Supplementary Material for: The Convolution
Exponential and Generalized Sylvester Flows

Emiel Hoogeboom Victor Garcia Satorras
UvA-Bosch Delta Lab UvA-Bosch Delta Lab
University of Amsterdam University of Amsterdam
The Netherlands The Netherlands
e.hoogeboom@uva.nl v.garciasatorras@uva.nl
Jakub M. Tomczak Max Welling
Vrije Universiteit Amsterdam UvA-Bosch Delta Lab
The Netherlands University of Amsterdam
j.m.tomczak@vu.nl The Netherlands

m.welling@uva.nl

A Details for Generalized Sylvester Flows

Recall that the Generalized Sylvester Flows transformation is described by:
z=x+ W' far (Wx). (D

Theorem 3: The original Sylvester flow z = x + QTf{h(RQx + b), is a special case of the
generalized Sylvester flow ().

Proof. Let W = Q and let for(x) = Rh(Rx + b). Indeed, any orthogonal matrix is invertible, so

Q can be modelled by W. Also, note that R and R are upper triangular and h is an elementwise

function. The matrix product of the Jacobians is triangular, and thus Rh(Rx + b) has a triangular
Jacobian and is therefore autoregressive. Hence, it can be modelled by far. Further, note that

af%w(,x)" > —1 is satisfied. Hence,

[[10] bound RiiRii > W, which ensures that the constraint

z = x + QTRA(RQx + b) can be written as Equation when writing far(x) = Rh(Rx + b)
and M = Q without violating any constraints on M and far, and is therefore a special case.

Remark 1:

The increased expressitivity originates from fag and not from W. To see why, suppose we replace
Q and QT in the original formulation by W and W 1. Consider that any real square matrix W may
be decomposed as Qw Ry . Hence, compositions W~1R and RW can be written as Q{R’ and
R’/Qw, where R’ = R/ R and R’ = RRiy which are both still upper triangular. Hence, we have
shown that even if the orthogonal matrix Q is replaced by an invertible matrix W, the transformation
can still be written in terms of a shared orthogonal matrix Qv and upper triangular matrices R’ and
R’. Therefore, the source of the increased expressitivity is not the replacement of Q by W.

Remark 2:

Sylvester flows can also be viewed from a different perspective as a composition of three invertible
transformations: a basis change, a residual invertible function and the inverse basis change. Specifi-
cally, let f be an invertible function that can be written as f(x) = x + g(x) (for instance g can be
the autoregressive function fag from above). Now apply a linear basis change W on x, and the
inverse on the output f(x). Then W1 f(Wx) = W 1Wx + W 1g(Wx) = x + W~ 1g(Wx).
In other words, because the basis change is linear it distributes over addition and cancels in the
identity connection, which results in a residual transformation.

i

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

The reason that we still utilize an invertible matrix W is that it allows more freedom when modelling
using the convolution exponential (a QR decomposition for convolutions can generally not be
expressed in terms of convolutions). For fully connected settings W can safely be chosen to be
orthogonal.

Inverting Sylvester Flows
The inverse of Sylvester flows can be easily computed using a fixed point iteration. Firstly, compute
v = Wz and let u(®) = v. At this point the triangular system v = u + far(u) can be solved for u
using the fixed-point iteration:

u =v— fAR(u“*l)).)
To show that it converges, recall that we constrain the diagonal values of J 7, . to be greater than —1
and less than +1. In addition, we require fagr to be Lipschitz continuous for some arbitrarily large
value L € R. Note that since neural network are generally composed of linear layers and activation
functions that are Lipschitz continuous, these networks themselves are also Lipschitz continuous.
Note that although the function defined in section 4.1 has products which in theory do not have
to be Lipschitz, in practice the function is used on bounded domains which makes far Lipschitz
continuous trivially. For a more theoretically rigorous function, values of u can be simply clipped
beyond certain thresholds.

Firstly note that | M

the values on the d1agona1 of the Jacobian is bounded by the hyperparameter -, so that |M| <7,

where 0 < « < 1. Since the function is autoregressive, when all preceding dimensions are ﬁxed, the
function can be seen as a (one-dimensional) contraction.

We will show inductively over dimensions that the fixed point iteration for u(* converges. For the
base case in the first dimension, note that \ugt) - u§t+1)| < vt\ugo) - ugl)\ and hence u; converges

at a rate of 4%, For the remainder of this proof we use the ¢; distance as distance metric.

For the induction step (for the higher dimensions), assume that u.,,_; converges at a rate of ¢" 1~

that is ||u:(f;11) - u:(leH < Ct" 14 for some constant C' € R. Then u.,, converges at a rate of

t"~t. We can bound the difference for u,, in dimension 7 recursively using the Lipschitz continuity
L and bound on the diagonal of the Jacobian ~:

u® — 0] < Aul™Y —u®| + L[l D —al). 3)

When expanding this equation and using that Hu1 o)1 - u1 0|l < Ot 14t we can write:

t
uld) — ul) < AHul? —ufD]+ Y T Loy
t'=1
< Aul —uP| + "' LC,

which is guaranteed to converge at least at a rate of t"~*. The last inequality follows because
th > Ei,zl t'"~1. Since u;.,_1 converges already at a rate of t"~!4?, the convergence rate for
ui., is bounded by ¢"~¢. Combining this result with the base case, u;.; converges with a rate of
~*, gives the result that the convergence rate of the entire vector u is bounded by t4~ 1~ where d
is the dimensionality of u. Studying this equation, we can recognize two factors that influence the
convergence that we can easily control: The distance of outputs with respect to the distance of inputs
in faRr, and the one-dimensional continuity . We find experimentally that constraining the Lipschitz
continuity of the convolutional layers in fag to 1.5, and setting v = 0.5 generally allows the fixed
point iteration to converge within 50 iterations when using an absolute tolerance of 10~4.

B Graph Convolution Exponential

Given the product of three matrices ABC' with dimensions k x [, [x m and m X n respectively we
can express its vectorized form in the following way:

vec(ABC) = (C" ® A) vec(B))

Where ® stands for the Kronecker product. We obtain the vectorized form of the Linear Graph
Convolutional Layer by applying the above mentioned equation[d]to the graph convolutional layer
equation as follows:

vee(IX6, + D" 2 AD " 2X6;)
vec(IX60g) + Vec(D_%AD_%Xel)
(07 @ T) vec(X) + (07 @ D~2 AD™7) vec(X) =
6 @1+ 67 @ D"7AD ™ 3) vec(X)
M vec(X)

Now that we have analytically obtained M we can compute its trace by making use of the following
Kronecker product property: tr(A @ B) = Tr A Tr B. The trace of M will be:

Tr (M) = Tr(6 @1+ 6] @D~ 2AD"?)
Tr(67) Te(T) + Tr(67) Tr(D~ 2 AD™2) =
Tr(67) N + Tr(87)0 =

NTI'(B())

C Experimental Details

We train on the first 40000 images of CIFAR10, using the remaining 10000 for validation. The final
performance is shown on the conventional 10000 test images.

C.1 Mixing experiment

The flow architecture is multi-scale following [[7]: Each level starts with a squeeze operation, and
then 10 subflows which each consist of a linear mixing layer and an affine coupling layer [[1]. The
coupling architecture utilizes densenets as described in [3]]. Further, we use variational dequantization
[2]], using the same flow architecture as for the density estimation, but using less subflows. Following
[, [7]] after each level (except the final level) half the variables are transformed by another coupling
layer and then factored-out. The final base distribution pz is a diagonal Gaussian with mean and
standard deviation. All methods are optimized using a batch size of 256 using the Adam optimizer
(4] with a learning rate of 0.001 with standard settings. More details are given in Table[I] Notice
that convexp mixing utilizes a convolution exponential and a 1 x 1 convolutions, as it tends to map
close to the identity by the construction of the power series. Results are obtained by running models
three times after random weight initialization, and the mean of the values is reported. Runs require
approximately four to five days to complete. Results are obtained by running on four NVIDIA
GeForce GTX 1080Ti GPUs, CUDA Version: 10.1.

Table 1: Architecture settings and optimization settings for the mixing experiments.

Model levels subflows epochs Irdecay densenetdepth densenet growth deq. levels deq. subflows
1x1 2 10 1000 0.995 8 64 1 4
Emerging 2 10 1000 0.995 8 63 1 4
Woodbury 2 10 1000 0.995 8 63 1 4
ConvExp 2 10 1000 0.995 8 63 1 4

C.2 Invertible Residual Transformations experiment

The setup is identical to section where a single subflow is now either a residual block or
a convolutional Sylvester flow transformation, with a leading actnorm layer [7]. The network
architectures inside the Sylvester and residual network architectures all consist of three standard
convolutional layers: A 3 x 3 convolution, a 1 x 1 convolution and another 3 x 3 convolution. These
provide the translation and scale parameters for the Sylvester transformation, and they model the

Table 2: Architecture settings and optimization settings for the residual experiments. Dequantization
(deq.) settings are not used for uniform dequantization.

Model levels subflows epochs Irdecay channels (deq. levels) (deq. subflows)
Baseline Coupling 2 20 1000 0.995 528 1 4
Residual Block Flow 2 20 1000 0.995 528 1 4

equal memory 2 10 1000 0.995 528 1 4
Conv. Sylvester 2 20 1000 0.995 528 1 4

Table 3: The performance of VAEs with different normalizing flows as encoder distributions. Results
are obtained by running three times with random initialization. In line with literature, binary MNIST
is reported in nats and CIFAR10 is reported in bits per dimension.

Model bMNIST CIFAR10

-ELBO —log P(x) -ELBO —log P(x)
Gaussian [6] 85.54 £0.08 81.77 £0.05 4.59 £0.016 4.54 £0.016
Planar [§] 85.65 +£0.18 81.79 £0.08 4.59 £0.008 4.55 +£0.007
IAF [3] 84.00 £0.07 80.77 £0.02 4.57 £0.003 4.53 £0.002
H-SNF [10] 83.34 £0.06 80.38 £0.02 4.58 £0.001 4.54 +£0.001
Generalized Sylvester (ours) 83.29 £0.04 80.41 +0.02 4.57 £0.009 4.54 £0.009
Conv. Gaussian 87.41 £0.06 83.12+0.03 3.90 £0.010 3.82 £0.011
Conv. IAF [5] 83.82£0.09 81.01 £0.08 3.69 £0.011 3.64 £0.011
Conv. SNF (ours) 83.68 £0.11 80.96 £0.07 3.48 +£0.005 3.44 £0.005

residual for the residual flows. These convolutions map to 528 channels internally, where the first and
last convolutional layers map to the respective input and output sizes. Note that for the coupling flow
an important difference that a subflow consists of a coupling layer and a 1 x 1 convolution, because
the coupling layer itself cannot mix information. All methods use the same dequantization flow and
splitprior architecture that were described in section[C.I] All methods are optimized using a batch
size of 256 using the Adam optimizer [4] with a learning rate of 0.001 with 8y, 52 = (0.9,0.99).
Results are obtained by running models a single after random weight initialization. More details are
given in Table [2| Results are obtained by running on two NVIDIA GeForce GTX 1080Ti GPUs,
CUDA Version: 10.1. Runs require approximately four to five days to complete. The residual block
flow utilizes four GPUs as it requires more memory.

C.3 Graph Normalizing Flow experiment

The normalizing flows in the graph experiments all utilize three subflows, where a subflow consists of
an actnorm layer [7], a 1 x 1 convolution and an affine coupling layer [1]]. In the model that utilizes
the graph convolution exponential, the convolution exponential precedes each coupling layer. In
the baseline coupling flow, the neural networks inside the coupling layers are 4-layer Multi Layer
Perceptrons (MLPs) with Leaky Relu activations. In the graph normalizing flow, the neural networks
inside the coupling layers are graph neural networks where node and edge operations are performed
by a 2-layer and a 3-layer MLPs respectively with ReLLU activations. All above mentioned neural
networks utilize 64 hidden features.

All experiments are optimized for 35, 000 iterations, using a batch size of 256 and a starting learning
rate of 2~* with a learning rate decay factor of 0.1 every 15,000 iterations. For testing we used
1,280, 000 samples, i.e. 5.000 iterations with a batch size of 256.

D Variational posterior modelling in VAEs

This experiment utilizes normalizing flows as the variational posterior for a Variational AutoEncoder
(VAE). The code is built upon the original Sylvester flow implementation [[10] which contains a
VAE with a single latent representation with a standard Gaussian prior. There are two differences:
For CIFAR10 a discretized mixture of logistics [9]] is used as output distribution for the decoder.
Additionally, the gated convolutions are replaced by denseblock layers.

The proposed Convolutional Sylvester Flows outperform the other methods considerably in terms of
ELBO and log-likelihood on CIFARI10. Interestingly, although the Convolutional Sylvester Flow
outperforms other convolutional methods, the experiment shows that fully connected flows actually
perform better on binary MNIST. Noteworthy for the comparison between the original Householder
Sylvester flows (H-SNF) and our method is that H-SNF has four times more parameters than our
convolutional Sylvester flows.

References

[1] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP.
Sth International Conference on Learning Representations, ICLR, 2017.

[2] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving
flow-based generative models with variational dequantization and architecture design. 36th
International Conference on Machine Learning, 2019.

[3] Emiel Hoogeboom, Jorn W. T. Peters, Rianne van den Berg, and Max Welling. Integer discrete
flows and lossless compression. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 2019.

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 3rd Interna-
tional Conference on Learning Representations, ICLR, 2015.

[5] Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. Improved variational inference with inverse autoregressive flow. In Advances in Neural
Information Processing Systems, pages 4743-4751, 2016.

[6] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. In Proceedings of the
2nd International Conference on Learning Representations, 2014.

[7] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In Advances in Neural Information Processing Systems, pages 10236-10245, 2018.

[8] Danilo Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows. In Pro-
ceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pages 1530-1538. PMLR, 2015.

[9] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. PixelCNN++: Improving the
pixelenn with discretized logistic mixture likelihood and other modifications. 5th International
Conference on Learning Representations, ICLR, 2017.

[10] Rianne van den Berg, Leonard Hasenclever, Jakub M. Tomczak, and Max Welling. Sylvester
normalizing flows for variational inference. In 34th Conference on Uncertainty in Artificial
Intelligence 2018, UAI 2018, pages 393-402, 2018.

	Details for Generalized Sylvester Flows
	Graph Convolution Exponential
	Experimental Details
	Mixing experiment
	Invertible Residual Transformations experiment
	Graph Normalizing Flow experiment

	Variational posterior modelling in VAEs

