribution. Next to prove Part 2 of lemmaf] Given
= .
y L U, want to show (y*P)* L w ® w, for every w € C%. Tt is true because

(row, (' P)) =y P olp)(row) =y (PO 'mew) =y (I 'm)ow)
=y* (H_1 @Ip)(TOw)=(Tr@w,y).=0.

The third equality is due to PIT" ' = P1 = 1 = IT~'7. Moreover, (y*f’) H <Ayl is
simply a re-statement of definition 3] " O

Remark 5. Lemma | implies that Vy € C"%"

() () )+ (R ) o
2 (P = () (o)) =0 ) = (8-

Lemma 5. (The effect of E operator) Given three parameters X € [0,1],¢ > 0 andt > 0. Let P be
a regular Markov chain on state space [N, with stationary distribution  and spectral expansion \.

Suppose each state i € [N is assigned a matrix H; € CT*% g1, [Hill, < andy ey miH; = 0.
LetP=P® I,2 and E denotes the Nd? x Nd? block matrix where the i-th diagonal block is the
matrix exp (tH;), i.e., E = diag(exp (tH}), - ,exp (tHy)). Then for any ¥z € CNT | we have:

‘ < Hz“‘ . Where aq = exp (tl) — tL.

™

< ag |||
™

o Where az = Aexp (t) — 1).

™

NN
zl*EP) ) < as HzLHﬂ_, where ag = exp (tf) — 1.

<ou s
T

]

L Where ay = Xexp (t0).

Proof. (of LemmaE]) We first show that, for z = y ® w,

[exp(tHY) yw y1 exp(tHT )w
('E)" =E’z = —
i exp(tHyN)| |ynw yn exp(tHx)w
[y1 exp(tHT )w 0 N
— 4ot = Zyi (e; @ (exp(tH; )w)).
i 0 yn exp(tHx)w i=1
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Due to the linearity of projection,

N N
Zyz e: ® (exp(tH; )w))! = > yi(17e:) (r @ (exp(tH )w)) = 7 ® (Z vi exp(tH:>w> :
=1 i=1
©)
where the second inequality follows by Remark [4]

Proof of Lemma Part 1 Firstly We can bound szj\; 7 exp(tH}) ‘ by
N N N J gy
Zmexp(tHf) Zmexp(tH ZmZtH I+Z7TzZtH
i=1 2 i=1 2 i=1 Tl =2 2
N —+oo
<1—|—Z Z T —exp (te) — e,
=1 i=1 j=2

where the first step follows by ||A||, = ||A*||,, the second step follows by matrix exponential, the
third step follows by . €[N] m;H; = 0, and the forth step follows by triangle inequality. Given the

above bound, for any 2!l which can be written as 2!l = 7@ ® w for some w € (CdQ, we have
I N
) = H((z“*E T® <Zm exp(tHi*)'w) Zm exp(tH;)

i=1
N

Zm exp(tH;)

i=1

< (exp t0) —t0) 1]

H((zn*Eﬁ)*

= [l

™ 2

N
lwll, = Hzm exp(tH;*)H (&l
2 i=1 2 T

<7l

where step one follows by Part 1 of Remark [5]and step two follows by Equation [0

Proof of Lemma Part 2 For Vz € CN4 we can write it as block matrix such that:
z1 z1 0
ZN O ZN i
where each z; € C%. Please note that above decomposition is pairwise orthogonal. Applying

Pythagorean theorem gives Hz||3T = Zfil lle; ® Zz”i- = va:l Hez”i ||zl||§ Similarly, we can
decompose (E* — Ing2)z such that

fexp(tH{) — I ;2 z1 (exp(tH{) — I;2)z1
(B" —Ing2)z = =
L exp(tHy) — I ZN (exp(tHN) — Ip2)zNn
[(exp(tHY) — I;2)z1 0
_ 5 - : (10
L 0 (exp(tHN) — Ig2)zn
N
Z ((exp(tH{) — I2)z;) .

Note that above decomposition is pairwise orthogonal, too. Applying Pythagorean theorem gives

I — L)zl = 3 lex @ (exp(tH?) — L)z) Zuezu |(exp(tH) — Loz 2

i=1

i=1
N N
2 * 2
E leilly llexp(tH;) — Lez|l5 |1z S{g%llexp(tHi)—IﬁHZE leall I1:13
= m.
€

tH?) — Is|? 2|2 = tH;) — Iz ||% ||2]2
%Hexp( i) — L5 1215 ggg@ﬁHeXp( )= La2ll5 1215 s
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which indicates

I(B" = In)zl = max [lexp(tH) = Lolly 1] = max

HJ
>
j=1

]'
+oo
< (Z e ) 2] = (exp (20) = 1) ]2l

j=1

Now we can formally prove Part 2 of Lemma[3] by:

R (R

=\ H((E* _ INd2)z“ Hﬂ- <A H(E* _ INdz)zHHﬂ_ < )\(exp (M) B 1) HZHHW

*

< ,\H E* ”)L

— H (B2l -2 + z”)L

™ T

The first step follows by Part 2 of Remark 5] the second step follows by Part 1 on Lemmald]and the
forth step is due to (z“)J' =0

Proof of Lemma[5] Part 3 Note that
((==p)) | |(==) = (& - rva=)’

< | - Iva)=t||_ < ooy - 1) |2,

T

I
= H(E*zl — 2zt +ZL)

™ ™

where the first step follows by Part 1 of Remarkl St the third step follows by (=2 ( )H = 0, and the last
step follows by Part 2 of Lemmalfd]

Proof of Lemma [5, Part 4 Simiar to Equation for Vz € CV dz, we can decompose E*z as

E*z = ZZV 16 ® (exp(tH *)z;). This decomposition is pairwise orthogonal, too. Applying
Pythagorean theorem gives

IE" =I5 leez (exp(tH;)zi Z\Iezll lexp(tH)zi]|; < leezll llexco(tH)I3 1115

=1

= max llexp(tHY) ||22 lleills llz:ll5 < max exp (L 11,)* 12115 < exp (t0)° [|=1%
i=1
which indicates || E*z]| . < exp (t/) ||z|,,. Now we can prove Part 4 of Lemma 5} Note that

H((zums)*y ((E*ZL)“ P)H < A] (B°24)" )

als], <reman]],

™

O

Recursive Analysis We now use Lemma [5| to analyze the evolution of zH and z . Let H, £

LQIO+D) o Tpp +12® w in Lemma We can see verify the following three facts: (1)
exp(tH,) = M,; (2) || HL |, is bounded (3) Y-y, 7, H, = 0.

Firstly, easy to see that
exp (tH,) = exp (W W)

e (LT g (ST _py,

where the first step follows by definition of H; and the second step follows by the fact that exp(A ®
I,+ I, ® B) = exp(A) ® exp(B), and the last step follows by Equation|[7]

Rlgpe +1,2®

Secondly, we can bound || H,||, by:

el < |00 o | 4 10271
2 2
:Hf++lb) fn SV
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where the first step follows by triangle inequality, the second step follows by the fact that || A @ B||, =

|Ally HB||2, the third step follows by || I;]|, = 1 and || f(v)]|, < 1. We set £ = /72 + b? to satisfy
the assumption in Lemmal5|that || H, ||, < {. According to the conditions in Lemmal[T] we know that

t0<landt/ < 132
Finally, we show that Zv €[N w,H, = 0, because

mt, = 3 (10040 5 14 10 0 G210

2
ve[N] ve[N]
+1ib —ib
=12 X ) | e+ I e | Y mf) | =
vE[N] v€E([N]
where the last step follows by 3, (T f(v) =0
Claim 4. ||z < & - maxo<<i ZJHH .
™
Proof. Using Part 2 and Part 4 of Lemmal[5] we have
~\ *\ L
zf = H zf,lEP) )
~\ *\ L
<[(Gree)y ] ((me))
< as ZH 1 +0[4 Zi_
< (a2+a2a4+a2ai+---) max z]”
0<j<1 L
Il
< !
—1—aq org?i(i %5 7r
O
; Il y I
Claim 5. HZZ Hﬂ- < (051 + ?i(;‘i) maxo<j<i ||2; Hﬂ_
Proof. Using Part 1 and Part 3 of Lemma[5|as well as Claim[] we have
SN
oAl = (Gep)) |
~\ =\ |l ~\ =\ |l
<J(erimpy) |+
<o ZH, H + as ||ziy
2l Il
< !
= Q][#ia +a317a4 0<j<i—1 Zj H-;r
203 I
<o+ max ||z
< 1—a4>0§j<i Iz
O

Combining Claim @] and Claim 5] gives

e O

™ — (g

azaa‘) ’n
J’_

Q203 >
)

(because a1 + azas/(1 —au) > a1 > 1) < (a1 +
~ 19l Va (o
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which implies

k
(@ vec(Ia), z1), < Bl d (m 4220 )
1-— (6%}

k
Finally, we bound (Oq + %) . The same as [10], we can bound a1, asas, ay by:
ar =exp (t) —t0 < 1+ 20 =14+ £2(7° + b°),

and
asas = A(exp (t€) — 1)* < A(2t0)* = AM>(v* + 1)
where the second step is because exp (x) < 1+ 2x,Vz € [0,1] and t£ < 1,

ag = dexp (t0) < M1 +2t0) < % + %,\
where the second step is because ¢/ < 1, and the third step follows by t£ < %.

Overall, we have

k 2/.2 2 k
ANt b
<a1 + —1”% ) < (1 T A\ G0 )>

— o P 0
< exp (lctz('y2 +b°) (1 + %))
This completes our proof of Lemmal[I] O

B.4 Proof of Theorem/[]

Theorem 1 (Markov Chain Matrix Chernoff Bound). Let P be a regular Markov chain with state
space | N|, stationary distribution 7 and spectral expansion \. Let f : [N] — C4*? be a function such
that (1) Vv € [N], f(v) is Hermitian and || f (v)[ly < 1 (2) >_, ey 7o f (v) = 0. Let (v, -+, vi)

denote a k-step random walk on P starting from a distribution ¢. Given € € (0,1),

k
P [A (;Zf(vj)> > ] < 4|9l d” exp (—((1 — A\)k/T2))
k
P [Amm (,16 Zﬂvj)) < ] < 4], d* exp (—(€(1 = Nk/72)).

Proof. (of Theorem|[I)) Our strategy is to adopt complexification technique [8]. For any d x d complex
Hermitian matrix X, we may write X =Y +iZ, where Y and iZ are the real and imaginary parts
of X, respectively. Moreover, the Hermitian property of X (i.e., X* = X)) implies that (1) Y is real
and symmetric (i.e., Y ' = Y); (2) Z is real and skew symmetric (i.e., Z = —Z ). The eigenvalues

of X can be found via a 2d x 2d real symmetric matrix H = [fZ }Z,} , where the symmetry of H

follows by the symmetry of Y and skew-symmetry of Z. Note the fact that, if the eigenvalues (real)
of X are A1, Ao, - - - Ay, then those of H are Ay, A1, Ao, Ao, - -, Ag, A\g. Le., X and H have the same
eigenvalues, but with different multiplicity.

Using the above technique, we can formally prove Theorem [I] For any complex matrix function
f:[N] — C%*din Theorem we can separate its real and imaginary parts by f = f; +ifs. Then

we construct a real-valued matrix function g : [N] — R24*2d g t. Yy € [N], g(v) = {_f}i‘(’z) }?EZ;}

According to the complexification technique, we know that (1) Vv € [N], g(v) is real symmetric and
lg()lly = I (W)llz < 152) Xperny Tog(v) = 0. Then

k k
P {Am (;Zf(m) > e] =P [Amx (;Zg(vn) > e} < 4@l d? exp (—((1 = Nk/T72)),

where the first step follows by the fact that ¢ Zle f(v;) and £ Zle g(v;) have the same eigenval-

ues (with different multiplicity), and the second step follows by Theorem The bound on A,;;, also
follows similarly. O

>The additional factor 4 is because the constructed g(v) has shape 2d x 2d.
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