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Abstract

Recent literature has made much progress in understanding online LQR: a modern
learning-theoretic take on the classical control problem where a learner attempts to
optimally control an unknown linear dynamical system with fully observed state,
perturbed by i.i.d. Gaussian noise. The optimal regret over time horizon T against
the optimal control law scales as Θ̃(

√
T ). In this paper, we show that the same re-

gret rate (against a suitable benchmark) is attainable even in the considerably more
general non-stochastic control model, where the system is driven by arbitrary ad-
versarial noise [3]. We attain the optimal Õ(

√
T ) regret when the dynamics

are unknown to the learner, and poly(log T ) regret when known, provided that
the cost functions are strongly convex (as in LQR). Our algorithm is based on a
novel variant of online Newton step [19], which adapts to the geometry induced
by adversarial disturbances, and our analysis hinges on generic regret bounds for
certain structured losses in the OCO-with-memory framework [6].

1 Introduction
In control tasks, a learning agent seeks to minimize cumulative loss in a dynamic environment
which responds to its actions. While dynamics make control problems immensely expressive, they
also pose a significant challenge: the learner’s past decisions affect future losses incurred.

This paper focuses on the widely-studied setting of linear control, where the the learner’s environ-
ment is described by a continuous state, and evolves according to a linear system of equations,
perturbed by process noise, and guided by inputs chosen by the learner. Many of the first learning-
theoretic results for linear control focused on online LQR [1, 13, 12, 25], an online variant of the
classical Linear Quadratic Regulator (LQR) [21]. In online LQR, the agent aims to control an
unknown linear dynamical system driven by independent, identically distributed Gaussian process
noise. Performance is measured by regret against the optimal LQR control law on a time horizon T ,
for which the optimal regret rate is Θ̃(

√
T ) [12, 25, 26, 9]. Theoretical guarantees for LQR rely

heavily on the strong stochastic modeling assumptions for the noise, and may be far-from-optimal if
these assumptions break. A complementary line of work considers non-stochastic control, replacing
stochastic process noise with adversarial disturbances to the dynamics [3, 28]. Here, performance
is measured by regret: performance relative to the best (dynamic) linear control policy in hindsight,
given full knowledge of the adversarial perturbations.

Though many works have proposed efficient algorithms which attain sublinear regret for non-
stochastic control, they either lag behind optimal guarantees for the stochastic LQR problem, or
require partial stochasticity assumptions to ensure their regret. And while there is a host of litera-
ture demonstrating that, in many online learning problems without dynamics, the worst-case rates
of regret for the adversarial and stochastic settings are the same [8, 31, 19], whether this is true
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in control is far from clear. Past decisions affect future losses in control settings, and this may be
fundamentally more challenging when perturbations are adversarial and unpredictable. Despite this
challenge, we propose an efficient algorithm that matches the optimal

√
T regret bound attainable

the stochastic LQR problem, but under arbitrary, non-stochastic disturbance sequences and arbitrary
strongly convex costs. Thus, from the perspective of regret with respect to a benchmark of linear
controllers, we show that the optimal rate for non-stochastic control matches the stochastic setting.

Our Setting Generalizing LQR, we consider partially-observed linear dynamics :

xt+1 = A?xt +B?ut + wt, yt = C?xt + et (1.1)

Here, the state xt and process noise wt lie in Rdx , the observation yt and observation noise et lie
in Rdy , and the input ut ∈ Rdu is elected by the learner, and A?, B?, C? are matrices of appropriate
dimensions. We call the (wt, et) the disturbances, and let (w, e) denote the entire disturbance
sequence. Unlike LQR, we assume that the disturbances are selected by an oblivious1 adversary,
rather than from a mean zero stochastic process, and the learner observes the outputs yt, but not the
full state xt. Appendix C describes how our setting strictly generalizes the online LQR problem, and
relates to its partially observed analogoue LQG. A policy π is a (possibly randomized) sequence
of mappings ut := πt(y1:t,u1:t−1). We denote by yπt and uπt sequence the realized sequence of
outputs and inputs produced by policy π and the noise sequence (w, e). At each time t, a convex cost
`t : Rdy×du → R is revealed, and the learner observes the current yt, and suffers loss `t(yt,ut).
The cost functional of a policy π is

JT (π) :=
∑T
t=1 `t(y

π
t ,y

π
t ),

measuring the cumulative losses evaluated on the outputs and inputs induced by the realization of
the disturbances (w, e). The learner’s policy alg, is chosen to attain low control regret with respect
to a pre-specified benchmark class Π of reference policies,

ControlRegT (alg; Π) := JT (alg)− inf
π∈Π

JT (π), (1.2)

which measures the performance of alg (on the realized losses/disturbances) compared to the best
policy π ∈ Π in hindsight (chosen with knowledge of losses and disturbances). We consider a re-
stricted a benchmark class Π consisting of linear, dynamic controllers, formalized in Definition 3.1.
While this class encompasses optimal control laws for many classical settings [28], in general it
does not include the optimal control law for a given realization of noise. This is unavoidable: even
in the simplest settings, it is impossible to attain sublinear regret with respect to the optimal control
law [24]. We assume that the losses `t(·) are α-strongly convex, and grow at most quadratically:

Assumption 1. We suppose that all `t : Rdy+du → R are L-subquadratic: 0 ≤ `(v) ≤
Lmax{1, ‖v‖22}, and ‖∇̀ (v)‖2 ≤ Lmax{1, ‖v‖}. We also assume that `t are twice-continuously
differentiable, and α-strong convex (∇2`t � αI). For simplicity, we assume L ≥ max{1, α}.

This assumption is motivated by classical LQR/LQG, where the loss is a strongly convex quadratic
of the form `(y, u) = y>Ry + u>Qu for R,Q � 0. The central technical challenge of this work
is that, unlike standard online learning settings, the strong convexity of the losses does not directly
yield fast rates [4, 16].

1.1 Our Contributions

For the above setting, we propose Disturbance Reponse Control via Online Newton Step, or DRC-
ONS - an adaptive control policy which attains fast rates previously only known for settings with
stochastic or semi-stochastic noise [25, 28, 12, 4]. Our algorithm combines the DRC controller
parametrization [28] with Semi-ONS, a novel second-order online learning algorithm tailored to our
setting. We show that DRC-ONS achieves logarithmic regret when the learner knows the dynamics:

Theorem 3.1 (informal) When the agent knows the dynamics (1.1) (but does not have foreknowl-
edge of disturbances nor the costs `t), DRC-ONS has ControlRegT = O(L

2

α · poly(log T )).

1The oblivious assumption is only necessary if the dynamics are unknown to the learner; if the dynamics
are known, our guarantees hold against adaptive adversaries as well.
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This is the first bound to guarantee logarithmic regret with general strongly convex losses and non-
stochastic noise. Past work required stochastic or semi-stochastic noise [4, 28], or was limited to
fixed quadratic costs [16]. For unknown dynamics, we find:
Theorem 3.2 (informal) When the dyamics are unknown, DRC-ONS with an initial estimation
phase attains ControlRegT = Õ(L

2

α

√
T ).

This bound matches the optimal
√
T -scaling for stochastic online LQR [26]. Thus, from the perspec-

tive of regret minimization with respect to the benchmark Π, non-stochastic control is almost as easy
as stochastic. This is not without many caveats, which are left to the discussion in Appendix B.1.

Technical Contributions While our main results are control theoretic, our major technical insights
pertain to online convex optimization (OCO). Our control algorithm leverages a known reduction
[3] to the online convex optimization with memory (OCOM) framework [6], which modifies OCO
by allowing losses to depend on past iterates. Past OCOM analyses required bounds on both the
standard OCO regret and total Euclidean variation of the iterates produced (Section 2.4). But for
the the losses that arise in our setting, Theorem 2.3 shows that there is a significant tradeoff between
the two, obviating sharp upper bounds. To overcome this , we show that online control enjoys
additional structure we call OCO with affine memory, or OCOAM. We propose a novel second order
method, Semi-ONS, based on online Newton step (ONS, [19]), tailored to this structure. Under a
key technical condition satisfied by online control, we establish logarithmic regret.
Theorem 2.1 (informal) Under the aforementioned assumption (Definition 2.2), the Semi-ONS
algorithm attains O

(
1
α log T

)
regret in the OCOAM setting.

The above bound directly translates to logarithmic control regret for known systems, via the control-
to-OCOAM reduction spelled out in Section 3. For control of unknown systems, the undergirding
OCOAM bound is quadratic sensitivity to ε-approximate losses:
Theorem 2.2 (informal) Consider the OCOAM setting with ε-approximate losses (in the sense of
Assumption 2). Then, Semi-ONS has regret O

(
1
α log T · Tε2

)
.

Quadratic sensitivity to errors in the gradients was previously demonstrated for strongly convex
stochastic optimization [15], and subsequently for strongly convex OCO [28]. Extending this guar-
antee to Semi-ONS is the most intricate technical undertaking of this paper.

1.2 Prior Work

In the interest of brevity, we restrict our attention to previous works regarding online control with a
regret benchmark; for a survey of the decades old field of adaptive control, see e.g. [29]. Much work
has focused on obtaining low regret in online LQR with unknown dynamics [1, 13, 25, 12], a setting
we formally detail in Appendix C.1. Recent algorithms [25, 12] attain

√
T regret for this setting,

with polynomial runtime and polynomial regret dependence on relevant problem parameters. This
was recently demonstrated to be optimal [26, 9], with Cassel et al. [9] showing that logarithmic regret
is possible the partial system knowledge. In the related LQG setting (partial-observation, stochastic
process and observation noise, Appendix C.2), Mania et al. [25] present perturbation bounds which
suggest T 2/3 regret, improve to

√
T by Lale et al. [23], matching the optimal rate for LQG. For

LQG with both non-denegerate process and observation noise, Lale et al. [22] attain poly(log T )
regret, demonstrating that in the presence of observation, LQG is in fact easier than LQR (with no
observation noise) in terms of regret; see Appendix B.1 for further discussion.

Recent work first departed from online LQR by considered adversarially chosen costs under known
stochastic or noiseless dynamics [2, 11]. Agarwal et al. [4] obtain logarithmic regret for fully ob-
served systems, stochastic noise and adversarially chosen, strongly convex costs. The non-stochastic
control setting we consider in this paper was established in Agarwal et al. [3], who obtain

√
T -regret

for convex, Lipschitz (not strongly convex) cost functions and known dynamics. Hazan et al. [20]
attains T 2/3 regret for the same setting with unknown dynamics. Simchowitz et al. [28] generalizes
both guarantees to partial observation, and generalize the optimal rate of logarithmic and

√
T for

known and unknown systems, respectively to strongly convex losses and a ‘semi-stochastic” noise
model. This assumption requires the noise to have a well-conditioned, stochastic component; in
contrast, our methods allow truly adversarial noise sequences. Lastly, for the known system set-
ting, Foster and Simchowitz [16] propose a different paradigm which yields logarithmic regret with
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truly adversarial noise, but fixed quadratic cost functions and with full observation. In contrast,
our algorithm accomodates both partial observation and arbitrary, changing costs, and its analysis
and presentation are considerably simpler. Our work also pertains to the broader literature of on-
line optimization with policy regret and loss functions with memory [7, 6], and our lower bound
(Theorem 2.3) draws on the learning-with-switching-costs literature [5, 10, 14].

1.3 Organization and Notation

Section 2 formulates the general OCOAM setting, describes our Semi-ONS algorithm, and states its
guarantees (Theorems 2.1 and 2.2), and the regret-movement tradeoff that hindered past approaches
(Theorem 2.3). Section 3 turns to the control setting, describing the reduction to OCOAM, the
DRC-ONS algorithm, and stating our main results (Theorems 3.1 and 3.2). Discussion of our
results is deferred to Appendix B.1. All proofs are deferred to our appendix, whose organization of
the appendix is detailed in Appendix A. Throughout, let a . b denote that a ≤ Cb, where C is
a universal constant independent of problem parameters. We use Ω(·),O(·) as informal asymptotic
notation. We let a∨b denote max{a, b}, and a∧b to denote min{a, b}. For vectors x and Λ � 0, we
denote ‖x‖Λ :=

√
x>Λx, and use ‖x‖ and ‖x‖2 interchangeably for Euclidean norm. We let ‖A‖op

denote the operator norm, and given a sequence of matrices G = (G[i])i≥0, we define ‖G‖`1,op :=∑
i≥0 ‖G[i]‖op. We use [(·); (·)] to denote vertical concatenation of vectors and matrices. Finally,

non-bold arguments (e.g. z) denote function arguments, and bold (e.g. zt) denote online iterates.

2 Fast Rates for OCO with Affine Memory

Building on past work [28, 3], our results for control proceed via a reduction to online convex
optimization (OCO) with memory, proposed by Anava et al. [6], and denoted by OCOM in this work.
Our lower bound in Section 2.5 explains why this past strategy is insufficient. Thus, we consider a
structured special case, OCOAM , which arises in control, present a second-order algorithm for this
setting, Semi-ONS, and state its main guarantees.

OCOM preliminaries Let C ⊂ Rd be a convex constraint set. OCOM is an online learning game
where, at each time t, the learner plays an input zt ∈ C, nature reveals an h + 1-argument loss
Ft : Ch+1 → R, and the learner suffers loss Ft(zt, zt−1, . . . , zt−h), abbreviated as Ft(zt:t−h). For
each Ft, we define its unary specialization ft(z) := Ft(z, . . . , z). The learner’s performance is
measured by what we term memory-regret:2

MemoryRegT :=
∑T
t=1 Ft(zt:t−h)− infz∈C

∑T
t=1 ft(z). (2.1)

Because the learner’s loss is evaluated on a history of past actions, OCOM encodes learning prob-
lems with dynamics, such as our control setting. This is in contrast to the standard OCO setting,
which measures regret evaluated on the unary ft: OCORegT :=

∑T
t=1 ft(zt)− infz∈C

∑T
t=1 ft(z).

Our goal is to attain logarithmic memory-regret, and quadratic sensitivity to structured errors (in a
sense formalized below).

2.1 OCO with Affine Memory

While we desire logarithmic memory regret, Theorem 2.3 shows that existing analyses cannot yield
better rates than Ω(T 1/3). Luckily, the control setting gives us more structure. Let us sketch this with
a toy setting, and defer the full reduction to Section 3. Consider a nilpotent, fully observed system:
yt ≡ xt, and Ah? = 0. Defining G[i] := [Ai−1

? B?; I · Ii=0], the linear dynamics give [xt;ut] :=∑h
i=0G

[i]ut−i + [xt,0; 0], where xt,0 =
∑h
i=0A

i
?wt−i . For simple policies parametrized by

uzt = z · wt, z ∈ R, the loss incured under iterates zt:t−h, `t([xt,0; 0] +
∑h
i=0G

[i]wt−izt−i) =:
Ft(zt:t−h), exhibits affine dependence on the past. Generalizing the above, the OCO with affine
memory (OCOAM) setting is as follows. Fix G = (G[i])i≥0 ∈ (Rp×din)N across rounds. At each
t ≥ 1, the learner selects zt ∈ C ⊂ Rd, and the adversary reveals a convex cost `t : Rp → R,

2Throughout, the initial iterates (zs)s≤0 are arbitrary elements of C. We note that Anava et al. [6] referred
to MemoryRegT as “policy regret”, but this differs slightly from the policy regret proposed by Arora et al. [7].
To avoid confusion, we use “memory regret”.
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an offset vector vt ∈ Rp, and a matrix Yt ∈ Rdin×d.The learner suffers loss with-memory loss
Ft(zt:t−h), given by Ft(zt:t−h) := `t(vt +

∑h
i=0G

[i] Yt−izt−i). The induced unary losses are

ft(z) := `t(vt + Htz), where Ht :=
∑h
i=0G

[i] Yt−i. (2.2)

We consider two settings for OCOAM. In the exact setting, G is known to the learner, and `t,vt,Yt

are revealed at each t. Thus ft and Ht can be computed after each round. The approximate setting,
the learner knows only an approximation Ĝ of G, and recieves an estimate v̂t of vt (Yt and `t
remain exact). Our algorithm uses approximate unary losses:

f̂t(z) := `t(v̂t + Ĥtz), where Ĥt :=
∑h
i=0 Ĝ

[i] Yt−i. (2.3)

We desire low sensitivity to the approximation errors of Ĝ and v̂, translating to low estimation error
sensitivity for control of an unknown system. For both exact and approximate losses, memory
regret is evaluated on the exact losses Ft, ft, consistent with OCOM.

2.2 The Semi-ONS algorithm

The standard algorithmic template for OCOM is to run an online optimization procedure on the
unary losses ft, otherwise disregarding Ft (but accounting for the discrepancy between the two
in the analysis) [6]. We take this approach here, but with a tailored second order method. Let
zt−h+1, . . . , z0 ∈ C be arbitrary initial parameters. For step size and regularization parameters
η > 0 and λ > 0, and setting∇t := ∇ft(zt), the Semi-ONS(Algorithm 1) iterates are:

z̃t+1 ← zt − ηΛ−1
t ∇t, zt+1 ← arg min

z∈C
‖Λ1/2(z̃t+1 − z)‖, Λt := λI +

∑t
s=1 H

>Ht, (2.4)

The updates are nearly identical to online Newton step (ONS) [19], but whereas the ONS uses pre-
conditioner Λt,ONS := λI +

∑t
s=1∇ft(zt)∇ft(zt)>, Semi-ONS uses outer products of Ht. This

decision is explained in the paragraph concluding Section 2.4. In the approximate setting Semi-ONS

proceeds using the following approximations, with ∇̂t := ∇f̂t(zt)

z̃t+1 ← zt − ηΛ̂−1
t ∇̂t, zt+1 ← arg min

z∈C
‖Λ̂1/2(z̃t+1 − z)‖, Λ̂t := λI +

∑t
s=1 Ĥ

>Ĥt, (2.5)

defined using the quantities in Eq. (2.3). In other words, approximate Semi-ONS is equivalent to
exact Semi-ONS, treating (f̂t, Ĥt) like the true (ft,Ht).

parameters: Learning rate η > 0, regularization parameter λ > 0, convex domain C ⊂ Rd.
initialize: Λ0 = λ · Id, z1 ← 0d
for t = 1, 2, . . . : do

recieve triple (`t,vt,Ht). % For approximate setting, replace (vt,Ht)← (v̂t, Ĥt)
∇t ← ∇ft(zt), where ft(z) = `t(vt + Htz).
Λt ← Λt−1 + H>t Ht .
z̃t+1 ← zt − ηΛ−1

t ∇t.
zt+1 ← arg minz∈C ‖Λ

1/2
t (z − z̃t+1)‖22.

Algorithm 1: Online Semi-Newton Step - Semi-ONS(λ, η, C)

2.3 Guarantees for Semi-ONS

To state our guarantees, we assume the α-strong convexity and L-subquadratic assumption of As-
sumption 1. We assume various upper bounds on relevant quantities:
Definition 2.1 (Bounds on Relevant Parameters). We assume C contains the origin. Further, we
define the diameter D := max{‖z − z′‖ : z, z′ ∈ C}, Y -radius RY := maxt ‖Yt‖op, and
RY,C := maxt maxz∈C ‖Ytz‖; In the exact setting, we define the radii Rv := maxt max{‖vt‖2}
and RG := max{1, ‖G‖`1,op}. In the approximate setting, Rv := maxt max{‖vt‖2, ‖v̂t‖2},
RG := max{1, ‖G‖`1,op, ‖Ĝ‖`1,op}; For settings, we define the H-radius RH = RGRY , and
define the effective Lipschitz constant Leff := Lmax{1, Rv +RGRY,C}.
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Lastly, our analysis requires that the smallest singular value of G, viewed as linear operator acting
by convolution with sequences (u1, u2, . . . ) ∈ (Rdin)N, is bounded below:
Definition 2.2. We define the convolution invertibility-modulus as κ(G) := 1 ∧ inf(u0,u1,... )

{
∑
n≥0 ‖

∑n
i=0G

[i]un−i‖22 :
∑
t ‖ut‖22 = 1}, and the decay-function ψG(n) :=

∑
i≥n ‖G[i]‖op.

A Fourier-analytic argument (Lemma 3.1) demonstrates that κ(G) > 0 when expressing reduc-
ing our control setting to OCOAM (Section 3), and stability of our control parametrization en-
sures ψG(n) decays exponentially; the reader should have in mind the scalings κ(G) = Ω(1) and
ψG(n) = exp(−Ω(n)). For the exact setting, we have the following guarantee:
Theorem 2.1 (Semi-ONS regret, exact case). Suppose κ = κ(G) > 0, Assumption 1 holds, and
consider the update rule Eq. (2.4) with parameters η = 1

α , λ := 6hR2
YR

2
G. Suppose in addition that

h is large enough to satisfy ψG(h + 1)2 ≤ R2
G/T . Then, we have MemoryRegT ≤ 3αhD2R2

H +
3dh2L2

effRG

ακ1/2
log (1 + T ).

The above regret mirrors fast rates for strongly convex rates OCOM and exp-concave standard OCO.
Its proof departs significantly from those of existing OCOM bounds, and is sketched in Section 2.4,
and formalized in Appendix F. For the approximate setting, we assume

Assumption 2 (Approximate Semi-ONS assumptions). We assume that ‖Ĝ − G?‖`1,op ≤ εG,
maxt≥1 ‖vt − v̂t‖2 ≤ cvεG for some cv > 0, and that Ĝ[i] = 0 for all i > h.

For simplicity, the following theorem considers ε2G ≥ 1/
√
T , which arises in our estimation-

exploitation tradeoff for control of unknown linear systems. It shows that Semi-ONS exhibits a
quadratic sensitivity to the estimation error εG, with MemoryRegT scaling as 1

α log T · Tε2G.
Theorem 2.2 (Semi-ONS regret, approximate case). Suppose Assumptions 1 and 2 holds, and
in addition ∇2`t � LI uniformly, and ε2G ≥ 1/

√
T . Consider the update rule Eq. (2.5) with

parameters η = 3
α and λ = (Tε2G + hR2

G). Then MemoryRegT . log T
(

C1

ακ1/2
+ C2

)
·
(
Tε2G + h2(R2

G +RY )
)
, where C1 := (1 +RY )RG(h+ d)L2

eff and C2 := (L2c2v/α+ αD2).

The above mirrors the strongly convex setting, where online gradient descent with ε-approximate
gradients attains 1

αTε
2 regret [28]. In Appendix G we provide two stronger versions: The first

(Theorem 2.2a) includes a certain negative regret term which is indispensible for the control setting,
and accomodates misspecified λ. The second (Theorem G.1) allows for ε2G � 1/

√
T , establishing

(TεG)2/3 regret for small εG. Appendix G also details the proof of Theorem 2.2, which constitutes
the main technical undertaking of the paper. The proof draws heavily on ideas from the proof of
Theorem 2.1, which we presently sketch.

2.4 Proof Sketch for Exact Semi-ONS (Theorem 2.1)

Recall the with-memory and unary regret defined at the start of Section 2, and set ∇t := ∇ft(zt).
Following [6], our analysis begins with the following identity:

MemoryRegT = OCORegT + MoveDiffT , where MoveDiffT :=
∑T
t=1 F (zt:t−h)− f(zt).

That is, MemoryRegT equals the standard regret on the ft sequence, plus the cumulative difference
between Ft (with memory) and ft (unary). The bound on OCORegT for Semi-ONS mirros the anal-
ysis of standard ONS, using that ∇2ft(zt) % H>t Ht % ∇t∇>t (Lemma F.2). To bound MoveDiffT ,
past work on OCOM applies the triangle inequality and an L-Lipschitz condition on F to bound the
movement difference by movement in the Euclidean norm:

MoveDiffT ≤ poly(L, h) · EucCostT , where EucCostT :=
∑T
t=1 ‖zt − zt−1‖. (2.6)

The standard approach is to run OGD on the unary losses [6] When doing so, the differences ‖zt −
zt−1‖ scale with Lipschitz constant L and step sizes ηt. In particular, for the standard ηt ∝ 1

αt step
size for α-strongly convex losses,

∑T
t=1 ‖zt−zt−1‖ = O( 1

α log T ). Since OGD also has logarithmic
unary regret, we obtain O(poly(L,h)

a log T ) memory regret. However, when `t are strongly convex,
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the induced OCOAM losses ft need not be [16], and Theorem 2.3 shows that it is impossible to
attain both logarithmic regret and logarithmic movement cost simultaneously. As a work around,
we establish a refined movement bound in terms of Yt-sequence (see Lemma F.6):

MoveDiffT ≤ poly(L, h) ·AdapCostT , AdapCostT :=

h∑
i=1

T∑
t=1

‖Yt(zt−i − zt−i−1)‖2,

Via Lemma F.7, the Semi-ONS updates and an application of Cauchy-Schwartz yields:

AdapCostT ≤ O (poly(L, h)) ·
(∑T

t=1∇>t Λ−1
t ∇t︸ ︷︷ ︸

∇-movement

)1/2

·
(∑T

t=1 Y
>
t Λ−1

t Yt︸ ︷︷ ︸
Y-movement

)1/2

. (2.7)

Readers familiar with the analysis of ONS will recognize the ∇-movement as the dominant term
in its regret bound, and can be bounded in a similar fashion. To address the Y-movement, we use
the convolution-invertibility assumption (Definition 2.2). This assumption implies that convolution
with G = (G[i])i≥0 is invertible, meaning that we can essentially invert the sequence (H1,H2, . . . )

defined by Ht :=
∑h
i=0G

[i]Yt−i so as to back out (Y1,Y2, . . . ). Linear algebraically, this implies
(see Proposition F.8) Λt − λI =

∑t
s=1 H

>
s Hs � κ(G)

2

∑t
s=1 Y

>
t Yt − O(1). In other words,

up to an additive remainder term and multiplicative factor of κ(G), the Hs-covariance dominates
that Ys-covariance. Hence, Λt roughly dominates

∑t−1
s=1 Y

>
s Ys +λI . Hence, Y-movement is also

O(d log T ) by an application of the log-determinant lemma (Lemma F.5). This yields a logarithmic
upper bound on MoveDiff , and thus logarithmic memory regret.

Semi-ONS v.s. ONS Standard ONS uses a preconditioner based on outer products of∇t. However,
the movement difference depends on gradients of the with-memory loss Ft(·, . . . , ·), which may
not be aligned with direction of ∇t. Indeed, ∇t ∈ RowSpace(Yt), but this is in general a strict
inclusion; that is, Yt accounts for more possible directions of movement that ∇t. Thus, Semi-ONS
forms its preconditioner to ensure slower movement in all Yt-directions, using Ht as a proxy via
the convolution-invertibility analysis.

2.5 The Regret-Movement Tradeoff

As described above, the standard analysis of OCOM bounds the sum of the unary regret and Eu-
clidean total variation of the iterates. While this permits logarithmic regret when ft are strongly
convex, OCOAM losses ft are not strongly convex even if `t are (see e.g. below). We now
show that for a simple class of quadratic OCOAM losses, there is a nontrivial trade-off between
the two terms. We lower bound µ-RegT := OCORegT + µEucCostT =

∑T
t=1 ft(zt) + µ‖zt −

zt−1‖ − infz∈C
∑T
t=1 ft(zt), which characterizes the Pareto curve between unary regret and Eu-

clidean movement. We consider d = 1, C = [−1, 1], `(u) = u2, and the memory-1 OCOAM
losses ft = `(vt − εz), where ε ∈ (0, 1] is fixed and vt ∈ {−1, 1} are chosen by an adversary .
On C, ft are O(ε)-Lipschitz, and have Hessian ε2 (thus arbitrarily small strong convexity). Still, `
satisfies Assumption 1 with α = L = 1. We prove the following in Appendix J.1:
Theorem 2.3. Let c1, . . . , c4 be constants. For T ≥ 1 and µ ≤ c1T , there exists ε = ε(µ, T ) and a
joint distributionD over v1, . . . ,vT ∈ {−1, 1}T such that any proper (i.e. zt ∈ C for all t) possibly
randomized algorithm alg suffers E[µ-RegT ] ≥ c2(Tµ2)1/3. In particular, E[1-RegT ] ≥ c2T

1/3,
and if E[OCORegT ] ≤ R ≤ c3T , then, E[EucCostT ] ≥ c4

√
T/R.

Hence, existing analyses based on Euclidean movement cannot ensure better than T 1/3 regret .
Moreover, to ensure OCORegT = O(log T ), then one must suffer

√
T/ log T movement. In The-

orem J.1 in Appendix J.2, we show that standard ONS with an appropriately tuned regularization
parameter attains this optimal tradeoff (up to logarithmic and dimension factors), even in the more
general case of arbitrary exp-concave losses.

3 From OCOAM to Online Control

This sections proposes and analyzes the DRC-ONS algorithm via OCOAM. Recall the control set-
ting with dynamics described by Eq. (1.1), and regret defined by Eq. (1.2). Throughout, we assume
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that the losses satisfy the strong convexity and quadratic growth assumption of Assumption 1. Out-
puts y lie in Rdy , inputs u lie in Rdu . For the main text of this paper, we assume knowledge of
a stabilizing, static feedback policy: that is a matrix K ∈ Rdu×dy such that the policy ut = Kyt
which is stabilizing (ρ(A? +B?KC?) < 1, where ρ denotes the spectral radius). 3 For this stabiliz-
ing K, we select inputs ualg

t := Kyalg
t + uex,alg

t , where uex,alg
t is the exogenous output dictated by

an online learning procedure. We let the nominal iterates yKt ,u
K
t denote the sequence of outputs

and inputs that would occur by selecting ualg
t = Kyalg

t , with no exogenous inputs. We exploit the
superposition identity (using [·; ·] to denote vertical concatenation)[

yalg
t ;ualg

t

]
=
[
yKt ;uKt

]
+
∑t−1
i=0 G

[i]
Kuex

t−1, (3.1)

where G
[0]
K = [0; Idu ] and G[i]

K = [C?;KC?] (A? + B?KC?)
i−1B? for i ≥ 1. We call GK the

nominal Markov operator. Since K is stabilizing, we will assume that G[i]
K decays geometrically,

and that the nominal iterates are bounded. For simplicity, we take x1 = 0.

Assumption 3. For some cK > 0 and ρK ∈ (0, 1) and all n ≥ 0, ‖G[i]
K‖op ≤ cK ρnK .

Assumption 4. We assume that (wt, et) are bounded such that, for all t ≥ 1, ‖(yKt ,uKt )‖2 ≤ Rnat

Assumption 3 is analogous to “strong stability” [11], and holds for any stabilizing K. Assump-
tion 4 is analogous to the bounded assumption in Simchowitz et al. [28]: since K is stabilizing, any
bounded sequence of disturbances implies a uniform upper bound on ‖(yKt ,uKt )‖24

Benchmark Class We compete with linear dynamical controllers (LDCs) π ∈ Πldc whose closed
loop iterates are denoted (yπt ,u

π
t ,x

π
t ) (see Definition E.2 for further details). These policies include

static fedback laws ůπt = Kẙπt , but are considerably more general due to the internal state. We
consider stabilizing π: for all bounded disturbance sequences maxt≥1 ‖wt‖, ‖et‖ < ∞, it holds
that maxt≥1 ‖yπt ‖, ‖uπt ‖ < ∞. These policies enjoy geometric decay, motivating the following
parametrization of our benchmark class.
Definition 3.1 (Policy Benchmark). Fix parameters ρ? ∈ (0, 1) and c? > 0. Our regret bench-
mark competes LDC’s π ∈ Π? := Πstab(c?, ρ?), where we define Πstab(c, ρ) := {π ∈ Πldc :

(‖G[i]
π,cl‖op ≤ cρn,∀n ≥ 0}, where the Markov operator Gπ,cl is in Definition E.3.

Known v.s. Unknown Dynamics We refer to the known dynamics setting as the setting where the
learner knows the matricesA?, B?, C? defining the dynamics in Eq. (1.1). In the unknown dynamics
setting, the learner does not know these matrices (but knows K).

The DRC parametrization Given radius RM > 0 and memory m ∈ N, we adopt the DRC
parametrization of memory-m controllers M ∈M [28] :

M = Mdrc(m,RM) := {M = (M [i])m−1
i=0 ∈ (Rdydu)m :

∑m−1
i=0 ‖M‖op ≤ RM}. (3.2)

Controllers M ∈ M are then applied to estimates of the nominal outputs yKt . When the dynamics
are known, yKt and uKt are recovered exactly via Eq. (3.1). If A?, B?, C? are not known, we use an
estimate Ĝ of GK to construct estimates ŷK1:t, û

K
1:t:[

ŷKt ; ûKt
]

=
[
yalg
t ;Kyalg

t

]
−
∑t−1
i=1 Ĝ

[i]uex,alg
t−i . (3.3)

Going forward, we use the more general ŷK1:t notation, noting that it specializes to yK1:t for known
systems (i.e. when Ĝ = GK). The DRC parametrization selects exogenous inputs as linear combi-
nations of ŷK1:t under M ∈M: via uex

t (M | ŷK1:t) :=
∑m−1
i=0 M [i]ŷKt−i.

3.1 Reducing DRC to OCOAM

Fixing the DRC length m ≥ 1, let d = dydum, and p = dy + du. Further, let (ŷKt , û
K
t )t≥1 and Ĝ

denote estimates of (yKt ,u
K
t )t≥1 and GK , respectively

3This may be restrictive for partially observed systems [17], see Appendix D for generalizations.
4The assumed bound can be stated in terms of maxt ‖wt, et‖2. One may allow Rnat to grow logarithmi-

cally (e.g. Rnat = O(log1/2 T ) for subguassian noise), by inflating logarithmic factors in the final bounds.
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Definition 3.2 (OCOAM quantities for control). Let e[·] denote the natural embedding of M ∈ M
into Rd, and let e91[·] denote its inverse; Define the OCOAM matrices Yt := ey[ŷKt:t9m+1], where
ey is embedding satisfying Ytz = uex

t (M | ŷK1:t) for all z of the form z = e[M ]; Define the offset
vKt = (yKt ,u

K
t ) ∈ Rp, and its approximation v̂Kt = (ŷKt , û

K
t ) ∈ Rp; Define the constraint set

C := e(M) ⊂ Rd (that is, embed the DRC set into Rd).

We now define the relevant OCOAM losses as those consistent with the above notation.
Definition 3.3 (OCOAM losses for control). Let Yt,v

K
t , v̂

K
t be as above. For h ∈ N, define the

exact losses Ft(zt:t−h) := `t(v
K
t +

∑h
i=0G

[i]
K Yt−izt−i), and ft(z) := `t(v

K
t + Htz), where

Ht :=
∑h
i=0G

[i]
K Yt−i. Given an estimate Ĝ of GK , the approximate unary loss is f̂t(z) :=

`t(v̂
K
t + Ĥtz) with Ĥt :=

∑h
i=0 Ĝ

[i] Yt−i.

We take h = Θ(log T ), since the exponential decay assumption (Assumption 3) ensures G[i]
K =

exp(−Ω(h)) ≈ 0 for i > h. The resulting OCOAM problem is to produce a sequence of it-
erates zt minimizing MemoryRegT on the sequence (Ft, ft). Since zt are embeddings of con-
trollers, this gives rise to a natural control algorithm: for each iterate zt, back out a DRC controller
Mt = e−1(zt), and applies exogenous input uex,alg

t := uex
t (Mt | yK1:t). In Appendix E, we stream-

line past work [28] by providing black-box reductions bounding the control regret (Eq. (1.2)) of such
an algorithm by its memory regret. Proposition E.5 addresses the known system case, and Proposi-
tion E.8 the unknown case. Because the latter is more intricate, we conclude the present discussion
with an informal statement of the known system reduction:
Proposition E.5 (informal). Let algorithm alg which produces iterates zt ∈ Rd. Let alg′ denote
the control algorithm which selects uex,alg

t := uex
t (Mt | yK1:t), where Mt = e−1(zt). Then, for

m = Õ (1) , we have ControlRegT (alg′) ≤ MemoryRegT (alg) +O(1).
Remark 3.1 (Hat-accent notation). We use Yt even when defined using the approximate ŷK1:t. How-
ever,G and vK do recieve hat-accents when estimates are used. This is because, while OCOAM can
account for the approximation error onG and vK (Theorem 2.2), the approximation error introduced
by setting Yt := ey[ŷKt:t9m+1] requires control specific arguments

3.2 The DRC-ONS algorithm and guarantees

Stating the DRC-ONS algorithm is now a matter of putting the pieces together. For known systems,
the learner constructs the losses in Definition 3.3 with Ĝ = GK , and runs Semi-ONS on ft, and uses
these to perscribe a DRC controller in accordance with the above discussion. For unknown systems,
one constructs the estimate Ĝ via least squares, and then runs Semi-ONS on f̂t; formal pseudocode
is given in Algorithms 2 and 3 in Appendix D.1. Our formal guarantees are
Theorem 3.1 (Guarantee for Known System). Suppose Assumptions 1, 3 and 4 holds, and for
given ρ? ∈ (0, 1), c? > 0, let Π? be as in Definition 3.1. For simplicity, also assume c? ≥
cK , ρ? ≥ ρK . Then, for a suitable choice of parameters, DRC-ONS(Algorithm 2) achieves the
bound ControlRegT (alg; Π?) ≤ log4(1 + T ) · c

5
?(1+‖K‖op)3

(1−ρ?)5 · dudyR2
nat · L

2

α .

Theorem 3.2 (Guarantee for Unknown System). Suppose Assumptions 1, 3 and 4 holds, and for
given ρ? ∈ (0, 1), c? > 0, let Π? be as in Definition 3.1. For simplicity, also assume c? ≥ cK , ρ? ≥
ρK . In addition, assume ∇2`t � LI uniformly. Then, for any δ ∈ (0, 1/T ), DRC-ONS with an
initial estimation phase (Algorithm 3) for an appropriate choice of parameters has the following
regret with probability 1 − δ: ControlRegT (alg; Π?) .

√
T log3(1 + T ) log 1

δ ·
c8?(1+‖K‖op)5

(1−ρ?)10 ·
dy(du + dy)R5

nat · L
2

α .

Together, these bounds match the optimal regret bounds for known and unknown control, up to
logarithmic factors [4, 26]. The above theorems are proven Appendix E, which also gives complete
statements which specify the parameter choices Theorems 3.1a and 3.2a. In addition, Appendix D
generalizates the algorithm by replacing static K in the DRC algorithm with a dynamic nominal
controller π0, for which analogous guarantees are stated in Appendix E. Importantly, Appendix E.3
verifies that convolution-invertibility holds:
Lemma 3.1. For κ as in Definition 2.2, we have κ(GK) ≥ 1

4 min{1, ‖K‖92
op}.
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Broader Impact

Though this paper is primarily theoretical in nature, we believe that the non-stochastic control setting
is an important one. Historically, one of the greatest strengths of control theory is its ability to
provide robust, mathematical guarantees on performance quality. As control theory merges with
recent developments in reinforcement learning, we see novel applications in domains with little room
for error: control algorithms in automated transportation, server cooling, and industrial robotics can
wreak havoc when gone awry. These tasks may range from easy-to-model to wildly unpredictable,
and purely stochastic models may not suffice to capture the full extent of the uncertainty in the task.
On the other hand, traditional techniques from robust control may be overly conservative, and deem
certain tasks infeasible from the outset.

While far from perfect, we believe that the non-stochastic control model inches us closer towards ro-
bustness to modeling assumptions, without succumbing to excessive pessimism. As such, we find it
important to understand what, if any, challenges this more accomodating model poses to data-driven
control. We hope that our central theoretical contribution - demonstrating that the uncertainty in the
noise model is in fact not a significant barrier to achieving near optimal performance - may encour-
age practioners not to abandon considerations of robustness for fear of sacrificing performance. But
there is still a long road ahead, and we recognize that non-stochastic control does not capture many
important senses of robustness in the decades-old control literature. We also recognize that there are,
and will continue to be, instances when performance must be sacrificed for robustness, and hope our
work will contribute a small but helpful part in a broader dialogue about the tensions between safety
and performance in data-driven control.
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A Organization of the Appendix and Notation

The appendix is organized as follows:

• Appendix B provides further discussion, describing how our work serves to characterize the
relative difficulty of adversarial noise in online control settings when compared to stochas-
tic.

• Appendix C provides an in-depth comparison with the classic LQR and LQG settings, to-
gether with an in-depth discussion in Appendix B.1 about the extent to which stochasticity
affects the optimal regret rates in online control.

• Appendix D provides the full statement of the algorithm DRC-ONS algorithm for the known
and unknown settings, and describes the more general DRC-ONS-DYN algorithm for use
with a non-static internal controller.

• Appendix E provides full statements and proofs of our main regret bounds for the control
setting, Theorems 3.1 and 3.2. In particular, we provide the full analogues with the full
parameter settings required for the regret bounds, Theorems 3.2b and G.1. We also provide
generalizations of our DRC-ONS-DYN algorithm , Theorems 3.1b and 3.2b.

• Appendix F gives the full proof of the logarithmic regret bound for Semi-ONS, Theo-
rem 2.1, and Appendix H provides the omitted proofs.

• Appendix G gives the full proof of the quadratic error sensitivity of Semi-ONS, Theo-
rem 2.2, and Appendix I provides the omitted proofs.

• Appendix J gives the proof of Theorem 2.3 , and then demonstrates the standard online
Newton step matches the tradeoff (Theorem J.1)

Notation: We use a = O (b) and a . b interchangably to denote that a ≤ Cb, where C is a
universal constant independent of problem parameters. We also use a ∨ b to denote max{a, b}, and
a ∧ b to denote min{a, b}. Notation relevant to the control problem is reviewed where-necessary
in Appendices C and D. In what follows, we review notation relevant to the generic analyses of
Semi-ONS.

In Semi-ONS, we have the with-memory loss functions

Ft(zt, . . . , zt−h) := `t(vt +

h∑
i=0

G[i]Yt−izt−i),

and their unary specializations

ft(z) := Ft(z, . . . , z) = `t(vt + Htz), Ht :=

h∑
i=0

G[i]Yt−i.

Here the losses `t,vt,Yt change at each round, and G = (G[i])i≥0 is regarded as part of an infinite-
length Markov operator which is fixed throughout.

For unknown systems, we are use approximate losses, where v̂t ≈ vt, Ĝ ≈ G,

f̂t(z) := F̂t(z, . . . , z) = `t(v̂t + Ĥtz), Ĥt :=

h∑
i=0

Ĝ[i]Yt−i.

Throughout, we use bold zt to refer to the iterates of the algorithm.

B Further Discussion

B.1 Discussion of Results

In this work, we demonstrate that fast rates for online control, and in particular, the optimal
√
T

regret rate [26] for the online LQR setting, are achievable with non-stochastic noise. Interestingly,
simultaneous work by Lale et al. [22] shows that the presence of observation noise implies that the
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optimal regret for purely stochastic LQG is in fact polylogarithmic. At first this seems puzzling
because, on face, LQG appears to be a strict generalization of LQR. However, poly(log T ) regret
occurs when LQG has a strictly non-degenerate stochastic observation noise et, which is not the
case in LQR. This faster rate is achievable because the noise on the observation provides continuous
exploration, allowing the learner to continue to learn with dynamics while simultanously exploiting
near-optimal policies. Alternatively, this observation noise can be understood as making the baseline
comparator easier (i.e. minπ∈ΠKT (π) is larger), because the underlying control problem is more
difficult.

Since we are not guaranteed this observation noise in purely non-stochastic control (indeed, there
may be no observation noise at all),

√
T is still the optimal rate in our setting. Thus, our regret

guarantees contribute to the following surprising characterization of regret (with respect to linear
dyanic policies) in linear control:

• For known system dynamics, non-stochastic control is just easy as stochastic (Theo-
rem 3.1). There is no substantial price to pay for past mistakes, even under potentially
unpredictable, non-stochastic disturbances.

• For unknown system dynamics, stochastic process noise confers little advantage over ad-
versarial noise; both have quadratic sensitivity to error (Theorem 3.2).

• However, there is an advantage to having non-degenerate observation noise. But this is due
to continual exploration induced by stochastic noise, and not because stochastic reduces
sensitivity to error.

As mentioned in the introduction, competing with arbitrary policies (e.g. the optimal control law
given the noise) requires regret which is linear in T [24]. Understanding the optimal competive ratio,
or further assumptions which allow sublinear regret with respect to the optimal control law, remain
an interesting direction for future work.

B.2 Conclusion

In this work, we demonstrate that fast rates for online control, and in particular, the optimal
√
T

regret rate [26] for the online LQR setting, are achievable with non-stochastic noise.

Future Work It is an interesting direction for future research to determine if non-degenerate obser-
vation noise can be used to attain polylogarithmic regret for unknown systems in the semi-stochastic
regime considered by Simchowitz et al. [28]. This regime interpolates between purely stochastic
non-degenerate noise, and arbitrary adversarial noise considered in this setting.

Furthermore, it may be possible that
√
T regret for unknown systems is attainable even without

strongly convex cost function; currently, the state of the art in this setting is T 2/3 [28, 20].

Finally, we hope future work will take up a more ambitious direction of inquiry, investigating
whether these techniques can be applied beyond linear time invariant systems with bound noise.
Such directions understanding slowly-varying dynamics, robustness to non-linearities, and model-
predictive control.

Open Question: System Stability and Fast Rates Lastly, an open question that remains is the
extent to which stability of the dynamics affects the extent to which stochastic control is easier
than non-stochastic. For example, the guarantees in Lale et al. [22] assume that the dynamics of
the system are internally stable, which presumbaly simplifies the system identification procedure.
On the other hand, our work assumes only that our system can be stabilized by a static feedback
controller, which holds without loss of generality for fully observed systems.

As discussed in Appendix D, there are many partially observed systems which cannot be stabilized
even by static feedback, but can be stabilized by more general linear control laws. For such systems,
our guarantees do extend, but under the opaque technical assumption on the dynamics induced by
this more general stabilizing controller have the invertibility property of Definition 2.2. Recall that
for the simple case of static feedback, this invertible property is proven to hold in Lemma 3.1.

On the other hand, Simchowitz et al. [28] show that for semi-stochastic disturbances (disturbances
with a non-degenerate stochastic component), one can still achieve fast rates for any any linear sta-
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bilizing scheme.5 This seems to suggest that for controller parametrizations based on more powerful
stabilizing controllers, stochasticity may in fact be beneficial. It is an interesting direction for future
work to understand whether these more general stabilizing controllers admit fast regret rates for
non-stochastic control.

Part I

Appendices for Control
C Past Work and Classical Settings

In this section, we describe in detail how our non-stochastic control setting compares with other
control settings considered in the literature. At the end of the section, we conclude with a more
thorough discussion of the separations (and lack thereof) between stochastic and non-stochastic
control. Recall that our linear system is described by the dynamic equations

xt+1 = A?xt +B?ut + wt, yt = C?xt + et, (C.1)

Of special interest are the fully observed settings, where yt = xt. We may also imagine an interme-
diate, full-rank observation setting, where dy = dx, and σmin(C?) > 0. Note that this latter setting
allows for observation noise et, while the former does not. Finally, in full generality C? ∈ Rdydx
may have rank rank(C?) < dx, and thus states cannot in general be recovered from observations.

C.1 Online LQR

The linear quadratic regularity, or LQR, corresponds to the setting where the state is fully observed
xt = yt, and the noise wt is selected from a mean-zero, light-tailed stochastic process - typically
i.i.d. Gaussian. Crucially, the noise wt is assumed to have some non-degenerate covariance: e.g.,
wt

i.i.d∼ N (0,Σ) for some Σ � 0. One then considers quadratic cost functions which do not vary
with time:

`t(x, u) = `(x, u) = x>Rx+ u>Qu,

where R and Q are positive definite matrices. In particular, `(x, u) is a strong-convex function, and
thus the LQR setting is subsumed by our present work.

For the above setting, the optimal control policy (in the limit as T → ∞) is described by a static
feedback law ut = K?xt, where K? solves the Discrete Algebraic Riccati Euqation, or DARE; we
denote the corresponding control policy πK? . Note that this is in fact the optimal unrestricted control
policy (say, over any policy which executes inputs as functions of present and past observations),
despite having the simple static feedback form.

Results for online LQR consider a regret benchmark typically considered performance with respect
to this benchmark (see e.g. [1, 13, 25, 12])

RT (alg) := JT (alg)− T lim
n→∞

1

n
Ew[Jn(πK?)]

where the righthand term is the infinite horizon average cost induced by placing the optimal control
law K?. One can show (e.g. [26]) Ew[Jn(πK?)] is increasing in n. Thus, by Jensen’s inequality, it

5Intuitively, this is because with (semi-stochastic) noise, one can replace the infinite-horizon invertibility
condition κ(G) of Definition 2.2 with a finite-horizon analogue, κm,h(G). It is shown that this analogue decays
at most polynomially inm,h, even though κ(G) may be zero. This translates into a polynomial dependence on
m,h in the final bound, which contributes only logarithmic factors for the typical choice m,h = O (log T ).
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holds that for any Π ⊂ Πldc containing πK? ,

Ew[RT (alg)] = Ew[JT (alg)]− T lim
n→∞

1

n
Ew[Jn(πK?)]

≤ JT (alg)− Ew[JT (πK?)]

= Ew[JT (alg)]− inf
π∈Π

Ew[JT (π)]

≤ Ew[JT (alg)]− Ew inf
π∈Π

JT (π)

≤ Ew[JT (alg)− inf
π∈Π

JT (π)] := Ew[RegretT (alg; Π)],

where RegretT is our non-stochastic benchmark. Hence, we find that, in expectation, the standard
benchmark for online LQR is weaker than ours. Nevertheless, the two benchmark typically concide
up to lower order terms due to martingale concentration. Observe however a key conceptual dif-
ference: the LQR regret RT can be defined with an a prior benchmark, because the dynamics are
stochastic. On the other hand, the non-stochastic benchmark is defined a posteriori, after because
the noises are selected by an adversary.

C.2 Online LQG

In the LQG, or linear quadratic gaussian control, one typically assumes a partially observed dynam-
ical system, inheriting the full generality of Eq. (C.1). Again, the cost function is typically taken to
be quadratic function of input and output:

`t(y, u) = `(y, u) = y>Ry + y>Qy,

Again, R,Q are assumed to be positive defined, and thus our assumption that `t are strongly convex
subsumes the LQG setting. Typically, online LQG assumes that both the process noise wt and the
observation noise et are not only mean zero and stochastic, but also well conditioned. For example,
wt

i.i.d∼ N (0,Σw) and et
i.i.d∼ N (0,Σe), where Σw,Σe � 0.

Whereas the unconstrained optimal policy in LQR is an static feedback law, the optimal LQG policy
is dynamic linear controller of the form considered in this work. This is true even if C? = I but
there is non-zero process noise et; that is, yt = xt + et.

D Pseudocode, and Dynamic Feedback Generalization

D.1 Full Pseudocode for Static Feedback Parametrization

parameters:
Newton parameters η, λ > 0
DRC parameters radius RM > 0, DRC length m ≥ 1, memory length h ≥ 0

closed-loop Markov operator estimate Ĝ. % if known system, set Ĝ← GK
initialize:

Constraint setM←Mdrc(h,RM) (Eq. (3.2))
Semi-ONS subroutine A ← Semi-ONS(η, λ, e(M)) (Algorithm 1)
initial values ŷK0 , ŷ

K
91, . . . , ŷ

K
9(m+h) ← 0 for t = 1, 2, . . . : do

recieve yalg
t from environment, iterate zt from A, and set DRC parameter Mt ← e91[zt].

Construct estimate v̂Kt = (ŷKt , û
K
t ) via Eq. (3.3)

play input ualg
t ← Kyalg

t + uex
t (Mt | ŷK1:t).

suffer loss `t(y
alg
t ,ualg

t ), and observe `t(·) .
feed A the pair (`t, Ĥt, v̂

K
t ), defined in Eq. (2.3), and update A.

Algorithm 2: Disturance Response Control via Online Newton Step (DRC-ONS).

D.2 Stabilizing with dynamic feedback

In general, a partially observed system can not be able to be stabilized by static feedback. To circum-
vent this, we describe stabilizing the system with an dynamic feedback controller, a parameterization
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Input:
Newton parameters η, λ > 0
DRC parameters radius RM > 0, DRC length m ≥ 1, memory length h ≥ 0
Estimation Length N ≥ 0 % N ∝

√
T

Initialize Ĝ[0] =

[
0du×dy
Idu

]
, and Ĝ[i] = 0 for i > h.

for t = 1, 2, . . . , N do
receive yalg

t

play ualg
t = uex,alg

t +Kyalg
t , where uex,alg

t
i.i.d∼ N (0, Idu).

estimate Ĝ[1:h] = (Ĝ[i])i∈[h] ← arg minG[1:h]

∑N
t=h+1 ‖v

alg
t −

∑h
i=1G

[i]uex,alg
t−i ‖22.

run Algorithm 2 for times t = N + 1, N + 2, . . . , T , using Ĝ as the Markov parameter estimate,
and parameters m,h, λ, η.

Algorithm 3: Full DRC-ONS for Unknown System, with estimation

we refer to as DRC-DYN. The following exposition mirrors Simchowitz et al. [28], but is abridged
considerably. Specificially, we assume that our algorithm maintains an internal state salgt , which
evolves according to the dynamical equations

salgt+1 = Aπ0
salgt +Bπ0

yalg
t +Bπ0,uu

ex
t , (D.1)

and selects inputs as a combination of an exogenous input uex
t , and an endogenous input determined

by the system:

ualg
t = uex,alg

t + (Cπ0
salgt +Dπ0

yalg
t ). (D.2)

Lastly, the algorithmic prescribes an control output, denoted by ωt, given by

ωalg
t+1 = Cπ0,ωs

alg
t +Dπ0,ωy

alg
t ∈ Rdω ,

which we use to parameterize the controller. In the special case of static feedback, we takeCπ0,ω = 0

and Dπ0,ω = I , so that ωalg
t = yalg

t . We assume that π0 is stabilizing, meaning that, if we have
maxt ‖et‖, ‖wt‖, ‖uex,alg

t ‖ < ∞ are bounded, then with maxt ‖ualg
t ‖, ‖y

alg
t ‖, ‖ω

alg
t ‖ < ∞. As a

consequence of the Youla parametrization [30], one can always construct a controller π0 which has
this property for sufficiently non-pathological systems.

Analogous to the sequence yKt ,u
K
t , we consider a sequence that arises under no exogenous inputs:

Definition D.1. We define the ‘Nature’ sequence ynat
t ,unat

t ,ωnat
t as the sequence obtained by exe-

cuting the stabilizing policy π0 in the absence of uex
t = 0; we see vnat

t = (ynat
t ,unat

t ) ∈ Rdy+du .
Each such sequence is determined uniquely by the disturbances wt, et.

Moreover, the ‘Nature’ sequences can be related to the sequences visited by the algorithm via linear
Markov operators
Definition D.2. We define the linear Markov operators Gex→v, Gex→ω as the operators for which

ωalg
t = ωnat

t +

t∑
i=1

G[t−i]
ex→ωu

ex
i , valg

t = vnat
t +

t∑
i=1

G[t−i]
ex→vu

alg
i .

We note that G[0]
ex→ω = 0dω×du by construction.

Finally, we describe our controller parametrization:
Definition D.3 (DRC with dynamic stabilizing controller). Generalizing Eq. (3.2), let
Mdrc(m,RM) denote M ∈ Gdu×dω for which ‖M‖`1,op ≤ RM, and M [i] = 0 for all i ≥ m.
Given estimates ω̂ nat

t−m+1, . . . , ω̂
nat
t , we select

uex
t (M | ω̂ nat

1:t ) :=

m−1∑
i=0

M [i]ω̂ nat
t−1
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We recover the static feedback setting in the following example:
Example D.1 (Static Feedback). To recover the special case of static feedback, we make the fol-
lowing substitutions

• We set salgt = 0 for all t, Cπ0 = 0 and Dπ0 = K.

• We set Cπ0,ω = 0 and Dπ0,ω = I , so that ualg
t = uex,alg

t +Kyalg
t

• We set we set Cπ0,ω = 0 and Dπ0,ω = I , so that ωalg
t = yalg

t for all t.

• The quantities ynat
t and ωnat

t both correspond to yKt , and unat
t = uKt , the operator Gex→v

becomes the Markov operator GK , and Gex→ω becomes the top dy × du block of GK ,
capturing the response from uex

t → yt.

• Thus, uex
t (M | ω̂ nat

1:t ) corresponds to uex
t (M | ŷK1:t).

D.3 Full Algorithm under Dynamic Feedback

Let us now turn to the specific of the main algorithm with dynamic feedback, DRC-ONS-DYN.
Throughout the algorithm, we maintain an internal state updated according to the nominal controller
π0 via Eq. (D.1). Moreover, all inputs are selected as ualg

t = uex,alg
t + (Cπ0

salgt + Dπ0
yalg
t ) in

accordance with Eq. (D.2).

Next, we specify how we recover valg
t and ωalg

t . Given estimates Ĝex→(y,u), Ĝex→ω , we parallel
Eq. (3.3) in defining

ûnat
t :=

[
ŷnat
t

ûnat
t

]
=

[
yalg
t

Cπ0s
alg
t +Dπ0y

alg
t

]
−

t−1∑
i=1

Ĝ
[i]
ex→(y,u)u

ex,alg
t−i ,

ω̂ nat
t := ωalg

t −
t−1∑
i=1

Ĝ[i]
ex→ωu

ex,alg
t−i . (D.3)

As in the static feedback case, the above exactly vnat
t ,ωnat

t for exact estimates Ĝex→(y,u) = Gex→v

and Ĝex→ω = Gex→ω . We then contruct optimization losses as follows, mirroring Eq. (2.3):

f̂t(z) := `t(v̂
K
t + Ĥtz), where Ĥt :=

h∑
i=0

Ĝ
[i]
ex→(y,u)Yt−i, and Ys = eω[ω̂ nat

s:s−m], (D.4)

where eω is an embedding map analogues to ey .

With these estimates and definitions, Algorithms 4 and 5 provides the pseudocode generalizing
Algorithms 2 and 3 to our setting. The main differences are

• Using ω̂ nat
t for the controller parameterization, rather than yKt .

• Mainting the internal state salgt

• Estimating two sets of Markov parameters, Ĝex→ω and Ĝex→(y,u).

E Full Control Regret Bounds and Proofs

This section states and proves our main results for the control setting. We state and prove The-
orems 3.1b and 3.2b for the general, dynamic-internal controllers described in Appendix D. We
then derive the regret bounds Theorems 3.1 and 3.2 in the main text as consequences of the above
theorems. In addition, we state variations of the main-text bounds which make explicit the param-
eter settings which attain the desired regret (Theorems 3.1a and 3.2a). The section is organized as
follows:

• Appendix E.1 gives the requisite assumptions and conditions for the general setup of Ap-
pendix D, which replaces the static Kcontroller with dynamics internal controller.
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parameters: Newton parameters η, λ, radius RM, DRC length m, memory h, closed-loop Markov
operator estimate Ĝex→ω, Ĝex→(y,u), initial internal state salg1

initialize:
constraint setM←Mdrc(h,RM) (Eq. (3.2)), with C ← e(M).
optimization subroutine A ← Semi-ONS(η, λ, C) (Algorithm 1), with iterates zk
initial values ω̂ nat

0 , ω̂ nat
91 , . . . , ω̂ nat

9(m+h) ← 0

for t = 1, 2, . . . : do
recieve yalg

t from environment
Construct estimate ûnat

t = (ŷnat
t , ûnat

t ) and ω̂ nat
t via Eq. (D.3)

Recieve iterate zt from A, and back out DRC parameter Mt ← e91[zt].
play input ualg

t ← Dπ0y
alg
t + Cπ0s

alg
t + uex

t (Mt | ω̂ nat
1:t ). .

suffer loss `t(y
alg
t ,ualg

t ), and observe `t(·)
feed A the pair (f̂t, Ĥt), defined in Eq. (D.4), and update A
update internal state salgt+1 according to Eq. (D.1).

Algorithm 4: DRC-ONS-DYN from Markov Parameter Estimates

Input: Number of samples N , system length h, DRC length m, learning parameters η, λ.

Initialize Ĝ[0]
ex→(y,u) =

[
0du×dy
Idu

]
, and Ĝ[i]

ex→(y,u) = 0 for i > h, and Ĝ[i]
ex→ω = 0 for i = 0 and for

i > h, salg1 = 0 for t = 1, 2, . . . , N do
draw uex,alg

t ∼ N (0, Idu)

receive valg
t = (yalg

t ,ualg
t ) and ωalg

t .
play ualg

t = uex,alg
t + (Cπ0s

alg
t +Dπ0y

alg
t )

update internal state salgt+1 according to Eq. (D.1).

estimate Ĝ[1:h] via

Ĝ
[1:h]
ex→(y,u) ← arg min

G[1:h]

N∑
t=h+1

‖valg
t −

h∑
i=1

G[i]uex,alg
t−i ‖

2
2

Ĝ[1:h]
ex→ω ← arg min

G[1:h]

N∑
t=h+1

‖ωalg
t −

h∑
i=1

G[i]uex,alg
t−i ‖

2
2

run Algorithm 4 for times t = N + 1, N + 2, . . . , T , using Ĝex→ω, Ĝex→(y,u) as the Markov
parameter estimates, and parameters m,h, λ, η, and state salgt+1.

Algorithm 5: Full DRC-ONS-DYN for Unknown System (with estimation)

• Appendix E.2 states the general regret guarantees Theorems 3.1b and 3.2b for the dynamic-
internal-controller setup. It also states Theorems 3.1a and 3.2a - the complete regret bounds
for static feedback with parameter settings made explicit. The static regret bounds are
derived in Appendix E.2.1.

• Appendix E.3 proves the bound on the invertibility modulus κ(GK), Lemma 3.1. It also
provides discussion regarding the invertibility modulus in the dynamically-stabilized set-
ting (see Remark E.2.

• Appendix E.4 proves the dynamically-stabilized setting guarantee for the known system,
Theorem 3.1b. The proof combines the regret decomposition from Simchowitz et al. [28]
with our policy regret bound, Theorem 2.1.

• Appendix E.5 proves the dynamically-stabilized setting guarantee for the unknown system,
Theorem 3.1b. Again, we combine the existing regret decompositions with the policy regret
bound Theorem 2.2.
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The arguments that follow essentially reuse lemmas from [28] to port over our policy regret bounds
for Semi-ONS to the control setting. We state formal reductions for the known and unknown sys-
tem settings in Propositions E.5 and E.8, which may be useful in future works applying the DRC
parameterization.

The only significant technical difference from [28] is in the analysis of the unknown system, where
we use an intermediate step in their handling of one of the approximation errors. This yields an
offset in the Yt-geometry (see Proposition E.8), which is explained further in Appendix E.5.

Asymptotic Notation: Throughout, we will use Ocnst(b) to denote a quantity a which is at most
Cb, where C is a universal constant independent of problem parameters. Equivalently, a = Ocnst(b)

if and only if a . b. We use both notations interchangably, and Ocnst(·) affords convenience.

E.1 Preliminaries and Assumptions for Dynamic Feedback

While the main theorems in the main body of the main text assume explicity geometric decay, the
results in this result will be established with a more abstract, yet theoretically more streamlined
construction called a decay function:
Definition E.1 (Decay Function). For a Markov operator G = (G[i])i≥0, we define the decay
function as ψG(n) :=

∑
i≥n ‖G[i]‖op. We say that G is stable if ψG(0) < ∞, which implies

that limn→∞ ψG(n) = 0. In general, we say that ψ is a proper, stable decay function if ψ(n) is
non-negative, non-increasing, and ψ(0) <∞.
Assumption 3b (Stability). We assume that Rπ0

:= max{‖Gex→v‖`1,op, ‖Gex→ω‖`1,op} < ∞.
We further assume that the decay function of Gex→v and Gex→ω are upper bounded by a proper,
stable decay function ψπ0

. Note that, when the static analogue Assumption 3b holds, we can take

Rπ0
=

cK
1− ρK

, ψπ0
(n) = Rπ0

ρnK .

For any stabilizing π0, Assumption 3b always holds, and in fact ψπ0 will have geometric decay. In
the special case of static feedback K, Assumption 3 implies that

ψK(n) ≤ cKρ
n
K

1− ρK
. (E.1)

Again, since π0 is stabilizing, we also may also assume that the iterates yKt , e
K
t are bounded for all

t:
Assumption 4b (Bounded Nature’s-iterates). We assume that (wt, et) are bounded such that, for
all t ≥ 1, ‖vnat‖, ‖ωnat‖ ≤ Rnat. This is equivalent to Assumption 4 in when π0 corresponds to
static feedback K.

E.1.1 Policy Benchmarks

Definition E.2 (Linear Dynamic Controller). An LDC is specified by a linear dynamical system
(Aπ, Bπ, Cπ, Dπ), with internal state s̊πt ∈ Rdπ , equipped with the internal dynamical equations
s̊πt+1 = Aπ̊s

π
t + Bπẙ

π
t and ůπt := Cπ̊s

π
t + Dπẙ

π
t . We let Πldc denote the set of all LDC’s π.

These policies include static fedback laws ůπt = Kẙπt , but are considerably more general due to
the internal state. The closed loop iterates (yπt ,u

π
t ,x

π
t , s

π
t ) denotes the unique sequence consistent

with Eq. (1.1), the above internal dynamics, and the equalities ůπt = ut, ẙπt = yt. The sequence
(yKt ,u

K
t ) is a special case with Dπ = K and Cπ = 0.

Dynamic Policy Benchmark Lastly, let us quantitatively define our policy benmark, from [28].
Definition 3.1b (Policy Benchmark). We define a π0 → π as a Markov operator Gπ0→π such that
the inputs uex,π0→π

t :=
∑t
i=1G

[t−i]
π0→πω

nat
i satisfies the following for all t:[

yπt
uπt

]
=

[
ynat
t

unat
t

]
+

t∑
i=1

G[t−i]
ex→vu

ex,π0→π
i .

where (yπt ,u
π
t ) is the sequence obtained by executed LDC π. We define the comparator class

Π? := Πstab,π0
(R?, ψ?), where Πstab,π0

(R,ψ) := {π ∈ Πldc : ‖Gπ0→π‖`1,op ≤ R,ψGπ0→π (n) ≤ ψ(n),∀n}.

Exact expressions for conversion operators are detailed in Simchowitz et al. [28, Appendix C].
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Static Policy Benchmark

Definition E.3 (Static Feedback Operator). Let Gπ,cl denote the Markov operator G[i]
π,cl =

Dπ,clIi=0 + Cπ,clA
i−1
π,clBπ,clIi>0, where we define

Aπ,cl :=

[
A? +B?DπC? B?Cπ

BπC? Aπ

]
, Bπ,cl =

[
B?Dπ −B?
Bπ 0

]
Cπ,cl := [(Dπ −Dπ0

)C? Cπ] , Dπ,cl = [Dπ 0]

To specialize to the static-feedback setting described in the main text of the paper, we develop the
following concrete expression:
Lemma E.1 (Conversion operators for static feedback). Consider the special case of the above,
where π0 is corresponds to static feedback with matrix K. Then, the following is a K → π conver-
sion operator.

G
[i]
K→π = DπIi=0 + Ii>0Cπ,clA

i−1
π,clBπ,cl

[
I
K

]
,

Next, fix c? > 0, ρ? ∈ (0, 1), and recall the set Πstab(c?, ρ?) := {π : ∀n, ‖G[n]
π,cl‖op ≤ c?ρn?}. Then

defining

ψ?(n) :=
(1 + ‖K‖op)c?ρ

n
?

1− ρ?
, R? :=

(1 + ‖K‖op)c?
1− ρ?

. (E.2)

we have that π ∈ Π?, where Π? = Ππ0,stab(R?, ψ?) as defined in Definition 3.1b. Lastly, in the
special case where the target policy π corresponds to another static feedback law ut = Kπyt, then

G
[i]
K→π = Ii=0Kπ + (Kπ −K)C?(A? +B?KC?)

i−1B?(Kπ −K) (E.3)

Proof. The first and third statements are a special case of Simchowitz et al. [28, Proposition 1],
taking Dπ0

= K, and Aπ0
, Bπ0

, Cπ0
identically zero. For the second statement follows from the

fact that ‖G[i]
K→π‖op ≤ (1 + ‖K‖op)‖G[i]

π,cl‖op.

E.2 Complete Statement of Regret Bounds for control setting

Here, we state our main regret bounds for both general dynamical internal controllers (Theo-
rems 3.1b and 3.2b), and specialization for static controllers, Theorems 3.1a and 3.2a. The main
theorems in the text Theorems 3.1 and 3.2 are special cases of the latter. Proofs of specialization to
static controllers are provided in Appendix E.2.1 below.
Assumption 5 (Invertibility Modulus). For the setting setting, where the system is stabilized by a
possibility non-static nominal controller π0, we assuch that the Markov operator Gex→v satisfies
κ(Gex→v) > 0.
Remark E.1 (Conditions under which Assumption 5 holds). From Lemma 3.1, we note that As-
sumption 5 holds whenever π0 corresponds to stabilizing the system with a static controller. In
general, it is more opaque when Assumption 5 assumption holds. We discuss this in more detail in
the Appendix E.3.

With our general setting and notation in place, we are ready to state our general bound. Throughout,
we consider a comparator class

Π? := Πstab,π0
(R?, ψ?), where

Πstab,π0
(R,ψ) := {π ∈ Πldc : ‖Gπ0→π‖`1,op ≤ R,ψGπ0→π (n) ≤ ψ(n),∀n},

as defined in Definition 3.1b.
Theorem 3.1b (Main Regret Guarantee of DRC-ONS-DYN: Known System). Suppose that 1,3b,4b,
5 hold. Moreover, choose λ = 6hR2

natR
2
π0

, η = 1/α, and suppose that m,h are selected so that
that ψπ0

(h+ 1) ≤ Rπ0
/T , ψ?(m) ≤ cR?/T , and RM ≥ R?. Then, the DRC-ONS-DYN algorithm

(Algorithm 4) enjoys the following regret bound:

ControlRegT (alg; Π?) . (α
√
κ)−1mh2dudωR

3
π0
R2

natR
2
ML

2 log (1 + T ) ,

The above guarantee is also inherited by DRC-ONS (Algorithm 2) as a special case.
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The above theorem is proven in Appendix E.4. For static stabilizing controllers, we obtain the
following specialization.
Theorem 3.1a (Main Regret Guarantee of DRC-ONS: Known System, with Explicit Parameters).
Suppose Assumptions 1, 3 and 4 holds, and for given ρ? ∈ (0, 1), c? > 0, let Π? be as in Defini-
tion 3.1. Select parameters

• h = d log T
1−ρK e

• m = d log T
1−ρ? e

• RM = R? = (1 + ‖K‖op) c?
1−ρ?

• η = 1/α, and λ = 6hR2
natc

2
K(1− ρK)2

Then,

ControlRegT (alg; Π?) .
c3Kc

2
?(1 + ‖K‖op)3

(1− ρK)5(1− ρ?)3
· dudyR2

nat ·
L2

α
log4(1 + T )

For unknown systems, the following guarantees Õ
(√

T
)

regret:

Theorem 3.2b (Main Regret Guarantee of DRC-ONS-DYN: Unknown System). Suppose that As-
sumptions 1,3b,4b, 5 hold, and that `t are L-smooth (∇2`t � L). Lastly, fix δ ∈ (0, 1/T ). Then,
when the unknown-system variant of DRC-ONS-DYN with estimation (Algorithm 5) is run with the
following choice of parameters

• λ = R2
nat log(1/δ)

√
T + hR2

π0
and η = 3/α

• N = h2
√
T max{dω, dy + du}

•
√
T ≥ 4 · 1764h2R2

MR
2
π0

+ c0h
2d2
u, where c0 is a universal constant arising from condi-

tioning of the least squraes problem6.

• m ≥ m? + 2h and RM ≥ 2R?.

• ψπ0
(h+ 1) ≤ Rπ0

/T , ψ?(m) ≤ R?/T

Then, the following regret bound holds with probability 1− δ:

ControlRegT (alg; Π?) . log(1 + T )
(dω + dy)(dy + du)mhL2R4

π0
R5

natR
4
M
√
T log(1/δ)

ακ1/2
.

The same guarantee also holds for the static analgoue Algorithm 3).

The following specializes to static control:
Theorem 3.2a (Main Regret Guarantee of DRC-ONS: Unknown System, with Explicit Parameters).
Suppose that 1,3b,4b, 5 hold, and that `t are L-smooth (∇2`t � L). For simplicity, further select
comparator parameters ρ? ≥ ρK , c? ≥ cK . Finally, fix δ ∈ (0, 1/T ). Then, when the unknown-
system variant of DRC-ONS-DYN with estimation (Algorithm 5) is run with the following choice of
parameters

• h = d(1− ρ?)−1 log T e, m = 3h, RM = 2
(1+‖K‖op)c?

1−ρ? .

• λ = R2
nat log(1/δ)

√
T + hc2K/(1− ρK)2 and η = 3/α

• N = h2
√
T (dy + du)

•
√
T ≥ c log2 T ((1− ρ?)−6c4?(1 + ‖K‖op)2 + (1− ρ?)−2d2

u) for some universal constant
c (satisfied for T = Õ (1)).

6Empirically, one can just verify whether the LS problem is well conditioned
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Then, the following regret bound holds with probability 1− δ:

ControlRegT (alg; Π?) .
√
T · c

4
Kc

4
?(1 + ‖K‖op)5

(1− ρK)4(1− ρ?)6
· L

2R5
nat

α
· log3(1 + T ) log(1/δ)

The same guarantee also holds for the static analgoue Algorithm 3).

E.2.1 Specializing Dynamic Stabilizing Controller to Static

Proof of Theorems 3.1 and 3.1a . For the static case, as noted in Assumptions 3b and 4b, Assump-
tion 4 implies Assumption 4b, and Assumption 3 implies Assumption 3b with

Rπ0
=

cK
1− ρK

, ψπ0(n) = Rπ0ρ
n
K .

Moreover, recall that our benchmark is π ∈ Πstab(c?, ρ?), as defined in Definition 3.1. from
Lemma E.1, this benchmark is subsumed by the benchmark Π? for the choice of ψ?, R?, as in
Eq. (E.2):

R? :=
(1 + ‖K‖op)c?

1− ρ?
, ψ?(n) ≤ R?ρn? .

Let us now use the following technical claim:

Fact E.2. Let ρ ∈ (0, 1). Then ρn ≤ 1/T for n ≥ log T
1−ρ

Proof of Fact E.2. We have ρn ≤ 1/T for n ≥ log(T )/ log(1/ρ). But log(1/ρ) ≤ 1
ρ − 1 = 1−ρ

ρ ,
so it suffices to select n ≥ log(T )(ρ/1− ρ) ≥ log(T )/(1− ρ).

Thus, our conditions ψπ0(h+ 1) ≤ Rπ0/T , ψ?(m) ≤ cR?/T , and RM ≥ R? hold as soon as

h ≥ log T

1− ρK
, ≥ log T

1− ρ?
.

Thus, setting h = d log T
1−ρK e, m = d log T

1−ρ? e, and RM = R? = (1 + ‖K‖op) c?
1−ρ? , and κ(GK) ≥

1
4 min{1, ‖K‖92

op} & (1 + ‖K‖op)−2, we obtain

ControlRegT (alg; Π?) .
c3Kc

2
?(1 + ‖K‖op)3

(1− ρK)5(1− ρ?)3
· dudyR2

nat ·
L2

α
log4(1 + T )

This requires the step size choice of η = 1/α and λ = 6hR2
natc

2
K(1− ρK)2.

Theorem 3.2a. For static feedback, we have dω = dy . Thus, (dω + dy)(dy + du) = dy(dy + du).
Next, we have R4

π0
R4
M = (1 − ρK)−4c4K · (1 + ‖K‖op)4(1 − ρ?)

−4c4?, and h ≤ m . (1 −
ρ?)
−1 log(1 + T ). This gives

(dω + dy)(dy + du)mhR4
π0
R4
M . dy(dy + du)

c4Kc
4
?(1 + ‖K‖op)4

(1− ρK)4(1− ρ?)6
log2(1 + T ).

Using 1/
√
κ . (1 + ‖K‖op), we then get

ControlRegT (alg; Π?) .
√
T · c

4
Kc

4
?(1 + ‖K‖op)5

(1− ρK)4(1− ρ?)6
· R

5
natL

2

α
· log3(1 + T ) log(1/δ)

The correctness of the various parameter settings can e checked analogously.
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E.3 Invertibility-Modulus and Proof of Lemma 3.1

In this section, we bound the condition-modulus κ(GK) defined in Definition 2.2, and generalize
the notion to DRC-DYN parametrizations. To begin, we recall our desired bound:
Lemma 3.1. For κ as in Definition 2.2, we have κ(GK) ≥ 1

4 min{1, ‖K‖92
op}.

For general DRC-DYN parameters, the Z-transform yields a clean lower bound for the condition-
modulus of Ǧex→v from Definition 2.2:
Proposition E.3. Define the Z-transform Ǧex→v := C→ C(dy+du)×du as the function

Ǧex→v(z) =

∞∑
i=0

G[i]
ex→vz

−i

Then, we have the lower bound:

κ(Gex→v) ≥ min
z∈T

σmin(Ǧex→v(z))
2,

where κ(Gex→v) is the condition-modulus of Gex→v , as defined in Definition 2.2. In particular, if
Gex→v takes the form

G[i]
ex→v = Ii=0Dex→v + Ii>0Cex→vA

i−1
ex→vBex→v,

then

κπ0
≥ min

z∈T
σmin(Dex→v + Cex→v(zI −Aex→v)

−1Bex→v)
2.

Proof of Proposition E.3. Part 2 applies the well-known formula that the Z-transform of an LTI
system with operator G[i] = DIi=0 + CAi−1BIi>0, which can be computed via

Ǧ(z) = D + C

∑
i≥1

Ai−1z−i

B

= D + C

z−1
∑
i≥0

(A/z)i

B

= D + C
(
z−1(I −A/z)−1

)
B

= D + C (zI −A))
−1
B,

where we use formal identity identity
∑
i≥0X

i = (I −X)−1.

Let us turn to the first part of the proof. We adopt the argument from [28, Appendix F]. Fix
u0, u1, . . . with

∑
n = 0∞‖un‖2 = 1, and define a Markov-shaped vector U = (U [i]), with U [i],

and its Z-transform Ǔ(z) :=
∑n
i=0 U

[i]z−i. We have that

∑
n≥0

∥∥∥∥∥
n∑
i=0

G[i]un−i

∥∥∥∥∥
2

2

=
∑
n≥0

‖(G ∗ U)[n]‖2

where ∗ denotes the convolution operator. By Parseval’s identity, we have that∑
n≥0

∥∥∥(G ∗ U)[n]
∥∥∥2

2
=

1

2π

∫ 2π

0

‖ (G ∗ U)(eιθ)‖22dθ,

where (G ∗ U)(z) =
∑
i≥0(G∗U)[i]z−i is the Z-transform ofG∗U . Because convolutions become

multiplications under the Z-transformation, we have that for the Z-transform of U ,

1

2π

∫ 2π

0

‖ (G ∗ U)(eιθ)‖22dθ =
1

2π

∫ 2π

0

‖Ǧ(eιθ)Ǔ(eιθ)‖22dθ.
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This establishes the first equality of the claim. For the inequality, we have

1

2π

∫ 2π

0

‖Ǧ(eιθ)Ǔ(eιθ)‖22dθ ≥ 1

2π

∫ 2π

0

σmin(Ǧ(eιθ))2‖Ǔ(eιθ)‖22dθ

≥ min
z∈T

σmin(z)2 · 1

2π

∫ 2π

0

‖Ǔ(eιθ)‖22dθ.

To conclude, we note that by Parsevals identity, 1
2π

∫ 2π

0
‖Ǔ(eιθ)‖22dθ. =

∑
n≥0 ‖U [n]‖ =∑

n≥0 ‖un‖2 = 1, giving
∑
n≥0

∥∥∑n
i=0G

[i]un−i
∥∥2

2
= 1

2π

∫ 2π

0
‖Ǧ(eιθ)Ǔ(eιθ)‖22dθ ≥

minz∈T σmin(z)2, as needed.

We now turn to giving an explicit lower for the static-feedback stabilized setting:

Proof of Lemma 3.1. For the special case of static feedback, we recall from Eq. (3.1) that

G[i]
ex→v = G

[i]
K = Ii=0

[
0
I

]
+ Ii>0

[
C?
KC?

]
(A? +B?KC?)

i−1B?, i ≥ 1.

Thus, defining Ǎ(z) := (zI −A? +B?KC?)
−1, we have from Proposition E.3 that

Ǧex→v(z) =

[
C?Ǎ(z)B?

I +KC?Ǎ(z)B?

]
,

where the above holds for all z ∈ T since K is stabilizing. We now invoke a simple linear algebraic
fact:

Claim E.4 (Lemma F.2 in [28]). Consider a matrix of the form

W =

[
Y Z

I +XZ

]
∈ R(d1+d)×d,

with Y ∈ Rd1×d1 , X,Z> ∈ Rd×d1 . Then, σmin(W ) ≥ 1
2 min{1, σmin(Y )

‖X‖op }.

Applying the above claim with Y = I , X = K, and W = C?Ǎ(z)B?, we conclude that
σmin(Ǧex→v(z)) ≥ 1

2 min{1, ‖K‖−1
op } for all z ∈ C. Thus, by Proposition E.3, κ(GK) ≥

( 1
2 min{1, ‖K‖−1

op })2 = 1
4 min{1, ‖K‖−2

op }, as needed.

Remark E.2 (Generic Bounds on Invertibility). In general, we do not have a generic lower bound on
the invertibility modulus which is verifiably no-negative for all choices of stabilizing controllers. For
one, it is not clear that our lower bound in Proposition E.3 is sharp, in part because we are working
with real operators. However, there are certain conditions (e.g. Youla parametrization, where A?
has no eigenvalues z ∈ T, Simchowitz et al. [28, F.2.3]) where we have minz∈T σmin(Ǧex→v(z))

2

is strictly positive.

E.4 Control Proofs for Known System

We focus on the dynamic version of our algorithm, DRC-ONS-DYN, with stabilizing controller π0.
For known Markov operator, this algorithm specializes to DRC-ONS in the case of static feedback.
The following theorem reduces to bounding the policy regret:
Proposition E.5 (Reduction to policy regret for known dynamics). Consider the DRC-ONS-DYN

algorithm (Algorithm 4) initialized with the exact Markov operators Ĝex→(y,u) = Gex→v, Ĝex→ω =
Gex→ω , and iterates Mt produced by an arbitrary black-box optimization procedure A. Further,
suppose that ψ?(m) ≤ cR?/T, ψπ0

(h+ 1) ≤ cψπ0
(h+ 1)/Rπ0

for some c > 0. Then,

ControlRegT (alg) ≤ MemoryRegT (alg) + 12LcR2
MR

2
π0
R2

nat.

where, for the Ft, ft losses in Definition 3.3b, we define

MemoryRegT (alg) :=

T∑
t=1

Ft(zt:t−h | ωnat
1:t )− inf

z∈Me

T∑
t=1

ft(z | ωnat
1:t )

The same is true for Algorithm 2 (for static feedback).
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Remark E.3. . In the above, we allow a slack parameter c on the choice ofm,h. This means that our
main theorems can be generalized slightly to accomodate when m,h are chosen larger-than-needed.

Next, we bound the relevant parameters required:
Lemma E.6 (Parameter Bounds). Assume Rnat, RM ≥ 1. The following bounds hold

(a) We have D = max{‖z − z′‖ : z, z′ ∈Me} ≤ 2
√
mRM.

(b) We have RY := maxt ‖Yt‖op = maxt ‖eω(ωnat
1:t )‖op ≤ Rnat.

(c) We have RY,C = maxt maxz∈C ‖Ytz‖ ≤ RMRnat.

(d) For G = Gex→v , we have RG = ‖Gex→v‖`1,op ≤ Rπ0
, ψG ≤ ψπ0

, and RH ≤ Rπ0
Rnat

(e) We have Rv ≤ Rnat, and Leff ≤ 2LRπ0
RMRnat.

Moreover, d = mdudω

We are now ready to prove our general regret bound for the known system case, encompassing

Proof of Theorem 3.1b. From Theorem 2.1, we have the bound:

MemoryRegT (alg) =

T∑
t=1

Ft(zt:t−h)−min
z∈C

T∑
t=1

ft(z) ≤ 3αhD2R2
H +

3dh2L2
effRG

ακ1/2
log (1 + T ) ,

Let us now specific the above constants using Lemma E.6. From this lemma, we have that
αhD2R2

H = αhmR2
π0
R2

natR
2
M. Moreover, dh2L2

effRG = 4mh2dudωL
2R3

π0
R2
MR

2
nat. Thus, with

λ := 6hR2
natR

2
π0

and η = 1/α, we get

MemoryRegT (alg) . mh2R2
π0
R2

natR
2
M(α+ (α

√
κ)−1L2Rπ0dudω log (1 + T ))

. (α
√
κ)−1mh2dudωR

3
π0
R2

natR
2
ML

2 log (1 + T )),

where we used that L2/α
√
κ ≥ L2/α ≥ α by the assumption α ≤ L. Combining with Proposi-

tion E.5 and again using L ≤ L2/α
√
κ ensures that the total control regret ControlRegT suffers an

additional constant L in the bound, yielding at most

ControlRegT (alg) . (α
√
κ)−1mh2dudωR

3
π0
R2

natR
2
ML

2 log (1 + T ) ,

as needed.

E.4.1 Proof of Proposition E.5

We follow the regret decomposition from [28], noting that our assumptions on the dynamics, mag-
nitude bounds, and costs ct all align. To facilitate reuse of the technical material from [28], we
introduce the following loss notation in the M -domain:
Definition 3.3b (Losses for the analysis). Generalizing Definition 3.3, we introduce the z-space
losses,

Ft(zt:t−h | ω̂ nat
1:t ) := `t(v

nat
t +

h∑
i=0

G[i]
ex→vYt−izt−i), where Ys = eω(ω̂ nat

1:s ),

with unary specialization Ft(zt:t−h | ω̂ nat
1:t ) := ft(z, . . . , z | ω̂ nat

1:t ). and their analogues inM -space

F̄t(Mt:t−h | ω̂ nat
1:t ) := `t(v

nat
t +

h∑
i=0

G[i]
ex→vu

ex
t (M | ω̂ nat

1:t )),

and unary specialization f̄t(M | ω̂ nat
1:t ) := F̄t(M, . . . ,M | ω̂ nat

1:t ). Observe that, for zs = e(Ms)
for s ∈ [T ], and z = e(M), then

Ft(zt:t−h | ω̂ nat
1:t ) = F̄t(Mt:t−h | ω̂ nat

1:t ), and ft(z | ω̂ nat
1:t ) = f̄t(M | ω̂ nat

1:t ). (E.4)
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Moving forward, let (yM ,uM ) denote the sequence produced by selecting input uex
t (M | ωnat

1:t ) at
each i. We then have

ControlRegT (alg; Π?)

=

T∑
t=1

`t(y
alg
t ,ualg

t )− inf
π∈Π?

T∑
t=1

`t(y
π
t ,u

π
t )

≤
T∑
t=1

∣∣∣`t(yalg
t ,ualg

t )− F̄t(Mt:t−h | ωnat
1:t )

∣∣∣︸ ︷︷ ︸
(i.a)

+

T∑
t=1

F̄t(Mt:t−h | ωnat
1:t )− inf

M∈M

T∑
t=1

f̄t(M | ωnat
1:t )︸ ︷︷ ︸

(ii)

+ max
M∈M

T∑
t=1

∣∣f̄t(M | ωnat
1:t )− `t(yMt ,uMt )

∣∣
︸ ︷︷ ︸

(i.b)

+

∣∣∣∣∣ inf
M∈M

T∑
t=1

`t(y
M
t ,u

M
t )− inf

π∈Π?

T∑
t=1

`t(y
π
t ,u

π
t )

∣∣∣∣∣︸ ︷︷ ︸
(iii)

.

Let’s proceed term by term. From Simchowitz et al. [28, Lemma 5.3] (replacing their notation
RG? , ψG? with our notation Rπ0

, ψπ0
),

(i.a) + (i.b) ≤ 4LTRπ0R
2
MR

2
natψπ0(h+ 1). (E.5)

Secondly, from Eq. (E.4), we have

(ii) =

T∑
t=1

Ft(zt:t−h | ωnat
1:t )− inf

z∈Me

T∑
t=1

ft(z | ωnat
1:t ) := MemoryRegT (alg). (E.6)

Finally, from Simchowitz et al. [28, Theorem 1b], we have that for RM ≥ R?,

(iii) ≤ 2LTR?R
2
π0
R2

nat ψ(m) (E.7)

Thus, we obtain

ControlRegT (alg; Π?) ≤ (i.a) + (i.b) + (ii) + (iii)

≤ MemoryRegT (alg) + 4LTR2
MR

2
π0
R2

nat

(
ψ?(m)

R?
+

2ψπ0
(h+ 1)

Rπ0

)
,

Finally, bound ψ?(m) ≤ cR?/T and 2ψπ0
(h+ 1) ≤ cRπ0

/T concludes.

E.4.2 Proof of Lemma E.6

We go term by term:

(a) We have D ≤ 2 max{‖z‖ : z ∈ Me}. For z = e(M), have that ‖z‖ = ‖M‖F ≤√
m‖M‖`1,op ≤

√
mRM by Simchowitz et al. [28, Lemma D.1]

(b) Each matrix Yt can be represented as a block diagonal, with blocks as rows correspond-
ing to ωnat

s for s ∈ {t, t − 1, . . . , t − m + 1}. This matrix has operator norm as most
max{‖ωnat

s ‖ : s ∈ {t, t− 1, . . . , t−m+ 1}} ≤ Rnat.

(c) We have that Ytz = uex
t (M | ωnat

1:t ) ≤
∑m−1
i=0 ‖M [i]‖op‖ωnat

t−i‖op ≤ RMRnat by
Holder’s inequality.

(d) These bounds followly directly from our definitions.

(e) We have Rv ≤ Rnat by assumption, and Leff := 2LRπ0
RMRnat follows from the defini-

tion Leff = Lmax{Rv +RGRY,C}, and the assumption s RM, Rnat ≥ 1, and Rπ0
≥ 1 by

definition (Rπ0 = ‖Gex→v‖`1,op, and G[i]
ex→v =

[
0
I

]
).
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E.5 Unknown Systen

We begin by stating guarantees for the estimation procedures Algorithm 3 and Algorithm 5, which
follow directly past work:
Lemma E.7 ( Theorem 6b in Simchowitz et al. [28]). Let δ ∈ (e−T , T−1), N, du ≤ T , and
ψG?(h+ 1) ≤ 1√

N
. Define dmax = max{dy + du, dω}, and set

εG(N, δ) =
h2Rnat√

N
Cδ, where Cδ := 14

√
du + dmax + log 1

δ , and Ru,est := 3
√
du + log(1/δ).

and suppose that N ≥ h4C2
δR

2
u,estR

2
MR

2
π0

+ c0h
2d2
u for an appropriately large c0, which can be

satisfied by taking

N ≥ 1764(dmax + du + log(1/δ))2h4R2
MR

2
π0

+ c0h
2d2
u.

Then with probability 1− δ −N− log2N , Algorithm 5 satisfies the following bounds

1. εG ≤ 1/max{Ru,est, RMRπ0}.

2. For all t ∈ [N ], ‖ut‖ ≤ Ru,est := 3
√
du + log(1/δ)

3. For estimation error is bounded as

‖Ĝex→ω −Gex→ω‖`1,op ≤ ‖Ĝ[0:h]
ex→ω −G[0:h]

ex→ω‖`1,op +Ru,estψG?(h+ 1) ≤ εG
‖Ĝex→(y,u) −Gex→v‖`1,op ≤ ‖Ĝ[1:h]

ex→(y,u) −G
[1:h]
ex→v‖`1,op +Ru,estψG?(h+ 1) ≤ εG.

Moreover, Algorithm 3 also satisfies the above for Ĝex→(y,u) = Ĝ and Gex→v = GK .

The above bounds are in turn a consequence of Simchowitz et al. [27]. We denote the event of
Lemma E.7 as Eest, and the following exposition assumpt it holds.

Next, we state a blackbox reduction to the DRC online controller framework. This reduction cru-
cially uses the fact that we have over-parameterized the set M. Specifically, over comparator set
is

M? := Mdrc(m?, R?),

whereas the algorithm uses the over-parametrized set

M := Mdrc(m,RM), with RM ≥ 2R? and m ≥ 2m? + h. (E.8)

By over-parametrizing the controller set as above, we obtain the following guarantee:
Proposition E.8 (Reduction to policy regret for known dynamics). . Suppose that Eq. (E.8) holds,
and that ψπ0(h+ 1) ≤ cRπ0/T and ψ?(m) ≤ cR?/T for some c > 1, and that N ≥ m+ h. Con-
sider the DRC-ONS-DYN algorithm with estimation (Algorithm 5) initialized with the exact Markov
operators Ĝex→(y,u) = Gex→v, Ĝex→ω = Gex→ω , and iterates Mt produced by an arbitrary black-
box optimization procedure A.

ControlRegT (alg; Π?) ≤ ̂MemoryRegT (z?) + ν

T∑
t=N+m+2h+1

‖Yt(zt − z?)‖22

+Ocnst(LR3
π0

(N+cm))

(
du + log(1/δ) +R4

MR
2
nat

)
+Ocnst(LR3

MR2
π0
R2

natTε
2
G)

(
1 +

LmR2
π0

ν

)
where Ocnst(1) hides a universal numerical constants. Here, for the Ft, ft losses in Definition 3.3b,
we define the term:

̂MemoryRegT (alg; z?) :=

T∑
t=N+m+2h+1

Ft(zt:t−h | ω̂ nat
1:t )− inf

z∈Me

T∑
t=N+m+2h+1

ft(z | ω̂ nat
1:t ).

Moreover, the same guarantee is also true of Algorithm 3.
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Again, we allow a slack parameter c to allow for over-specifyingm,h, demonstrating low sensitivity
to imperfectly tuned algorithm parameters. Next, we translate the parameter bounds from the control
setting to the ones required for the policy regret analysis of Semi-ONS:
Lemma E.9 (Parameter Bounds for Unknown Setting). Assume Rnat ≥ 1, and that ·. Then, for
t0 := N +m+ h+ 1, the following hold

(a) We have D = max{‖z − z′‖ : z, z′ ∈Me} ≤
√
mRM.

(b) We have RY := maxt≥t0 ‖Yt‖op ≤ 2Rnat.

(c) We have RY,C = maxt≥t0 maxz∈C ‖Ytz‖ ≤ 2RMRnat.

(d) For G = Gex→v , we have RG = |Ĝex→(y,u)‖`1,op ∨ ‖Gex→v‖`1,op ≤ 2Rπ0 , ψG ≤ ψπ0 ,
and RH ≤ 2Rπ0Rnat

(e) We have Rv := maxt≥t0 ‖vKt ‖ ∨ ‖v̂Kt ‖ ≤ 2Rnat, and Leff := 8LRπ0RMRnat.

(f) We can take cv to be 3RMRnat.

Moreover, d = dωdym

Finally, we are in place to prove our main theorem:

Proof of Lemma E.9. The bounds follow analogously to those in Lemma E.6, with the modification
that, for t ≥ N + h, we have ‖ω̂ nat

t ‖ ≤ 2Rnat (by Simchowitz et al. [28, Lemma 6.1]), and
that ‖Ĝex→(y,u)‖`1,op ≤ 2Rπ0 under Eest. Moreover, we can take the constant cv which bounds
‖ûnat

t − vnat
t ‖2 ≤ cvεG to be 3RMRnat by Simchowitz et al. [28, Lemma 6.4b].

Proof of Theorem 3.2b. Let us prove the bound for the dynamic-controller variant Algorithm 5; the
static-controller variant works similarly. Recall that we assume the following

• λ = R2
nat log(1/δ)

√
T + hR2

π0
, η = 3/α

• N = h2
√
Tdmax

•
√
T ≥ 4 · 1764h2R2

MR
2
π0

+ c0h
2d2
u

• m ≥ m? + 2h, RM ≥ 2R?

• ψπ0
(h+ 1) ≤ Rπ0

/T , ψ?(m) ≤ R?/T .

Let εG be an upper bound on the estimation error, which we will set to be greater than
√
T . By

taking λ ∈ [cλ, 1](Tε2G + hR2
H), and applying Theorem 2.2a, we can bound

̂MemoryRegT (z?) + ν

T∑
t=N+m+2h+1

‖Yt(zt − z?)‖22 .

c−1
λ log(1 +

T

cλ
)

(
C1

ακ1/2
+ C2

)(
Tε2G + h2(R2

G +RY )
)
,

where C1 := (1 +RY )RG(h+ d)L2
eff , C2 := (L2c2v/α+ αD2), and ν? = α

√
κ

48(1+RY ) are constants
which we must bound presently. Since d = dωdym ≥ h, L ≥ α,and κ ≤ 1

C1 . dωdymRnatRπ0
L2

eff . dωdymL
2R3

π0
R3

natR
2
M

C2 . L2/αR2
natR

2
M +mR2

M . L2/α(mR2
natR

2
M) ≤ L2

α
√
κ

(mR2
natR

2
M).

Thus, we can bound (
C1

ακ1/2
+ C2

)
.
dωdymL

2R3
π0
R3

natR
2
M

ακ1/2
.
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Thus, from Proposition E.8 with ν = ν?, taking c = 1, and bounding RG . Rπ0 , RY . Rnat from
Lemma E.9

ControlRegT (alg; Π?) . c−1
λ log(1 +

T

cλ
)
dωdymL

2R3
π0
R3

natR
2
M

ακ1/2

(
Tε2G + h2(R2

π0
+Rnat)

)
, .

+ LR3
π0

(N +m)
(
du + log(1/δ) +R4

MR
2
nat

)
+ LR3

MR
2
π0
R2

natTε
2
G

(
1 +

LmR2
π0

ν?

)
Using the above bounds we have ν? = α

√
κ

48(1+RY ) & α
√
κ/Rnat. Thus, for L ≥ α and κ ≤ 1, the

term
LmR2

π0

ν?
dominates 1, and we have

LR3
MR

2
π0
R2

natTε
2
G

(
1 +

LmR2
π0

ν?

)
.
L2R3

MR
4
π0
R3

natm

α
√
κ

Moreover, using N ≥ m by assumption and aggregating terms and simplifying

ControlRegT (alg; Π?) . c−1
λ log(1 +

T

cλ
)
dωdymL

2R4
π0
R3

natR
3
M

ακ1/2

(
Tε2G + h2(R2

π0
+RY )

)
, .

+ LR3
π0
N
(
du + log(1/δ) + cR4

MR
2
nat

)
.

Next, recall dmax := max{du+dy, dω}, let us take N = h2
√
Tdmax. From Lemma E.7, this yields

ε2G =
h4R2

nat

N C2
δ h h4R2

nat(dmax+log(1/δ))
N = R2

nat log(1/δ)/
√
T and that ε2G ≥

√
T . This yields

ControlRegT (alg; Π?) . c−1
λ log(1 +

T

cλ
)
dωdymL

2R4
π0
R3

natR
3
M

ακ1/2

(√
TR2

nat log(1/δ) + h2(R2
π0

+Rnat)
)
, .

+ LR3
π0
h2
√
Tdmax

(
du + log(1/δ) +R4

MR
2
nat

)
Finally, we us bound LR3

π0
h2
√
Tdmax

(
du + log(1/δ) +R4

MR
2
nat

)
≤

LR4
MR

2
natR

3
π0
h2 log(1/δ)du, and take L ≤ L2/α ≤ L2/α

√
κ. Thus, we can bound the

above by

ControlRegT (alg; Π?) . c−1
λ log(1 +

T

cλ
)
dωdy(m+ h2)L2R4

π0
R3

natR
4
M

ακ1/2

(√
TR2

nat log(1/δ) +R2
π0

)
.

Finally, for λ = R2
nat log(1/δ)

√
T +hR2

π0
, we can take cλ h 1. Together withm+h2 ≤ mh under

the present assumption, we conclude

ControlRegT (alg; Π?) . log(1 + T )
(dωdy + dmaxdu)mhL2R4

π0
R3

natR
4
M

ακ1/2

(√
TR2

nat log(1/δ) +R2
π0

)
.

Finally, we require N ≥ 1764(dmax + du + log(1/δ))2h4R2
MR

2
π0

+ c0h
2d2
u., which means for our

choice of N = h2
√
Tdmax and dmax ≥ du, our stipulation that

√
T ≥ 4 ·1764h2R2

MR
2
π0

+ c0h
2d2
u

suffices. This ensures in turn that
√
TR2

nat log(1/δ) dominates R2
π0

, allowing us to drop the term
from the final bound, ultimately yields

ControlRegT (alg; Π?) . log(1 + T )
(dωdy + dmaxdu)mhL2R4

π0
R5

natR
4
M
√
T log(1/δ)

ακ1/2
.

Finally, using dmax = max{dω, dy+du}, we have (dωdy+dmaxdu) ≤ dω(dy+du)+du(dy+du) =
(dω + dy)(dy + du), concluding the bound.

E.5.1 Proof of Proposition E.5

Recall that f̄t, F̄t losses from Definition 3.3b. In a fixed a comparator matrix M ∈ M, where we
recallM = Mdrc(m,RM), where RM ≥ 2RΠ and m ≥ 2m? − 1 + h. M will be chosen towards
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the proof in a careful way, and is not necessarily the best-in-hindsight parameter on theM sequence.
Our regret decomposition is as follows:

ControlRegT (alg; Π?) =

T∑
t=1

`t(y
alg
t ,ualg

t )− inf
π∈Π?

T∑
t=1

`t(y
π
t ,u

π
t )

≤
N+m+2h∑

t=1

`t(y
alg
t ,ualg

t )︸ ︷︷ ︸
(i)

+

T∑
t=N+m+2h+1

|`t(yalg
t ,ualg

t )− F̄t(Mt:t−h | ω̂ nat
1:t )|︸ ︷︷ ︸

(ii.a)

+

T∑
t=N+m+2h+1

F̄t(Mt:t−h | ω̂ nat
1:t )−

T∑
t=N+m+2h+1

f̄t(M | ω̂ nat
1:t )︸ ︷︷ ︸

(iii)

+

T∑
t=N+m+2h+1

ft(M | ω̂ nat
1:t )− inf

M ′∈M?

T∑
t=N+m+2h+1

f̄t(M
′ | ωnat

1:t )︸ ︷︷ ︸
(iv)

+ max
M∈M?

|
T∑
t=1

f̄t(M | ωnat
1:t )− `t(yMt ,uMt )|︸ ︷︷ ︸

(ii.b)

+

∣∣∣∣∣ inf
M∈M?

T∑
t=1

`t(y
M
t ,u

M
t )− inf

π∈Π?

T∑
t=1

`t(y
π
t ,u

π
t )

∣∣∣∣∣︸ ︷︷ ︸
(v)

.

Again, let us work term-by-term, starting with the terms which are most similar to the terms that
arise in the known system. Together withRM ≥ R?, the last two terms can be bounded via Eq. (E.5)
and Eq. (E.7)

(ii.b) + (v) . LTR2
MR

2
π0
R2

nat

(
ψ?(m?)

R?
+

2ψπ0
(h+ 1)

Rπ0

)
.

Moreover, similar arguments can be used to bound (ii.a) . RHS of Eq. (E.5) (specifically, one
replaces the appearance of ωnat

t in the proof Simchowitz et al. [28, Lemma 5.3] with ω̂ nat
t , and uses

the bound ‖ω̂ nat
t ‖ ≤ 2Rnat by Simchowitz et al. [28, Lemma 6.1] ). Thus, we have so far

(ii.a) + (ii.b) + (v) . LTR2
MR

2
π0
R2

nat

(
ψ?(m?)

R?
+

2ψπ0
(h+ 1)

Rπ0

)
.

Next, analogously to Eq. (E.6), we recognize that

(iii) = ̂MemoryRegT (z?), for z? := e(M).

Furthermore, from Simchowitz et al. [28, Lemma 6.3] and the definition of the term Ru in Sim-
chowitz et al. [28, Lemma 6.1b], and withN ≥ m+2h, we have (i) . LNR2

π0
(Ru,est+RMRnat)

2.
Thus, collecting what we have thus far, we obtain

ControlRegT (alg; Π?)

≤ ̂MemoryRegT (z?) + (iv)

+Ocnst(1) · LR2
π0
·
(
N(Ru,est +RMRnat)

2 + TR2
MR

2
nat

(
ψ?(m?)

R?
+
ψπ0(h+ 1)

Rπ0

))
,

where Ocnst(1) supresses a universal constant. It remains to account for the term (iv). In particular,
for ψπ0(h+ 1) ≤ cRπ0/T and ψ?(m?) ≤ cR?/T , the above simplies to

ControlRegT (alg; Π?) ≤ ̂MemoryRegT (z?) + (iv)

+Ocnst(L)R
2
π0
·
(
(N + c)(R2

u,est +R2
MR

2
nat)

)
, (E.9)

Lemma E.10 (Slight Modification of Equation E.6 in Simchowitz et al. [28], altering numerical
constants and allowing c dependence). Suppose that Eest holds, and that ψπ0

(h + 1) ≤ cRπ0
/T .
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Futher, assume RM ≥ 2R? and m ≥ 2m? + h. Then, there exists an M ∈ M such that, for all
ν > 0, we have

Term (iv) ≤ Ocnst(1) · LR3
MR

2
π0
R2

natTε
2
G

(
1 +

LmR2
π0

ν

)
(E.10)

+Ocnst(c)LR
2
MR

2
π0
Rnat((Ru,est +RMRnat)Rπ0 +m)

+ ν

T∑
t=N+m+2h+1

∥∥uex
j (Mj | ω̂ nat

1:j )− uex
j (M | ω̂ nat

1:j )
∥∥2

2
. (E.11)

Absorbing the first h terms in the sum into the term on the first line (using arguments as in
Lemma E.6, this contributes Ocnst(R2

MR2
nath) ≤ Ocnst(R2

MR2
natm) ), and translating back to our

Y, z-notation, we have that there exists a z? ∈Me such that

Term (iv) ≤ Ocnst(1) · LR3
MR

2
π0
R2

natTε
2
G

(
1 +

LmR2
π0

ν

)
+Ocnst(c)R

2
MR

2
π0
Rnat((Ru,est +RMRnat)Rπ0

+m)

+ ν

T∑
t=N+m+h+1

‖Yt(zt − z?)‖22 .

Putting things together with Eq. (E.9), we have the bound that for ψπ0(h + 1) ≤ Rπ0/T and
ψ? ≤ R?/T , we find
ControlRegT (alg; Π?)

≤ ̂MemoryRegT (z?) + ν

T∑
t=N+m+2h+1

‖Yt(zt − z?)‖22

+Ocnst(1) · LR3
MR

2
π0
R2

natTε
2
G

(
1 +

LmR2
π0

ν

)
+Ocnst(L)R

2
π0
·
(
(N + c)(R2

u,est +R2
MR

2
nat) + cR2

MRnat((Ru,est +RMRnat)Rπ0
+m)

)
Finally, since N ≥ m, we bound

LR2
π0
·
(
N(R2

u,est + cR2
MR

2
nat) +R2

MRnat((Ru,est +RMRnat)Rπ0
+m)

)
≤ Ocnst(L)R

3
π0

(
(N + cm)(R2

u,est +R3
MR

2
nat) + cmRu,estR

2
MRnat

)
≤ Ocnst(L)R

3
π0

(N + cm)(R2
u,est + cR4

MR
2
nat),

where the last step is by AM-GM. Thus,
ControlRegT (alg; Π?)

≤ ̂MemoryRegT (z?) + ν

T∑
t=N+m+2h+1

‖Yt(zt − z?)‖22

+Ocnst(LR3
π0

(N+c))

(
R2

u,est +R4
MR

2
nat

)
+Ocnst(LR3

MR2
π0
R2

natTε
2
G)

(
1 +

LmR2
π0

ν

)
,

which after substituing in R2
u,est . du + log(1/δ) (Lemma E.7), concludes the bound.

Part II

Appendices for OCOM
F Proof of Logarithmic Memory Regret (Theorem 2.1)

This section proves Theorem 2.1. We begin by bounding the standard (no-memory) regret in Ap-
pendix F.1, and then turn to agressing the contribution of memory in Appendix F.2. All ommitted
proofs, as well as the proof of Proposition F.8, are given in Appendix I in numerical order.
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F.1 Bounding the (unary) OCO Regret

As a warmup, we establish a bound on the no-memory regret for Semi-ONS. Throughout, recall the
parameters from Definition 2.1, which we assume to be finite.
Proposition F.1. Suppose the the losses satisfy Assumption 1, and κh := κ(G) > 0. Then, for
η ≥ 1

α , Semi-ONS(λ, η, C) fed pairs (ft,Ht) satisfies the following:

OCORegT :=

T∑
t=1

ft(zt)−min
z∈C

T∑
t=1

ft(z) ≤
ηdL2

eff

2
log

(
1 +

TR2
H

λ

)
+
λD2

2η
.

This section proves the above proposition, and all ommited proofs in the proofs in this section are
deferred to Appendix H.2. First, let us establish two simple structural properties of ft:
Lemma F.2. For all z ∈ C

1. ∇2ft(z) � αH>t Ht

2. There exists a function gt(z) ∈ Rdv such that ∇ft(z) = H>t gt(z), and ‖gt(z)‖ ≤ Leff . In
particular, ∇ft(z)∇ft(z)> � L2

effH
>
t Ht.

Proof. Point (1): By the chain rule and the fact that ∇2(z 7→ vt + Hz) = 0, we have ∇2f(z) =
H>t ∇2`(vt+Htz)Ht. Since `t is strongly convex,∇2`(vt+Htz) � αI . Point (2): Again invoking
the chain rule, ∇ft(z) = H>t gt(z), where gt(z) = ∇̀ t(vt + Htz). Since `t is L-subquadratic,
‖gt(z)‖ ≤ Lmax{1, ‖vt + Htz‖2} ≤ Lmax{1, Rv + RG maxt,z∈C ‖Ytz‖2} = Lmax{1, Rv +
RGRY,C} = Leff .

Next, we establish a simple quadratic lower bound, which mirrors the basic inequality in analysis of
standard ONS:
Lemma F.3 (Quadratic Lower Bound). For all z1, z2 ∈ C, we have

ft(z1) ≥ ft(z2) +∇ft(z2) +
α

2
‖Ht(z1 − z2)‖22.

Proof of Lemma F.3. By Taylor’s theorem, there exists a z3 on the segment joining z1 and z2 for
which ft(z1) ≥ ft(z2)+∇ft(z2)+ 1

2‖(z1−z2)‖2∇2ft(z3). By Lemma F.2,∇2ft(z3) � αHtH
>
t .

Remark F.1. Observe that Lemma F.3 uses the fact that ∇2ft(z) � αHtH
>
t globally. Lemma F.3

may be false if instead one replaces H>t Ht in the definition with ∇2ft(zt), because the latter may
be very large at a given point. This is why we use H>Ht in the definition of Λt, as opposed to the
full-Hessian. This is no longer an issue if one assume that ∇2ft(z) � βI globally, in which case
one pays for the conditioning β/α.
Remark F.2 (Comparision to Cannonical Online Newton). Let us compare the above to the cannon-
ical Online Newton Step algorithm [19]. This algorithm applies to exp-concave functions, which
satisfy the bound ∇2f � α∇f(∇f)> globally. For these functions, the analogue of Lemma F.3,
with ft(z1) ≥ ft(z2) + ∇ft(z2) + α

2 ‖∇ft(z2)(z1 − z2)‖22 does in fact hold, abeit due to a some-
what trickier argument [18, Lemma 4.3]. This enables the algorithm to use the preconditioner
Λt = λI +

∑t
s=1∇f(∇f)>. Note however that this yields a smaller pre-conditioner Λt, for which

Proposition F.8 may fail.

As a consequence, we obtain intermediate regret bound for Semi-ONS, which mirrors the standard
analysis of online Newton step (e.g. Hazan [18, Chapter 4]).
Lemma F.4 (Online Semi-Newton Step Regret). Suppose that η ≥ 1

α . Then,

T∑
t=1

ft(zt)− inf
z∈C

T∑
t=1

ft(z) ≤
λD2

2η
+
η

2

T∑
t=1

∇>t Λ−1
t ∇t,

Lastly, we recall a standard log-det potential lemma. To facillitate reuse, the lemma is stated for a
slightly more general sequence of matrices Λ̃t:
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Lemma F.5 (Log-det potential). Suppose that Λ̃t � c
∑T
t=1 H

>
t Ht + λ0. Then,

T∑
t=1

tr(HtΛ̃
−1
t H>t ) ≤ d

c
log

(
1 +

cTR2
H

λ0

)

Proof. Define Λ̌t =
∑T
t=1 H

>
t Ht + λ0

c . Then,
∑T
t=1 tr(HtΛ̃

−1
t H>t ) ≤ 1

c

∑T
t=1 tr(HtΛ̌

−1
t H>t ).

The result now follows from the standard log-det potential lemma (see e.g. Hazan [18, Proof of
Theorem 4.4]).

Proof of Proposition F.1. Begin with the unary bound:

OCORegT :=

T∑
t=1

ft(zt)− inf
z∈C

T∑
t=1

ft(z) ≤
λD2

2η
+
η

2

T∑
t=1

∇>t Λ−1
t ∇t.

From Lemma F.2, we have ∇t∇>t � L2
effH

>
t Ht. Since Λt � 0, this implies that ∇>t Λ−1

t ∇t =

〈∇t∇t,Λ−1
t 〉 ≤ L2

eff〈H>t Ht,Λ
−1
t 〉 = L2

efftr(HtΛ
−1
t H>t ). Thus, by Lemma F.5,

η

2

T∑
t=1

∇>t Λ−1
t ∇t ≤

ηL2
eff

2

T∑
t=1

tr(HtΛ
−1
t H>t ) ≤ dηL2

eff

2
log

(
1 +

TR2
H

λ

)
. (F.1)

F.2 Memory Regret for Known System

In this section, we adress movement costs, thereby proving Theorem 2.1. In what follows, we make
the simplifying assumption that zs = z1 for s ≤ 1. We will remove this assumption at the end of
the proof. Our goal is to bound:

MemoryRegT :=

T∑
t=1

Ft(zt, . . . , zt−h)−min
z∈C

ft(z)

=

T∑
t=1

Ft(zt, . . . , zt−h)− ft(zt)︸ ︷︷ ︸
(MoveDiffT )

+

T∑
t=1

ft(zt)−min
z∈C

T∑
t=1

ft(z)︸ ︷︷ ︸
(OCORegT )

.

The second term is bounded by direct application of Proposition F.1. For the first term, we begin
with the following lemma, which shows that the relevant movement cost is only along the Yt−i
directions:
Lemma F.6 (Movement Cost). For all t ≥ 1, we have

|Ft(zt, . . . , zt−h)− ft(zt)| ≤ LeffRG

h∑
i=1

‖Yt−i(zt − zt−i)‖2.

Therefore, by the triangle inequality, rearranging summations, and the assumption zs = z1 for
s ≤ 1,

MoveDiffT ≤ hLeffRG

T∑
s=1−h

h−1∑
i=1

‖Ys(zs+i+1 − zs+i)‖2 · I1≤s+i≤t−1.

Next, let us develop a bound on ‖Ys(zt+1 − zt)‖2:
Lemma F.7. Adopt the convention Λs = Λ1 for s ≤ 0. Further, consider s ≤ t, with t ≥ 1 and s
possibly negative. Then, ‖Ys(zt+1−zt)‖2 ≤ ηLefftr(YsΛ

−1
s Ys)

1/2tr(H>t Λ−1
t Ht))

1/2. Therefore,

MoveDiffT ≤ ηh2LeffRG ·

√√√√ T∑
t=1−h

tr(YtΛ
−1
t Yt) ·

√√√√ T∑
t=1

tr(∇>t Λ−1
t ∇t) .
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Now, we already bounded the sum of the terms tr(∇>t Λ−1
t ∇t) in Eq. (F.1):

T∑
s=1

tr(∇tΛ−1
t ∇t) ≤ dL2

eff log(1 +
TR2

H

λ
). (F.2)

The main technical challenge is to reason about the sum tr(YtΛ
−1
t Yt). We bound this quantity

using the following proposition:

Proposition F.8. Suppose that κ(G) > 0, and define cψ;t := 1 ∨ tψG(h+1)2

hR2
G

. Then, for any

Y1−h,Y2−h, . . . ,Yt, the matrices Hs =
∑[h]
i=0G

[i]Ys−i satisfy
t∑

s=1

H>s Hs �
κ(G)

2
·

(
t∑

s=1−h

Y>s Ys

)
− 5hR2

Hcψ;tI.

The above proposition is proved in Appendix H.1. Under the assumption of the theorem, we have
cψ;t ≤ 1, so 5hR2

Hcψ;t ≤ 5hR2
H . Thus, for λ = 6hR2

H , we have Λt ≥ λ
6 I + κ

∑t
s=1−hY

>
s Ys.

Note that this holds even for t ≤ 0, with the above convention Λt = Λ1 for negative t. Thus,
Lemma F.5 and the simplifications RY ≤ RH , κ ≤ 1 gives

T∑
s=1−h

tr(YtΛ
−1
t Yt) ≤

2d

κ
log

(
1 +

6κTR2
Y

2λ

)
≤ 2d

κ
log

(
1 +

3R2
H

λ

)
. (F.3)

We can now complete the proof of Theorem 2.1.

Proof of Theorem 2.1. Combining Lemma F.7, Eqs. (F.2) and (F.3), and finally the unary regret
bound from Proposition F.1

MoveDiffT + OCORegT

≤ OCORegT + ηh2L2
effRG ·

√√√√ T∑
t=1−h

tr(YtΛ
−1
t Yt) ·

√√√√ T∑
t=1

tr(H>t Λ−1
t Ht).

≤ OCORegT +

√
2

κ
dηh2L2

effRG log(1 +
3TR2

H

λ
).

Finally, since λ = 6hR2
H , log(1 +

3TR2
H

λ ) ≤ log(1 + T ). Thus, combining with the unary regret
bound from Proposition F.1,

MoveDiffT + OCORegT ≤
λD2

η
+ ηL2

effd

(
1

2
+ h2RG

√
2

κ

)
log (1 + T ) ,

To conclude, we use η = 1
α , so that with λ = 6hR2

H , yields λD2R2
H

η = 3αR2
HD

2. Moreover, noting

h2RG

√
1
κ ≥ 17, we arrive at

MemoryRegT = MoveDiffT + OCORegT ≤ 3αD2R2
H +

2dh2L2
effRG

ακ1/2
log (1 + T ) . (F.4)

Recall that the above bound follows under the assumption that zs = z1 for s ≤ 1. Let us remove this
assumption presently. Observe that the iterates zs for s < 1 do not alter the trajector of future iterates
zt for t ≥ 1; they only appear in the memory regret bound via the with memory loss Ft(zt:t−h).
Thus, introducing žt := I(t ≥ 1)zt + I(t < 1)z1, imposing the above assumption (zs = z1 for
s ≤ 1) comes at the expense of regret at most

T∑
t=1

|Ft(žt:t−h)− F (zt:t−h) =

h∑
t=1

|Ft(žt:t−h)− F (zt:t−h)|.

With routine computations and the assumption that L ≥ 1, each term in the above can be bounded
by Leff

∑h
i=0G

[i]‖Yt−ižt − zt)‖2 ≤ LeffRGRY,C ≤ L2
eff . This contributes a total addition cost of

hL2
eff , we which can be absored into the right-most term on Eq. (F.4) at the expense of replacing the

constant 2 with a factor of 3.
7RG ≥ 1 by Definition 2.1, and κ ≤ 1 by Definition 2.2
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G Regret with Quadratic Error Sensitivity (Theorem 2.2)

This section proves Theorem 2.2 and its generalizations. It is organized as follows:

• In Appendix G.1, we two bounds which make explicit a certain negative regret term. The-
orem 2.2a gives the generaliztion of Theorem 2.2 in the ε2G ≥

√
T regime (and allows

for slight mis-specification of λ), and Theorem G.1 proves a guarantee that degrades as
(TεG)2/3 for small εG. We prove Theorem 2.2a from Theorem G.1 in Appendix G.1.1.

• The remainder of the section is dedicated to the proof of Theorem G.1. This begins with
Appendix G.2, which introduces relevant preliminaries.

• Appendix G.3 provides a careful analysis of initial regret terms, and controlling the contri-
bution of errors introduced by using the f̂t sequence rather than ft.

• Appendix G.4 details our careful “blocking argument”, which we use to offset the errors
the terms

∑
t ‖Yt(zt − z?)‖ from the gradients by a negative terms

∑
t ‖Xt(zt − z?)‖22

that arise in the regret analysis.
• Appendix G.5 concludes the proof of Theorem G.1, bounding first the movement cost and

then tuning relevant parameters in the analysis.

All ommitted proofs are provided in Appendix I, organized into subsections and presented in nu-
merical order.

G.1 Bounds for Unknown Systems with Negative Regret

Here, we provide bounds which explicitly account for an appropriate negative regret term, scaling
with

∑T
t=1 ‖Yt(zt − z?)‖2. Specifically, for any fixed comparator z? ∈ C, our goal is to bound

MemoryRegT (ν; z?) :=

T∑
t=1

Ft(zt:t−h)− ft(z?) + ν

T∑
t=1

‖Yt(zt − z?)‖2, (G.1)

which gives a negative regret term by re-arranging ν
∑T
t=1 ‖Yt(zt− z?)‖2 to the right-hand side of

the above display. Note that we prove this bound for any fixed comparator z?, not just the “best-in-
hindsight” comparator. Moreover, proving this bound for the best-in-hinsight comparator does not
imply the bound for all z? ∈ C, because the terms δt in the negative-regret term differ as a function
of z?.

To state our bound on MemoryRegT , we recall the relevant parameter bounds:
Definition 2.1 (Bounds on Relevant Parameters). We assume C contains the origin. Further, we
define the diameter D := max{‖z − z′‖ : z, z′ ∈ C}, Y -radius RY := maxt ‖Yt‖op, and
RY,C := maxt maxz∈C ‖Ytz‖; In the exact setting, we define the radii Rv := maxt max{‖vt‖2}
and RG := max{1, ‖G‖`1,op}. In the approximate setting, Rv := maxt max{‖vt‖2, ‖v̂t‖2},
RG := max{1, ‖G‖`1,op, ‖Ĝ‖`1,op}; For settings, we define the H-radius RH = RGRY , and
define the effective Lipschitz constant Leff := Lmax{1, Rv +RGRY,C}.

Our main result in this section is as follows. We also allow λ to be slightly under-specified. This
show’s relative insensitivity to the selection of λ, and is also useful when porting the bound over to
the control setting:
Theorem 2.2a. Consider the setting of Theorem 2.2, but where instead λ ∈ (cλ, 1] · (Tε2G + hR2

G)
for cλ ∈ (0, 1]. Equivalently, consider the setting of Theorem G.1 below, but with the additional
conditions εG ≥

√
T and β = L. Then for any z? ∈ C,

cλMemoryRegT (ν?; z?) . log(1 +
T

cλ
)

(
C1

ακ1/2
+ C2

)(
Tε2G + h2(R2

G +RY )
)
,

where C1 := (1 +RY )RG(h+ d)L2
eff , C2 := (L2c2v/α+ αD2), and ν? = α

√
κ

48(1+RY ) .

Theorem 2.2 is an immediate conseuqnece of Theorem 2.2a. We prove the above guarantee from a
more statement, which allows for ε2G ≤

√
T as well.
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Granular Guarantee for Semi-ONS with errors To state our generic guarantee, we specify the
following constants:
Definition G.1 (Constants for Unknown G Regret Analysis). We define the constants We begin by
establishing a slight generalization of Theorem 2.2a, accomodating arbitrarily small. To start, define
the constants

Cmid := (1 + β2

L2 )(1 +RY )hL2
eff + β2

√
κc2v + α2

√
κD2 (G.2)

Chi := (1 +RY )LeffR
2
GRY,C(h+ d) + αD2 (G.3)

Clow := (1 +RY )2RGh
2 · dL2

eff . (G.4)

ν? =
α
√
κ

48(1 +RY )
min

{
4(1 +RY )(Tε4G)1/3, 1

}
(G.5)

Finally, we define a logarithmic factor

L := log(1 +R2
HT/λ), with L ≤ log(1 + T ) for λ ≥ R2

H . (G.6)

Our more granular result is the following:
Theorem G.1 (Granular Regret Guarantee for Semi-ONS on an unknown system). Consider run-
ning Semi-ONS on the empirical loss sequence (f̂t, Ĥt). Suppose that

• The losses `t are L-subquadratic and α-strongly convex for L ≥ 1∨α (Assumption 1), and
are β smooth (∇2`t � βI)

• Suppose that ‖Ĝ − G?‖`1,op ≤ εG, Ĝ[i] = 0 for i > h, and maxt≥1 ‖vt − v̂t‖2 ≤ cvεG
for some constant cv ≥ 0.

• The step size is η = 3/α, and λ lies in λ ∈ [cλ, 1]
(
Tε2G + (TεG)2/3 + hR2

G

)
for some

cλ ∈ (0, 1].

• All relevant quantities are bounded as in Definition 2.1

Then, the memory regret on the true loss sequence (ft,Ht) is bounded by

cλMemoryRegT (ν?; z?) . Chi(TεG)2/3L +
CmidTε

2
G

α
√
κ

+
ClowL

α
√
κ

+ αhR2
GD

2.

Observe that, when ε2G ≥
√
T , the dominating term is Tε2G. However, for ε ≤

√
T , the term

(TεG)2/3 dominates.

G.1.1 Proof of Theorem 2.2a from from Theorem G.1

Theorem 2.2a follows from the granular Theorem G.1 as a consequence of the following tedious
simplifications. Recall that Theorem 2.2 adds the assumptions that ε2G ≥

√
T , and β = L. This

enables the following simplifications. First, since (Tε4G)1/3 ≥ 1we can take ν? = α
√
κ

48(1+RY ) , which

is precisely the value of ν used in the theorem. Second, we have (TεG)2/3/Tε2G = 1/(Tε4G)1/3 ≤ 1.
This means that the choice of λ = cλ(Tε2G + hR2

G) is valid for Theorem G.1, up to rescaling cλ by
a factor of 2. Thus, we have

cλMemoryRegT ( α
√
κ

48(1+RY ) ; z?) . Chi(TεG)2/3L +
Cmid(Tε2G)

α
√
κ

+
ClowL

α
√
κ

+ αhR2
GD

2

.
L

α
√
κ

(
(Tε2G)(Chiα

√
κ+ Cmid) + Clow + α2

√
κhR2

GD
2
)
.

First, let us simplifyChiα
√
κ+Cmid. Using the simplifying condition β = L, and usingRGRY,C ≤

Leff (again, L ≥ 1), we have

Chiα
√
κ+ Cmid . (1 +RY )(hL2

eff + LeffR
2
GRY,C(h+ d)) + L2

√
κc2v + α2

√
κD2

. (1 +RY )RG(h+ d)L2
eff + L2

√
κc2v + α2

√
κD2.
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Hence,

(Chiα
√
κ+ Cmid)Tε2G + Clow + α2

√
κhR2

GD
2

. (1 +RY )RG(h+ d)L2
eff(TεG + (1 +RY )h2) + (L2

√
κc2v + α2

√
κD2)(Tε2G + hR2

G)

. C1(Tε2G + (1 +RY )h2) + α
√
κC2(Tε2G + hR2

G)

. (C1α
√
κC2)(Tε2G + (1 +RY )h2 + hR2

G)

. (C1α
√
κC2)(Tε2G + h2RY h

2 +R2
G)

for C1 := (1 +RY )RG(h+ d)L2
eff and C2 := (L2α−1c2v + αD2). Thus we conclude that

MemoryRegT ( α
√
κ

48(1+RY ) ; z?) . c−1
λ log(1 + T )

(
C1

ακ1/2
+ C2

)(
Tε2G + h2(R2

G +RY )
)
,

as needed.

G.2 Preliminaries for Proof of Theorem G.1

Notation: Let us begin by introducing relevant notation. Set ∇t = ∇ft(zt) to denote the gradi-
ents of the true counterfactual stationary counterfactual costs ft, and let ∇̂t := ∇f̂t(zt) denote the
gradient of their approximations. Analogously, define the matrices

Λ̂t = λI +

T∑
t=1

Ĥ>t Ĥt, Λt = λI +

T∑
t=1

H>t Ht

For t ≤ 1, we will use the conventions Λt = Λ1 and Λ̂t = Λ̂1. Throughout, we fix an arbitrary
comparator z? ∈ C, and further introduce the notation

δt := zt − z?, errt = ∇̂t −∇t
to denote the difference of zt from the comparator, and difference between gradients, respectively.

We recall that λ, η are the algorithm parameters dictating the magnitude of the regularizer in Λt,
and step size, respectively. We will also introduce a “blocking parameter” τ , whose purposes is
described at length in Appendix G.4. For simplicity, most of the proof will focuses on the unary
regret analogue of MemoryRegT , defined as follows:

OCORegT (ν; z?) :=

T∑
t=1

ft(zt)− ft(z?) + ν

T∑
t=1

‖Ytδt‖2, δt := zt − z?, (G.7)

We extend to memory regret in Appendix G.5. denote a logarithmic factor that will appear through-
out.

Reduction zs = z1 for s ≤ 1: As in the proof of Theorem 2.1 in Appendix F.2, we can assume
that zs = z1, at the expense of an additional factor of hL2

eff in the regret. This term is dominated by
the factor of ClowL in Theorem G.1, and can thus be disregarded in the following argument.

G.3 Bounding Regret in Terms of Error

We begin with the following basic regret bound, controls the excess regret of using inexact gradients
compared to standard bounds from online Newton.

Lemma G.1. Let λ ≥ 1. Then regret on measured on the fpred
t sequence is bounded by

T∑
t=1

ft(zt)− ft(z?) ≤
T∑
t=1

err>t δt +
1

2η

T∑
t=1

(‖Ĥtδt‖2 − ηα‖Htδt‖2) + R̂egT ,

where R̂egT :=
ηdL2

effL
2 + λD2

2η arises from the regret bound in Proposition F.1, and we recall
L := log(e+ TR2

H).
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Next, let us turn to bounding the mismatch arising from the terms
∑T
t=1(‖Ĥtδt‖2 − ηα‖Htδt‖2):

Lemma G.2. For η ≥ 3
α , we have ‖Ĥtδt‖2 − ηα‖Htδt‖2 ≤ −‖Htδt‖2 + 8R2

Y,Cε
2
G. Hence, we

have the regret bound:
T∑
t=1

ft(zt)− ft(z?) ≤
T∑
t=1

err>t δt −
1

2η

T∑
t=1

‖Htδt‖2 +
4

η
TR2

Y,Cε
2
G + R̂egT .

G.3.1 Controlling the error contributions

Next, we turn to bounding the contribution of the error in estimating the gradient:
Lemma G.3. There exists g1,t and g2,t with ‖g1,t‖2 ≤ Leff and ‖g2,t‖ ≤ βεG(cv + 2RY,C) such
that

errt = (Ĥt −Ht)
>g1,t + H>t g2,t.

By leveraring the specific structure of errt, we obtain:
Lemma G.4. For η ≥ 3

α , the following regret bound holds for all z? ∈ C and all ν > 0:

T∑
t=1

ft(zt)− ft(z?) ≤
1

4η

T∑
t=1

(
ν

h+ 1

h∑
i=0

‖Yt−iδt‖2 − ‖Htδt‖2
)

+ Tε2G · ERR(ν) + R̂egT ,

(G.8)

where ERR(ν) :=
(
η(h+1)L2

eff

ν + ηβ2(cv + 2RY,C)
2 +

4RY,C
η

)
.

As a consequence, we have

OCORegT

(
ν

4η
; z?

)
≤ 1

4η

T∑
t=1

(
ν‖Ytδt‖+

ν

h+ 1

h∑
i=0

‖Yt−iδt‖2 − ‖Htδt‖2
)

+ Tε2G ERR(ν) + R̂egT ,

(G.9)

G.4 The ‘blocking argument’

A this stage of the proof, the main challenge is to show that for some small constant ν, the terms
‖Ŷt−iδt‖2 in Eq. (G.9) are offset by ‖Htδt‖2 on aggregate. We do this by dividing times into
“blocks” of size τ = Θ(

√
T ), centering at the terms δt at times t = kj + 1, for indices kj defined

below. We define jmax := bT/τc as the number of blocks. We then argue that, within any block∑
t in block j

‖Htδt‖2 &
h∑
i=0

∑
t in block j

1

ν
‖Ŷt−iδt‖2 +O(1) (G.10)

for appropriate ν and block size τ . The reason we should expect an inequality of the above form to
holds is that, from adapting Proposition F.8, we have the inequality that∑

t in block j

HtH
> %

∑
t in block j

YtY
>
t −O(1) · I, (G.11)

However, Eq. (G.11) does not directly imply a bound of the form Eq. (G.10), beacuse the vectors δt
differ for each t. Instead, we ‘re-center’ the δt terms in the sum δt = δkj+1, and at argue∑

t in block j

‖Htδkj+1‖2 ≈
h∑
i=0

∑
t in block j

1

ν
‖Yt−iδkj+1‖2 −O(1). (G.12)

The above bound can be established from an estimate of the form Eq. (G.11). Summing this up
across all jmax blocks, we see that the negative regret from the terms ‖Htδkj+1‖2 cancels the regret
from the terms ‖Yt−iδkj+1‖2. Accounting for all jmax = Θ(T/τ) blocksgives

jmax∑
j=1

∑
t in block j

‖Htδkj+1‖2 ≈
jmax∑
j=1

h∑
i=0

∑
t in block j

1

ν
‖Yt−iδkj+1‖2 −O(T/τ). (G.13)
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incurring an additive factor of T/τ , favoring larger block sizes τ .

But, we must also argue that not too much is lost by approximating the statement Eq. (G.10) with
the centered analogue Eq. (G.13). The cost of recentering will ultimatels as O(τ), so trading off τ
with the bound of yields

√
T regret in the final bound.

Interestingly, the cost of recentering is intimately tied to bounding the movement of the iterates
zt. Thus, we find that the same properties that allow Semi-ONS to attain logarithmic regret for
the known system case are also indispensible in achieving low sensitivity to error in the unknown
system case.

G.4.1 Formalizing the blocking argument

Formally, the cost of the above re-centering argument is captured by the following lemma:

Lemma G.5 (Blocking Argument). Given parameter τ ∈ N, and introduce the kj = τ(j − 1), and
jmax := bT/τc. Then, with the understanding that zs = 0 for s ≤ 1, the following holds for all
i ∈ [h],

T∑
t=1

‖Yt−iδt‖22 ≤ 4τRY,C +

jmax∑
j=1

τ∑
s=1

‖Ykj+s−iδkj+1‖22 + 4RY,C

T∑
t=1

τ−1∑
s=0

‖Yt−i(zt−s − zt−s−1)‖2.

T∑
t=1

‖Hi−hδt‖22 ≥
jmax∑
j=1

τ∑
s=1

‖Hkj+sδkj+1‖22 − 4RY,CRG

T∑
t=1

τ−1∑
s=0

‖Ht(zt−s − zt−s−1)‖2,

Notice that, while the left-hand side depends on δt, the right hand side is ‘centered’ at δkj+1 for
j ∈ [jmax], at the expense of movement penalties on zt−s−zt−s−1. Let us re-write the above bound
to give a useful regret decomposition. We introduce bounding terms RegY,move,i and RegH,move for
the movement costs above associated with the centering argument, and Regcancel associated with
the offsetting argument described above. Formally,

RegY,move,i :=

T∑
t=1

τ−1∑
s=0

‖Yt−i(zt−s − zt−s−1)‖2.

RegH,move :=

T∑
t=1

τ−1∑
s=0

‖Ht(zt−s − zt−s−1)‖2

Regcancel :=

jmax∑
j=1

τ∑
s=1

(
h∑
i=0

(
ν

(
1

h+ 1
+ Ii=0

)
‖Ykj+s−iδkj+1‖22

)
− ‖Hkj+sδkj+1‖22

)
.

Then, from Lemma G.5, the upper bound on OCORegT in Eq. (G.9) can be expressed as

OCORegT

(
ν

4η
; z?

)
≤ 1

4η
Regblock + Tε2G ERR(ν) + R̂egT , (G.14)

where we define and bound

Regblock :=

T∑
t=1

(
ν‖Ytδt‖+

ν

h+ 1

h∑
i=0

‖Yt−iδt‖2 − ‖Htδt‖2
)

≤ 8τ · νRY,C + 8νRY,C

(
max
i∈[h]

RegY,move,i

)
+ 4RY,CRG · RegH,move + Regcancel.

(G.15)

Thus, we shall conclude our argument by developing bounds on RegY,move,i, RegH,move and
Regcancel.

Movement Costs Via Eq. (G.15) and the definitions of RegY,move,i and RegH,move, the cost of
the re-centering argument is given by a movement costs, which we bound presently. Since the
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movement of the algorithm are small in the norms induced by the preconditioning matrices Λ̂, our
main argument invokes steps of the form

‖Ht(zt−s − zt−s−1)‖2 ≤
‖H>t Λ̂−1

t−s−1Ht‖2op

2
+
‖(zt−s − zt−s−1)‖2

Λ̂t−s−1

2
,

much like the regret analysis in the known system case. Moreover, the contribuitons of the
‖(zt−s − zt−s−1)‖2

Λ̂t−s−1
can be bounded via an application of the log-det potential argument,

as in Proposition F.1.

However, we observe that the conditioning of the relevant movement costs is in terms of the Λ̂

matrix. To bound terms ‖H>t Λ̂−1
t−s−1Ht‖2op, we will need to relate the matrices Λ̂t−s−1, constructed

based on the estimated sequence (Ĥt), and with delays up to (s+ 1) = τ , to the matrixes Λt, based
on (Ht) and current time t. This is accomplished by the following lemma:

Lemma G.6. For cλ ∈ (0, 1], set cΛ(τ) := 2(1 + RY ) + 2c
9 1

2

λ RY

√
τR2

G

λ . Then, for λ ≥ cλTε
2
G,

we have that for all t ∈ [T ],

Λ̂−1
t−τ � cΛ(τ)2Λ−1

t ,

where we adopt the convention Λ̂s = Λ̂1 and Λs = Λ1 for s ≤ 1.

For our scalings of τ and λ, cΛ will be roughly constant in magnitude. With the above lemma in
hand, we show that the movement terms from the blocking argument scale proportionally to τ .
Lemma G.7. Recall the logarithmic factor L := log(e + TR2

H). If λ is chosen such that λ ≥
cλ
h Tε

2
G + cλhR

2
G, then the movement terms admit the following bounds for i ∈ {0, . . . , h}:

RegY,move,i :=

T∑
t=1

τ−1∑
s=0

‖Yt−i(zt−s − zt−s−1)‖2 ≤ τcΛc
9 1

2

λ · dLeff

√
2(1 + 10R2

Y )

κ
L.

RegH,move :=

T∑
t=1

τ−1∑
s=0

‖Ht(zt−s − zt−s−1)‖2 ≤ τcΛc
9 1

2

λ · dLeffL

Cancellation within blocks Next, let us argue that the term Regcancel is small, which leverages
cancellation within blocks. As per the proof sketch at the beginning of the section, we show that the
terms ‖Ykj+s−iδkj+1‖22 offset the terms ‖Hkj+sδkj+1‖22 up to a O(1) factor for each j, incuring
an error scaling as jmax ≈ T/τ (thereby inducing a trade-off on the parameter τ ):
Lemma G.8. For ν ≤ κ

4 , we have

Regcancel ≤
20T

τ
· νhR2

GR
2
Y,C + 5Tε2G · κR2

Y,C .

G.4.2 Summarizing the blocking argument

Grouping all the terms that have emerged thus far, we summarize the current state of our argument
in the following lemma:

Lemma G.9. Assuming Leff ≥ 1, ν ≤
√
κ

4(1+RY ) , and λ ≥ cλ( 1
hTε

2
G + hR2

G + τ), we have that for
all z? ∈ C,

cλOCORegT

(
ν

4η
; z?

)
.
Tε2G
α
·
(
hL2

eff

ν
+ β2(c2v +RY,C +R2

Y,C)

)
+ R̂egT .

+
Tν

τ
·
(
αhR2

GR
2
Y,C
)

+ τ ·
(
α(1 +RY )RY,CR

2
G · dLeffL

)
,

Let us take stock of what we have so far. The bound OCORegT (ν/4η; z?) has four components:

• R̂egT , which accounts for the regret on the f̂t sequence.
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• A term scaling with Tε2G, which accounts for the sensitivity to error. This term also involves
the offset ν.

• A term scaling as Tντ , yielding a penalty for the number of blocks in the blocking argument.
• A term scaling as linearly in τ , arising from the movement costs from the recentering

argument.

The final regret bound will follow from carefully trading off the parameters ν and τ in the analysis,
and from setting λ appropriately. Before continuing, we first adress with “with-memory” portion of
the bound, passing from unary regret to memory regret.

G.5 Concluding the Bound

Before concluding the bound, we need to bound the movment cost that appears:
Lemma G.10 (Movement Cost: Unknown System). Under the conditions of Lemma G.9,

MoveDiffT :=

T∑
t=1

Ft(zt:t−h)− ft(zt) ≤ 9ηκ9
1
2 (1 +RY )2RGh

2 · dL2
effL

We are now ready to prove our main theorem:

Proof of Theorem G.1. Let us begin by unpacking

R̂egT + MoveDiffT ≤ 9ηκ9
1
2 (1 +RY )2RGh

2 · dL2
effL +

ηdL2
effL

2
+
λD2

2η

.
1

α
√
κ

(1 +RY )2RGh
2 · dL2

effL + αλD2,

where we use η = 3
α . Thus, from Lemma G.9, the term MemoryRegT defined in Eq. (G.1) satisfies

the following for any z? ∈ C, provided that the conditions of Lemma G.9 hold:

cλMemoryRegT

(
ν

4η
; z?

)
≤ cλOCORegT

(
ν

4η
; z?

)
+ MoveDiffT

.
Tε2G
α
·
(
hL2

eff

ν
+ β2(c2v +RY,C +R2

Y,C)

)
+

1

α
√
κ

(1 +RY )2RGh
2 · dL2

effL + αλD2

+
Tν

τ
·
(
αhR2

GR
2
Y,C
)

+ τ ·
(
α(1 +RY )RY,CR

2
G · dLeffL

)
,

where above we use cλ ≤ 1. Let us now specialize parameters. As per our theorem, we take

λ = cλ

(
Tε2G + c(TεG)2/3 + hR2

G

)
, τ = (TεG)2/3, cλ ∈ (0, 1)

which we verify satisfies the condition on λ placed by Lemma G.9. For this choice of parameters,
we have

MemoryRegT

(
ν

4η
; z?

)
.

1

α
√
κ

(1 +RY )2RGh
2 · dL2

effL + αhR2
GD

2

+
Tε2G
α
·
(
β2(c2v +RY,C +R2

Y,C) + α2D2
)

+ α(TεG)2/3 ·
(
D2 + (1 +RY )RY,CR

2
G · dLeffL

)
+
Tε2G
α
· hL

2
eff

ν
+
Tν

τ
·
(
αhR2

GR
2
Y,C
)
.

Next, let’s tune ν. Define ν0 :=
√
κ

4(1+RY ) to denote the upper bound on ν imposed by Lemma G.9.
Moreover, let ν1 denote the value of ν that minimizes the upper bound above, namely

ν1 =

(
Tε2G
α
· hL2

eff

)1/2

·
(
T

τ
· αhR2

GR
2
Y,C

)−1/2

.
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We set ν̄ = min{ν0, ν1}. For this value, we have that

Tε2G
α
· hL

2
eff

ν̄
+
T ν̄

τ
·
(
αhR2

GR
2
Y,C
)
≤ Tε2G

α
· hL

2
eff

ν0
+
Tε2G
α
· hL

2
eff

ν1
+
Tν1

τ
·
(
αhR2

GR
2
Y,C
)

≤ Tε2G
α
· hL

2
eff

ν0
+ 2

√
T 2ε2Gh

2L2
effR

2
GR

2
Y,C

τ
·

≤ Tε2G
α
· hL

2
eff

ν0
+ 2(TεG)2/3

√
hLeffRGRY,C

.
Tε2G
α
√
κ
· (1 +RY )hL2

eff + (TεG)2/3hLeffRGRY,C .

Combining with the above,

MemoryRegT (
ν̄

4α
; z?) .

Tε2G
α
√
κ
·
(
(1 +RY )hL2

eff + β2
√
κ(c2v +RY,C +R2

Y,C) + α2
√
κD2

)︸ ︷︷ ︸
:=C′mid

.

+ (TεG)2/3L ·
(
hLeffRGRY,C + αD2 + α(1 +RY )RY,CR

2
G · dLeff

)︸ ︷︷ ︸
:=C′hi

+
L

α
√
κ

(1 +RY )2RGh
2 · dL2

eff︸ ︷︷ ︸
:=Clow

+αλD2

where we use C ′hi, C
′
mid as intermediate constants that we simplify as follows. Recalling the

C ′mid = (1 +RY )hL2
eff + β2

√
κ(c2v +RY,C +R2

Y,C) + α2
√
κD2

≤ (1 + β2

L2 )(1 +RY )hL2
eff + β2

√
κc2v + α2

√
κD2 := Cmid

C ′hi = hLeffRGRY,C + αD2 + α(1 +RY )RY,CR
2
G · dLeff

≤ (1 +RY )LeffR
2
GRY,C(h+ d) + αD2 := Chi

Note that the constant Chi, Clow, Cmid coincided with those in Definition G.1. Thus, writing our
regret bound compactly, we have

MemoryRegT (
ν̄

4α
; z?) . Chi(TεG)2/3L +

Cmid(Tε2G)

α
√
κ

+
ClowL

α
√
κ

+ αλD2.

Finally, let us expose ν̄. Recall we set ν̄ = min{ν0, ν1}, with ν0 =
√
κ

4(1+RY ) , and

ν1 =

(
Tε2G
α
· hL2

eff

)1/2

·
(
T

τ
· αhR2

GR
2
Y,C

)−1/2

.

=
LeffεG

√
τ

αRGRY,C
=
Leff(Tε4G)1/3

αRGRY,C
,

finally yielding

ν̄ = min

{
Leff(Tε4G)1/3

αRGRY,C
,

√
κ

4(1 +RY )

}
,

To conclude, we paramaterize ν̄′ = ν̄
4η . Since η = 3

α , we take

ν̄′ =
α
√
κ

48(1 +RY )
min

{
4(1 +RY )Leff(Tε4G)1/3

α
√
κRGRY,C

, 1

}
≥ α

√
κ

48(1 +RY )
min

{
4(1 +RY )Leff(Tε4G)1/3

RGRY,C
, 1

}
≥ α

√
κ

48(1 +RY )
min

{
4(1 +RY )(Tε4G)1/3, 1

}
:= ν?

where in the last line we use L ≥ 1 to bound Leff ≥ RGRY,C . Thus, taking ν? to be the above lower
bound on ν̄′ concludes.
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H Ommited Proofs from Appendix F

H.1 Proof of Proposition F.8

Proof of Proposition F.8. Let v ∈ Rdu , with ‖v‖ = 1, and let us = Ysv for s ∈ {1 − h, 2 −
h, . . . , t}, and set us = 0 for s ≤ t − h and s > t. From Fact I.2, which shows that ‖v + w‖22 ≥
1
2‖v‖

2 − ‖w‖2, we have

v>
t∑

s=1

H>s Hsv :=

t∑
s=1

‖Hsv‖22 =

t∑
s=1

∥∥∥∥∥
h∑
i=0

G[i]Ys−iv

∥∥∥∥∥
2

2

=

t∑
s=1

∥∥∥∥∥
h∑
i=0

G[i]us−i

∥∥∥∥∥
2

2

≥
t+h∑

s=1−h

∥∥∥∥∥
h∑
i=0

G[i]us−i

∥∥∥∥∥
2

2

− 2hR2
GR

2
Y .

(Fact I.2)
≥ 1

2

t+h∑
s=1−h

∥∥∥∥∥
∞∑
i=0

G[i]us−i

∥∥∥∥∥
2

2

−
t+h∑

s=1−h

∥∥∥∥∥
∞∑
i>h

G[i]us−i

∥∥∥∥∥
2

2

− 2hR2
GR

2
Y

≥ 1

2

t+h∑
s=1−h

∥∥∥∥∥
∞∑
i=0

G[i]us−i

∥∥∥∥∥
2

2

−
t+h∑

s=1−h

ψG(h+ 1)2R2
Y − 2hR2

GR
2
Y

=
1

2

t+h∑
s=1−h

∥∥∥∥∥
∞∑
i=0

G[i]us−i

∥∥∥∥∥
2

2

−
(
tψG(h+ 1)2 + 4hR2

G

)
R2
Y︸ ︷︷ ︸

:=γt;h

,

where we use ψG(h+ 1) ≤ ψG(0) = R2
G in the last line. Moreover, setting ũs = us−h,

t+h∑
s=1−h

∥∥∥∥∥
∞∑
i=0

G[i]us−i

∥∥∥∥∥
2

2

=

t+2h∑
s=1

∥∥∥∥∥
∞∑
i=0

G[i]ũs−i

∥∥∥∥∥
2

2

(i)
=

∞∑
s=1

∥∥∥∥∥
s∑
i=0

G[i]ũ

∥∥∥∥∥
2

2

(ii)

≥ κ0

∞∑
s=1

‖ũs‖22

= κ0

∞∑
s=1

‖us−h‖22

where (i) uses that we have ũs = 0 for s ≤ 0 and for s ≥ t + 2h, and (ii) invokes Definition 2.2.
Combining the two displays, we have

v>
t∑

s=1

H>s Hsv ≥
κ0

2

∞∑
s=1

‖us−h‖22 − γt;h

≥ κ0

2

t+h∑
s=1

‖Ys−hv‖22 − γt;h

= v>

(
κ0

2

t∑
s=1−h

Y>s Ys − γt;hI

)
v,

where the last line uses ‖v‖ = 1. Finally, defining cψ;t := max{1, tψG(h+1)2

hR2
G
}, we have γt;h =

R2
Y (tψG(h+1)2 +4hR2

G) ≤ R2
Y (hcψ;tR

2
G+4hR2

G) ≤ 5hR2
Hcψ;t, yielding the desired bound.
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H.2 Proof of Lemma F.4

Let z? ∈ arg minz∈C
∑T
t=1 ft(z). Following the standard analysis of Online Newton Step (e.g.

Hazan [18, Chapter 4] with γ ← 1/η), one has

T∑
t=1

∇t(zt − z?) ≤
η

2

T∑
t=1

∇>t Λ−1
t ∇t +

1

2η

T∑
t=1

(zt − z?)>(Λt − Λt−1)(zt − z?) +
1

2η
(z1 − z?)>Λ0(z1 − z?)

The last term is at most λ
2ηD

2. Moreover, since Λt − Λt−1 = HtH
>
t ,

T∑
t=1

∇t(zt − z?)−
1

2η
‖Ht(zt − z?)‖22 ≤ λD2 +

η

2

T∑
t=1

∇>t Λ−1
t ∇t.

Finally, for η ≥ 1
α , we recognize that∇t(zt−z?)− 1

2η‖Ht(zt−z?)‖22 ≥ ∇t(zt−z?)− α
2 ‖Ht(zt−

z?)‖22 ≥ ft(zt)− ft(z?) by Lemma F.3. Thus,

T∑
t=1

ft(zt)− ft(z?) ≤ λD2 +
η

2

T∑
t=1

∇>t Λ−1
t ∇t,

as needed.

H.3 Proof of Lemma F.6

We have Ft(zt, . . . , zt−h)−ft(zt) = Ft(zt, . . . , zt−h)−Ft(zt, . . . zt). Therefore Taylor’s theorem,
there exists some µ ∈ [0, 1] such that, for zt−i = µzt−i + (1− µ)zt,

Ft(zt, . . . , zt−h)− ft(zt) = (∇Ft(zt, . . . , zt−h))>(0, zt−1 − zt, zt−2 − zt, . . . , zt−h − zt).

By the Chain Rule, we then have

|Ft(zt, . . . , zt−h)− ft(zt)| =

∣∣∣∣∣∇̀ (vt +

h∑
i=0

G[i]Yt−izt)
>

(
h∑
i=1

G[i]Yt−i(zt−i − zt)

)∣∣∣∣∣
≤ ‖∇̀ (vt +

h∑
i=0

G[i]Yt−izt)‖2 ·RG · max
i∈{1,...,h}

‖Yt−i(zt−i − zt)‖2.

Analogous to the Lemma F.2, we have ‖∇̀ (vt +
∑h
i=0G

[i]Yt−izt)‖2 ≤ Leff , concluding the first
part of the proof. For the second display, we have

T∑
t=1

Ft(zt, . . . , zt−h)− ft(zt) ≤ LeffRG

T∑
t=1

max
i∈{1,...,h}

‖Yt−i(zt − zt−i)‖2

≤ LeffRG

T∑
t=1

h∑
i=1

‖Yt−i(zt − zt−i)‖2

≤ LeffRG

T∑
t=1

h∑
i=1

i−1∑
j=1

‖Yt−i(zt−j+1 − zt−j)‖2

= LeffRG

T∑
s=1−h

h∑
i=1

i−1∑
j=1

‖Ys(zs+i−j+1 − zs+i−j)‖2

≤ hLeffRG

T∑
s=1−h

h−1∑
i=1

‖Ys(zs+i+1 − zs+i)‖2 · Is+i+1≤t.

Finally, since zt − zt−1 = 0 for t ≤ 1, the above indicator Is+i+1≤t can be replaced with
I2≤s+i+1≤t = I1≤s+i≤t−1, completing the proof.
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H.4 Proof of Lemma F.7

For t ≤ 0, ‖Ys(zt+1 − zt)‖2 = 0. Otherwise, we have

‖Ys(zt − zt−1)‖2 = ‖YsΛ
−1/2
t Λ

1/2
t (zt+1 − zt)‖2

≤ ‖YsΛ
−1/2
t ‖op · ‖Λ1/2

t (zt+1 − zt)‖2
(i)

≤ ‖YsΛ
−1/2
t ‖op · ‖Λ1/2

t (z̃t+1 − zt)‖2
= ‖YsΛ

−1/2
t ‖op‖Λ1/2

t · ηΛ−1
t ∇t‖2

= η

√
‖YsΛ

−1/2
t ‖2op‖Λ

−1/2
t ∇t‖22, (H.1)

where (i) follows from the Pythagorean theorem, using that zt+1 is projected in the Λt-norm. Fi-
nally, we can crudely bound ‖YsΛ

−1
t Ys‖op ≤ tr(YsΛ

−1
t Ys). Since we consider indices t ≥ s, we

have tr(YsΛ
−1
t Ys) ≤ tr(YsΛ

−1
s Ys), where we have the understanding that Λs = Λ1 for s ≤ 0.

Thus, we see that for t > 0,

‖Ys(zt+1 − zt)‖2 ≤ ηtr(YsΛ
−1
s Ys)

1/2tr(∇>t Λ−1
t ∇t))

1/2

Thus, from Lemma F.6 and by Cauchy Schwartz,

MoveDiffT ≤ hLeffRG

h−1∑
i=1

T∑
s=1−h

‖Ys(zs+i+1 − zs+i)‖2I1≤s+i≤t−1

≤ ηhLeffRG ·
h−1∑
i=1

√√√√ T∑
s=1−h

I1≤s+i≤t−1 · tr(YsΛ
−1
s Ys)

√√√√ T∑
s=1−h

I1≤s+i≤t−1 · tr(∇>s+iΛ
−1
s+i∇s+i)

≤ ηh2LeffRG ·

√√√√ T∑
s=1−h

tr(YsΛ
−1
h Ys)

√√√√ T∑
s=1

tr(∇>t Λ−1
t ∇t),

as needed.

I Ommited Proofs from Appendix G

I.1 Useful Facts for Analysis

We begin by listing some useful elementary facts:

Fact I.1. For all t ≥ 1 and all z ∈ C, we have ‖Ht − Ĥt‖op ≤ εGRY and ‖(Ht − Ĥt)z‖op ≤
εGRY,C

Proof. ‖Ht− Ĥt‖op = ‖
∑h
i=0(G

[i]
? − Ĝ[i])Y‖op ≤ ‖RY ‖op

∑h
i=0 ‖G

[i]
? − Ĝ[i]‖op ≤ εGRY . The

second bound is similar.

Fact I.2. Given two vectors v, w ∈ Rm, ‖v + w‖22 ≥ 1
2‖v‖

2 − ‖w‖2.

Proof. ‖v+w‖22 = ‖v‖2 +‖w‖2 +2〈v, w〉 ≥ ‖v‖2 +‖w‖2−2‖v‖‖w‖ ≥ ‖v‖2 +‖w‖2− 1
2‖v‖

2−
2‖w‖2 = ‖v‖2

2 − ‖w‖2, as needed.

Fact I.3. ‖a‖2 ≤ ‖b‖2 + (‖a‖+ ‖b‖)‖b− a‖

Proof. ‖a‖22 = 〈a, a〉 = 〈b− a, a〉+ 〈b, a〉 = 〈b− a, a+ 〈b, a− b〉+ ‖b‖2. The bound now follows
form Cauchy-Schwartz
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I.2 Proof of Lemma G.1

Let z? ∈ C be an arbitrary comparator point. Analogus to the proof of Lemma F.4,
T∑
t=1

f̂t(zt)− f̂t(z?) ≤
T∑
t=1

∇̂
>
t (zt − z?)−

α

2
‖Ĥt(zt − z?)‖22 (I.1)

One the other hand, the standard inequality obtained from applying Semi-ONS to the (f̂t)-sequence
(see, for analogy, page 58 of [18]), we obtain

∇̂
>
t (zt − z?) ≤

η

2
‖∇̂‖2

Λ̂−1
t

+
2

η
‖zt − z?‖2Λ̂t −

2

η
‖zt+1 − z?‖2Λ̂t .

Summing up over t and telescoping
T∑
t=1

∇̂
>
t (zt − z?) ≤

η

2

T∑
t=h+1

‖∇̂‖2
Λ̂−1
t

+

T∑
t=1

1

2η
‖zt − z?‖2Λ̂t−Λ̂t−1

+
1

2η
‖zh − z?‖2Λ̂h

=
η

2

T∑
t=1

‖∇̂‖2
Λ̂−1
t

+
1

2η

T∑
t=1

‖Ĥt(zt − z?)‖2 +
λD2

2η
, (I.2)

where we use Λ̂t − Λ̂t−1 = Ĥ>t Ĥt and Λ̂0 = λI . Thus, introducing errt := ∇f̂t(z)−∇f(zt) and
combining (I.1) and (I.2),

T∑
t=1

ft(zt)− ft(z?) ≤
T∑
t=1

err>t (zt − z?) +
1

2η

T∑
t=1

(‖Ĥt(zt − z?)‖2 − ηα‖Ht(zt − z?)‖2)

+
η

2

T∑
t=1

‖∇̂‖2
Λ̂−1
t

+
λD2

2η

Plugging in δt = zt−z? concludes the proof, and re-iterating the proof of Proposition F.1 concludes
the proof.

I.3 Proof of Lemma G.2

First, we can bound ‖Ĥtδt‖2 ≤ 2‖Htδt‖2 + 2‖(Ht − Ĥt)δt‖2, and

‖(Ht − Ĥt)δt‖ ≤ ‖(Ht − Ĥt)zt‖+ ‖(Ht − Ĥt)z?‖ ≤ 2RY,CεG

by Fact I.1. Taking η ≥ 3
α , we find then that

‖Ĥtδt‖2 − ηα‖Htδt‖2 ≤ 2‖Htδt‖2 + 8R2
Y,Cε

2
G − 3‖Htδt‖2 = −‖Htδt‖2 + 8R2

Y,Cε
2
G.

The second statement of the lemma follows by substitution into Lemma G.1.

I.4 Proof of Lemma G.3

We have the bound
errt := ∇f̂t(z)−∇f(zt)

= Ĥ>t ∇̀ t(v̂t + Ĥtzt)−Ht∇̀ t(v
?
t + Htzt)

= (Ĥt −Ht)
>∇̀ t(v̂t + Ĥtzt) + Ht

(
∇̀ t(v̂t + Ĥtzt)− ∇̀ t(v

?
t + Htzt)

)
.

Defining

gt,1 := ∇̀ t(v̂t + Ĥtzt)

gt,2 :=
(
∇̀ t(v̂t + Ĥtzt)− ∇̀ t(v

?
t + Htzt)

)
We have that ‖gt,1‖2 ≤ Leff by analogy to Lemma F.2. Moreover, since β-smoothness implies that
the gradients are β-Lipschitz, and by invoking Fact I.1, we have(
∇̀ t(v̂t + Ĥtzt)− ∇̀ t(v

?
t + Htzt)

)
≤ β‖(v̂t + Ĥtzt)− (v?t + Htzt)‖ ≤ β(cvεG + 2εGRY,C).
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I.5 Proof of Lemma G.4

Recall that from Lemma G.2, we have the bound

T∑
t=1

ft(zt)− ft(z?) ≤
T∑
t=1

err>t δt −
1

2η

T∑
t=1

‖Htδt‖2 +
4

η
TR2

Y,Cε
2
G + R̂egT . (I.3)

Let us now bound the sum
∑T
t=1 err

>
t δt via Lemma G.3. The lemma ensures errt = (Ĥt −

Ht)
>g1,t +H>t g2,t. where ‖g1,t‖2 ≤ Leff and ‖g2,t‖ ≤ βεG(cv + 2RY,C). The contribution of the

term including g2,t is easily adressed:

(H>t g2,t)
>δt ≤ ‖g2,t‖2‖Htδt‖2 ≤ βεG(cv + 2RY,C)‖Htδt‖2 ≤ ηβ2ε2G(cv + 2RY,C)

2 +
1

4η
‖Htδt‖2,

by the AM-GM inequality. Next, we handle the term (Ĥt −Ht)
>g1,t. First we bound

((Ĥt −Ht)
>g1,t)

>δt ≤ ‖g1,t‖‖(Ĥt −Ht)δt‖ ≤ Leff‖(Ĥt −Ht)δt‖.

Plugging into Eq. (I.3) gives

T∑
t=1

ft(zt)− ft(z?) ≤
T∑
t=1

Leff‖(Ĥt −Ht)δt‖ −
1

4η

T∑
t=1

‖Htδt‖2

+ T

(
ηβ2(cv + 2εGRY,C)

2 +
4R2

Y,C

η

)
ε2G + R̂egT . (I.4)

For arbitrary sequences Ht, Ĥt, there is no obvious way to cancel the terms Leff‖(Ĥt−Ht)δt‖ and
−‖Htδt‖2 to achieve a O(Tε2G)-error dependence. However, there is additional structure we can
leverage. We can observe that

‖(Ĥt −Ht)δt‖22 =

∥∥∥∥∥
h∑
i=0

(Ĝ[i] −G?)[i]Yt−iδt

∥∥∥∥∥
2

2

≤ εG max
i∈[0:h]

‖Yt−iδt‖2.

Hence, by AMG-GM, we have that for any ν > 0,

Leff‖(Ĥt −Ht)δt‖ ≤ ν−1(h+ 1)ηL2
effε

2
G +

ν

4(h+ 1)η
max
i∈[0:h]

‖Yt−iδt‖2.

Together with Eq. (I.4), the above display implies

T∑
t=1

ft(zt)− ft(z?) ≤
1

4η

T∑
t=1

(
ν

h+ 1

h∑
i=0

‖Yt−iδt‖2 − ‖Htδt‖2
)

+ Tε2G · ERR(ν) + R̂egT ,

where ERR(ν) :=
(
η(h+1)L2

eff

ν + ηβ2(cv + 2RY,C)
2 +

4RY,C
η

)
. .
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I.6 Proof of Lemma G.5

Fix a block length τ ∈ N, and recall the index kj = (j − 1)τ , and jmax as the largest j such that
jmaxτ ≤ T . We bound

T∑
t=1

‖Yt−iδt‖22

=

jmax∑
j=1

τ∑
s=1

‖Ykj+s−iδkj+s‖22 +

T∑
s=1+τ(jmax−1)

‖Yi−hδt‖22

≤ 4τRY,C +

jmax∑
j=1

τ∑
s=1

‖Ykj+s−iδkj+s‖22

(i)

≤ 4τRY,C +

jmax∑
j=1

τ∑
s=1

‖Ykj+s−iδkj‖22 + (‖Ykj+s−iδkj+1‖2 + ‖Ykj+s−iδkj+s‖2)‖Ykj+s−i(δkj+s − δkj+1)‖2

(ii)

≤ 4τRY,C +

jmax∑
j=1

τ∑
s=1

‖Ykj+s−iδkj+1‖22 + 4RY,C

jmax∑
j=1

τ∑
s=1

‖Ykj+s−i(δkj+s − δkj+1)‖2, (I.5)

Where (i) uses the inequality ‖a‖2 ≤ ‖b‖2 + (‖a‖+ ‖b‖)‖b−a‖ from Fact I.3, and where (ii) uses
the ‖Ys(δt)‖ ≤ ‖Ysz?‖+ ‖Yszt‖ ≤ 2RY,C .

Next, recalling δt := zt − z?, we develop

jmax∑
j=1

τ∑
s=1

‖Ykj+s−i(δkj+s − δkj+1)‖2 =

jmax∑
j=1

τ∑
s=2

‖Ykj+s−i(zkj+s − zkj+1)‖2

≤
jmax∑
j=1

τ∑
s=2

s−2∑
s′=0

‖Ykj+s−i(zkj+s−s′ − zkj−s′−1)‖2

≤
jmax∑
j=1

τ∑
s=2

τ ′−1∑
s′=0

‖Ykj+s−i(zkj+s−s′ − zkj−s′−1)‖2

≤
T∑
t=1

τ−1∑
s′=0

‖Yt−i(zt−s′ − zt−s′−1)‖2,

where above we use the convention zt = 0 for t ≤ 1, and that the induces kj + s range over a subset
of t ∈ [T ]. Relabeling s′ with s, and combining with Eq. (I.5) this finally yields

T∑
t=1

‖Yt−iδt‖22 ≥ 4τRY,C +

jmax∑
j=1

τ∑
s=1

‖Ykj+s−iδkj‖22 + 4RY,C

T∑
t=1

τ−1∑
s=0

‖Yt−i(zt−s − zt−s−1)‖2.

Following similar steps (but using Fact I.1 to bound ‖Htz‖ ≤ RGRY,C), we obtain

T∑
t=1

‖Htδt‖22 ≥
jmax∑
j=1

τ∑
s=1

‖Hkj+sδkj‖22 − 4RY,CRG

T∑
t=1

τ−1∑
s=0

‖Ht(zt−s − zt−s−1)‖2,
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I.7 Proof of Lemma G.6

Recall our convention Λ̂s = Λ̂1 and Λs = Λ1 for s ≤ 1. For any µ ∈ (0, 1], we have the bound

Λ̂t−τ = λI +

t−τ∑
s=1

Ĥ>s Ĥs � λI + µ

t−τ∑
s=1

Ĥ>s Ĥs

� (λ− µτR2
H)I + µ

t∑
s=1

Ĥ>s Ĥs

� (λ− µτR2
H)I +

t∑
s=1

µ

2
H>s Hs − µ(Ĥs −Hs)

>(Ĥs −Hs),

where the last step follows from Fact I.2. We can crudely bound(Ĥs −Hs)
>(Ĥs −Hs) � ‖Ĥs −

Hs‖2I � R2
Y ε

2
GI via Fact I.1, giving

Λ̂t−τ � (λ− µτR2
H − µR2

Y tε
2
G)I +

µ

2

t∑
s=1

H>s Hs.

Bounding t ≤ T , and taking µ = min{1, λ
2(τR2

H+R2
Y ε

2
GT )
}, we obtain

Λ̂t−τ �
λ

2
+
µ

2

t∑
s=1

H>s Hs �
µ

2
Λt

Thus, for any upper bound cΛ ≥
√

2
µ

Λ̂−1
t−τ �

2

µ
Λ−1
t � c2ΛΛ−1

t . (I.6)

Finally, we can bound

√
2

µ
=

√
max{2,

4(τR2
H +R2

Y ε
2
GT )

λ
}

=

√
max{2, 4R2

Y

τR2
G + ε2GT

λ
}

(i)

≥
√

max{2, 4c−1
λ R2

Y (1 +
τR2

G

λ
)

≤ 2(1 +RY ) + 2c
9 1

2

λ RY

√
τR2

G

λ
:= cΛ,

where we use that λ ≥ cλTε2G in (i). This verifies that cΛ in the lemma is an upper bound on
√

2/µ,
and the lemma now follows from Eq. (I.6).

I.8 Proof of Lemma G.7

Let τ ∈ N denote our blocking parameter. Again, adopt the convention Λ̂s = Λ̂1 and Λs = Λ1 for
s ≤ 0, and let cΛ be such from Lemma G.5, which ensures that, for all t,

Λ̂−1
t−τ � c2ΛΛ−1

t . (I.7)

53



Then, any for s ∈ {0, . . . , τ − 1} such that s ≤ t− 1 any µ > 0, we have

‖Yt−i(zt−s − zt−s−1)‖2 ≤ ‖Yt−iΛ̂
− 1

2
t−s−1‖op‖Λ̂

1
2
t−s−1(zt−s − zt−s−1)‖2

≤ ‖Yt−iΛ̂
1
2
t−τ−i‖op‖Λ̂

1
2
t−s−1(zt−s − zt−s−1)‖2

≤ ‖Yt−iΛ̂
− 1

2
t−τ−i‖op‖Λ̂

1
2
t−s−1∇̂t−s−1‖2 (Projection Step)

≤
√

tr(Yt−iΛ̂
−1
t−τ−iYt−i) · ‖∇̂t−s−1‖2Λ̂t−s−1

≤ cΛ
√

tr(Yt−iΛ̂
−1
t−iYt−i) · ‖∇̂t−s−1‖2Λ̂t−s−1

. (Eq. (I.7))

Note that the above expression does not depend on τ . Thus, since zt−s − zt−s−1 = 0 for s > t− 1
(recall here we assume zi = z1 for i ≤ 1), an application of Cauchy Schwartz yields

T∑
t=1

τ−1∑
s=0

‖Yt−i(zt−s − zt−s−1)‖2 ≤ τcΛ

(
T∑

t=s+1

tr(Yt−iΛ
−1
t−iYt−i)

) 1
2
(

T∑
t=s+1

‖∇̂t−s‖2Λ̂t−s

) 1
2

≤ τcΛ

(
T∑
t=1

tr(Yt−iΛ
−1
t−iYt−i)

) 1
2
(

T∑
t=1

‖∇̂t‖2Λ̂t

) 1
2

≤ τcΛ

(
T∑

t=1−h

tr(YtΛ
−1
t Yt)

) 1
2
(

T∑
t=1

‖∇̂t‖2Λ̂t

) 1
2

(I.8)

Arguing as in the proof of Proposition F.1, and using λ ≥ hR2
G ≥ 1,

T∑
t=1

‖∇̂t‖2Λ̂t ≤ L
2
eff

T∑
t=1

tr
(
ĤtΛ̂

−1
t Ĥt)

) 1
2 ≤ dL2

eff log(1 +
TR2

H

λ
) ≤ dL2

eff · L. (I.9)

We now develop a simple claim, which is a consequence of Proposition F.8:

Claim I.4. Recall cψ;t := max{1, tψG(h+1)2

hR2
G
}, and set µ0 = min{1, λ

10hR2
Hcψ;T

}. We have

T∑
t=1−h

tr(Y>t Λ−1
t Yt) ≤

2d

µ0κ
L.

Proof of Claim I.4. From Proposition F.8, we have the bound

t∑
s=1

H>s Hs �
κ

2

t∑
s=1−h

Y>s Ys − 5hR2
Hcψ;tI.

Thus, for any µ0 = min{1, (10hR2
Hcψ;T )−1} ≤ 1,

Λt = λI +

t∑
s=1

HtH
>
t ≥ λI + µ0

t∑
s=1

HtH
>
t

= λI + µ0

(
κ

2

t∑
s=1−h

YsY
>
s − 5hR2

Hcψ;T

)
� λ

2
I +

µ0κ

2

t∑
s=1−h

YsY
>
s .

Hence, from the log-det potential bound of Lemma F.5, the bounds µ0, κ ≤ 1 and RH = RGRY

T∑
s=1−h

tr(Y>s Λ−1
s Ys) ≤

2d

µ0κ
log(1 +

µ0κTR
2
Y

λ
) ≤ 2d

µ0κ
log(1 +

TR2
H

λ
) =

2d

µ0κ
L.
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To apply the above, let us simplify our expression for µ0. Recall that

µ0 = min

{
1,

λ

10hR2
Hcψ;T

}
, cψ;T := max

{
1,
TψG(h+ 1)2

hR2
G

}
≤ (1 + Tε2G/hR

2
G),

where we note that εG = ‖Ĝ−G‖`1,op ≥
∑
i>h ‖G[i]‖op ≥ ψG(h+ 1), since Ĝ[i] = 0 for i > h.

Using the bounds RH/RG = RY and λ ≥ cλ(Tε2G + hR2
G) for cλ ∈ (0, 1],

µ−1
0 ≤ 1 +

10hR2
Hcψ;T

λ

≤ 1 +
10hR2

H(1 + Tε2G/hR
2
G)

λ

= 1 +
10R2

Y (hR2
G +R2

Y Tε
2
G/h)

λ
≤ 1 + c−1

λ 10R2
Y .

Together with Claim I.4, we obtain

T∑
t=1−h

tr(YtΛ
−1
t Yt) ≤

2d

µ0κ
L ≤ 2d(1 + 10R2

Y )

κ
· L. (I.10)

Thus, putting together Equations (I.8), (I.9), and (I.10),

T∑
t=1

τ−1∑
s=0

‖Yt−i(zt−s − zt−s−1)‖2 ≤ τcΛc
9 1

2

λ · Leffd

√
2(1 + 10R2

Y )

κ
L,

which is the first inequality of the lemma. For the second inequality, we establish the following
analogue of Eq. (I.8):

T∑
t=1

τ−1∑
s=0

‖Ht(zt−s − zt−s−1)‖2 ≤ τcΛ ·

(
T∑
t=1

tr(HtΛ
−1
t Ht)

) 1
2
(

T∑
t=1

‖∇̂t‖2Λ̂t

) 1
2

.

Again, we bound
∑T
t=1 ‖∇̂t‖2Λ̂t ≤ dL

2
eff ·L as in Eq. (I.9). Moreover, from Eq. (F.2), we can bound∑T

t=1 tr(HtΛ
−1
t Ht) ≤ dL. Thus,

T∑
t=1

τ−1∑
s=0

‖Ht(zt−s − zt−s−1)‖2 ≤ τdLeffc
9 1

2

λ cΛL,

which is precisely the second inequality of the lemma.

I.9 Proof of Lemma G.8

We state a slighlty sharper variant of Proposition F.8, which considers directions limited to δ ∈ C−C:

Claim I.5. Set cψ;t := max{1, tψG(h+1)2

hR2
G
}. let δ = z − z′ for some z, z′ ∈ C. Then,

δ>

(
T∑
s=1

HtHt

)
δ ≥ κ

2
δ>

(
T∑

s=1−h

HtHt

)
δ − 20hR2

Y,CR
2
Gcψ;t.

Proof. The proof is analogous to Proposition F.8, but instead, the remainder term need only account
for directiong z − z′ for z, z′ ∈ C. This replaces the factor of RY one would obtain with a factor of
maxt,t′ ‖Ytδt′‖ ≤ 2RY,C , yielding a remainder temr of 20hR2

Y,CR
2
Gcψ;t instead of 5hR2

yR
2
Gcψ;t

in the original proposition.
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Let us now turn to the proof of our lemma. From Claim I.5, we have
τ∑
s=1

‖Hkjδkj+1‖22 = δ>kj+1

(
τ∑
s=1

H>kj+sHkj+s

)
δkj+1

≥ κ

2
δ>kj+1

(
τ∑

s=1−h

Y>kj+sYkj+s

)
δkj+1 − 20hcψ;τR

2
GR

2
Y,C

Moreover, for any i ∈ [h], we have

τ∑
s=1

h∑
i=0

‖Ykj+s−iδkj+1‖22 = δ>kj+1

(
τ∑
s=1

Y>kj+s−iYkj+s−i

)
δkj+1

≤ δ>kj+1

(
τ∑

s=1−h

Y>kj+sYkj+s

)
δkj+1.

Thus, for ν ≤ κ
4 , we have

τ∑
s=1

h∑
i=0

ν(h−1 + Ii=0)‖Ykj+s−iδkj‖22 ≤ 2νδ>kj

(
τ∑

s=1−h

Y>kj+sYkj+s

)
δkj

≤ κ

2
δ>kj

(
τ∑

s=1−h

Y>kj+sYkj+s

)
δkj

≤
τ∑
s=1

‖Hkjδkj‖22 + 20hcψ;τR
2
GR

2
Y,C .

Hence, rearranging, we have

Regcancel :=

jmax∑
j=1

τ∑
s=1

(
h∑
i=0

(
ν(1 + hIi=0)‖Ykj+s−iδkj‖22

)
− ‖Hkj+sδkj‖22

)
≤ jmax20hcψ;τR

2
GR

2
Y,C

≤ T

τ
20hcψ;τR

2
GR

2
Y,C .

Finally, let us simplify the dependence on cψ;τ . We have

cψ;τ

τ
= max{τ−1,

ψG(h+ 1)2

hR2
G

} ≤ cψ;τ

τ
= max{τ−1,

ε2G
hR2

G

} ≤ 1

τ
+

ε2G
hR2

G

.

Together with ν ≤ κ
4 , this gives

Regcancel ≤
20νh

τ
Tcψ;τR

2
GR

2
Y,C ≤

20νh

τ
TR2

GR
2
Y,C + 20νTε2GR

2
Y,C

≤ 20T

τ
· νhR2

GR
2
Y,C + 5Tε2G · κR2

Y,C .

I.10 Proof of Lemma G.9

From Eq. (G.15), we bound

OCORegT

(
ν

4η
; z?

)
≤ 1

4η
Regblock + Tε2G ERR(ν) + R̂egT ,

where from Eq. (G.14) we have

Regblock ≤ 8τ · νRY,C + 8νRY,C

(
max
i∈[h]

RegY,move,i

)
+ 4RY,CRπ0

· RegH,move + Regcancel.
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Let us develop the above bound on Regblock. From Lemma G.7, we have

RegY,move,i ≤ τcΛc
9 1

2

λ · dLeff

√
2(1 + 10R2

Y )

κ
L, and RegH,move ≤ τcΛc

9 1
2

λ · dLeffL,

and from Lemma G.8, we have Regcancel ≤ 20T
τ ·νhR

2
GR

2
Y,C+5Tε2G ·κR2

Y,C .. Thus, using followed
by

Regblock ≤ 8τ · νRY,C + 8νRY,C

(
max
i∈[h]

RegY,move,i

)
+ 4RY,CRπ0 · RegH,move + Regcancel

(i)

≤ 8τcΛc
9 1

2

λ RY,C

(
ν + νdLeff

√
2(1 + 10R2

Y )

κ
L + dRGLeffL

)
+

20T

τ
· νhR2

GR
2
Y,C + 5Tε2G · κR2

Y,C

(ii)

≤ 8τcΛc
9 1

2

λ RY,CdLeffL

(
ν

√
2(1 + 10R2

Y )

κ
+ 2RG

)
+

20T

τ
· νhR2

GR
2
Y,C + 5Tε2G · κR2

Y,C

. τcΛc
9 1

2

λ RY,CdLeffL

(
ν

√
2(1 +R2

Y )

κ
+RG

)
+
T

τ
· νhR2

GR
2
Y,C + Tε2G · κR2

Y,C ,

where (i) uses the above bounds together with cΛc
9 1

2

λ ≥ 1 (see Lemma G.6) , and (ii) uses ν ≤
1 ≤ Leff and dRGL ≥ 1, and where the last line disposes of constants. Using RG ≥ 1, and the
assumption ν ≤

√
κ

4(1+RY ) , the above is at most

Regblock . τc
9 1

2

λ cΛRY,CRGdLeffL +
T

τ
· νhR2

GR
2
Y,C + Tε2G · κR2

Y,C ,

Next, using λ ≥ cλτ , we have from Lemma G.6,

cΛ = 2(1 +RY ) + 2RY

√
τR2

G

λ
. c

9 1
2

λ (1 +RY )RG.

Thus, we obtain

Regblock . c91
λ τ(1 +RY ) ·RY,CR2

G · dLeffL +
T

τ
· νhR2

GR
2
Y,C + Tε2G · κR2

Y,C ,

Combining with η = 3
α , we have

OCORegT

(
ν

4η
; z?

)
≤ 1

4η
Regblock + Tε2G ERR(ν) + R̂egT

. c91
λ τ
(
α(1 +RY )RY,CR

2
G · dLeffL

)
+
T

τ

(
ανhR2

GR
2
Y,C
)

+ Tε2G
(
ακR2

Y,C + ERR(ν)
)

+ R̂egT .

Finally, let us substitute in

ERR(ν) :=
η(h+ 1)L2

eff

ν
+ ηβ2(cv + 2RY,C)

2 +
4RY,C
η

.
hL2

eff

αν
+

1

α
β2(c2v +R2

Y,C) + αRY,C .

Since α ≤ β by necessitiy and κ ≤ 1, we have α ≤ β2

α , so that

ERR(ν) + ακR2
Y,C .

hL2
eff

αν
+
β2

α
(c2v +RY,C +R2

Y,C)

Altogether, combined with the bound cλ ≤ 1, this yields

cλOCORegT (
ν

4η
; z?) .

Tε2G
α

(
hL2

eff

ν
+ β2(c2v +RY,C +R2

Y,C)

)
+ R̂egT .

+
Tν

τ

(
αhR2

GR
2
Y,C
)

+ τ ·
(
α(1 +RY )RY,CR

2
G · dLeffL

)
,

as needed.

.
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I.11 Proof of Lemma G.10

Consider MoveDiffT :=
∑T
t=1 Ft(zt:t−h)−ft(zt). The decomposition Lemma F.6 holds verbatim,

and by appropriately modifying Lemma F.7 to use the fact that the iterates are based on Ĥt, Λ̂t, we
arive at.

MoveDiffT ≤ ηh2L2
effRG ·

√√√√ T∑
t=1−h

tr(YtΛ̂
−1
t Yt) ·

√√√√ T∑
t=1

tr(Ĥ>t Λ̂−1
t Ĥt).

As in Eq. (F.2), we bound

T∑
t=1

tr(Ĥ>t Λ̂−1
t Ĥt) ≤ d log(1 +

TR2
H

λ
) ≤ dL,

where we take λ ≥ 1 and use L = log(1+TR2
H/λ) from Eq. (G.6). Moreover, applying Lemma G.6

with τ = 0, we have that Λ̂−1
t � 4(1 +RY )2Λ−1

t , giving

T∑
t=1−h

tr(YtΛ̂
−1
t Yt) ≤ 4(1 +RY )2

T∑
t=1−h

tr(YtΛ
−1
t Yt) ≤ 4(1 +RY )2 2d(1 + 10R2

Y )

κ
· L

where the last inequality uses Eq. (I.10). Thus,

MoveDiffT ≤ 9η(1 +RY )h2dL2
effLRG ·

√
(1 +R2

Y )/κ

≤ 9ηκ9
1
2 (1 +RY )2RGh

2 · dL2
effL

J Lower and Upper Bounds on Euclidean Movement

J.1 Proof of Theorem 2.3

Our construction is loosely based of of [5, Theorem 13].

Recall the lower bound set up C = [−1, 1], ft(z) = (vt− εz)2, and ε ≤ 1. Let E be an epoch length
to be selected, and suppose for simplicity that k = T/E is an integer. Let Ti := 1 + E · (i − 1)
denote the start of each epoch for i ≥ 1. Let us define the distribution D over v1, . . . ,vT via:

vt :=

{
i.i.d∼ Unif({−1, 1}) t = Ti
vTi t ∈ {Ti + 1, . . . , Ti+1 − 1}

Lastly, recall the definition:

µ-RegT :=

T∑
t=1

ft(zt)− inf
z∈C

T∑
t=1

ft(z) + µ

T∑
t=1

|zt−1 − zt|

Our key technical ingredient is the following lemma, which shows that if the regularizer is large
enough, the optimal strategy is essentially to select zt = zTi within any given epoch i:

Lemma J.1. For µ ≥ 4Eε,

Ti+1−1∑
t=Ti+1

ft(zt) + µ|zt − zt−1| ≥ (E − 1)ft(vTi − zTi).
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Proof. We can write

Ti+1−1∑
t=Ti+1

ft(zt) + µ|zt − zt−1| =
Ti+1−1∑
t=Ti+1

fTi(zt) + µ|zt − zt−1|

≥
E−1∑
s=1

fTi(zt) + µ · max
t=Ti+1,...,Ti+1−1

|zTi − zt|

≥
E−1∑
s=1

fTi(zt) +
µ

E − 1
|zTi − zt|︸ ︷︷ ︸

:=g(zt)

,

where the first inequality uses the triangle inequality, and the second replaces the maximum by the
average. Define µ0 = µ

2(E−1)ε , and set g(z) := fTi(zt)+ µ
E−1 |zTi−zt| = (vTi−εz)2 +2εµ0|zTi−

zt|. Then,

∂g(z) = 2ε (εz − vTi + µ0σ(z))

where σ(z) = 1 if zTi > z, −1 if zTi < z, and is in interval [−1, 1] if z = zTi . Now, if µ0 ≥ 2,
then, |εz − vTi | ≤ µ0, so that the first order optimality conditions are met by selecting z? = zTi .
This yields

g(z?) = (vTi − εzTi)2.

The bound follows.

By summing within different epochs, the above lemma implies a simple lower bound on µ-RegT :

µ-RegT =

k∑
i=1

Ti−1+1∑
t=Ti

ft(zt)− ft(z) + µ‖zt − zt−1‖

(i)
=

k∑
i=1

fTi(zTi)− EfTi(z) + µ‖zTi − zTi−1‖+

Ti−1+1∑
t=Ti

ft(zt) + µ‖zt − zt−1‖


(ii)

≥
k∑
i=1

fTi(zTi)− EfTi(z) + µ‖zTi − zTi−1‖+ (E − 1)fTi(zTi)

≥
k∑
i=1

fTi(zTi)− EfTi(z) + (E − 1)fTi(zTi)

= sup
z∈C

E

(
K∑
i=1

fTi(zTi)− fTi(z)

)
,

where (i) uses that ft = fTi in epoch i and (ii) uses Lemma J.1. Crucially, the above quantity
is scaled up by a factor of E, and the learner is forced to commit to a single iterate per epoch.
Continuing with fTi(z) = (vTi − εz)2,

µ-RegT ≥ sup
z∈C

E

(
k∑
i=1

(vTi − εzTi)2 − (vTi − εz)2

)

= sup
z∈C

E

 k∑
i=1

−2εvTizTi + ε2z2
Ti︸ ︷︷ ︸
≥0

+2εzvTi − ε2 · z2︸︷︷︸
≤1


≥ sup

z∈C
E

((
k∑
i=1

−2εvTizTi + 2εzvTi

)
− kε2

)
.
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Taking an expectation, and noting that E[vTizTi ] = 0 by construction, we have that

E[µ-RegT ] ≥ E

(
2εE

[
sup
z∈C

z

k∑
i=1

vi

]
− kε2

)

= 2εE

(
E

∣∣∣∣∣
k∑
i=1

vi

∣∣∣∣∣− k

2
ε

)

≥ 2εE

(
c
√
k − kε

2

)
,

where c ≤ 1 is a universal constant. 8 Let us now tune the above bound. Select

• k = b(8Tc/µ)2/3c
• ε = µ/4E.

We first check that these parameters are valid:
Claim J.2. For a universal constant c1, it holds that if µ ≤ c1T , then k ≥ 1 and ε ≤ 1.

Proof. For µ ≤ 8cT , k ≥ 1. Moreover,

ε =
µ

4E
=
µk

4T
≤ (8Tc/µ)2/3 µ

T
= 4c2/3(µ/T ).

Hence, for µ ≤ T/4c2/3, the above is at most 1. Setting c1 = min{8c, 1/4c2/3} concludes.

For the above choices, we have

E[µ-RegT ] ≥ 2εE

(
c
√
k − kε

2

)
=
µ

2

(
c
√
k − k2µ

8T

)
=
c
√
kµ

4

(
2− k3/2

8Tc/µ

)
≥ c
√
kµ

4
≥ cµb(8Tc/µ)2/3c1/2

4

≥ c2µ(T/µ)1/3 = c2(µ2T )1/3,

for some universal constant c2. Moreover, suppose that that E[OCORegT ] ≤ R. Then, for µ ≥ c1T

c2(µ2T )1/3 ≤ E[µ-RegT ] ≤ R+ µE[EucCostT ].

Rearranging, we have that if c2(µ2T )1/3 ≥ 2R, E[EucCostT ] ≥ c2
2 (T/µ)1/3. For this to hold, we

take µ =
√

(2R/c2)3/T , yielding

E[EucCostT ] ≥ c2
2

(T · (T/(2R/c2)3)1/3 =
c2
2

(c2T/2R)1/2 ≥ c3
√
T/R. (J.1)

Finally, we need to ensure that µ ≤ c1T , which hold for (2R/c2)3/T ≤ c21T 2, i.e. for R ≤ c4T for
a universal c4.

J.2 Matching Tradeoff via ONS

We now show that ONS mathces the tradeoff in Theorem 2.3 up to logarithmic factors, problem
constants and dimension. To show this, we first check that OCOAM losses satisfy the general ONS
regularity conditions. We say f is τ -exp concave if ∇2f � τ · ∇f(∇f)>[18]. The following is a
direct consequence of Lemma F.2
Lemma J.3. Let ft be an OCOAM loss with parameters bounded as in Definition 2.1, where `
satisfies Assumption 1. Then ft is α

L2
eff

-exp concave, and RHLeff -Lipschitz on C.

8Note the folklore results that the expectation average of k Rademacher random variables scales as
√
k
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We now show that ONS matches the optimal (µ2T )1/3 scaling up to dimension and logarithmic
factors:
Theorem J.1. Consider ONS on a sequence family of G-Lipschitz, τ -exp concave functions on a
convex set C of diameterD. Let defineR0 = (GD+τ−1) ·d log T be the standard upper bound (up-
to-constants) on the regret of ONS [18]. Then, for any µ ∈ R, there exists a choice of regularization
parameter λ such that ONS with η = 2 max{4GD, 1/τ} has:

µ-RegT . (R0D
2 · Tµ2)1/3 +R0.

For the special case of OCOAM, the above guarantee can also be satisfied for by Semi-ONS(albeit
with modififed dependence on problem parameters ).

Consider the ONS algorithm, with updates

z̃t+1 = zt − ηΛ−1
t ∇t, zt+1 = arg min

z∈C
‖z̃t+1 − z‖2Λt , Λt := λI +

t−1∑
s=1

∇t∇>t , ∇t := ∇ft(zt)

(J.2)
Set η = 2 max{4GD, 1/τ}, λ ≥ G2. From Hazan [18, Section 4.3], with the notation change
η ← 1/γ, τ ← α Λt ← At, and λ← ε, ONS has unary regret bouned by

OCORegT ≤
η

2

T∑
t=1

∇tΛ−1
t ∇t +

D2λ

2η
≤ dη

2
log(1 + T ) +

D2λ

2η
.

Moreover, we can bound

EucCostT =

T∑
t=1

‖zt − zt−1‖
(i)

≤ 1√
λ

T∑
t=1

‖Λ1/2(zt − zt−1)‖

(ii)

≤ 1√
λ

T∑
t=1

‖Λ1/2(z̃t − zt)‖ =
1√
λ

T∑
t=1

‖Λ−1/2∇t‖

(iii)

≤ η√
λ

√√√√T

T∑
t=1

∇>t Λ−1
t ∇t

(iv)

≤ η√
λ

√
Td log(1 + T ),

where (i) uses Λt � λ, (ii) uses the Pythagorean theorem, (iii) uses Cauchy-Schwartz, and (iv)
applies the log-determinant lemma as in Hazan [18, Section 4.3] with λ ≥ G2. Hence,

µ-RegT ≤
dη

2
log(1 + T ) +

D2λ

2η
+
ηµ√
λ

√
Td log(1 + T ).

Set λ0 to satisfy D2λ0

2η = ηµ√
λ0

√
Td log(1 + T ). Then,

D2λ0

2η
+

µ√
λ0

√
Td log(1 + T ) =

D2λ0

η

=
D2

η
·
(

2η2

D2
µ
√
Td log(1 + T )

)2/3

=
D2

η
·
(

2η4

D4
µ2Td log(1 + T )

)1/3

=
(
2D2 · µ2T · ηd log(1 + T )

)1/3
.

Setting λ = G2 ∨ λ0 yields

µ-RegT ≤
dη

2
log(1 + T ) +

G2D2

2η
+
dη

2
log(1 + T ) +

D2λ0

2η
+

µ√
λ0

√
Td log(1 + T )

≤ dη

2
log(1 + T ) +

G2D2

2η
+
(
2D2 · µ2T · ηd log(1 + T )

)1/3
.

Subsititing in η = 2 max{4GD, 1/τ}, and defining R0 = max{GD, 1/τ} · d log(1 + T ) gives that
the above is at most

µ-RegT . (R0D
2 · Tµ2)1/3 +R0.
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