
Appendix A

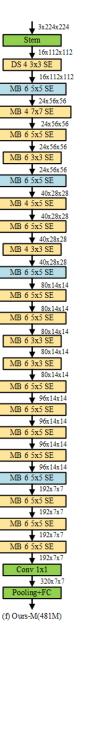

Input Shape	Operators	Channels	Repeat	Stride
$224^2 \times 3$	3×3 Conv	16	1	2
$112^2 \times 16$	3×3 Depthwise Separable Conv	16	1	2
$56^2 \times 16$	MBConv / SkipConnect	24	4-6	2
$28^2 \times 24$	MBConv / SkipConnect	40	4-6	2
$14^2 \times 40$	MBConv / SkipConnect	80	4-6	1
$14^2 \times 80$	MBConv / SkipConnect	96	4-6	2
$7^2 \times 96$	MBConv / SkipConnect	192	4-6	1
$7^2 \times 192$	1×1 Conv	320	1	1
$7^2 \times 320$	Global Avg. Pooling	320	1	1
320	1×1 Conv	1,280	1	1
1,280	Fully Connect	1,000	1	-

Table 1: The structure of the hypernetwork. The "MBConv" contains 6 inverted bottleneck residual block MBConv [1] (kernel sizes of {3,5,7}) with the squeeze and excitation module (expansion rates {4,6}). The "Repeat" represents the maximum number of repeated blocks in a group. The "Stride" indicates the convolutional stride of the first block in each repeated group. When searching for tiny models, the Input Shape will be decreased to reduce Flops.

Appendix B

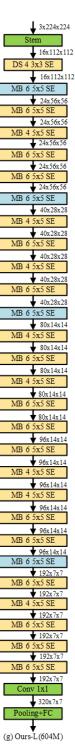


Figure 1: Discovered architectures (100-600M Flops). "MB $a b \times b$ " represents the inverted bottleneck MBConv [1] with the expand rate of a and kernel size of b. "DS $a b \times b$ " denotes the depthwise separable convolution with the expand rate of a and kernel size of b.

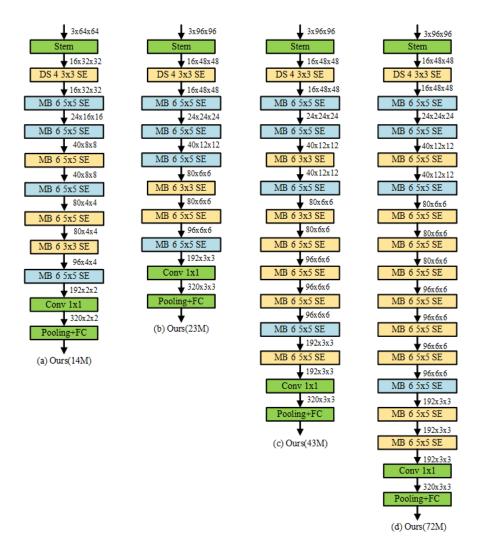


Figure 2: Discovered architectures(0-100M Flops). "MB $a b \times b$ " represents the inverted bottleneck MBConv [1] with the expand rate of a and kernel size of b. "DS $a b \times b$ " denotes the depthwise separable convolution with the expand rate of a and kernel size of b.

Appendix C

Input Shape	Operators	Channels	Repeat	Stride
$224^2 \times 3$	3×3 Conv	16	1	2
$112^2 \times 16$	3×3 Depthwise Separable Conv	16	1	2
$56^2 \times 16$	MBConv / SkipConnect / ResBlock	24	4	2
$28^2 \times 24$	MBConv / SkipConnect / ResBlock	40	4	2
$14^2 \times 40$	MBConv / SkipConnect / ResBlock	80	4	1
$14^2 \times 80$	MBConv / SkipConnect / ResBlock	96	4	2
$7^2 \times 96$	MBConv / SkipConnect / ResBlock	192	4	1
$7^2 \times 192$	1×1 Conv	320	1	1
$7^2 \times 320$	Global Avg. Pooling	320	1	1
320	1×1 Conv	1,280	1	1
1,280	Fully Connect	1,000	1	-

Table 2: The structure of the hypernetwork with additional "ResBlock" operator. The "ResBlock" [2] indicates a residual bottleneck block with kernel size of 3.

Input Shape	Operators	Channels	Repeat	Stride
$224^2 \times 3$	3×3 Conv	16	1	2
$112^2 \times 16$	3×3 Depthwise Separable Conv	16	1	2
$56^2 \times 16$	MBConv / SkipConnect / ResBlock / Conv	24	4	2
$28^2 \times 24$	MBConv / SkipConnect / ResBlock / Conv	40	4	2
$14^2 \times 40$	MBConv / SkipConnect / ResBlock / Conv	80	4	1
$14^2 \times 80$	MBConv / SkipConnect / ResBlock / Conv	96	4	2
$7^2 \times 96$	MBConv / SkipConnect / ResBlock / Conv	192	4	1
$7^2 \times 192$	1×1 Conv	320	1	1
$7^2 \times 320$	Global Avg. Pooling	320	1	1
320	1×1 Conv	1,280	1	1
1,280	Fully Connect	1,000	1	-

Table 3: The structure of the hypernetwork with additional "ResBlock" and "Normal 2D Conv". The "ResBlock" [2] indicates a residual bottleneck block with kernel size of 3. The "Conv" indicates the standard 2D convolutions with kernel sizes of {1,3,5}.

References

- [1] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In *CVPR*, 2018. 1, 2, 3
- [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016. 4