# Supplementary Material of A Matrix Chernoff Bound for Markov Chains and Its Application to Co-occurrence Matrices

## **A** Convergence Rate of Co-occurrence Matrices

#### A.1 Proof of Claim 1

**Claim 1** (Properties of Q). If P is a regular Markov chain, then Q satisfies:

- 1. Q is a regular Markov chain with stationary distribution  $\sigma_{(u_0,\cdots,u_T)}=\pi_{u_0}P_{u_0,u_1}\cdots P_{u_{T-1},u_T};$
- 2. The sequence  $(X_1, \cdots X_{L-T})$  is a random walk on Q starting from a distribution  $\rho$  such that  $\rho_{(u_0, \cdots, u_T)} = \phi_{u_0} P_{u_0, u_1} \cdots P_{u_{T-1}, u_T}$ , and  $\|\rho\|_{\sigma} = \|\phi\|_{\pi}$ .
- 3.  $\forall \delta > 0$ , the  $\delta$ -mixing time of P and Q satisfies  $\tau(Q) < \tau(P) + T$ :
- 4.  $\exists P \text{ with } \lambda(P) < 1 \text{ s.t. the induced } Q \text{ has } \lambda(Q) = 1, \text{ i.e. } Q \text{ may have zero spectral gap.}$

*Proof.* We prove the fours parts of this Claim one by one.

Part 1 To prove Q is regular, it is sufficient to show that  $\exists N_1, \forall n_1 > N_1, (v_0, \cdots, v_T)$  can reach  $(u_0, \cdots, u_T)$  at  $n_1$  steps. We know P is a regular Markov chain, so there exists  $N_2 \geq T$  s.t., for any  $n_2 \geq N_2, v_T$  can reach  $u_0$  at exact  $n_2$  step, i,e., there is a  $n_2$ -step walk s.t.  $(v_T, w_1, \cdots, w_{n_2-1}, u_0)$  on P. This induces an  $n_2$ -step walk from  $(v_0, \cdots, v_T)$  to  $(w_{n_2-T+1}, \cdots, w_{n_2-1}, u_0)$ . Take further T step, we can reach  $(u_0, \cdots, u_T)$ , so we construct a  $n_1 = n_2 + T$  step walk from  $(v_0, \cdots, v_T)$  to  $(u_0, \cdots u_T)$ . Since this is true for any  $n_2 \geq N_2$ , we then claim that any state can be reached from any other state in any number of steps greater than or equal to a number  $N_1 = N_2 + T$ . Next to verify  $\sigma$  such that  $\sigma_{(u_0, \cdots, u_T)} = \pi_{u_0} P_{u_0, u_1} \cdots P_{u_{T-1}, u_T}$  is the stationary distribution of Markov chain Q,

$$\begin{split} & \sum_{(u_0,\cdots,u_T)\in\mathcal{S}} \sigma_{(u_0,\cdots,u_T)} \boldsymbol{Q}_{(u_0,\cdots,u_T),(w_0,\cdots,w_T)} \\ &= \sum_{u_0:(u_0,w_0,\cdots,w_{T-1})\in\mathcal{S}} \pi_{u_0} \boldsymbol{P}_{u_0,w_0} \boldsymbol{P}_{w_0,w_1},\cdots,\boldsymbol{P}_{w_{T-2},w_{T-1}} \boldsymbol{P}_{w_{T-1},w_T} \\ &= \left(\sum_{u_0} \pi_{u_0} \boldsymbol{P}_{u_0,w_0}\right) \boldsymbol{P}_{w_0,w_1},\cdots,\boldsymbol{P}_{w_{T-2},w_{T-1}} \boldsymbol{P}_{w_{T-1},w_T} \\ &= \pi_{w_0} \boldsymbol{P}_{w_0,w_1},\cdots,\boldsymbol{P}_{w_{T-2},w_{T-1}} \boldsymbol{P}_{w_{T-1},w_T} = \sigma_{w_0,\cdots,w_T}. \end{split}$$

**Part 2** Recall  $(v_1,\cdots,v_L)$  is a random walk on  $\boldsymbol{P}$  starting from distribution  $\boldsymbol{\phi}$ , so the probability we observe  $X_1=(v_1,\cdots,v_{T+1})$  is  $\phi_{v_1}\boldsymbol{P}_{v_1,v_2}\cdots\boldsymbol{P}_{v_T,v_T}=\rho_{(v_1,\cdots,v_{T+1})}$ , i.e.,  $X_1$  is sampled from the distribution  $\boldsymbol{\rho}$ . Then we study the transition probability from  $X_i=(v_i,\cdots,v_{i+T})$  to  $X_{i+1}=(v_{i+1},\cdots,v_{i+T+1})$ , which is  $\boldsymbol{P}_{v_{i+T},v_{i+T+1}}=\boldsymbol{Q}_{X_i,X_{i+1}}$ . Consequently, we can claim  $(X_i,\cdots,X_{L-T})$  is a random walk on  $\boldsymbol{Q}$ . Moreover,

$$\begin{split} \|\boldsymbol{\rho}\|_{\sigma}^2 &= \sum_{(u_0, \cdots, u_T) \in \mathcal{S}} \frac{\rho_{(u_0, \cdots, u_T)}^2}{\sigma_{(u_0, \cdots, u_T)}} = \sum_{(u_0, \cdots, u_T) \in \mathcal{S}} \frac{\left(\phi_{u_0} \boldsymbol{P}_{u_0, u_1} \cdots \boldsymbol{P}_{u_{T-1}, u_T}\right)^2}{\pi_{u_0} \boldsymbol{P}_{u_0, u_1} \cdots \boldsymbol{P}_{u_{T-1}, u_T}} \\ &= \sum_{u_0} \frac{\phi_{u_0}^2}{\pi_{u_0}} \sum_{(u_0, u_1, \cdots, u_T) \in \mathcal{S}} \boldsymbol{P}_{u_0, u_1} \cdots \boldsymbol{P}_{u_{T-1}, u_T} = \sum_{u_0} \frac{\phi_{u_0}^2}{\pi_{u_0}} = \|\boldsymbol{\phi}\|_{\pi}^2 \,, \end{split}$$

which implies  $\|\rho\|_{\sigma} = \|\phi\|_{\pi}$ .

**Part 3** For any distribution y on S, define  $x \in \mathbb{R}^n$  such that  $x_i = \sum_{(v_1, \dots, v_{T-1}, i) \in S} y_{v_1, \dots, v_{T-1}, i}$ . Easy to see x is a probability vector, since x is the marginal probability of y. For convenience, we

assume for a moment the  $x, y, \sigma, \pi$  are row vectors. We can see that:

$$\begin{aligned} \left\| \boldsymbol{y} \boldsymbol{Q}^{\tau(P)+T-1} - \boldsymbol{\sigma} \right\|_{TV} &= \frac{1}{2} \left\| \boldsymbol{y} \boldsymbol{Q}^{\tau(P)+T-1} - \boldsymbol{\sigma} \right\|_{1} \\ &= \frac{1}{2} \sum_{(v_{1}, \cdots, v_{T}) \in \mathcal{S}} \left| \left( \boldsymbol{y} \boldsymbol{Q}^{\tau(P)+T-1} - \boldsymbol{\sigma} \right)_{v_{1}, \cdots, v_{T}} \right| \\ &= \frac{1}{2} \sum_{(v_{1}, \cdots, v_{T}) \in \mathcal{S}} \left| \left( \boldsymbol{x} \boldsymbol{P}^{\tau(P)} \right)_{v_{1}} \boldsymbol{P}_{v_{1}, v_{2}} \cdots \boldsymbol{P}_{v_{T-1}, v_{T}} - \boldsymbol{\pi}_{v_{1}} \boldsymbol{P}_{v_{1}, v_{2}} \cdots \boldsymbol{P}_{v_{T-1}, v_{T}} \right| \\ &= \frac{1}{2} \sum_{(v_{1}, \cdots, v_{T}) \in \mathcal{S}} \left| \left( \boldsymbol{x} \boldsymbol{P}^{\tau(P)} \right)_{v_{1}} - \boldsymbol{\pi}_{v_{1}} \right| \boldsymbol{P}_{v_{1}, v_{2}} \cdots \boldsymbol{P}_{v_{T-1}, v_{T}} \\ &= \frac{1}{2} \sum_{v_{1}} \left| \left( \boldsymbol{x} \boldsymbol{P}^{\tau(P)} \right)_{v_{1}} - \boldsymbol{\pi}_{v_{1}} \right| \sum_{(v_{1}, \cdots, v_{T}) \in \mathcal{S}} \boldsymbol{P}_{v_{1}, v_{2}} \cdots \boldsymbol{P}_{v_{T-1}, v_{T}} \\ &= \frac{1}{2} \sum_{v_{1}} \left| \left( \boldsymbol{x} \boldsymbol{P}^{\tau(P)} \right)_{v_{1}} - \boldsymbol{\pi}_{v_{1}} \right| = \frac{1}{2} \left\| \boldsymbol{x} \boldsymbol{P}^{\tau(P)} - \boldsymbol{\pi} \right\|_{1} = \left\| \boldsymbol{x} \boldsymbol{P}^{\tau(P)} - \boldsymbol{\pi} \right\|_{TV} \le \delta. \end{aligned}$$

which indicates  $\tau(\mathbf{Q}) \leq \tau(\mathbf{P}) + T - 1 < \tau(\mathbf{P}) + T$ .

**Part 4** This is an example showing that  $\lambda(Q)$  cannot be bounded by  $\lambda(P)$  — even though P has  $\lambda(P) < 1$ , the induced Q may have  $\lambda(Q) = 1$ . We consider random walk on the unweighted undirected graph  $[mathbb{S}]$  and T = 1. The transition probability matrix P is:

$$\boldsymbol{P} = \begin{bmatrix} 0 & 1/3 & 1/3 & 1/3 \\ 1/2 & 0 & 1/2 & 0 \\ 1/3 & 1/3 & 0 & 1/3 \\ 1/2 & 0 & 1/2 & 0 \end{bmatrix}$$

with stationary distribution  $\pi = \begin{bmatrix} 0.3 & 0.2 & 0.3 & 0.2 \end{bmatrix}^{\top}$  and  $\lambda(\boldsymbol{P}) = \frac{2}{3}$ . When T = 1, the induced Markov chain  $\boldsymbol{Q}$  has stationary distribution  $\sigma_{u,v} = \pi_u \boldsymbol{P}_{u,v} = \frac{d_u}{2m} \frac{1}{d_u} = \frac{1}{2m}$  where m = 5 is the number of edges in the graph. Construct  $\boldsymbol{y} \in \mathbb{R}^{|\mathcal{S}|}$  such that

$$y_{(u,v)} = \begin{cases} 1 & (u,v) = (0,1), \\ -1 & (u,v) = (0,3), \\ 0 & \text{otherwise.} \end{cases}$$

The constructed vector y has norm

$$\|\boldsymbol{y}\|_{\sigma} = \sqrt{\langle \boldsymbol{y}, \boldsymbol{y} \rangle_{\sigma}} = \sqrt{\sum_{(u,v) \in \mathcal{S}} \frac{y_{(u,v)}y_{(u,v)}}{\sigma_{(u,v)}}} = \sqrt{\frac{y_{(0,1)}y_{(0,1)}}{\sigma_{(0,1)}} + \frac{y_{(0,3)}y_{(0,3)}}{\sigma_{(0,3)}}} = 2\sqrt{m}.$$

And it is easy to check  $\boldsymbol{y} \perp \boldsymbol{\sigma}$ , since  $\langle \boldsymbol{y}, \boldsymbol{\sigma} \rangle_{\boldsymbol{\sigma}} = \sum_{(u,v) \in \mathcal{S}} \frac{\sigma_{(u,v)}y_{(u,v)}}{\sigma_{(u,v)}} = y_{(0,1)} + y_{(0,3)} = 0$ . Let  $\boldsymbol{x} = (\boldsymbol{y}^*\boldsymbol{Q})^*$ , we have for  $(u,v) \in \mathcal{S}$ :

$$\boldsymbol{x}_{(u,v)} = \begin{cases} 1 & (u,v) = (1,2), \\ -1 & (u,v) = (3,2), \\ 0 & \text{otherwise.} \end{cases}$$

This vector has norm:

$$\|\boldsymbol{x}\|_{\boldsymbol{\sigma}} = \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle_{\boldsymbol{\sigma}}} = \sqrt{\sum_{(u,v) \in \mathcal{S}} \frac{x_{(u,v)} x_{(u,v)}}{\sigma_{(u,v)}}} = \sqrt{\frac{y_{(1,2)} y_{(1,2)}}{\sigma_{(1,2)}} + \frac{y_{(3,2)} y_{(3,2)}}{\sigma_{(3,2)}}} = 2\sqrt{m}$$

Thus we have  $\frac{\|(\boldsymbol{y}^*\boldsymbol{Q})^*\|_{\sigma}}{\|\boldsymbol{y}\|_{\sigma}}=1$ . Taking maximum over all possible  $\boldsymbol{y}$  gives  $\lambda(\boldsymbol{Q})\geq 1$ . Also note that fact that  $\lambda(\boldsymbol{Q})\leq 1$ , so  $\lambda(\boldsymbol{Q})=1$ .

#### A.2 Proof of Claim 2

**Claim 2** (Properties of f). The function f in Equation 2 satisfies (1)  $\sum_{X \in \mathcal{S}} \sigma_X f(X) = 0$ ; (2) f(X) is symmetric and  $||f(X)||_2 \le 1, \forall X \in \mathcal{S}$ .

*Proof.* Note that Equation 2 is indeed a random value minus its expectation, so naturally Equation 2 has zero mean, i.e.,  $\sum_{X \in \mathcal{S}} \sigma_X f(X) = 0$ . Moreover,  $\|f(X)\|_2 \leq 1$  because

$$||f(X)||_{2} \leq \frac{1}{2} \left( \sum_{r=1}^{T} \frac{|\alpha_{r}|}{2} \left( \left\| \boldsymbol{e}_{v_{0}} \boldsymbol{e}_{v_{r}}^{\top} \right\|_{2} + \left\| \boldsymbol{e}_{v_{r}} \boldsymbol{e}_{v_{0}}^{\top} \right\|_{2} \right) + \sum_{r=1}^{T} \frac{|\alpha_{r}|}{2} \left( ||\mathbf{\Pi}||_{2} ||\boldsymbol{P}||_{2}^{r} + \left\| \boldsymbol{P}^{\top} \right\|_{2}^{r} ||\mathbf{\Pi}||_{2} \right) \right)$$

$$\leq \frac{1}{2} \left( \sum_{r=1}^{T} |\alpha_{r}| + \sum_{r=1}^{T} |\alpha_{r}| \right) = 1.$$

where the first step follows triangle inequalty and submultiplicativity of 2-norm, and the third step follows by (1)  $\|\boldsymbol{e}_i\boldsymbol{e}_j^\top\|_2 = 1$ ; (2)  $\|\boldsymbol{\Pi}\|_2 = \|\mathrm{diag}(\boldsymbol{\pi})\|_2 \leq 1$  for distribution  $\boldsymbol{\pi}$ ; (3)  $\|\boldsymbol{P}\|_2 = \|\boldsymbol{P}^\top\|_2 = 1$ .

## A.3 Proof of Corollary 1

**Corollary 1** (Co-occurrence Matrices of HMMs). For a HMM with observable states  $y_t \in \mathcal{Y}$  and hidden states  $x_t \in \mathcal{X}$ , let  $P(y_t|x_t)$  be the emission probability and  $P(x_{t+1}|x_t)$  be the hidden state transition probability. Given an L-step trajectory observations from the HMM,  $(y_1, \dots, y_L)$ , one needs a trajectory of length  $L = O(\tau(\log |\mathcal{Y}| + \log \tau)/\epsilon^2)$  to achieve a co-occurrence matrix within error bound  $\epsilon$  with high probability, where  $\tau$  is the mixing time of the Markov chain on hidden states.

*Proof.* A HMM can be model by a Markov chain P on  $\mathcal{Y} \times \mathcal{X}$  such that  $P(y_{t+1}, x_{t+1}|y_t, x_t) = P(y_{t+1}|x_{t+1})P(x_{t+1}|x_t)$ . For the co-occurrence matrix of observable states, applying a similar proof like our Theorem 2 shows that one needs a trajectory of length  $O(\tau(P)(\log |\mathcal{Y}| + \log \tau(P))/\epsilon^2)$  to achieve error bound  $\epsilon$  with high probability. Moreover, the mixing time  $\tau(P)$  is bounded by the mixing time of the Markov chain on the hidden state space (i.e.,  $P(x_{t+1}|x_t)$ ).

#### **B** Matrix Chernoff Bounds for Markov Chains

### **B.1** Preliminaries

**Kronecker Products** If  $\bf A$  is an  $M_1 \times N_1$  matrix and  $\bf B$  is a  $M_2 \times N_2$  matrix, then the Kronecker product  $\bf A \otimes \bf B$  is the  $M_2M_1 \times N_1N_2$  block matrix such that

$$m{A} \otimes m{B} = egin{bmatrix} m{A}_{1,1} m{B} & \cdots & m{A}_{1,N_1} B \ dots & \ddots & dots \ m{A}_{M_1,1} m{B} & \cdots & m{A}_{M_1,N_1} B \end{bmatrix}.$$

Kronecker product has the mixed-product property. If A, B, C, D are matrices of such size that one can from the matrix products AC and BD, then  $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$ .

**Vectorization** For a matrix  $X \in \mathbb{C}^{d \times d}$ ,  $\operatorname{vec}(X) \in \mathbb{C}^{d^2}$  denote the vertorization of the matrix X, s.t.  $\operatorname{vec}(X) = \sum_{i \in [d]} \sum_{j \in [d]} X_{i,j} e_i \otimes e_j$ , which is the stack of rows of X. And there is a relationship between matrix multiplication and Kronecker product s.t.  $\operatorname{vec}(AXB) = (A \otimes B^{\top}) \operatorname{vec}(X)$ .

**Matrices and Norms** For a matrix  $A \in \mathbb{C}^{N \times N}$ , we use  $A^{\top}$  to denote matrix transpose, use  $\overline{A}$  to denote entry-wise matrix conjugation, use  $A^*$  to denote matrix conjugate transpose  $(A^* = \overline{A^{\top}} = \overline{A^{\top}})$ . The vector 2-norm is defined to be  $\|x\|_2 = \sqrt{x^*x}$ , and the matrix 2-norm is defined to be  $\|A\|_2 = \max_{x \in \mathbb{C}^N, x \neq 0} \frac{\|Ax\|_2}{\|x\|_2}$ .

We then recall the definition of inner-product under  $\pi$ -kernel in Section 2. The inner-product under  $\pi$ -kernel for  $\mathbb{C}^N$  is  $\langle \boldsymbol{x}, \boldsymbol{y} \rangle_{\pi} = \boldsymbol{y}^* \boldsymbol{\Pi}^{-1} \boldsymbol{x}$  where  $\boldsymbol{\Pi} = \operatorname{diag}(\boldsymbol{\pi})$ , and its induced  $\pi$ -norm  $\|\boldsymbol{x}\|_{\pi} = \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle_{\pi}}$ . The above definition allow us to define a inner product under  $\pi$ -kernel on  $\mathbb{C}^{Nd^2}$ :

**Definition 1.** Define inner product on  $\mathbb{C}^{Nd^2}$  under  $\pi$ -kernel to be  $\langle x,y \rangle_{\pi} = y^* \left(\Pi^{-1} \otimes I_{d^2}\right) x$ .

**Remark 1.** For  $x, y \in \mathbb{C}^N$  and  $p, q \in \mathbb{C}^{d^2}$ , then inner product (under  $\pi$ -kernel) between  $x \otimes p$  and  $y \otimes q$  can be simplified as

$$\langle oldsymbol{x} \otimes oldsymbol{p}, oldsymbol{y} \otimes oldsymbol{q} 
angle_{oldsymbol{\pi}} = (oldsymbol{y} \otimes oldsymbol{q})^* \left( oldsymbol{\Pi}^{-1} \otimes oldsymbol{I}_{d^2} 
ight) (oldsymbol{x} \otimes oldsymbol{p}) = (oldsymbol{y}^* oldsymbol{\Pi}^{-1} oldsymbol{x}) \otimes (oldsymbol{q}^* oldsymbol{p}) = \langle oldsymbol{x}, oldsymbol{y} 
angle_{oldsymbol{\pi}} \langle oldsymbol{p}, oldsymbol{q} \rangle_{oldsymbol{\pi}}$$

**Remark 2.** The induced  $\pi$ -norm is  $\|x\|_{\pi} = \sqrt{\langle x, x \rangle_{\pi}}$ . When  $x = y \otimes w$ , the  $\pi$ -norm can be simplified to be:  $\|x\|_{\pi} = \sqrt{\langle y \otimes w, y \otimes w \rangle_{\pi}} = \sqrt{\langle y, y \rangle_{\pi} \langle w, w \rangle} = \|y\|_{\pi} \|w\|_{2}$ .

**Matrix Exponential** The matrix exponential of a matrix  $A \in \mathbb{C}^{d \times d}$  is defined by Taylor expansion  $\exp(A) = \sum_{j=0}^{+\infty} \frac{A^j}{j!}$ . And we will use the fact that  $\exp(A) \otimes \exp(B) = \exp(A \otimes I + I \otimes B)$ .

**Golden-Thompson Inequality** We need the following multi-matrix Golden-Thompson inequality from from Garg et al. [10].

**Theorem 4** (Multi-matrix Golden-Thompson Inequality, Theorem 1.5 in [10]). Let  $H_1, \dots H_k$  be k Hermitian matrices, then for some probability distribution  $\mu$  on  $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ .

$$\log \left( \operatorname{Tr} \left[ \exp \left( \sum_{j=1}^{k} \boldsymbol{H}_{j} \right) \right] \right) \leq \frac{4}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left( \operatorname{Tr} \left[ \prod_{j=1}^{k} \exp \left( \frac{e^{\mathrm{i}\phi}}{2} \boldsymbol{H}_{j} \right) \prod_{j=k}^{1} \exp \left( \frac{e^{-\mathrm{i}\phi}}{2} \boldsymbol{H}_{j} \right) \right] \right) d\mu(\phi).$$

#### **B.2** Proof of Theorem 3

**Theorem 3** (A Real-Valued Version of Theorem 1). Let P be a regular Markov chain with state space [N], stationary distribution  $\pi$  and spectral expansion  $\lambda$ . Let  $f:[N] \to \mathbb{R}^{d \times d}$  be a function such that  $(1) \ \forall v \in [N]$ , f(v) is symmetric and  $\|f(v)\|_2 \le 1$ ;  $(2) \sum_{v \in [N]} \pi_v f(v) = 0$ . Let  $(v_1, \cdots, v_k)$  denote a k-step random walk on P starting from a distribution  $\phi$  on [N]. Then given  $\epsilon \in (0, 1)$ ,

$$\mathbb{P}\left[\lambda_{\max}\left(\frac{1}{k}\sum_{j=1}^{k}f(v_{j})\right) \geq \epsilon\right] \leq \|\phi\|_{\pi} d^{2} \exp\left(-(\epsilon^{2}(1-\lambda)k/72)\right)$$

$$\mathbb{P}\left[\lambda_{\min}\left(\frac{1}{k}\sum_{j=1}^{k}f(v_{j})\right) \leq -\epsilon\right] \leq \|\phi\|_{\pi} d^{2} \exp\left(-(\epsilon^{2}(1-\lambda)k/72)\right).$$

*Proof.* Due to symmetry, it suffices to prove one of the statements. Let t>0 be a parameter to be chosen later. Then

$$\mathbb{P}\left[\lambda_{\max}\left(\frac{1}{k}\sum_{j=1}^{k}f(v_{j})\right) \geq \epsilon\right] = \mathbb{P}\left[\lambda_{\max}\left(\sum_{j=1}^{k}f(v_{j})\right) \geq k\epsilon\right] \\
\leq \mathbb{P}\left[\operatorname{Tr}\left[\exp\left(t\sum_{j=1}^{k}f(v_{j})\right)\right] \geq \exp\left(tk\epsilon\right)\right] \\
\leq \frac{\mathbb{E}_{v_{1}\cdots,v_{k}}\left[\operatorname{Tr}\left[\exp\left(t\sum_{j=1}^{k}f(v_{j})\right)\right]\right]}{\exp\left(tk\epsilon\right)}.$$
(3)

The second inequality follows Markov inequality.

Next to bound  $\mathbb{E}_{v_1 \dots, v_k} \left[ \operatorname{Tr} \left[ \exp \left( t \sum_{j=1}^k f(v_j) \right) \right] \right]$ . Using Theorem 4, we have:

$$\log \left( \operatorname{Tr} \left[ \exp \left( t \sum_{j=1}^{k} f(v_j) \right) \right] \right) \leq \frac{4}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left( \operatorname{Tr} \left[ \prod_{j=1}^{k} \exp \left( \frac{e^{\mathrm{i}\phi}}{2} t f(v_j) \right) \prod_{j=k}^{1} \exp \left( \frac{e^{-\mathrm{i}\phi}}{2} t f(v_j) \right) \right] \right) d\mu(\phi)$$

$$\leq \frac{4}{\pi} \log \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \operatorname{Tr} \left[ \prod_{j=1}^{k} \exp \left( \frac{e^{\mathrm{i}\phi}}{2} t f(v_j) \right) \prod_{j=k}^{1} \exp \left( \frac{e^{-\mathrm{i}\phi}}{2} t f(v_j) \right) \right] d\mu(\phi),$$

where the second step follows by concavity of  $\log$  function and the fact that  $\mu(\phi)$  is a probability distribution on  $[-\frac{\pi}{2},\frac{\pi}{2}]$ . This implies

$$\operatorname{Tr}\left[\exp\left(t\sum_{j=1}^{k}f(v_{j})\right)\right] \leq \left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\operatorname{Tr}\left[\prod_{j=1}^{k}\exp\left(\frac{e^{\mathrm{i}\phi}}{2}tf(v_{j})\right)\prod_{j=k}^{1}\exp\left(\frac{e^{-\mathrm{i}\phi}}{2}tf(v_{j})\right)\right]d\mu(\phi)\right)^{\frac{4}{\pi}}.$$

Note that  $\|\boldsymbol{x}\|_p \leq d^{1/p-1} \|\boldsymbol{x}\|_1$  for  $p \in (0,1)$ , choosing  $p = \pi/4$  we have

$$\left(\operatorname{Tr}\left[\exp\left(\frac{\pi}{4}t\sum_{j=1}^{k}f(v_{j})\right)\right]\right)^{\frac{4}{\pi}} \leq d^{\frac{4}{\pi}-1}\operatorname{Tr}\left[\exp\left(t\sum_{j=1}^{k}f(v_{j})\right)\right].$$

Combining the above two equations together, we have

$$\operatorname{Tr}\left[\exp\left(\frac{\pi}{4}t\sum_{j=1}^{k}f(v_{j})\right)\right] \leq d^{1-\frac{\pi}{4}}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\operatorname{Tr}\left[\prod_{j=1}^{k}\exp\left(\frac{e^{\mathrm{i}\phi}}{2}tf(v_{j})\right)\prod_{j=k}^{1}\exp\left(\frac{e^{-\mathrm{i}\phi}}{2}tf(v_{j})\right)\right]d\mu(\phi). \tag{4}$$

Write 
$$e^{i\phi} = \gamma + ib$$
 with  $\gamma^2 + b^2 = |\gamma + ib|^2 = |e^{i\phi}|^2 = 1$ :

**Lemma 1** (Analogous to Lemma 4.3 in [10]). Let P be a regular Markov chain with state space [N] with spectral expansion  $\lambda$ . Let f be a function  $f:[N] \to \mathbb{R}^{d \times d}$  such that  $(1) \sum_{v \in [N]} \pi_v f(v) = 0$ ;  $(2) \|f(v)\|_2 \le 1$  and f(v) is symmetric,  $v \in [N]$ . Let  $(v_1, \cdots, v_k)$  denote a k-step random walk on P starting from a distribution  $\phi$  on [N]. Then for any t > 0,  $\gamma \ge 0$ , b > 0 such that  $t^2(\gamma^2 + b^2) \le 1$  and  $t\sqrt{\gamma^2 + b^2} \le \frac{1-\lambda}{4\lambda}$ , we have

$$\mathbb{E}\left[\operatorname{Tr}\left[\prod_{j=1}^{k}\exp\left(\frac{tf(v_{j})(\gamma+\mathrm{i}b)}{2}\right)\prod_{j=k}^{1}\exp\left(\frac{tf(v_{j})(\gamma-\mathrm{i}b)}{2}\right)\right]\right] \leq \|\phi\|_{\pi} d\exp\left(kt^{2}(\gamma^{2}+b^{2})\left(1+\frac{8}{1-\lambda}\right)\right).$$

Assuming the above lemma, we can complete the proof of the theorem as:

$$\mathbb{E}_{v_{1} \dots, v_{k}} \left[ \operatorname{Tr} \left[ \exp \left( \frac{\pi}{4} t \sum_{j=1}^{k} f(v_{j}) \right) \right] \right] \\
\leq d^{1 - \frac{\pi}{4}} \mathbb{E}_{v_{1} \dots, v_{k}} \left[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \operatorname{Tr} \left[ \prod_{j=1}^{k} \exp \left( \frac{e^{i\phi}}{2} t f(v_{j}) \right) \prod_{j=k}^{1} \exp \left( \frac{e^{-i\phi}}{2} t f(v_{j}) \right) \right] \right] d\mu(\phi) \right] \\
= d^{1 - \frac{\pi}{4}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \mathbb{E}_{v_{1} \dots, v_{k}} \left[ \operatorname{Tr} \left[ \prod_{j=1}^{k} \exp \left( \frac{e^{i\phi}}{2} t f(v_{j}) \right) \prod_{j=k}^{1} \exp \left( \frac{e^{-i\phi}}{2} t f(v_{j}) \right) \right] \right] d\mu(\phi) \\
\leq d^{1 - \frac{\pi}{4}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \|\phi\|_{\pi} d \exp \left( k t^{2} \left| e^{i\phi} \right|^{2} \left( 1 + \frac{8}{1 - \lambda} \right) \right) d\mu(\phi) \\
= \|\phi\|_{\pi} d^{2 - \frac{\pi}{4}} \exp \left( k t^{2} \left( 1 + \frac{8}{1 - \lambda} \right) \right) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\mu(\phi) \\
= \|\phi\|_{\pi} d^{2 - \frac{\pi}{4}} \exp \left( k t^{2} \left( 1 + \frac{8}{1 - \lambda} \right) \right) \right) \right]$$
(5)

where the first step follows Equation 4, the second step follows by swapping  $\mathbb E$  and  $\int$ , the third step follows by Lemma 1, the forth step follows by  $\left|e^{\mathrm{i}\phi}\right|=1$ , and the last step follows by  $\mu$  is a probability distribution on  $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$  so  $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}d\mu(\phi)=1$ 

Finally, putting it all together:

$$\mathbb{P}\left[\lambda_{\max}\left(\frac{1}{k}\sum_{j=1}^{k}f(v_{j})\right) \geq \epsilon\right] \leq \frac{\mathbb{E}\left[\operatorname{Tr}\left[\exp\left(t\sum_{j=1}^{k}f(v_{j})\right)\right]\right]}{\exp\left(tk\epsilon\right)}$$

$$= \frac{\mathbb{E}\left[\operatorname{Tr}\left[\exp\left(\frac{\pi}{4}\left(\frac{4}{\pi}t\right)\sum_{j=1}^{k}f(v_{j})\right)\right]\right]}{\exp\left(tk\epsilon\right)}$$

$$\leq \frac{\|\phi\|_{\pi}d^{2-\frac{\pi}{4}}\exp\left(k\left(\frac{4}{\pi}t\right)^{2}\left(1+\frac{8}{1-\lambda}\right)\right)}{\exp\left(tk\epsilon\right)}$$

$$= \|\phi\|_{\pi}d^{2-\frac{\pi}{4}}\exp\left(\left(\frac{4}{\pi}t\right)^{2}k\epsilon^{2}(1-\lambda)^{2}\frac{1}{36^{2}}\frac{9}{1-\lambda} - k\frac{(1-\lambda)\epsilon}{36}\epsilon\right)$$

$$\leq \|\phi\|_{\pi}d^{2}\exp\left(-k\epsilon^{2}(1-\lambda)/72\right).$$

where the first step follows by Equation 3, the second step follows by Equation 5, the third step follows by choosing  $t=(1-\lambda)\epsilon/36$ . The only thing to be check is that  $t=(1-\lambda)\epsilon/36$  satisfies  $t\sqrt{\gamma^2+b^2}=t\leq \frac{1-\lambda}{4\lambda}$ . Recall that  $\epsilon<1$  and  $\lambda\leq 1$ , we have  $t=\frac{(1-\lambda)\epsilon}{36}\leq \frac{1-\lambda}{4}\leq \frac{1-\lambda}{4\lambda}$ .

#### B.3 Proof of Lemma 1

**Lemma 1** (Analogous to Lemma 4.3 in [10]). Let P be a regular Markov chain with state space [N] with spectral expansion  $\lambda$ . Let f be a function  $f:[N] \to \mathbb{R}^{d \times d}$  such that  $(1) \sum_{v \in [N]} \pi_v f(v) = 0$ ;  $(2) \|f(v)\|_2 \le 1$  and f(v) is symmetric,  $v \in [N]$ . Let  $(v_1, \cdots, v_k)$  denote a k-step random walk on P starting from a distribution  $\phi$  on [N]. Then for any t > 0,  $\gamma \ge 0$ , b > 0 such that  $t^2(\gamma^2 + b^2) \le 1$  and  $t\sqrt{\gamma^2 + b^2} \le \frac{1-\lambda}{4\lambda}$ , we have

$$\mathbb{E}\left[\operatorname{Tr}\left[\prod_{j=1}^{k}\exp\left(\frac{tf(v_{j})(\gamma+\mathrm{i}b)}{2}\right)\prod_{j=k}^{1}\exp\left(\frac{tf(v_{j})(\gamma-\mathrm{i}b)}{2}\right)\right]\right]\leq \|\phi\|_{\pi}\,d\exp\left(kt^{2}(\gamma^{2}+b^{2})\left(1+\frac{8}{1-\lambda}\right)\right).$$

*Proof.* Note that for  $A, B \in \mathbb{C}^{d \times d}$ ,  $\langle (A \otimes B) \operatorname{vec}(I_d), \operatorname{vec}(I_d) \rangle = \operatorname{Tr}\left[AB^{\top}\right]$ . By letting  $A = \prod_{j=1}^k \exp\left(\frac{tf(v_j)(\gamma+\mathrm{i}b)}{2}\right)$  and  $B = \left(\prod_{j=k}^1 \exp\left(\frac{tf(v_j)(\gamma-\mathrm{i}b)}{2}\right)\right)^{\top} = \prod_{j=1}^k \exp\left(\frac{tf(v_j)(\gamma-\mathrm{i}b)}{2}\right)$ . The trace term in LHS of Lemma 1 becomes

$$\operatorname{Tr}\left[\prod_{j=1}^{k} \exp\left(\frac{tf(v_{j})(\gamma+\mathrm{i}b)}{2}\right) \prod_{j=k}^{1} \exp\left(\frac{tf(v_{j})(\gamma-\mathrm{i}b)}{2}\right)\right]$$

$$=\left\langle \left(\prod_{j=1}^{k} \exp\left(\frac{tf(v_{j})(\gamma+\mathrm{i}b)}{2}\right) \otimes \prod_{j=1}^{k} \exp\left(\frac{tf(v_{j})(\gamma-\mathrm{i}b)}{2}\right)\right) \operatorname{vec}(\boldsymbol{I}_{d}), \operatorname{vec}(\boldsymbol{I}_{d})\right\rangle.$$
(6)

By iteratively applying  $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$ , we have

$$\begin{split} & \prod_{j=1}^k \exp\left(\frac{tf(v_j)(\gamma+\mathrm{i}b)}{2}\right) \otimes \prod_{j=1}^k \exp\left(\frac{tf(v_j)(\gamma-\mathrm{i}b)}{2}\right) \\ & = \prod_{j=1}^k \left(\exp\left(\frac{tf(v_j)(\gamma+\mathrm{i}b)}{2}\right) \otimes \exp\left(\frac{tf(v_j)(\gamma-\mathrm{i}b)}{2}\right)\right) \triangleq \prod_{j=1}^k \boldsymbol{M}_{v_j}, \end{split}$$

where we define

$$M_{v_j} \triangleq \exp\left(\frac{tf(v_j)(\gamma + ib)}{2}\right) \otimes \exp\left(\frac{tf(v_j)(\gamma - ib)}{2}\right).$$
 (7)

Plug it to the trace term, we have

$$\operatorname{Tr}\left[\prod_{j=1}^{k} \exp\left(\frac{tf(v_{j})(\gamma+\mathrm{i}b)}{2}\right) \prod_{j=k}^{1} \exp\left(\frac{tf(v_{j})(\gamma-\mathrm{i}b)}{2}\right)\right] = \left\langle \left(\prod_{j=1}^{k} \boldsymbol{M}_{v_{j}}\right) \operatorname{vec}(\boldsymbol{I}_{d}), \operatorname{vec}(\boldsymbol{I}_{d})\right\rangle.$$

Next, taking expectation on Equation 6 gives

$$\mathbb{E}_{v_{1},\dots,v_{k}} \left[ \operatorname{Tr} \left[ \prod_{j=1}^{k} \exp \left( \frac{t f(v_{j})(\gamma + ib)}{2} \right) \prod_{j=k}^{1} \exp \left( \frac{t f(v_{j})(\gamma - ib)}{2} \right) \right] \right] \\
= \mathbb{E}_{v_{1},\dots,v_{k}} \left[ \left\langle \left( \prod_{j=1}^{k} \mathbf{M}_{v_{j}} \right) \operatorname{vec}(\mathbf{I}_{d}), \operatorname{vec}(\mathbf{I}_{d}) \right\rangle \right] \\
= \left\langle \mathbb{E}_{v_{1},\dots,v_{k}} \left[ \prod_{j=1}^{k} \mathbf{M}_{v_{j}} \right] \operatorname{vec}(\mathbf{I}_{d}), \operatorname{vec}(\mathbf{I}_{d}) \right\rangle.$$
(8)

We turn to study  $\mathbb{E}_{v_1,\cdots,v_k}\left[\prod_{j=1}^k M_{v_j}\right]$ , which is characterized by the following lemma:

**Lemma 2.** Let  $E \triangleq \operatorname{diag}(M_1, M_2, \cdots, M_N) \in \mathbb{C}^{Nd^2 \times Nd^2}$  and  $\widetilde{P} \triangleq P \otimes I_{d^2} \in \mathbb{R}^{Nd^2 \times Nd^2}$ . For a random walk  $(v_1, \cdots, v_k)$  such that  $v_1$  is sampled from an arbitrary probability distribution  $\phi$  on [N],  $\mathbb{E}_{v_1, \dots, v_k} \left[ \prod_{j=1}^k M_{v_j} \right] = (\phi \otimes I_{d^2})^\top \left( (E\widetilde{P})^{k-1} E \right) (1 \otimes I_{d^2})$ , where 1 is the all-ones vector.

*Proof.* (of Lemma 2) We always treat  $\overrightarrow{EP}$  as a block matrix, s.t.,

I.e., the (u, v)-th block of  $E\widetilde{P}$ , denoted by  $(E\widetilde{P})_{u,v}$ , is  $P_{u,v}M_u$ .

$$\begin{split} \mathbb{E}_{v_1,\cdots,v_k} \left[ \prod_{j=1}^k \boldsymbol{M}_{v_j} \right] &= \sum_{v_1,\cdots,v_k} \boldsymbol{\phi}_{v_1} \boldsymbol{P}_{v_1,v_2} \cdots \boldsymbol{P}_{v_{k-1},v_k} \prod_{j=1}^k \boldsymbol{M}_{v_j} \\ &= \sum_{v_1} \boldsymbol{\phi}_{v_1} \sum_{v_2} \left( \boldsymbol{P}_{v_1,v_2} \boldsymbol{M}_{v_1} \right) \cdots \sum_{v_k} \left( \boldsymbol{P}_{v_{k-1},v_k} \boldsymbol{M}_{v_{k-1}} \right) \boldsymbol{M}_{v_k} \\ &= \sum_{v_1} \boldsymbol{\phi}_{v_1} \sum_{v_2} (\boldsymbol{E} \widetilde{\boldsymbol{P}})_{v_1,v_2} \sum_{v_3} (\boldsymbol{E} \widetilde{\boldsymbol{P}})_{v_2,v_3} \cdots \sum_{v_k} (\boldsymbol{E} \widetilde{\boldsymbol{P}} \boldsymbol{E})_{v_{k-1},v_k} \\ &= \sum_{v_1} \boldsymbol{\phi}_{v_1} \sum_{v_k} \left( (\boldsymbol{E} \widetilde{\boldsymbol{P}})^{k-1} \boldsymbol{E} \right)_{v_1,v_k} = (\boldsymbol{\phi} \otimes \boldsymbol{I}_{d^2})^{\top} \left( (\boldsymbol{E} \widetilde{\boldsymbol{P}})^{k-1} \boldsymbol{E} \right) (\boldsymbol{1} \otimes \boldsymbol{I}_{d^2}) \end{split}$$

Given Lemma 2, Equation 8 becomes:

$$\mathbb{E}_{v_{1},\dots,v_{k}}\left[\operatorname{Tr}\left[\prod_{j=1}^{k}\exp\left(\frac{tf(v_{j})(\gamma+\mathrm{i}b)}{2}\right)\prod_{j=k}^{1}\exp\left(\frac{tf(v_{j})(\gamma-\mathrm{i}b)}{2}\right)\right]\right]$$

$$=\left\langle\mathbb{E}_{v_{1},\dots,v_{k}}\left[\prod_{j=1}^{k}M_{v_{j}}\right]\operatorname{vec}(\boldsymbol{I}_{d}),\operatorname{vec}(\boldsymbol{I}_{d})\right\rangle$$

$$=\left\langle(\boldsymbol{\phi}\otimes\boldsymbol{I}_{d^{2}})^{\top}\left((\boldsymbol{E}\widetilde{\boldsymbol{P}})^{k-1}\boldsymbol{E}\right)(\mathbf{1}\otimes\boldsymbol{I}_{d^{2}}),\operatorname{vec}(\boldsymbol{I}_{d})\right\rangle$$

$$=\left\langle\left((\boldsymbol{E}\widetilde{\boldsymbol{P}})^{k-1}\boldsymbol{E}\right)(\mathbf{1}\otimes\boldsymbol{I}_{d^{2}})\operatorname{vec}(\boldsymbol{I}_{d}),(\boldsymbol{\phi}\otimes\boldsymbol{I}_{d^{2}})\operatorname{vec}(\boldsymbol{I}_{d})\right\rangle$$

$$=\left\langle\left((\boldsymbol{E}\widetilde{\boldsymbol{P}})^{k-1}\boldsymbol{E}\right)(\mathbf{1}\otimes\operatorname{vec}(\boldsymbol{I}_{d})),\boldsymbol{\pi}\otimes\operatorname{vec}(\boldsymbol{I}_{d})\right\rangle$$

The third equality is due to  $\langle x, Ay \rangle = \langle A^*x, y \rangle$ . The forth equality is by setting C = 1 (scalar) in  $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$ . Then

$$\mathbb{E}_{v_{1},\dots,v_{k}}\left[\operatorname{Tr}\left[\prod_{j=1}^{k}\operatorname{exp}\left(\frac{tf(v_{j})(\gamma+\mathrm{i}b)}{2}\right)\prod_{j=k}^{1}\operatorname{exp}\left(\frac{tf(v_{j})(\gamma-\mathrm{i}b)}{2}\right)\right]\right]$$

$$=\left\langle\left(\left(\boldsymbol{E}\widetilde{\boldsymbol{P}}\right)^{k-1}\boldsymbol{E}\right)\left(\mathbf{1}\otimes\operatorname{vec}(\boldsymbol{I}_{d})\right),\boldsymbol{\phi}\otimes\operatorname{vec}(\boldsymbol{I}_{d})\right\rangle$$

$$=\left(\boldsymbol{\phi}\otimes\operatorname{vec}(\boldsymbol{I}_{d})\right)^{*}\left(\left(\boldsymbol{E}\widetilde{\boldsymbol{P}}\right)^{k-1}\boldsymbol{E}\right)\left(\mathbf{1}\otimes\operatorname{vec}(\boldsymbol{I}_{d})\right)$$

$$=\left(\boldsymbol{\phi}\otimes\operatorname{vec}(\boldsymbol{I}_{d})\right)^{*}\left(\left(\boldsymbol{E}\widetilde{\boldsymbol{P}}\right)^{k-1}\boldsymbol{E}\right)\left(\left(\boldsymbol{P}\boldsymbol{\Pi}^{-1}\boldsymbol{\pi}\right)\otimes\left(\boldsymbol{I}_{d^{2}}\boldsymbol{I}_{d^{2}}\operatorname{vec}(\boldsymbol{I}_{d})\right)\right)$$

$$=\left(\boldsymbol{\phi}\otimes\operatorname{vec}(\boldsymbol{I}_{d})\right)^{*}\left(\boldsymbol{E}\widetilde{\boldsymbol{P}}\right)^{k}\left(\boldsymbol{\Pi}^{-1}\otimes\boldsymbol{I}_{d^{2}}\right)\left(\boldsymbol{\pi}\otimes\operatorname{vec}(\boldsymbol{I}_{d})\right)\triangleq\left\langle\boldsymbol{\pi}\otimes\operatorname{vec}(\boldsymbol{I}_{d}),\boldsymbol{z}_{k}\right\rangle_{\boldsymbol{\pi}}$$

where we define  $z_0 = \phi \otimes \operatorname{vec}(\boldsymbol{I}_d)$  and  $\boldsymbol{z}_k = \left(\boldsymbol{z}_0^* \left(\boldsymbol{E}\widetilde{\boldsymbol{P}}\right)^k\right)^* = \left(\boldsymbol{z}_{k-1}^*\boldsymbol{E}\widetilde{\boldsymbol{P}}\right)^*$ . Moreover, by Remark 2, we have  $\|\boldsymbol{\pi} \otimes \operatorname{vec}(\boldsymbol{I}_d)\|_{\boldsymbol{\pi}} = \|\boldsymbol{\pi}\|_{\boldsymbol{\pi}} \left\|\operatorname{vec}(\boldsymbol{I}_d)\right\|_2 = \sqrt{d}$  and  $\|\boldsymbol{z}_0\|_{\boldsymbol{\pi}} = \|\boldsymbol{\phi} \otimes \operatorname{vec}(\boldsymbol{I}_d)\|_{\boldsymbol{\pi}} = \|\boldsymbol{\phi}\|_{\boldsymbol{\pi}} \left\|\operatorname{vec}(\boldsymbol{I}_d)\right\|_2 = \|\boldsymbol{\phi}\|_{\boldsymbol{\pi}} \sqrt{d}$ 

**Definition 2.** Define linear subspace  $\mathcal{U} = \left\{ oldsymbol{\pi} \otimes oldsymbol{w}, oldsymbol{w} \in \mathbb{C}^{d^2} 
ight\}$ .

**Remark 3.**  $\{\pi \otimes e_i, i \in [d^2]\}$  is an orthonormal basis of  $\mathcal{U}$ . This is because  $\langle \pi \otimes e_i, \pi \otimes e_j \rangle_{\pi} = \langle \pi, \pi \rangle_{\pi} \langle e_i, e_j \rangle = \delta_{ij}$  by Remark 1, where  $\delta_{ij}$  is the Kronecker delta.

**Remark 4.** Given  $x = y \otimes w$ . The projection of x on to  $\mathcal{U}$  is  $x^{\parallel} = (1^*y)(\pi \otimes w)$ . This is because

$$oldsymbol{x}^{\parallel} = \sum_{i=1}^{d^2} \langle oldsymbol{y} \otimes oldsymbol{w}, oldsymbol{\pi} \otimes oldsymbol{e}_i 
angle_{oldsymbol{\pi}}(oldsymbol{\pi} \otimes oldsymbol{e}_i) = \sum_{i=1}^{d^2} \langle oldsymbol{y}, oldsymbol{\pi} 
angle_{oldsymbol{\pi}} \langle oldsymbol{w}, oldsymbol{\pi} 
angle \otimes oldsymbol{e}_i 
angle = \sum_{i=1}^{d^2} \langle oldsymbol{y}, oldsymbol{\pi} \otimes oldsymbol{e}_i 
angle = \sum_{i=1}^{d^2} \langle oldsymbol{y}, oldsymbol{\pi} \otimes oldsymbol{e}_i 
angle = \sum_{i=1}^{d^2} \langle oldsymbol{y}, oldsymbol{\pi} \otimes oldsymbol{e}_i 
angle = (oldsymbol{1}^* oldsymbol{y}) (oldsymbol{\pi} \otimes oldsymbol{e}_i)$$

We want to bound

$$egin{aligned} raket{\pi \otimes \mathrm{vec}(oldsymbol{I}_d), oldsymbol{z}_k}_{\pi} &= \left\langle \pi \otimes \mathrm{vec}(oldsymbol{I}_d), oldsymbol{z}_k^{\perp} + oldsymbol{z}_k^{\parallel} \right\rangle_{\pi} &= \left\langle \pi \otimes \mathrm{vec}(oldsymbol{I}_d), oldsymbol{z}_k^{\parallel} \right\rangle_{\pi} \\ &\leq \left\| \pi \otimes \mathrm{vec}(oldsymbol{I}_d) \right\|_{\pi} \left\| oldsymbol{z}_k^{\parallel} \right\|_{\pi} &= \sqrt{d} \left\| oldsymbol{z}_k^{\parallel} \right\|_{\pi}. \end{aligned}$$

As  $z_k$  can be expressed as recursively applying operator E and  $\widetilde{P}$  on  $z_0$ , we turn to analyze the effects of E and  $\widetilde{P}$  operators.

**Definition 3.** The spectral expansion of  $\widetilde{P}$  is defined as  $\lambda(\widetilde{P}) \triangleq \max_{x \perp \mathcal{U}, x \neq 0} \frac{\|(x^* \widetilde{P})^*\|_{\pi}}{\|x\|_{\pi}}$ 

Lemma 3.  $\lambda(P) = \lambda(\widetilde{P})$ .

*Proof.* First show  $\lambda(\widetilde{P}) \geq \lambda(P)$ . Suppose the maximizer of  $\lambda(P) \triangleq \max_{\boldsymbol{y} \perp \boldsymbol{\pi}, \boldsymbol{y} \neq 0} \frac{\|(\boldsymbol{y}^*P)^*\|_{\boldsymbol{\pi}}}{\|\boldsymbol{y}\|_{\boldsymbol{\pi}}}$  is  $\boldsymbol{y} \in \mathbb{C}^n$ , i.e.,  $\|(\boldsymbol{y}^*P)^*\|_{\boldsymbol{\pi}} = \lambda(P) \|\boldsymbol{y}\|_{\boldsymbol{\pi}}$ . Construct  $\boldsymbol{x} = \boldsymbol{y} \otimes \boldsymbol{o}$  for arbitrary non-zero  $\boldsymbol{o} \in \mathbb{C}^{d^2}$ . Easy to check that  $\boldsymbol{x} \perp \mathcal{U}$ , because  $\langle \boldsymbol{x}, \boldsymbol{\pi} \otimes \boldsymbol{w} \rangle_{\boldsymbol{\pi}} = \langle \boldsymbol{y}, \boldsymbol{\pi} \rangle_{\boldsymbol{\pi}} \langle \boldsymbol{o}, \boldsymbol{w} \rangle = 0$ , where the last equality is due to  $\boldsymbol{y} \perp \boldsymbol{\pi}$ . Then we can bound  $\|(\boldsymbol{x}^*\widetilde{P})^*\|_{\boldsymbol{\pi}}$  such that

$$\begin{split} \left\| \left( \boldsymbol{x}^* \widetilde{\boldsymbol{P}} \right)^* \right\|_{\boldsymbol{\pi}} &= \left\| \widetilde{\boldsymbol{P}}^* \boldsymbol{x} \right\|_{\boldsymbol{\pi}} = \left\| (\boldsymbol{P}^* \otimes \boldsymbol{I}_{d^2}) (\boldsymbol{y} \otimes \boldsymbol{o}) \right\|_{\boldsymbol{\pi}} = \left\| (\boldsymbol{P}^* \boldsymbol{y}) \otimes \boldsymbol{o} \right\|_{\boldsymbol{\pi}} \\ &= \left\| (\boldsymbol{y}^* \boldsymbol{P})^* \right\|_{\boldsymbol{\pi}} \left\| \boldsymbol{o} \right\|_2 = \lambda(\boldsymbol{P}) \left\| \boldsymbol{y} \right\|_{\boldsymbol{\pi}} \left\| \boldsymbol{o} \right\|_2 = \lambda(\boldsymbol{P}) \left\| \boldsymbol{x} \right\|_{\boldsymbol{\pi}}, \end{split}$$

which indicate for  $x=y\otimes o$ ,  $\frac{\|(x^*\tilde{P})^*\|_{\pi}}{\|x\|_{\pi}}=\lambda(P)$ . Taking maximum over all x gives  $\lambda(\tilde{P})\geq \lambda(P)$ .

Next to show  $\lambda(P) \geq \lambda(\widetilde{P})$ . For  $\forall x \in \mathbb{C}^{Nd^2}$  such that  $x \perp \mathcal{U}$  and  $x \neq 0$ , we can decompose it to be

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{Nd^2} \end{bmatrix} = \begin{bmatrix} x_1 \\ x_{d^2+1} \\ \vdots \\ x_{(N-1)d^2+1} \end{bmatrix} \otimes \boldsymbol{e}_1 + \begin{bmatrix} x_2 \\ x_{d^2+2} \\ \vdots \\ x_{(N-1)d^2+2} \end{bmatrix} \otimes \boldsymbol{e}_2 + \dots + \begin{bmatrix} x_{d^2} \\ x_{2d^2} \\ \vdots \\ x_{Nd^2} \end{bmatrix} \otimes \boldsymbol{e}_{d^2} \triangleq \sum_{i=1}^{d^2} \boldsymbol{x}_i \otimes \boldsymbol{e}_i,$$

where we define  $\mathbf{x}_i \triangleq \begin{bmatrix} x_i & \cdots & x_{(N-1)d^2+i} \end{bmatrix}^\top$  for  $i \in [d^2]$ . We can observe that  $\mathbf{x}_i \perp \mathbf{\pi}, i \in [d^2]$ , because for  $\forall j \in [d^2]$ , we have

$$0 = \langle oldsymbol{x}, oldsymbol{\pi} \otimes oldsymbol{e}_j 
angle_{oldsymbol{\pi}} = \left\langle \sum_{i=1}^{d^2} oldsymbol{x}_i \otimes oldsymbol{e}_i, oldsymbol{\pi} \otimes oldsymbol{e}_j 
ight
angle_{oldsymbol{\pi}} = \sum_{i=1}^{d^2} \langle oldsymbol{x}_i \otimes oldsymbol{e}_i, oldsymbol{\pi} \otimes oldsymbol{e}_j 
angle_{oldsymbol{\pi}} = \sum_{i=1}^{d^2} \langle oldsymbol{x}_i, oldsymbol{\pi} \otimes oldsymbol{e}_j 
angle_{oldsymbol{\pi}} = \left\langle oldsymbol{x}_i, oldsymbol{\pi} \otimes oldsymbol{e}_j 
ight
angle_{oldsymbol{\pi}} = \left\langle oldsymbol{x}_i, oldsymbol{e}_j 
ight
angle_{oldsymbol{\pi}} = \left\langle oldsymbol{x}_i, oldsymbol{\pi} \otimes oldsymbol{e}_j 
ight
angle_{oldsymbol{\pi}} = \left\langle oldsymbol{x}_i, oldsymbol$$

which indicates  $\boldsymbol{x}_j \perp \boldsymbol{\pi}, j \in [d^2]$ . Furthermore, we can also observe that  $\boldsymbol{x}_i \otimes \boldsymbol{e}_i, i \in [d^2]$  is pairwise orthogonal. This is because for  $\forall i, j \in [d^2], \langle \boldsymbol{x}_i \otimes \boldsymbol{e}_i, \boldsymbol{x}_j \otimes \boldsymbol{e}_j \rangle_{\boldsymbol{\pi}} = \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle_{\boldsymbol{\pi}} \langle \boldsymbol{e}_i, \boldsymbol{e}_j \rangle = \delta_{ij}$ , which suggests us to use Pythagorean theorem such that  $\|\boldsymbol{x}\|_{\boldsymbol{\pi}}^2 = \sum_{i=1}^{d^2} \|\boldsymbol{x}_i \otimes \boldsymbol{e}_i\|_{\boldsymbol{\pi}}^2 = \sum_{i=1}^{d^2} \|\boldsymbol{x}_i\|_{\boldsymbol{\pi}} \|\boldsymbol{e}_i\|_2^2$ .

We can use similar way to decompose and analyze  $\left(x^{*}\widetilde{P}\right)^{*}$ :

$$\left(oldsymbol{x}^*\widetilde{oldsymbol{P}}
ight)^* = \widetilde{oldsymbol{P}}^*oldsymbol{x} = \sum_{i=1}^{d^2} (oldsymbol{P}^*\otimes oldsymbol{I}_{d^2})(oldsymbol{x}_i\otimes oldsymbol{e}_i) = \sum_{i=1}^{d^2} (oldsymbol{P}^*oldsymbol{x}_i)\otimes oldsymbol{e}_i.$$

where we can observe that  $(P^*x_i) \otimes e_i$ ,  $i \in [d^2]$  is pairwise orthogonal. This is because for  $\forall i, j \in [d^2]$ , we have  $\langle (P^*x_i) \otimes e_i, (P^*x_j) \otimes e_j \rangle_{\pi} = \langle P^*x_i, P^*x_j \rangle_{\pi} \langle e_i, e_j \rangle = \delta_{ij}$ . Again, applying Pythagorean theorem gives:

$$\begin{split} \left\| \left( \boldsymbol{x}^* \widetilde{\boldsymbol{P}} \right)^* \right\|_{\boldsymbol{\pi}}^2 &= \sum_{i=1}^{d^2} \left\| (\boldsymbol{P}^* \boldsymbol{x}_i) \otimes \boldsymbol{e}_i \right\|_{\boldsymbol{\pi}}^2 = \sum_{i=1}^{d^2} \left\| (\boldsymbol{x}_i^* \boldsymbol{P})^* \right\|_{\boldsymbol{\pi}}^2 \left\| \boldsymbol{e}_i \right\|_2^2 \\ &\leq \sum_{i=1}^{d^2} \lambda(\boldsymbol{P})^2 \left\| \boldsymbol{x}_i \right\|_{\boldsymbol{\pi}}^2 \left\| \boldsymbol{e}_i \right\|_2^2 = \lambda(\boldsymbol{P})^2 \left( \sum_{i=1}^{d^2} \left\| \boldsymbol{x}_i \right\|_{\boldsymbol{\pi}}^2 \left\| \boldsymbol{e}_i \right\|_2^2 \right) = \lambda(\boldsymbol{P})^2 \left\| \boldsymbol{x} \right\|_{\boldsymbol{\pi}}^2, \end{split}$$

which indicate that for  $\forall x$  such that  $x \perp \mathcal{U}$  and  $x \neq 0$ , we have  $\frac{\|(x^* \tilde{P})^*\|_{\pi}}{\|x\|_{\pi}} \leq \lambda(P)$ , or equivalently  $\lambda(\tilde{P}) \leq \lambda(P)$ .

Overall, we have shown both  $\lambda(\widetilde{\boldsymbol{P}}) \geq \lambda(\boldsymbol{P})$  and  $\lambda(\widetilde{\boldsymbol{P}}) \leq \lambda(\boldsymbol{P})$ . We conclude  $\lambda(\widetilde{\boldsymbol{P}}) = \lambda(\boldsymbol{P})$ .

**Lemma 4.** (The effect of  $\widetilde{P}$  operator) This lemma is a generalization of lemma 3.3 in [6].

1. 
$$\forall y \in \mathcal{U}$$
, then  $\left(y^*\widetilde{P}\right)^* = y$ .

2. 
$$\forall y \perp \mathcal{U}$$
, then  $\left(y^*\widetilde{P}\right)^* \perp \mathcal{U}$ , and  $\left\|\left(y^*\widetilde{P}\right)^*\right\|_{\pi} \leq \lambda \left\|y\right\|_{\pi}$ .

*Proof.* First prove the Part 1 of lemma 4.  $\forall y = \pi \otimes w \in \mathcal{U}$ :

$$oldsymbol{y}^*\widetilde{oldsymbol{P}} = (oldsymbol{\pi}^* \otimes oldsymbol{w}^*) (oldsymbol{P} \otimes oldsymbol{I}_{d^2}) = (oldsymbol{\pi}^* oldsymbol{P}) \otimes (oldsymbol{w}^* oldsymbol{I}_{d^2}) = oldsymbol{\pi}^* \otimes oldsymbol{w}^* = oldsymbol{y}^*,$$

where third equality is becase  $\pi$  is the stationary distribution. Next to prove Part 2 of lemma 4. Given  $y \perp \mathcal{U}$ , want to show  $(y^* \widetilde{P})^* \perp \pi \otimes w$ , for every  $w \in \mathbb{C}^{d^2}$ . It is true because

$$\left\langle oldsymbol{\pi} \otimes oldsymbol{w}, (oldsymbol{y}^* \widetilde{oldsymbol{P}})^* 
ight
angle_{oldsymbol{\pi}} = oldsymbol{y}^* \widetilde{oldsymbol{P}} \left( \Pi^{-1} \otimes oldsymbol{I}_{d^2} 
ight) (oldsymbol{\pi} \otimes oldsymbol{w}) = oldsymbol{y}^* \left( (oldsymbol{P}\Pi^{-1} oldsymbol{\pi}) \otimes oldsymbol{w} 
ight) = oldsymbol{y}^* \left( (oldsymbol{P}\Pi^{-1} oldsymbol{\pi}) \otimes oldsymbol{w} \right) = oldsymbol{y}^* \left( (oldsymbol{P}\Pi^{-1} oldsymbol{\pi}) \otimes oldsymbol{w} \right) = oldsymbol{y}^* \left( (oldsymbol{P}\Pi^{-1} oldsymbol{\omega}) \otimes oldsymbol{w} \right) = oldsymbol{y}^* \left( (oldsymbol{P}\Pi^{-1} oldsymbol{\omega}) \otimes oldsymbol{w} \right) = oldsymbol{y}^* \left( (oldsymbol{P}\Pi^{-1} oldsymbol{\omega}) \otimes oldsymbol{w} \right) = oldsymbol{y}^* \left( (oldsymbol{\Pi}^{-1} oldsymbol{\omega}) \otimes oldsymbol{w} \right) \otimes oldsymbol{w} \right) = oldsymbol{y}^* \left( (oldsymbol{\Pi}^{-1} oldsymbol{\omega}) \otimes oldsymbol{w} \right) \otimes oldsymbol{y} \otimes oldsymbol{w} \right) \otimes oldsymbol{w} = oldsymbol{y}^* \otimes oldsymbol{w} \otimes oldsymbol{w} \right) \otimes oldsymbol{w} \otimes$$

The third equality is due to  $P\Pi^{-1}\pi = P1 = 1 = \Pi^{-1}\pi$ . Moreover,  $\left\| \left( y^* \widetilde{P} \right)^* \right\|_{\pi} \le \lambda \left\| y \right\|_{\pi}$  is simply a re-statement of definition 3.

**Remark 5.** Lemma 4 implies that  $\forall y \in \mathbb{C}^{nd^2}$ 

$$1. \ \left( \left( \boldsymbol{y}^* \widetilde{\boldsymbol{P}} \right)^* \right)^{\parallel} = \left( \left( \boldsymbol{y}^{\parallel *} \widetilde{\boldsymbol{P}} \right)^* \right)^{\parallel} + \left( \left( \boldsymbol{y}^{\perp *} \widetilde{\boldsymbol{P}} \right)^* \right)^{\parallel} = \boldsymbol{y}^{\parallel} + \boldsymbol{0} = \boldsymbol{y}^{\parallel}$$

$$2. \left( \left( \boldsymbol{y}^* \widetilde{\boldsymbol{P}} \right)^* \right)^{\perp} = \left( \left( \boldsymbol{y}^{\parallel *} \widetilde{\boldsymbol{P}} \right)^* \right)^{\perp} + \left( \left( \boldsymbol{y}^{\perp *} \widetilde{\boldsymbol{P}} \right)^* \right)^{\perp} = 0 + \left( \boldsymbol{y}^{\perp *} \widetilde{\boldsymbol{P}} \right)^* = \left( \boldsymbol{y}^{\perp *} \widetilde{\boldsymbol{P}} \right)^*.$$

**Lemma 5.** (The effect of E operator) Given three parameters  $\lambda \in [0,1], \ell \geq 0$  and t > 0. Let P be a regular Markov chain on state space [N], with stationary distribution  $\pi$  and spectral expansion  $\lambda$ . Suppose each state  $i \in [N]$  is assigned a matrix  $\mathbf{H}_i \in \mathbb{C}^{d^2 \times d^2}$  s.t.  $\|\mathbf{H}_i\|_2 \leq \ell$  and  $\sum_{i \in [N]} \pi_i \mathbf{H}_i = 0$ . Let  $\widetilde{P} = P \otimes I_{d^2}$  and  $\mathbf{E}$  denotes the  $Nd^2 \times Nd^2$  block matrix where the i-th diagonal block is the matrix  $\exp(t\mathbf{H}_i)$ , i.e.,  $\mathbf{E} = \operatorname{diag}(\exp(t\mathbf{H}_1), \cdots, \exp(t\mathbf{H}_N))$ . Then for any  $\forall \mathbf{z} \in \mathbb{C}^{Nd^2}$ , we have:

1. 
$$\left\|\left(\left(\boldsymbol{z}^{\parallel *}\boldsymbol{E}\widetilde{\boldsymbol{P}}\right)^{*}\right)^{\parallel}\right\|_{\boldsymbol{\pi}} \leq \alpha_{1}\left\|\boldsymbol{z}^{\parallel}\right\|_{\boldsymbol{\pi}}, \text{ where } \alpha_{1}=\exp\left(t\ell\right)-t\ell.$$

2. 
$$\left\|\left(\left(\boldsymbol{z}^{\parallel *}\boldsymbol{E}\widetilde{\boldsymbol{P}}\right)^{*}\right)^{\perp}\right\|_{\boldsymbol{\pi}} \leq \alpha_{2}\left\|\boldsymbol{z}^{\parallel}\right\|_{\boldsymbol{\pi}}$$
, where  $\alpha_{2}=\lambda(\exp{(t\ell)}-1)$ .

3. 
$$\left\|\left(\left(\boldsymbol{z}^{\perp*}\boldsymbol{E}\widetilde{\boldsymbol{P}}\right)^{*}\right)^{\parallel}\right\|_{\boldsymbol{\pi}} \leq \alpha_{3}\left\|\boldsymbol{z}^{\perp}\right\|_{\boldsymbol{\pi}}$$
, where  $\alpha_{3}=\exp\left(t\ell\right)-1$ .

4. 
$$\left\|\left(\left(\boldsymbol{z}^{\perp*}\boldsymbol{E}\widetilde{\boldsymbol{P}}\right)^{*}\right)^{\perp}\right\|_{\boldsymbol{\pi}} \leq \alpha_{4} \left\|\boldsymbol{z}^{\perp}\right\|_{\boldsymbol{\pi}}, where \ \alpha_{4} = \lambda \exp{(t\ell)}.$$

*Proof.* (of Lemma 5) We first show that, for  $z = u \otimes w$ .

$$(\boldsymbol{z}^* \boldsymbol{E})^* = \boldsymbol{E}^* \boldsymbol{z} = \begin{bmatrix} \exp(t\boldsymbol{H}_1^*) & & & \\ & \ddots & & \\ & & \exp(t\boldsymbol{H}_N^*) \end{bmatrix} \begin{bmatrix} y_1 \boldsymbol{w} \\ \vdots \\ y_N \boldsymbol{w} \end{bmatrix} = \begin{bmatrix} y_1 \exp(t\boldsymbol{H}_1^*) \boldsymbol{w} \\ \vdots \\ y_N \exp(t\boldsymbol{H}_N^*) \boldsymbol{w} \end{bmatrix}$$

$$= \begin{bmatrix} y_1 \exp(t\boldsymbol{H}_1^*) \boldsymbol{w} \\ \vdots \\ y_N \exp(t\boldsymbol{H}_N^*) \boldsymbol{w} \end{bmatrix} + \dots + \begin{bmatrix} 0 \\ \vdots \\ y_N \exp(t\boldsymbol{H}_N^*) \boldsymbol{w} \end{bmatrix} = \sum_{i=1}^N y_i \left( \boldsymbol{e}_i \otimes (\exp(t\boldsymbol{H}_i^*) \boldsymbol{w}) \right).$$

Due to the linearity of projection,

$$\left( (\boldsymbol{z}^* \boldsymbol{E})^* \right)^{\parallel} = \sum_{i=1}^{N} y_i \left( \boldsymbol{e}_i \otimes (\exp(t \boldsymbol{H}_i^*) \boldsymbol{w}) \right)^{\parallel} = \sum_{i=1}^{N} y_i (\boldsymbol{1}^* \boldsymbol{e}_i) \left( \boldsymbol{\pi} \otimes (\exp(t \boldsymbol{H}_i^*) \boldsymbol{w}) \right) = \boldsymbol{\pi} \otimes \left( \sum_{i=1}^{N} y_i \exp(t \boldsymbol{H}_i^*) \boldsymbol{w} \right),$$
(9)

where the second inequality follows by Remark 4.

**Proof of Lemma 5, Part 1** Firstly We can bound  $\left\|\sum_{i=1}^{N} \pi_i \exp(t \boldsymbol{H}_i^*)\right\|_2$  by

$$\left\| \sum_{i=1}^{N} \pi_{i} \exp(t\boldsymbol{H}_{i}^{*}) \right\|_{2} = \left\| \sum_{i=1}^{N} \pi_{i} \exp(t\boldsymbol{H}_{i}) \right\|_{2} = \left\| \sum_{i=1}^{N} \pi_{i} \sum_{k=0}^{+\infty} \frac{t^{j} \boldsymbol{H}_{i}^{j}}{j!} \right\|_{2} = \left\| \boldsymbol{I} + \sum_{i=1}^{N} \pi_{i} \sum_{j=2}^{+\infty} \frac{t^{j} \boldsymbol{H}_{i}^{j}}{j!} \right\|_{2}$$

$$\leq 1 + \sum_{i=1}^{N} \pi_{i} \sum_{j=2}^{+\infty} \frac{t^{j} \left\| \boldsymbol{H}_{i} \right\|_{2}^{j}}{j!} \leq 1 + \sum_{i=1}^{N} \pi_{i} \sum_{j=2}^{+\infty} \frac{(t\ell)^{j}}{j!} = \exp(t\ell) - t\ell,$$

where the first step follows by  $\|\boldsymbol{A}\|_2 = \|\boldsymbol{A}^*\|_2$ , the second step follows by matrix exponential, the third step follows by  $\sum_{i \in [N]} \pi_i \boldsymbol{H}_i = 0$ , and the forth step follows by triangle inequality. Given the above bound, for any  $\boldsymbol{z}^{\parallel}$  which can be written as  $\boldsymbol{z}^{\parallel} = \boldsymbol{\pi} \otimes \boldsymbol{w}$  for some  $\boldsymbol{w} \in \mathbb{C}^{d^2}$ , we have

$$\left\| \left( \left( \boldsymbol{z}^{\parallel *} \boldsymbol{E} \widetilde{\boldsymbol{P}} \right)^{*} \right)^{\parallel} \right\|_{\boldsymbol{\pi}} = \left\| \left( \left( \boldsymbol{z}^{\parallel *} \boldsymbol{E} \right)^{*} \right)^{\parallel} \right\|_{\boldsymbol{\pi}} = \left\| \boldsymbol{\pi} \otimes \left( \sum_{i=1}^{N} \pi_{i} \exp(t \boldsymbol{H}_{i}^{*}) \boldsymbol{w} \right) \right\|_{\boldsymbol{\pi}} = \left\| \boldsymbol{\pi} \right\|_{\boldsymbol{\pi}} \left\| \sum_{i=1}^{N} \pi_{i} \exp(t \boldsymbol{H}_{i}^{*}) \boldsymbol{w} \right\|_{2}$$

$$\leq \left\| \boldsymbol{\pi} \right\|_{\boldsymbol{\pi}} \left\| \sum_{i=1}^{N} \pi_{i} \exp(t \boldsymbol{H}_{i}^{*}) \right\|_{2} \left\| \boldsymbol{w} \right\|_{2} = \left\| \sum_{i=1}^{N} \pi_{i} \exp(t \boldsymbol{H}_{i}^{*}) \right\|_{2} \left\| \boldsymbol{z}^{\parallel} \right\|_{\boldsymbol{\pi}}$$

$$\leq \left( \exp(t \ell) - t \ell \right) \left\| \boldsymbol{z}^{\parallel} \right\|_{\boldsymbol{\pi}},$$

where step one follows by Part 1 of Remark 5 and step two follows by Equation 9.

**Proof of Lemma 5, Part 2** For  $\forall z \in \mathbb{C}^{Nd^2}$ , we can write it as block matrix such that:

$$oldsymbol{z} = egin{bmatrix} oldsymbol{z} \ dots \ oldsymbol{z}_N \end{bmatrix} = egin{bmatrix} oldsymbol{z}_1 \ dots \ oldsymbol{0} \end{bmatrix} + \cdots + egin{bmatrix} oldsymbol{0} \ dots \ oldsymbol{z}_N \end{bmatrix} = \sum_{i=1}^N oldsymbol{e}_i \otimes oldsymbol{z}_i,$$

where each  $z_i \in \mathbb{C}^{d^2}$ . Please note that above decomposition is pairwise orthogonal. Applying Pythagorean theorem gives  $\|z\|_{\pi}^2 = \sum_{i=1}^N \|e_i \otimes z_i\|_{\pi}^2 = \sum_{i=1}^N \|e_i\|_{\pi}^2 \|z_i\|_2^2$ . Similarly, we can decompose  $(E^* - I_{Nd^2})z$  such that

$$(\boldsymbol{E}^* - \boldsymbol{I}_{Nd^2}) \boldsymbol{z} = \begin{bmatrix} \exp(t\boldsymbol{H}_1^*) - \boldsymbol{I}_{d^2} \\ & \ddots \\ & \exp(t\boldsymbol{H}_N^*) - \boldsymbol{I}_{d^2} \end{bmatrix} \begin{bmatrix} \boldsymbol{z}_1 \\ \vdots \\ \boldsymbol{z}_N \end{bmatrix} = \begin{bmatrix} (\exp(t\boldsymbol{H}_1^*) - \boldsymbol{I}_{d^2}) \boldsymbol{z}_1 \\ \vdots \\ (\exp(t\boldsymbol{H}_N^*) - \boldsymbol{I}_{d^2}) \boldsymbol{z}_N \end{bmatrix}$$

$$= \begin{bmatrix} (\exp(t\boldsymbol{H}_1^*) - \boldsymbol{I}_{d^2}) \boldsymbol{z}_1 \\ \vdots \\ 0 \end{bmatrix} + \dots + \begin{bmatrix} 0 \\ \vdots \\ (\exp(t\boldsymbol{H}_N^*) - \boldsymbol{I}_{d^2}) \boldsymbol{z}_N \end{bmatrix}$$

$$= \sum_{i=1}^N \boldsymbol{e}_i \otimes ((\exp(t\boldsymbol{H}_i^*) - \boldsymbol{I}_{d^2}) \boldsymbol{z}_i) .$$

$$(10)$$

Note that above decomposition is pairwise orthogonal, too. Applying Pythagorean theorem gives

$$\begin{split} \|(\boldsymbol{E}^* - \boldsymbol{I}_{Nd^2})\boldsymbol{z}\|_{\boldsymbol{\pi}}^2 &= \sum_{i=1}^N \|\boldsymbol{e}_i \otimes ((\exp(t\boldsymbol{H}_i^*) - \boldsymbol{I}_{d^2})\boldsymbol{z}_i)\|_{\boldsymbol{\pi}}^2 = \sum_{i=1}^N \|\boldsymbol{e}_i\|_{\boldsymbol{\pi}}^2 \|(\exp(t\boldsymbol{H}_i^*) - \boldsymbol{I}_{d^2})\boldsymbol{z}_i\|_2^2 \\ &\leq \sum_{i=1}^N \|\boldsymbol{e}_i\|_{\boldsymbol{\pi}}^2 \|\exp(t\boldsymbol{H}_i^*) - \boldsymbol{I}_{d^2}\|_2^2 \|\boldsymbol{z}_i\|_2^2 \leq \max_{i \in [N]} \|\exp(t\boldsymbol{H}_i^*) - \boldsymbol{I}_{d^2}\|_2^2 \sum_{i=1}^N \|\boldsymbol{e}_i\|_{\boldsymbol{\pi}}^2 \|\boldsymbol{z}_i\|_2^2 \\ &= \max_{i \in [N]} \|\exp(t\boldsymbol{H}_i^*) - \boldsymbol{I}_{d^2}\|_2^2 \|\boldsymbol{z}\|_{\boldsymbol{\pi}}^2 = \max_{i \in [N]} \|\exp(t\boldsymbol{H}_i) - \boldsymbol{I}_{d^2}\|_2^2 \|\boldsymbol{z}\|_{\boldsymbol{\pi}}^2, \end{split}$$

which indicates

$$\begin{aligned} \|(\boldsymbol{E}^* - \boldsymbol{I}_{Nd^2})\boldsymbol{z}\|_{\boldsymbol{\pi}} &= \max_{i \in [N]} \|\exp(t\boldsymbol{H}_i) - \boldsymbol{I}_{d^2}\|_2 \|\boldsymbol{z}\|_{\boldsymbol{\pi}} = \max_{i \in [N]} \left\| \sum_{j=1}^{+\infty} \frac{t^j \boldsymbol{H}_i^j}{j!} \right\|_2 \|\boldsymbol{z}\|_{\boldsymbol{\pi}} \\ &\leq \left( \sum_{j=1}^{+\infty} \frac{t^j \ell^j}{j!} \right) \|\boldsymbol{z}\|_{\boldsymbol{\pi}} = (\exp(t\ell) - 1) \|\boldsymbol{z}\|_{\boldsymbol{\pi}}. \end{aligned}$$

Now we can formally prove Part 2 of Lemma 5 by:

$$\begin{split} \left\| \left( \left( \boldsymbol{z}^{\parallel *} \boldsymbol{E} \widetilde{\boldsymbol{P}} \right)^{*} \right)^{\perp} \right\|_{\boldsymbol{\pi}} &= \left\| \left( \left( \boldsymbol{E}^{*} \boldsymbol{z}^{\parallel} \right)^{\perp *} \widetilde{\boldsymbol{P}} \right)^{*} \right\|_{\boldsymbol{\pi}} \leq \lambda \left\| \left( \boldsymbol{E}^{*} \boldsymbol{z}^{\parallel} \right)^{\perp} \right\|_{\boldsymbol{\pi}} = \lambda \left\| \left( \boldsymbol{E}^{*} \boldsymbol{z}^{\parallel} - \boldsymbol{z}^{\parallel} + \boldsymbol{z}^{\parallel} \right)^{\perp} \right\|_{\boldsymbol{\pi}} \\ &= \lambda \left\| \left( \left( \boldsymbol{E}^{*} - \boldsymbol{I}_{Nd^{2}} \right) \boldsymbol{z}^{\parallel} \right)^{\perp} \right\|_{\boldsymbol{\pi}} \leq \lambda \left\| \left( \boldsymbol{E}^{*} - \boldsymbol{I}_{Nd^{2}} \right) \boldsymbol{z}^{\parallel} \right\|_{\boldsymbol{\pi}} \leq \lambda \left( \exp\left(t\ell\right) - 1 \right) \left\| \boldsymbol{z}^{\parallel} \right\|_{\boldsymbol{\pi}}. \end{split}$$

The first step follows by Part 2 of Remark 5, the second step follows by Part 1 on Lemma 4 and the forth step is due to  $(z^{\parallel})^{\perp} = 0$ .

Proof of Lemma 5, Part 3 Note that

$$egin{aligned} \left\| \left( \left( oldsymbol{z}^{oldsymbol{\perp}} oldsymbol{E} igg|_{oldsymbol{\pi}}^* = \left\| \left( oldsymbol{E}^* oldsymbol{z}^oldsymbol{\perp} 
ight)^{\parallel} 
ight\|_{oldsymbol{\pi}} &= \left\| \left( \left( oldsymbol{E}^* oldsymbol{z}^oldsymbol{\perp} 
ight)^{\parallel} 
ight\|_{oldsymbol{\pi}} &= \left\| \left( \left( oldsymbol{E}^* oldsymbol{I}_{Nd^2}) oldsymbol{z}^oldsymbol{\perp} 
ight)^{\parallel} 
ight\|_{oldsymbol{\pi}} &= \left\| \left( \left( oldsymbol{E}^* oldsymbol{I}_{Nd^2}) oldsymbol{z}^oldsymbol{\perp} 
ight)^{\parallel} 
ight\|_{oldsymbol{\pi}} &= \left\| \left( \left( oldsymbol{E}^* oldsymbol{I}_{Nd^2}) oldsymbol{z}^oldsymbol{\perp} 
ight)^{\parallel} 
ight\|_{oldsymbol{\pi}} &= \left\| \left( \left( oldsymbol{E}^* oldsymbol{I}_{Nd^2}) oldsymbol{z}^oldsymbol{\perp} 
ight)^{\parallel} 
ight\|_{oldsymbol{\pi}} &= \left\| \left( \left( oldsymbol{E}^* oldsymbol{I}_{Nd^2}) oldsymbol{z}^oldsymbol{\perp} 
ight)^{\parallel} 
ight\|_{oldsymbol{\pi}} &= \left\| \left( oldsymbol{E}^* oldsymbol{Z}^oldsymbol{L} 
ight)^{\parallel} 
ight\|_{oldsymbol{\pi}} &= \left\| \left( oldsymbol{E}^* oldsymbol{Z}^oldsymbol{L} 
ight)^{\parallel} 
ight\|_{oldsymbol{\pi}} &= \left\| \left( oldsymbol{E}^* oldsymbol{Z}^oldsymbol{L} 
ight)^{\parallel} 
ight\|_{oldsymbol{\pi}} &= \left\| \left( oldsymbol{E}^* oldsymbol{L} 
ight)^{\parallel} 
ight\|_{oldsymbol{\pi}} &= \left\| \left( oldsymbol{E}^* oldsymbol{L} 
ight)^{\parallel} 
ight\|_{oldsymbol{\pi}} &= \left\| \left( oldsymbol{E}^* oldsymbol{L} 
ight)^{\parallel} 
ight\|_{oldsymbol{\pi}} &= \left\| \left( oldsymbol{E}^* oldsymbol{E}^* oldsymbol{L} 
ight)^{\parallel} 
ight\|_{oldsymbol{\pi}} &= \left\| \left( oldsymbol{E}^* oldsymbol{E}$$

where the first step follows by Part 1 of Remark 5, the third step follows by  $(z^{\perp})^{\parallel} = 0$ , and the last step follows by Part 2 of Lemma 4.

**Proof of Lemma 5, Part 4** Simiar to Equation 10, for  $\forall z \in \mathbb{C}^{Nd^2}$ , we can decompose  $E^*z$  as  $E^*z = \sum_{i=1}^N e_i \otimes (\exp(tH_i^*)z_i)$ . This decomposition is pairwise orthogonal, too. Applying Pythagorean theorem gives

$$\begin{split} \|\boldsymbol{E}^*\boldsymbol{z}\|_{\boldsymbol{\pi}}^2 &= \sum_{i=1}^N \|\boldsymbol{e}_i \otimes (\exp(t\boldsymbol{H}_i^*)\boldsymbol{z}_i)\|_{\boldsymbol{\pi}}^2 = \sum_{i=1}^N \|\boldsymbol{e}_i\|_{\boldsymbol{\pi}}^2 \|\exp(t\boldsymbol{H}_i^*)\boldsymbol{z}_i\|_2^2 \leq \sum_{i=1}^N \|\boldsymbol{e}_i\|_{\boldsymbol{\pi}}^2 \|\exp(t\boldsymbol{H}_i^*)\|_2^2 \|\boldsymbol{z}_i\|_2^2 \\ &\leq \max_{i \in [N]} \|\exp(t\boldsymbol{H}_i^*)\|_2^2 \sum_{i=1}^N \|\boldsymbol{e}_i\|_{\boldsymbol{\pi}}^2 \|\boldsymbol{z}_i\|_2^2 \leq \max_{i \in [N]} \exp\left(\|t\boldsymbol{H}_i^*\|_2\right)^2 \|\boldsymbol{z}\|_{\boldsymbol{\pi}}^2 \leq \exp\left(t\ell\right)^2 \|\boldsymbol{z}\|_{\boldsymbol{\pi}}^2 \end{split}$$

which indicates  $\|E^*z\|_{\pi} \leq \exp(t\ell) \|z\|_{\pi}$ . Now we can prove Part 4 of Lemma 5: Note that

$$\left\| \left( \left( \boldsymbol{z}^{\perp *} \boldsymbol{E} \widetilde{\boldsymbol{P}} \right)^{*} \right)^{\perp} \right\|_{\boldsymbol{\pi}} = \left\| \left( \left( \boldsymbol{E}^{*} \boldsymbol{z}^{\perp} \right)^{\perp *} \widetilde{\boldsymbol{P}} \right)^{*} \right\|_{\boldsymbol{\pi}} \leq \lambda \left\| \left( \boldsymbol{E}^{*} \boldsymbol{z}^{\perp} \right)^{\perp} \right\|_{\boldsymbol{\pi}} \leq \lambda \left\| \boldsymbol{E}^{*} \boldsymbol{z}^{\perp} \right\|_{\boldsymbol{\pi}} \leq \lambda \exp\left( t \ell \right) \left\| \boldsymbol{z}^{\perp} \right\|_{\boldsymbol{\pi}}.$$

**Recursive Analysis** We now use Lemma 5 to analyze the evolution of  $\boldsymbol{z}_i^{\parallel}$  and  $\boldsymbol{z}_i^{\perp}$ . Let  $\boldsymbol{H}_v \triangleq \frac{f(v)(\gamma+\mathrm{i}b)}{2} \otimes \boldsymbol{I}_{d^2} + \boldsymbol{I}_{d^2} \otimes \frac{f(v)(\gamma-\mathrm{i}b)}{2}$  in Lemma 5. We can see verify the following three facts: (1)  $\exp(t\boldsymbol{H}_v) = \boldsymbol{M}_v$ ; (2)  $\|\boldsymbol{H}_v\|_2$  is bounded (3)  $\sum_{v \in [N]} \pi_v \boldsymbol{H}_v = 0$ .

Firstly, easy to see that

$$\exp(t\boldsymbol{H}_{v}) = \exp\left(\frac{tf(v)(\gamma + \mathrm{i}b)}{2} \otimes \boldsymbol{I}_{d^{2}} + \boldsymbol{I}_{d^{2}} \otimes \frac{tf(v)(\gamma - \mathrm{i}b)}{2}\right)$$
$$= \exp\left(\frac{tf(v)(\gamma + \mathrm{i}b)}{2}\right) \otimes \exp\left(\frac{tf(v)(\gamma - \mathrm{i}b)}{2}\right) = \boldsymbol{M}_{v},$$

where the first step follows by definition of  $H_i$  and the second step follows by the fact that  $\exp(\mathbf{A} \otimes \mathbf{I}_d + \mathbf{I}_d \otimes \mathbf{B}) = \exp(\mathbf{A}) \otimes \exp(\mathbf{B})$ , and the last step follows by Equation 7.

Secondly, we can bound  $\|\boldsymbol{H}_v\|_2$  by:

$$\begin{split} \left\| \boldsymbol{H}_{v} \right\|_{2} &\leq \left\| \frac{f(v)(\gamma + \mathrm{i}b)}{2} \otimes \boldsymbol{I}_{d^{2}} \right\|_{2} + \left\| \boldsymbol{I}_{d^{2}} \otimes \frac{f(v)(\gamma - \mathrm{i}b)}{2} \right\|_{2} \\ &= \left\| \frac{f(v)(\gamma + \mathrm{i}b)}{2} \right\|_{2} \left\| \boldsymbol{I}_{d^{2}} \right\|_{2} + \left\| \boldsymbol{I}_{d^{2}} \right\|_{2} \left\| \frac{f(v)(\gamma - \mathrm{i}b)}{2} \right\|_{2} \leq \sqrt{\gamma^{2} + b^{2}}, \end{split}$$

where the first step follows by triangle inequality, the second step follows by the fact that  $\|\boldsymbol{A}\otimes\boldsymbol{B}\|_2 = \|\boldsymbol{A}\|_2 \|\boldsymbol{B}\|_2$ , the third step follows by  $\|\boldsymbol{I}_d\|_2 = 1$  and  $\|f(v)\|_2 \leq 1$ . We set  $\ell = \sqrt{\gamma^2 + b^2}$  to satisfy the assumption in Lemma 5 that  $\|\boldsymbol{H}_v\|_2 \leq \ell$ . According to the conditions in Lemma 1, we know that  $t\ell \leq 1$  and  $t\ell \leq \frac{1-\lambda}{4\lambda}$ .

Finally, we show that  $\sum_{v \in [N]} \pi_v \boldsymbol{H}_v = 0$ , because

$$\sum_{v \in [N]} \pi_v \boldsymbol{H}_v = \sum_{v \in [N]} \left( \frac{f(v)(\gamma + \mathrm{i}b)}{2} \otimes \boldsymbol{I}_{d^2} + \boldsymbol{I}_{d^2} \otimes \frac{f(v)(\gamma - \mathrm{i}b)}{2} \right)$$
$$= \frac{\gamma + \mathrm{i}b}{2} \left( \sum_{v \in [N]} \pi_v f(v) \right) \otimes \boldsymbol{I}_d + \frac{\gamma - \mathrm{i}b}{2} \boldsymbol{I}_d \otimes \left( \sum_{v \in [N]} \pi_v f(v) \right) = 0,$$

where the last step follows by  $\sum_{v \in [N]} \pi_v f(v) = 0$ .

Claim 4. 
$$\|z_i^{\perp}\|_{\pi} \leq \frac{\alpha_2}{1-\alpha_4} \max_{0 \leq j < i} \|z_j^{\parallel}\|_{\pi}$$

Proof. Using Part 2 and Part 4 of Lemma 5, we have

$$\begin{aligned} \left\| \boldsymbol{z}_{i}^{\perp} \right\|_{\boldsymbol{\pi}} &= \left\| \left( \left( \boldsymbol{z}_{i-1}^{*} \boldsymbol{E} \tilde{\boldsymbol{P}} \right)^{*} \right)^{\perp} \right\|_{\boldsymbol{\pi}} \\ &\leq \left\| \left( \left( \boldsymbol{z}_{i-1}^{\parallel *} \boldsymbol{E} \tilde{\boldsymbol{P}} \right)^{*} \right)^{\perp} \right\|_{\boldsymbol{\pi}} + \left\| \left( \left( \boldsymbol{z}_{i-1}^{\perp *} \boldsymbol{E} \tilde{\boldsymbol{P}} \right)^{*} \right)^{\perp} \right\|_{\boldsymbol{\pi}} \\ &\leq \alpha_{2} \left\| \boldsymbol{z}_{i-1}^{\parallel} \right\|_{\boldsymbol{\pi}} + \alpha_{4} \left\| \boldsymbol{z}_{i-1}^{\perp} \right\|_{\boldsymbol{\pi}} \\ &\leq \left( \alpha_{2} + \alpha_{2} \alpha_{4} + \alpha_{2} \alpha_{4}^{2} + \cdots \right) \max_{0 \leq j < i} \left\| \boldsymbol{z}_{j}^{\parallel} \right\|_{\boldsymbol{\pi}} \\ &\leq \frac{\alpha_{2}}{1 - \alpha_{4}} \max_{0 \leq j < i} \left\| \boldsymbol{z}_{j}^{\parallel} \right\|_{\boldsymbol{\pi}} \end{aligned}$$

Claim 5. 
$$\|\boldsymbol{z}_i^{\parallel}\|_{\boldsymbol{\pi}} \leq \left(\alpha_1 + \frac{\alpha_2 \alpha_3}{1 - \alpha_4}\right) \max_{0 \leq j < i} \|\boldsymbol{z}_j^{\parallel}\|_{\boldsymbol{\pi}}.$$

*Proof.* Using Part 1 and Part 3 of Lemma 5 as well as Claim 4, we have

$$\begin{split} \left\| \boldsymbol{z}_{i}^{\parallel} \right\|_{\boldsymbol{\pi}} &= \left\| \left( \left( \boldsymbol{z}_{i-1}^{*} \boldsymbol{E} \tilde{\boldsymbol{P}} \right)^{*} \right)^{\parallel} \right\|_{\boldsymbol{\pi}} \\ &\leq \left\| \left( \left( \boldsymbol{z}_{i-1}^{\parallel *} \boldsymbol{E} \tilde{\boldsymbol{P}} \right)^{*} \right)^{\parallel} \right\|_{\boldsymbol{\pi}} + \left\| \left( \left( \boldsymbol{z}_{i-1}^{\perp *} \boldsymbol{E} \tilde{\boldsymbol{P}} \right)^{*} \right)^{\parallel} \right\|_{\boldsymbol{\pi}} \\ &\leq \alpha_{1} \left\| \boldsymbol{z}_{i-1}^{\parallel} \right\|_{\boldsymbol{\pi}} + \alpha_{3} \left\| \boldsymbol{z}_{i-1}^{\perp} \right\|_{\boldsymbol{\pi}} \\ &\leq \alpha_{1} \left\| \boldsymbol{z}_{i-1}^{\parallel} \right\|_{\boldsymbol{\pi}} + \alpha_{3} \frac{\alpha_{2}}{1 - \alpha_{4}} \max_{0 \leq j < i-1} \left\| \boldsymbol{z}_{j}^{\parallel} \right\|_{\boldsymbol{\pi}} \\ &\leq \left( \alpha_{1} + \frac{\alpha_{2} \alpha_{3}}{1 - \alpha_{4}} \right) \max_{0 \leq j < i} \left\| \boldsymbol{z}_{j}^{\parallel} \right\|_{\boldsymbol{\pi}}. \end{split}$$

Combining Claim 4 and Claim 5 gives

$$\begin{split} \left\| \boldsymbol{z}_{k}^{\parallel} \right\|_{\boldsymbol{\pi}} & \leq \left( \alpha_{1} + \frac{\alpha_{2}\alpha_{3}}{1 - \alpha_{4}} \right) \max_{0 \leq j < k} \left\| \boldsymbol{z}_{j}^{\parallel} \right\|_{\boldsymbol{\pi}} \\ \text{(because } \alpha_{1} + \alpha_{2}\alpha_{3}/(1 - \alpha_{4}) \geq \alpha_{1} \geq 1 \text{)} & \leq \left( \alpha_{1} + \frac{\alpha_{2}\alpha_{3}}{1 - \alpha_{4}} \right)^{k} \left\| \boldsymbol{z}_{0}^{\parallel} \right\|_{\boldsymbol{\pi}} \\ & = \left\| \boldsymbol{\phi} \right\|_{\boldsymbol{\pi}} \sqrt{d} \left( \alpha_{1} + \frac{\alpha_{2}\alpha_{3}}{1 - \alpha_{4}} \right)^{k}, \end{split}$$

which implies

$$\langle \boldsymbol{\pi} \otimes \text{vec}(\boldsymbol{I}_d), \boldsymbol{z}_k \rangle_{\boldsymbol{\pi}} \leq \|\boldsymbol{\phi}\|_{\boldsymbol{\pi}} d\left(\alpha_1 + \frac{\alpha_2 \alpha_3}{1 - \alpha_4}\right)^k.$$

Finally, we bound  $\left(\alpha_1 + \frac{\alpha_2 \alpha_3}{1 - \alpha_4}\right)^k$ . The same as [10], we can bound  $\alpha_1, \alpha_2 \alpha_3, \alpha_4$  by:

$$\alpha_1 = \exp(t\ell) - t\ell \le 1 + t^2\ell^2 = 1 + t^2(\gamma^2 + b^2),$$

and

$$\alpha_2 \alpha_3 = \lambda (\exp(t\ell) - 1)^2 \le \lambda (2t\ell)^2 = 4\lambda t^2 (\gamma^2 + b^2)$$

 $\alpha_2\alpha_3=\lambda(\exp{(t\ell)}-1)^2\leq \lambda(2t\ell)^2=4\lambda t^2(\gamma^2+b^2)$  where the second step is because  $\exp{(x)}\leq 1+2x, \forall x\in[0,1]$  and  $t\ell<1$ ,

$$\alpha_4 = \lambda \exp(t\ell) \le \lambda(1 + 2t\ell) \le \frac{1}{2} + \frac{1}{2}\lambda$$

where the second step is because  $t\ell < 1$ , and the third step follows by  $t\ell \leq \frac{1-\lambda}{4\lambda}$ .

Overall, we have

$$\left(\alpha_{1} + \frac{\alpha_{2}\alpha_{3}}{1 - \alpha_{4}}\right)^{k} \leq \left(1 + t^{2}(\gamma^{2} + b^{2}) + \frac{4\lambda t^{2}(\gamma^{2} + b^{2})}{\frac{1}{2} - \frac{1}{2}\lambda}\right)^{k}$$
$$\leq \exp\left(kt^{2}(\gamma^{2} + b^{2})\left(1 + \frac{8}{1 - \lambda}\right)\right).$$

This completes our proof of Lemma 1.

#### **B.4** Proof of Theorem 1

**Theorem 1** (Markov Chain Matrix Chernoff Bound). Let P be a regular Markov chain with state space [N], stationary distribution  $\pi$  and spectral expansion  $\lambda$ . Let  $f:[N] \to \mathbb{C}^{d \times d}$  be a function such that  $(1) \ \forall v \in [N]$ , f(v) is Hermitian and  $\|f(v)\|_2 \le 1$ ;  $(2) \sum_{v \in [N]} \pi_v f(v) = 0$ . Let  $(v_1, \cdots, v_k)$  denote a k-step random walk on P starting from a distribution  $\phi$ . Given  $\epsilon \in (0,1)$ ,

$$\mathbb{P}\left[\lambda_{\max}\left(\frac{1}{k}\sum_{j=1}^{k}f(v_{j})\right) \geq \epsilon\right] \leq 4\|\phi\|_{\pi} d^{2}\exp\left(-(\epsilon^{2}(1-\lambda)k/72)\right)$$

$$\mathbb{P}\left[\lambda_{\min}\left(\frac{1}{k}\sum_{j=1}^{k}f(v_{j})\right) \leq -\epsilon\right] \leq 4\|\phi\|_{\pi} d^{2}\exp\left(-(\epsilon^{2}(1-\lambda)k/72)\right).$$

*Proof.* (of Theorem 1) Our strategy is to adopt complexification technique [8]. For any  $d \times d$  complex Hermitian matrix X, we may write X = Y + iZ, where Y and iZ are the real and imaginary parts of X, respectively. Moreover, the Hermitian property of X (i.e.,  $X^* = X$ ) implies that (1) Y is real and symmetric (i.e.,  $Y^{\top} = Y$ ); (2) Z is real and skew symmetric (i.e.,  $Z = -Z^{\top}$ ). The eigenvalues of X can be found via a  $2d \times 2d$  real symmetric matrix  $H \triangleq \begin{bmatrix} Y & Z \\ -Z & Y \end{bmatrix}$ , where the symmetry of Hfollows by the symmetry of Y and skew-symmetry of Z. Note the fact that, if the eigenvalues (real) of X are  $\lambda_1, \lambda_2, \dots, \lambda_d$ , then those of H are  $\lambda_1, \lambda_1, \lambda_2, \lambda_2, \dots, \lambda_d, \lambda_d$ . I.e., X and H have the same eigenvalues, but with different multiplicity.

Using the above technique, we can formally prove Theorem 1. For any complex matrix function  $f:[N]\to\mathbb{C}^{d\times d}$  in Theorem 1, we can separate its real and imaginary parts by  $f=f_1+\mathrm{i} f_2$ . Then we construct a real-valued matrix function  $g:[N] \to \mathbb{R}^{2d \times 2d}$  s.t.  $\forall v \in [N], g(v) = \begin{bmatrix} f_1(v) & f_2(v) \\ -f_2(v) & f_1(v) \end{bmatrix}$ . According to the complexification technique, we know that (1)  $\forall v \in [N], g(v)$  is real symmetric and  $||g(v)||_2 = ||f(v)||_2 \le 1$ ; (2)  $\sum_{v \in [N]} \pi_v g(v) = 0$ . Then

$$\mathbb{P}\left[\lambda_{\max}\left(\frac{1}{k}\sum_{j=1}^{k}f(v_{j})\right)\geq\epsilon\right]=\mathbb{P}\left[\lambda_{\max}\left(\frac{1}{k}\sum_{j=1}^{k}g(v_{j})\right)\geq\epsilon\right]\leq4\left\|\phi\right\|_{\pi}d^{2}\exp\left(-(\epsilon^{2}(1-\lambda)k/72)\right),$$

where the first step follows by the fact that  $\frac{1}{k}\sum_{j=1}^k f(v_j)$  and  $\frac{1}{k}\sum_{j=1}^k g(v_j)$  have the same eigenvalues (with different multiplicity), and the second step follows by Theorem 3.<sup>5</sup> The bound on  $\lambda_{\min}$  also follows similarly.

<sup>&</sup>lt;sup>5</sup>The additional factor 4 is because the constructed q(v) has shape  $2d \times 2d$ .