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Abstract

Survival analysis models the distribution of time until an event of interest, such as
discharge from the hospital or admission to the ICU. When a model’s predicted
number of events within any time interval is similar to the observed number, it
is called well-calibrated. A survival model’s calibration can be measured using,
for instance, distributional calibration (D-CALIBRATION) [Haider et al., 2020]
which computes the squared difference between the observed and predicted number
of events within different time intervals. Classically, calibration is addressed in
post-training analysis. We develop explicit calibration (X-CAL), which turns D-
CALIBRATION into a differentiable objective that can be used in survival modeling
alongside maximum likelihood estimation and other objectives. X-CAL allows
practitioners to directly optimize calibration and strike a desired balance between
predictive power and calibration. In our experiments, we fit a variety of shallow
and deep models on simulated data, a survival dataset based on MNIST, on length-
of-stay prediction using MIMIC-III data, and on brain cancer data from The Cancer
Genome Atlas. We show that the models we study can be miscalibrated. We give
experimental evidence on these datasets that X-CAL improves D-CALIBRATION
without a large decrease in concordance or likelihood.

1 Introduction

A core challenge in healthcare is to assess the risk of events such as onset of disease or death. Given
a patient’s vitals and lab values, physicians should know whether the patient is at risk for transfer
to a higher level of care. Accurate estimates of the time-until-event help physicians assess risk and
accordingly prescribe treatment strategies: doctors match aggressiveness of treatment against severity
of illness. These predictions are important to the health of the individual patient and to the allocation
of resources in the healthcare system, affecting all patients.

Survival Analysis formalizes this risk assessment by estimating the conditional distribution of the
time-until-event for an outcome of interest, called the failure time. Unlike supervised learning,
survival analysis must handle datapoints that are censored: their failure time is not observed, but
bounds on the failure time are. For example, in a 10 year cardiac health study [Wilson et al., 1998,
Vasan et al., 2008], some individuals will remain healthy over the study duration. Censored points are
informative, as we can learn that someone’s physiology indicates they are healthy-enough to avoid
onset of cardiac issues within the next 10 years.

A well-calibrated survival model is one where the predicted number of events within any time
interval is similar to the observed number [Pepe and Janes, 2013]. When this is the case, event
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probabilities can be interpreted as risk and can be used for downstream tasks, treatment strategy, and
human-computable risk score development [Sullivan et al., 2004, Demler et al., 2015, Haider et al.,
2020]. Calibrated conditional models enable accurate, individualized prognosis and may help prevent
giving patients misinformed limits on their survival, such as 6 months when they would survive years.
Poorly calibrated predictions of time-to-event can misinform decisions about a patient’s future.

Calibration is a concern in today’s deep models. Classical neural networks that were not wide or deep
by modern standards were found to be as calibrated as other models after the latter were calibrated
(boosted trees, random forests, and SVMs calibrated using Platt scaling and isotonic regression)
[Niculescu-Mizil and Caruana, 2005]. However, deeper and wider models using batchnorm and
dropout have been found to be overconfident or otherwise miscalibrated [Guo et al., 2017]. Common
shallow survival models such as the Weibull Accelerated Failure Times (AFT) model may also be
miscalibrated [Haider et al., 2020]. We explore shallow and deep models in this work.

Calibration checks are usually performed post-training. This approach decouples the search for a
good predictive model and a well-calibrated one [Song et al., 2019, Platt, 1999, Zadrozny and Elkan,
2002]. Recent approaches tackle calibration in-training via alternate loss functions. However, these
may not, even implicitly, optimize a well-defined calibration measure, nor do they allow for explicit
balance between prediction and calibration [Avati et al., 2019]. Calibration during training has been
explored recently for binary classification [Kumar et al., 2018]. Limited evaluations of calibration in
survival models can be done by considering only particular time points: this model is well-calibrated
for half-year predictions. Recent work considers D-CALIBRATION [Haider et al., 2020], a holistic
measure of calibration of time-until-event that measures calibration of distributions.

In this work, we propose to improve calibration by augmenting traditional objectives for survival
modeling with a differentiable approximation of D-CALIBRATION, which we call explicit calibration
(X-CAL). X-CAL is a plug-in objective that reduces obtaining good calibration to an optimization
problem amenable to data sub-sampling. X-CAL helps build well-calibrated versions of many existing
models and controls calibration during training. In our experiments 2, we fit a variety of shallow
and deep models on simulated data, a survival dataset based on MNIST, on length-of-stay prediction
using MIMIC-III data, and on brain cancer data from The Cancer Genome Atlas. We show that the
models we study can be miscalibrated. We give experimental evidence on these datasets that X-CAL
improves D-CALIBRATION without a large decrease in concordance or likelihood.

2 Defining and Evaluating Calibration in Survival Analysis

Survival analysis models the time t > 0 until an event, called the failure time. t is often assumed
to be conditionally distributed given covariates x. Unlike typical regression problems, there may
also be censoring times c that determine whether t is observed. We focus on right-censoring in this
work, with observations (u, δ, x) where u = min(t, c) and δ = 1 [t < c]. If δ = 1 then u is a failure
time. Otherwise u is a censoring time and the datapoint is called censored. Censoring times may be
constant or random. We assume censoring-at-random: t ⊥⊥ c | x.

We denote the joint distribution of (t,x) by P and the conditional cumulative distribution function
(CDF) of t | x by F (sometimes denoting the marginal CDF by F when clear). Whenever distributions
or CDFs have no subscript parameters, they are taken to be true data-generating distributions and
when they have parameters θ they denote a model. We give more review of key concepts, definitions,
and common survival analysis models in Appendix A.

2.1 Defining Calibration

We first establish a common definition of calibration for binary outcome. Let x be covariates and let
d be a binary outcome distributed conditional on x. Let them have joint distribution P (d,x). Define
riskθ(x) as the modeled probability Pθ(d = 1 | x), a deterministic function of x. Pepe and Janes
[2013] define calibration as the condition that

P(d = 1 | riskθ(x) = r) =≈ r. (1)

That is, the frequency of events is r among subjects whose modeled risks are equal to r. For a survival
problem with joint distribution P (t,x), we can define risk to depend on an observed failure time

2Code is available at https://github.com/rajesh-lab/X-CAL
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instead of the binary outcome d = 1. With Fθ as the model CDF, the definition of risk for survival
analysis becomes riskθ(t, x) = Fθ(t | x), a deterministic function of (t, x). Then perfect calibration
is the condition that, for all sub-intervals I = [a, b] of [0, 1],

P(riskθ(t,x) ∈ I) = E
P (t,x)

1 [Fθ(t | x) ∈ I] = |I|. (2)

This is because, for continuous F (an assumption we keep for the remainder of the text), CDFs
transform samples of their own distribution to Unif(0, 1) variates. Thus, when model predictions are
perfect and Fθ = F , the probability that Fθ(t | x) takes a value in interval I is equal to |I|. Since the
expectation is taken over x, the same holds when Fθ(t | x) = F (t), the true marginal CDF.

2.2 Evaluating Calibration

Classical tests and their recent modifications assess calibration of survival models for a particular time
of interest t∗ by comparing observed versus modeled event frequencies [Lemeshow and Hosmer Jr,
1982, Grønnesby and Borgan, 1996, D’agostino and Nam, 2003, Royston and Altman, 2013, Demler
et al., 2015, Yadlowsky et al., 2019]. They apply the condition in Equation (1) for the classification
task t < t∗ | x. These tests are limited in two ways 1) it is not clear how to combine calibration
assessments over the entire range of possible time predictions [Haider et al., 2020] and 2) they
answer calibration in a rigid yes/no fashion with hypothesis testing. We briefly review these tests in
Appendix A.

D-CALIBRATION Haider et al. [2020] develop distributional calibration (D-CALIBRATION) to
test the calibration of conditional survival distributions across all times. D-CALIBRATION uses the
condition in Equation (2) and checks the extent to which it holds by evaluating the model conditional
CDF on times in the data and checking that these CDF evaluations are uniform over [0, 1]. This
uniformity ensures that observed and predicted numbers of events within each time interval match.

To set this up formally, recall that F denotes the unknown true CDF. For each individual x, let
Fθ(t | x) denote the modeled CDF of time-until-failure. To measure overall calibration error, D-
CALIBRATION accumulates the squared errors of the equality condition in Equation (2) over sets
I ∈ I that cover [0, 1]:

R(θ) :=
∑
I∈I

(
E

P (t,x)
1 [Fθ(t | x) ∈ I]− |I|

)2

. (3)

The collection I is chosen to contain disjoint contiguous intervals I ⊆ [0, 1], that cover the whole
interval [0, 1]. Haider et al. [2020] perform a χ2-test to determine whether a model is well-calibrated,
replacing the expectation in Equation (3) with a Monte Carlo estimate.

Properties Setting aside the hypothesis testing step, we highlight two key properties of D-
CALIBRATION. First, D-CALIBRATION is zero for the correct conditional model. This ensures
that the correct model is not wrongly mischaracterized as miscalibrated. Second, for a given model
class and dataset, smaller D-CALIBRATION means a model is more calibrated. This means that
it makes sense to minimize D-CALIBRATION. Next, we make use of these properties and turn
D-CALIBRATION into a differentiable objective.

3 X-CAL: A Differentiable Calibration Objective

We measure calibration error with D-CALIBRATION (Equation (3)) and propose to incorporate it
into our training and minimize it directly. However, the indicator function 1 [·] poses a challenge
for optimization. Instead, we derive a soft version of D-CALIBRATION using a soft set membership
function. We then develop an upper-bound to soft D-CALIBRATION that we call X-CAL that supports
subsampling for stochastic optimization with batch data.

3.1 Soft Membership D-CALIBRATION

We replace the membership indicator for a set I with a differentiable function. Let γ > 0 be a
temperature parameter. Let σ(x) = (1 + exp[−x])−1. For point u and the set I = [a, b], define soft
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membership ζγ as

ζγ(u; I) := σ(γ(u− a)(b− u)), (4)

where γ →∞ makes membership exact. This is visualized in Figure 2 in Appendix G. We propose
the following differentiable approximation to Equation (3), which we call soft D-CALIBRATION, for
use in a calibration objective:

R̂γ(θ) :=
∑
I∈I

(
E

P (t,x)
ζγ (Fθ(t | x); I)− |I|

)2

. (5)

We find that γ = 104 allows for close-enough approximation to optimize exact D-CALIBRATION.

3.2 Stochastic Optimization via Jensen’s Inequality

Soft D-CALIBRATION squares an expectation over the data, meaning that its gradient includes a
product of two expectations over the same data. Due to this, it is hard to obtain a low-variance,
unbiased gradient estimate with batches of data, which is important for models that rely on stochastic
optimization. To remedy this, we develop an upper-bound on soft D-CALIBRATION, which we call
X-CAL, whose gradient has an easier unbiased estimator.

Let Rγ,θ(t, x, I) denote the contribution to soft D-CALIBRATION error due to one set I and a single
sample (t, x) in Equation (5): Rγ,θ(t, x, I) := ζγ (Fθ(t | x); I) − |I|. Then soft D-CALIBRATION
can be written as:

R̂γ(θ) =
∑
I∈I

(
E

P (t,x)
Rγ,θ(t,x, I)

)2

.

For each term in the sum over sets I , we proceed by in two steps. First, replace the expectation over
data EP with an expectation over sets of samples ES∼PM of the mean of Rγ,θ where S is a set of
size M . Second, use Jensen’s inequality to switch the expectation and square.

R̂γ(θ) =
∑
I∈I

 E
S∼PM

1

M

∑
t,x∈S

Rγ,θ(t, x, I)

2

≤ E
S∼PM

∑
I∈I

 1

M

∑
t,x∈S

Rγ,θ(t, x, I)

2

. (6)

We call this upper-bound X-CAL and denote it by R̂+
γ (θ). To summarize, limγ→∞ R̂γ(θ) = R(θ)

by soft indicator approximation and R̂γ(θ) ≤ R̂+
γ (θ) by Jensen’s inequality. As M →∞, the slack

introduced due to Jensen’s inequality vanishes (in practice we are constrained by the size of the
dataset). We now derive the gradient with respect to θ, using ζ ′(u) = dζ

du (u):

dR̂+
γ

dθ
= E
S∼PM

∑
I∈I

2

M2

∑
t,x∈S

Rγ,θ(t, x, I)

(
ζ ′γ (Fθ(t | x); I)

dFθ
dθ

(t | x)

)
. (7)

We estimate Equation (7) by sampling batches S of size M from the empirical data.

Analyzing this gradient demonstrates how X-CAL works. If the fraction of points in bin I is larger
than |I|, X-CAL pushes points out of I . The gradient of ζγ pushes points in the first half of the bin to
have smaller CDF values and similarly points in the second half are pushed upwards.

While this works well for intervals not at the boundary of [0, 1], some care must be taken at the
boundaries. CDF values in the last bin may be pushed to one and unable to leave the bin. Since the
maximum CDF value is one, 1 [u ∈ [a, 1]] = 1 [u ∈ [a, b]] for any b > 1. Making use of this property,
X-CAL extends the right endpoint of the last bin so that all CDF values are in the first half of the bin
and therefore are pushed to be smaller. The boundary condition near zero is similar. We provide
further analysis in Appendix I.

X-CAL can be added to loss functions such as negative log likelihood (NLL) and other survival
modeling objectives such as Survival-CRPS (CRPS) [Avati et al., 2019]. For example, the full
X-CALIBRATED maximum likelihood objective for a model Pθ and λ > 0 is:

min
θ

E
P (t,x)

− logPθ(t | x) + λR̂+
γ (θ). (8)
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Choosing γ For small γ, soft D-CALIBRATION is a poor approximation to D-CALIBRATION. For
large γ, gradients vanish, making it hard to optimize D-CALIBRATION. We find that setting γ = 10000
worked in all experiments. We evaluate the choice of γ in Appendix G.

Bound Tightness The slack in Jensen’s inequality does not adversely affect our experiments in
practice. We successfully use small batches, e.g. < 1000, for datasets such as MNIST. We always
report exact D-CALIBRATION in the results. We evaluate the tightness of this bound and show that
models ordered by the upper-bound are ordered in D-CALIBRATION the same way in Appendix H.

3.3 Handling Censored Data

In presence of right-censoring, failure times are censored more often than earlier times. So, applying
the true CDF to only uncensored failure times results in a non-uniform distribution skewed to smaller
values in [0, 1]. Censoring must be taken into account.

Let x be a censored point with observed censoring time u and unobserved failure time t. Recall
that δ = 1 [t < c]. In this case c = u = u and δ = 0. Let Ft = F (t | x), Fc = F (c | x), and
Fu = F (u | x). We first state the fact that, under t ⊥⊥ c | x, a datapoint observed to be censored at
time u has Ft ∼ Unif(Fu, 1) for true CDF F (proof in Appendix C). This means that we can compute
the probabilty that t falls in each bin I = [a, b]:

P(Ft ∈ I | δ = 0, u, x) =
(b− Fu)1 [Fu ∈ I]

1− Fu
+

(b− a)1 [Fu < a]

1− Fu
, (9)

Haider et al. [2020] make this observation and suggest a method for handling censoring points: they
contribute P(Ft ∈ I | δ = 0, u, x) in place of the unobserved 1 [Ft ∈ I]:∑

I∈I

(
E

u,δ,x

[
δ1 [Fu ∈ I] + (1− δ)P(Ft ∈ I | δ,u,x)

]
− |I|

)2
. (10)

This estimator does not change the expectation defining D-CALIBRATION, thereby preserving the
property that D-CALIBRATION is 0 for a calibrated model. We soften Equation (9) with:

ζγ,cens(Fu; I) :=
(b− Fu)σ(γ(Fu − a)(b− Fu))

(1− Fu)
+

(b− a)σ(γ(a− Fu))

(1− Fu)
,

where we have used a one-sided soft indicator for 1 [Fu < a] in the right-hand term. We use ζγ,cens
in place of ζγ for censored points in soft D-CALIBRATION. This gives the following estimator for
soft D-CALIBRATION with censoring:∑

I∈I

(
E

u,δ,x

[
δζγ(Fθ(u | x); I) + (1− δ)ζγ,cens(Fθ(u | x); I)

]
− |I|

)2
. (11)

The upper-bound of Equation (11) and its corresponding gradient can be derived analogously to the
uncensored case. We use these in ours experiments on censored data.

4 Experiments

We study how X-CAL allows the modeler to optimize for a specified balance between prediction
and calibration. We augment maximum likelihood estimation with X-CAL for various settings of
coefficient λ, where λ = 0 corresponds to vanilla maximum likelihood. Maximum likelihood for
survival analysis is described in Appendix A (Equation (12)). For the log-normal experiments, we
also use Survival-CRPS (CRPS) [Avati et al., 2019] with X-CAL since S-CRPS enjoys a closed-form
for log-normal. S-CRPS was developed to produce calibrated survival models but it optimizes neither
a calibration measure nor a traditional likelihood. See Appendix B for a description of S-CRPS.

Models, Optimization, and Evaluation We use log-normal, Weibull, Categorical and Multi-Task
Logistic Regression (MTLR) models with various linear or deep parameterizations. For the discrete
models, we optionally interpolate their CDF (denoted in the tables by NI for not-interpolated and I for
interpolated). See Appendix E for general model descriptions. Experiment-specific model details
may be found in Appendix F. We use γ = 10000. We use 20 D-CALIBRATION bins disjoint over
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[0, 1] for all experiments except for the cancer data, where we use 10 bins as in Haider et al. [2020].
For all experiments, we measure the loss on a validation set at each training epoch to chose a model
to report test set metrics with. We report the test set NLL, test set D-CALIBRATION and Harrell’s
Concordance Index [Harrell Jr et al., 1996] (abbreviated CONC) on the test set for several settings of
λ. We compute concordance using the Lifelines package [Davidson-Pilon et al., 2017]. All reported
results are an average of three seeds.

Data We discuss differences in performance on simulated gamma data, semi-synthetic survival data
where times are conditional on the MNIST classes, length of stay prediction in the Medical Information
Mart for Intensive Care (MIMIC-III) dataset [Johnson et al., 2016], and glioma brain cancer data from
The Cancer Genome Atlas (TCGA). Additional data details may be found in Appendix D.

4.1 Experiment 1: Simulated Gamma Times with Log-Linear Mean

Data We design a simulation study to show that a conditional distribution may achieve good
concordance and likelihood but will have poor D-CALIBRATION. After adding X-CAL, we are
able to improve the exact D-CALIBRATION. We sample x ∈ R32 from a multivariate normal with
σ2 = 10.0. We sample times t conditionally from a gamma with mean µ that is log-linear in x and
constant variance 1e-3. The censoring times c are drawn like the event times, except with a different
coefficient for the log-linear function. We experiment with censored and uncensored simulations,
where we discard c and always observe t for uncensored. We sample a train/validation/test sets with
100k/50k/50k datapoints, respectively.

Results Due to high variance in x and low conditional variance, this simulation has low noise. With
large, clean data, this experiment validates the basic method on continuous and discrete models in the
presence of censoring. Table 1 demonstrates how increasing λ gracefully balances D-CALIBRATION
with NLL and concordance for different models and objectives: log-normal trained via NLL and with
S-CRPS, and the categorical model trained via NLL, without CDF interpolation. For results on more
models and choices of λ see Table 9 for uncensored results and Table 10 for censored in Appendix J.

Table 1: Gamma simulation, censored
λ 0 1 10 100 500 1000

Log-Norm NLL -0.059 -0.049 0.004 0.138 0.191 0.215
NLL D-CAL 0.029 0.020 0.005 2e-4 6e-5 7e-5

CONC 0.981 0.969 0.942 0.916 0.914 0.897

Log-Norm NLL 0.038 0.084 0.143 0.201 0.343 0.436
S-CRPS D-CAL 0.017 0.007 0.001 1e-4 5e-5 8e-5

CONC 0.982 0.978 0.963 0.950 0.850 0.855

Cat-NI NLL 0.797 0.799 0.822 1.149 1.665 1.920
D-CAL 0.009 0.006 0.002 2e-4 6e-5 6e-5
CONC 0.987 0.987 0.987 0.976 0.922 0.861

4.2 Experiment 2: Semi-Synthetic Experiment: Survival MNIST

Data Following Pölsterl [2019], we simulate a survival dataset conditionally on the MNIST dataset
[LeCun et al., 2010]. Each MNIST label gets a deterministic risk score, with labels loosely grouped
together by risk groups (Table 5 in Appendix D.2). Datapoint image xi with label yi has time ti
drawn from a Gamma with mean equal to risk(yi) and constant variance 1e-3. Therefore ti ⊥⊥ xi | yi
and times for datapoints that share an MNIST class are identically drawn. We draw censoring times c
uniformly between the minimum failure time and the 90th percentile time, which resulted in about
50% censoring. We use PyTorch’s MNIST with test split into validation/test. The model does not see
the MNIST class and learns a distribution over times given pixels xi. We experiment with censored
and uncensored simulations, where we discard c and always observe t for uncensored.

Results This semi-synthetic experiment tests the ability to tune calibration in presence of a high-
dimensional conditioning set (MNIST images) and through a typical convolutional architecture. Table 2
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demonstrates that the deep log-normal models started off miscalibrated relative to the categorical
model for λ = 0 and that all models were able to significantly improve in calibration. See Table 11
and Table 12 for more uncensored and censored survival-MNIST results.

Table 2: Survival-MNIST, censored
λ 0 1 10 100 500 1000

Log-Norm NLL 4.337 4.377 4.483 4.682 4.914 5.151
NLL D-CAL 0.392 0.074 0.020 0.005 0.005 0.007

CONC 0.902 0.873 0.794 0.696 0.628 0.573

Log-Norm NLL 4.950 4.929 4.859 4.749 4.786 4.877
S-CRPS D-CAL 0.215 0.122 0.051 0.010 0.002 9e-4

CONC 0.891 0.881 0.874 0.868 0.839 0.815

Cat-NI NLL 1.733 1.734 1.765 1.861 2.074 3.030
D-CAL 0.018 0.014 0.004 5e-4 5e-4 4e-4
CONC 0.945 0.945 0.927 0.919 0.862 0.713

4.3 Experiment 3: Length of Stay Prediction in MIMIC-III

Data We predict the length of stay (in number of hours) in the ICU, using data from the MIMIC-III
dataset. Such predictions are important both for individual risk predictions and prognoses and for
hospital-wide resource management. We follow the preprocessing in Harutyunyan et al. [2017],
a popular MIMIC-III benchmarking paper and repository 3. The covariates are a time series of 17
physiological variables (Table 6 in Appendix D.3) including respiratory rate and glascow coma scale
information. There is no censoring in this task. We skip imputation and instead use missingness
masks as features. There are 2, 925, 434 and 525, 912 instances in the training and test sets. We split
the training set in half for train and validation.

Results Harutyunyan et al. [2017] discuss the difficult of this task when predicting fine-grained
lengths-of-stay, as opposed to simpler classification tasks like more/less one week stay. The true
conditionals are high in entropy given the chosen covariates Table 3 demonstrates this difficulty, as
can be seen in the concordances. We report the categorical model with and without CDF interpolation
and the log-normal trained with S-CRPS. NLL for the log-normal is not reported because S-CRPS does
not optimize NLL and did poorly on this metric. The log-normal trained with NLL was not able to fit
this task on any of the three metrics. All three models reported are able to reduce D-CALIBRATION.
Results for all models and more choices of λ may be found in Table 13. The categorical models
with and without CDF interpolation match in concordance for λ = 0 and λ = 1000. However, the
interpolated model achieves better D-CALIBRATION. This may be due to the lower-bound ` > 0 on a
discrete model’s D-CALIBRATION (Appendix E).

Table 3: MIMIC-III length of stay
λ 0 1 10 100 500 1000

Log-Norm D-CAL 0.859 0.639 0.155 0.046 0.009 0.005
S-CRPS CONC 0.625 0.639 0.575 0.555 0.528 0.506

Cat-NI Test NLL 3.142 3.177 3.167 3.088 3.448 3.665
D-CAL 0.002 0.002 0.001 2e-4 1e-4 1e-4
CONC 0.702 0.700 0.699 0.690 0.642 0.627

Cat-I NLL 3.142 3.075 3.073 3.073 3.364 3.708
D-CAL 4e-4 2e-4 2e-4 1e-4 5e-5 4e-5
CONC 0.702 0.702 0.702 0.695 0.638 0.627

3https://github.com/YerevaNN/mimic3-benchmarks
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4.4 Experiment 4: Glioma data from The Cancer Genome Atlas

We use the glioma (a type of brain cancer) dataset 4 collected as part of the TCGA program and
studied in [Network, 2015]. We focus on predicting time until death from the clinical data, which
includes tumor tissue location, time of pathological diagnosis, Karnofsky performance score, radiation
therapy, demographic information, and more. Censoring means they did not pass away. The
train/validation/test sets are made of 552/276/277 datapoints respectively, of which 235/129/126 are
censored, respectively.

Results For this task, we study the Weibull AFT model, reduce the deep log-normal model from
three to two hidden layers, and study a linear MTLR model (with CDF interpolation) in place of the
deep categorical due to the small data size. MTLR is more constrained than linear categorical due to
shared parameters. Table 4 demonstrates these three models’ ability to improve D-CALIBRATION.
MTLR is able to fit well and does not give up much concordance. Results for all models and more
choices of λ may be found in Table 14.

Table 4: The Cancer Genome Atlas, glioma
λ 0 1 10 100 500 1000

Log-Norm NLL 14.187 6.585 4.639 4.181 4.403 4.510
NLL D-CAL 0.059 0.024 0.010 0.003 0.002 0.004

CONC 0.657 0.632 0.703 0.805 0.474 0.387

Weibull NLL 4.436 4.390 4.292 4.498 4.475 4.528
D-CAL 0.035 0.028 0.009 0.003 0.004 0.007
CONC 0.788 0.785 0.777 0.702 0.608 0.575

MTLR-NI NLL 1.624 1.620 1.636 1.658 1.748 1.758
D-CAL 0.009 0.007 0.005 0.003 0.002 0.002
CONC 0.828 0.829 0.824 0.818 0.788 0.763

5 Related Work

Deep Survival Analysis Recent approaches to survival analysis parameterize the failure distribution
as a deep neural network function of the [Ranganath et al., 2016, Alaa and van der Schaar, 2017,
Katzman et al., 2018]. Miscouridou et al. [2018] and Lee et al. [2018] use a discrete categorical
distribution over times interpreted ordinally, which can approximate any smooth density with sufficient
data. The categorical approach has also been used when the conditional is parameterized by a recurrent
neural network of sequential covariates [Giunchiglia et al., 2018, Ren et al., 2019]. Miscouridou et al.
[2018] extend deep survival analysis to deal with missingness in x.

Post-training calibration methods Practitioners have used two calibration methods for binary
classifiers, which modify model predictions maximize likelihood on a held-out dataset. Platt scaling
[Platt, 1999] works by using a scalar logistic regression built on top of predicted probabilities. Isotonic
regression [Zadrozny and Elkan, 2002] uses a nonparametric piecewise linear transformation instead
of the logistic regression. These methods do not reveal an explicit balance between prediction quality
and calibration during model training. X-CAL allows practitioners to explore this balance while
searching in the full model space.

Objectives When an unbounded loss function (e.g. NLL) is used and the gradients are a function
of x, the model may put undue focus on explaining a given outlier x?, worsening calibration during
training. For this reason, robust objectives have been explored. Avati et al. [2019] consider continuous
ranked probability score (CRPS) [Matheson and Winkler, 1976], a robust proper scoring rule for
continuous outcomes, and adapt it to S-CRPS for survival analysis by accounting for censoring.
However, S-CRPS does not provide a clear way to balance predictive power and calibration. Kumar

4https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/studied-
cancers/glioma
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et al. [2018] develop a trainable kernel-based calibration measure for binary classification but they do
not discuss an optimizable calibration metric for survival analysis.

Brier Score The Brier Score [Brier and Allen, 1951] decomposes into a calibration metric (numer-
ator of Hosmer-Lemeshow) and a discrimination term encouraging patients with the same failure
status at t? to have the same failure probability at t?. To capture entire distributions over time, the
Integrated Brier Score is used. The Inverse Probability of Censoring Weighting Brier Score [Graf
et al., 1999] handles censoring but requires estimation of the censoring distribution, a whole survival
analysis problem (with censoring due to the failures) on its own [Gerds and Schumacher, 2006,
Kvamme and Borgan, 2019]. X-CAL can balance discrimination and calibration without estimation
of the censoring distribution.

6 Discussion

Model calibration is an important consideration in many clinical problems, especially when treatment
decisions require risk estimates across all times in the future. We tackle the problem of building
models that are calibrated over individual failure distributions. To this end, we provide a new
technique that explicitly targets calibration during model training. We achieve this by constructing a
differentiable approximation of D-CALIBRATION, and using it as an add-on objective to maximum
likelihood and S-CRPS. As we show in our experiments, X-CAL allows for explicit and direct control
of calibration on both simulated and real data. Further, we showed that searching over the X-CAL λ
parameter can strike the practitioner-specified balance between predictive power and calibration.

Marginal versus Conditional Calibration D-CALIBRATION is 0 for the true conditional and
marginal distributions of failure times. This is because D-CALIBRATION measures marginal cali-
bration, i.e. x is integrated out. Conditional calibration is the stronger condition that Fθ(t | x) is
calibrated for all x. This is in general infeasible even to measure (let alone optimize) [Vovk et al.,
2005, Pepe and Janes, 2013, Barber et al., 2019] without strong assumptions since for continuous x
we usually observe just one sample. However, among the distributions that have 0 D-CALIBRATION,
the true conditional distribution has the smallest NLL. Therefore, X-CALIBRATED objectives with
proper scoring rules (like NLL) have an optimum only for the true conditional model in the limit of
infinite data.

D-Calibration and Censoring Equation (10) in Section 3.3 provides a censored version of D-
CALIBRATION that is 0 for a calibrated model, like the original D-CALIBRATION (Equation (3)).
However, this censored calibration measure is not equal to D-CALIBRATION in general for miscali-
brated models. For a distribution Fθ with non-zero D-CALIBRATION, for any censoring distribution
G, estimates of the censored version will assess Fθ to be more uniform than if exact D-CALIBRATION
were able to be computed using all true observed failure times. This happens especially in the case
of heavy and early censoring because a lot of uniform weight is assigned [Haider et al., 2020, Avati
et al., 2019]. This means that the censored objective can be close to 0 for a miscalibrated model on a
highly censored dataset.

An alternative strategy that avoids this issue is to use inverse weighting methods (e.g. Inverse
Propensity Estimator of outcome under treatment [Horvitz and Thompson, 1952], Inverse Probability
of Censoring-Weighted Brier Score [Graf et al., 1999, Gerds and Schumacher, 2006] and Inverse
Probability of Censoring-Weighted binary calibration for survival analysis [Yadlowsky et al., 2019]).
Inverse weighting would preserve the expectation that defines D-CALIBRATION for any censoring
distribution. One option is to adjust with p(c | x). This requires c ⊥ t | x and solving an additional
censored survival problem p(c | x). Nevertheless, if a censoring estimate is provided, the methodology
in this work could then be applied to an inverse-weighted D-CALIBRATION. There is then a trade-off
between the censored estimator proposed by Haider et al. [2020] that we use (no modeling G) and
inverse-weighted estimators (which preserve D-CALIBRATION for miscalibrated models).

Broader Impact

In this paper, we study calibration of survival analysis models and suggest an objective for improving
calibration during model training. Since calibration means that modeled probabilities correspond to
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the actual observed risk of an event, practitioners may feel more confident about using model outputs
directly for decision making e.g. to decide how many emergency room staff members qualified for
performing a given procedure should be present tomorrow given all current ER patients. But if the
distribution of event times in these patients differs from validation data, because say the population
has different demographics, calibration should not provide the practitioner with more confidence to
directly use such model outputs.
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