A Figures

Figure 1: The norm $\left\|e^{-t H_{\gamma}}\right\|$ is optimized for the choice of $\gamma=2 \sqrt{m}$. This is illustrated in the figure for $m=0.01$.

Figure 2: A double-well example. Here, $\Delta F=F(\sigma)-F\left(a_{1}\right)$. There are exactly two local minima a_{1} and a_{2} which are separated with a saddle point σ.

B Proof of results in Section 2

B. 1 Proof of Lemma 2

Proof. Let H be a symmetric positive definite matrix with eigenvalue decomposition $H=Q D Q^{T}$, where D is diagonal with eigenvalues in increasing order $m:=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{d}=: M$ of the matrix H. Recall H_{γ} from (2.2). Note that

$$
H_{\gamma}=\left[\begin{array}{cc}
Q & 0 \\
0 & Q
\end{array}\right] G_{\gamma}\left[\begin{array}{cc}
Q^{T} & 0 \\
0 & Q^{T}
\end{array}\right], \quad G_{\gamma}:=\left[\begin{array}{cc}
\gamma I & D \\
-I & 0
\end{array}\right]
$$

Therefore H_{γ} and G_{γ} have the same eigenvalues. Due to the structure of G_{γ}, it can be seen that there exists a permutation matrix P such that

$$
T_{\gamma}:=P G_{\gamma} P^{T}=\left[\begin{array}{cccc}
T_{1}(\gamma) & 0 & 0 & 0 \tag{B.1}\\
0 & T_{2}(\gamma) & 0 & 0 \\
\vdots & \ldots & \ddots & \vdots \\
0 & 0 & 0 & T_{d}(\gamma)
\end{array}\right], \quad \text { where } \quad T_{i}(\gamma):=\left[\begin{array}{cc}
\gamma & \lambda_{i} \\
-1 & 0
\end{array}\right]
$$ with $i=1,2, \ldots, d$, and $T_{i}(\gamma)$ are 2×2 block matrices with the eigenvalues:

$$
\begin{equation*}
\mu_{i, \pm}:=\frac{\gamma \pm \sqrt{\gamma^{2}-4 \lambda_{i}}}{2} . \quad i=1,2, \ldots, d \tag{B.2}
\end{equation*}
$$

We observe that T_{γ} and G_{γ} (and therefore H_{γ}) have the same eigenvalues and the eigenvalues of T_{γ} are determined by the eigenvalues of the 2×2 block matrices $T_{i}(\gamma)$.

Since H_{γ} is unitarily equivalent to the matrix T_{γ}, i.e. there exists a unitary matrix U such that $H_{\gamma}=U T_{\gamma} U^{*}$, we have $\left\|e^{-t H_{\gamma}}\right\|=\left\|U e^{-t T_{\gamma}} U^{*}\right\|=\left\|e^{-t T_{\gamma}}\right\|$. Since T_{γ} is a block diagonal matrix with 2×2 blocks $T_{i}(\gamma)$ we have $\left\|e^{-t T_{\gamma}}\right\|=\max _{1 \leq i \leq d}\left\|e^{-t T_{i}(\gamma)}\right\|$. Assume that $\gamma^{2}-4 \lambda_{1}=$ $\gamma^{2}-4 m \leq 0$ so that the eigenvalues $\mu_{i, \pm}$ of $T_{i}(\gamma)$ (see Eqn. (B.2)) are real when $\gamma=2 \sqrt{m}$ and complex when $\lambda<2 \sqrt{m}$. Note that

$$
\begin{equation*}
\left\|e^{-t T_{i}(\gamma)}\right\|=e^{-t \gamma / 2}\left\|e^{-t \tilde{T}_{i}(\gamma)}\right\|, \quad \text { where } \quad \tilde{T}_{i}(\gamma):=T_{i}(\gamma)-\frac{\gamma}{2} I, \quad 1 \leq i \leq d \tag{B.3}
\end{equation*}
$$

We consider $\gamma \in(0,2 \sqrt{m}]$. Depending on the value of λ_{i} and γ, there are two cases:
Case 1. If $\gamma<2 \sqrt{m}$ or $\left(\lambda_{i}>m\right.$ and $\left.\gamma=2 \sqrt{m}\right)$, then $\tilde{T}_{i}(\gamma)$ has purely imaginary eigenvalues that are complex conjugates which we denote by $\tilde{\mu}_{i, \pm}= \pm i \frac{\sqrt{4 \lambda_{i}-\gamma^{2}}}{2}, 1 \leq i \leq d$. We will show that the last term in B.3) stays bounded due to the imaginariness of the eigenvalues of $\tilde{T}_{i}(\gamma)$. It is easy to check that 2×2 matrix $\tilde{T}_{i}(\gamma)$ have the eigenvectors $v_{i, \pm}=\left[\mu_{i, \pm},-1\right]^{T}$. If we set $G_{i}:=\left[v_{i,+} \quad v_{i,-}\right] \in \mathbb{C}^{2 \times 2}$, the eigenvalue decomposition of $\tilde{T}_{i}(\gamma)$ is given by

$$
\tilde{T}_{i}(\gamma)=G_{i}\left[\begin{array}{cc}
\tilde{\mu}_{i,+} & 0 \\
0 & \tilde{\mu}_{i,-}
\end{array}\right] G_{i}^{-1}, \quad \text { where } \quad G_{i}^{-1}=\frac{1}{\operatorname{det} G_{i}}\left[\begin{array}{cc}
-1 & -\mu_{i,-} \\
1 & \mu_{i,+}
\end{array}\right]
$$

and $\operatorname{det} G_{i}=i \sqrt{4 \lambda_{i}-\gamma^{2}}$. We can compute that

$$
\begin{aligned}
e^{-t \tilde{T}_{i}(\gamma)} & =G_{i}\left[\begin{array}{cc}
e^{-i t \sqrt{4 \lambda_{i}-\gamma^{2}} / 2} & 0 \\
0 & e^{i t \sqrt{4 \lambda_{i}-\gamma^{2}} / 2}
\end{array}\right] G_{i}^{-1} \\
& =\frac{1}{\operatorname{det} G_{i}}\left[\begin{array}{cc}
\mu_{i,+} & \mu_{i,-} \\
-1 & -1
\end{array}\right]\left[\begin{array}{cc}
-e^{-i t \sqrt{4 \lambda_{i}-\gamma^{2}} / 2} & -\mu_{i,-} e^{-i t \sqrt{4 \lambda_{i}-\gamma^{2}} / 2} \\
e^{i t \sqrt{4 \lambda_{i}-\gamma^{2}} / 2} & \mu_{i,+} e^{i t \sqrt{4 \lambda_{i}-\gamma^{2}} / 2}
\end{array}\right] \\
& =\frac{1}{i \sqrt{4 \lambda_{i}-\gamma^{2}}}\left[\begin{array}{cc}
2 \operatorname{Imag}\left(\mu_{i,-} e^{i t \sqrt{4 \lambda_{i}-\gamma^{2}} / 2}\right) & 2 i\left|\mu_{i,+}\right|^{2} \sin \left(t \sqrt{4 \lambda_{i}-\gamma^{2}} / 2\right) \\
-2 i \sin \left(t \sqrt{4 \lambda_{i}-\gamma^{2}} / 2\right) & 2 \operatorname{Imag}\left(\mu_{i,+} e^{i t \sqrt{4 \lambda_{i}-\gamma^{2}} / 2}\right)
\end{array}\right]
\end{aligned}
$$

where $\operatorname{Imag}(a+i b):=i b$ denotes the imaginary part of a complex number. As a consequence, by taking componentwise absolute values

$$
\begin{align*}
\left\|e^{-t \tilde{T}_{i}(\gamma)}\right\| & \leq \frac{1}{\sqrt{4 \lambda_{i}-\gamma^{2}}}\left\|\left[\begin{array}{cc}
2\left|\mu_{i,-}\right| & 2\left|\mu_{i,+}\right|^{2} \\
2 & 2\left|\mu_{i,+}\right|
\end{array}\right]\right\|=\frac{1}{\sqrt{4 \lambda_{i}-\gamma^{2}}}\left\|\left[\begin{array}{cc}
2 \sqrt{\lambda_{i}} & 2 \lambda_{i} \\
2 & 2 \sqrt{\lambda_{i}}
\end{array}\right]\right\| \\
& =\frac{1}{\sqrt{4 \lambda_{i}-\gamma^{2}}}\left\|\left[\begin{array}{c}
2 \sqrt{\lambda_{i}} \\
2
\end{array}\right]\left[\begin{array}{ll}
1 & \sqrt{\lambda_{i}}
\end{array}\right]\right\|=\frac{1}{\sqrt{4 \lambda_{i}-\gamma^{2}}} \\
& =\frac{2\left(1+\lambda_{i}\right)}{\sqrt{4 \lambda_{i}-\gamma^{2}}} \tag{B.4}
\end{align*}
$$

where the second from last equality used the fact that the 2 -norm of a rank-one matrix is equal to its Frobenius norm. 2^{2} Then, it follows from (B.3) that $\left\|e^{-t T_{i}(\gamma)}\right\|=e^{-t \gamma / 2}\left\|e^{-t \tilde{T}_{i}(\gamma)}\right\| \leq$ $\frac{2\left(1+\lambda_{i}\right)}{\sqrt{4 \lambda_{i}-\gamma^{2}}} e^{-t \gamma / 2}$, which implies $\left\|e^{-t H_{\gamma}}\right\|=\left\|e^{-t T_{\gamma}}\right\| \leq \max _{1 \leq i \leq d}\left\|e^{-t T_{i}(\gamma)}\right\| \leq \frac{2(1+M)}{\sqrt{4 m-\gamma^{2}}} e^{-t \gamma / 2}$, provided that $\gamma^{2}-4 m<0$. In particular, if we choose $\hat{\varepsilon}=1-\frac{\gamma}{2 \sqrt{m}}$ for any $\hat{\varepsilon}>0$, we obtain

$$
\left\|e^{-t H_{\gamma}}\right\| \leq \frac{1+M}{\sqrt{m\left(1-(1-\hat{\varepsilon})^{2}\right)}} e^{-\sqrt{m}(1-\hat{\varepsilon}) t}
$$

[^0]The proof for Case 1 is complete.
Case 2. If $\gamma=2 \sqrt{m}$ and $\lambda_{i}=m$, then $\tilde{T}_{i}(\gamma)$ has double eigenvalues at zero and is not diagonalizable. It admits the Jordan decomposition

$$
\tilde{T}_{i}(\gamma)=G_{i}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] G_{i}^{-1} \quad \text { with } \quad G_{i}=\left[\begin{array}{cc}
\sqrt{m} & 1 \\
-1 & 0
\end{array}\right] \quad \text { and } \quad G_{i}^{-1}=\left[\begin{array}{cc}
0 & -1 \\
1 & \sqrt{m}
\end{array}\right]
$$

By a direct computation, we obtain

$$
e^{-t \tilde{T}_{i}(\gamma)}=G_{i}\left[\begin{array}{cc}
1 & -t \\
0 & 1
\end{array}\right] G_{i}^{-1}=\left[\begin{array}{cc}
1-t \sqrt{m} & -t m \\
t & 1+t \sqrt{m}
\end{array}\right] .
$$

A simple computation reveals

$$
\begin{equation*}
\left\|e^{-t \tilde{T}_{i}(\gamma)}\right\| \leq \sqrt{\operatorname{Tr}\left(e^{-t \tilde{T}_{i}(\gamma)} e^{-t \tilde{T}_{i}(\gamma)^{T}}\right)}=\sqrt{2+(m+1)^{2} t^{2}} \tag{B.5}
\end{equation*}
$$

$$
\mathbb{P}_{x}\left(\tau \in\left[\mathcal{T}_{\text {rec }}^{U}, \mathcal{T}_{\text {esc }}^{U}\right]\right) \leq \delta
$$

B.2.1 Completing the proof of Theorem 3

Assume that $\gamma=2 \sqrt{m}$. Let us compare the discrete dynamics 1.7 - 1.8 and the continuous dynamics (1.4)-(1.5). Define:

$$
\begin{align*}
& \tilde{V}(t)=V_{0}-\int_{0}^{t} \gamma \tilde{V}(\lfloor s / \eta\rfloor \eta) d s-\int_{0}^{t} \nabla F(\tilde{X}(\lfloor s / \eta\rfloor \eta)) d s+\sqrt{2 \gamma \beta^{-1}} \int_{0}^{t} d B_{s} \tag{B.9}\\
& \tilde{X}(t)=X_{0}+\int_{0}^{t} \tilde{V}(\lfloor s / \eta\rfloor \eta) d s \tag{B.10}
\end{align*}
$$

The process (\tilde{V}, \tilde{X}) defined in $\overline{\text { B. } 9 \text {) }}$ and B.10 is the continuous-time interpolation of the iterates $\left\{\left(V_{k}, X_{k}\right)\right\}$. In particular, the joint distribution of $\left\{\left(V_{k}, X_{k}\right): k=1,2, \ldots, K\right\}$ is the same as $\{(\tilde{V}(t), \tilde{X}(t)): t=\eta, 2 \eta, \ldots, K \eta\}$ for any positive integer K.
It is derived in the proof of Lemma EC. 6 in [GGZ18] that the relative entropy $D(\cdot \| \cdot)$ between the law $\tilde{\mathbb{P}}^{K \eta}$ of $((\tilde{V}(t), \tilde{X}(t)): t \leq K \eta)$ and the law $\mathbb{P}^{K \eta}$ of $((V(t), X(t)): t \leq K \eta)$ is upper bounded as follows:

$$
D\left(\tilde{\mathbb{P}}^{K \eta} \| \mathbb{P}^{K \eta}\right) \leq \frac{3 \beta M^{2}}{2 \gamma} K \eta^{3}\left(C_{v}^{d}+2 M^{2} C_{x}^{d}+2 B^{2}+\frac{2 d \gamma \beta^{-1}}{3}\right)
$$

provided that $\eta \leq \min \left\{1, \frac{\gamma}{\hat{K}_{2}}(d / \beta+\bar{A} / \beta), \frac{\gamma \lambda}{2 \hat{K}_{1}}\right\}$, where C_{v}^{d} is defined in Lemma 10 Using Pinsker's inequality, we obtain an upper bound on the total variation $\|\cdot\|_{T V}$:

$$
\left\|\tilde{\mathbb{P}}^{K \eta}-\mathbb{P}^{K \eta}\right\|_{T V}^{2} \leq \frac{3 \beta M^{2}}{4 \gamma} K \eta^{3}\left(C_{v}^{d}+2 M^{2} C_{x}^{d}+2 B^{2}+\frac{2 d \gamma \beta^{-1}}{3}\right)
$$

Using a result about an optimal coupling (Theorem 5.2., [Lin92]), that is, given any two random elements \mathcal{X}, \mathcal{Y} of a common standard Borel space, there exists a coupling \mathcal{P} of \mathcal{X} and \mathcal{Y} such that

$$
\mathcal{P}(\mathcal{X} \neq \mathcal{Y}) \leq\|\mathcal{L}(\mathcal{X})-\mathcal{L}(\mathcal{Y})\|_{T V} .
$$

Hence, given any $\beta>0$ and $K \eta \leq \mathcal{T}_{\text {esc }}^{U}$, we can choose

$$
\begin{equation*}
\eta^{2} \leq \frac{4 \gamma \delta^{2}}{3 \beta M^{2}\left(C_{v}^{d}+2 M^{2} C_{x}^{d}+2 B^{2}+\frac{2 d \gamma \beta^{-1}}{3}\right) \mathcal{T}_{\text {esc }}^{U}} \tag{B.11}
\end{equation*}
$$

so that there is a coupling of $\{(V(k \eta), X(k \eta)): k=1,2, \ldots, K\}$ and $\left\{\left(V_{k}, X_{k}\right): k=1,2, \ldots, K\right\}$ such that

$$
\begin{equation*}
\mathcal{P}\left(((V(\eta), X(\eta)), \ldots,(V(K \eta), X(K \eta))) \neq\left(\left(V_{1}, X_{1}\right), \ldots,\left(V_{K}, X_{K}\right)\right) \leq \delta\right. \tag{B.12}
\end{equation*}
$$

It follows that

$$
\mathbb{P}\left(\left(\left(V_{1}, X_{1}\right), \ldots,\left(V_{K}, X_{K}\right)\right) \in \cdot\right) \leq \mathbb{P}(((V(\eta), X(\eta)), \ldots,(V(K \eta), X(K \eta))) \in \cdot)+\delta
$$

Let us now complete the proof of Theorem 3. We need to show that

$$
\mathbb{P}\left(\left(X_{1}, \ldots, X_{K}\right) \in \mathcal{A}\right) \leq \delta,
$$

where $K=\left\lfloor\eta^{-1} \mathcal{T}_{\text {esc }}^{U}\right\rfloor$ and $\mathcal{A}:=\mathcal{A}_{1} \cap \mathcal{A}_{2}$, where

$$
\begin{aligned}
& \mathcal{A}_{1}:=\left\{\left(x_{1}, \ldots, x_{K}\right) \in\left(\mathbb{R}^{d}\right)^{K}: \max _{k \leq \eta^{-1} \mathcal{T}_{\text {rec }}^{U}} \frac{\left\|x_{k}-x_{*}\right\|}{\left.\varepsilon+r e^{-\sqrt{m} k \eta} \leq \frac{1}{2}\right\},}\right. \\
& \mathcal{A}_{2}:=\left\{\left(x_{1}, \ldots, x_{K}\right) \in\left(\mathbb{R}^{d}\right)^{K}: \max _{\eta^{-1} \mathcal{T}_{\text {rec }}^{U} \leq k \leq K} \frac{\left\|x_{k}-x_{*}\right\|}{\varepsilon+r e^{-\sqrt{m} k \eta}} \geq 1\right\} .
\end{aligned}
$$

We can choose β sufficiently large so that with probability at least $1-\delta / 3$, we have either $\| X(t)-$ $x_{*} \| \geq \varepsilon+r e^{-\sqrt{m} t}$ for some $t \leq \mathcal{T}_{\text {rec }}^{U}$ or $\left\|X(t)-x_{*}\right\| \leq \varepsilon+r e^{-\sqrt{m} t}$ for all $t \leq \mathcal{T}_{\text {esc }}^{U}$. Moreover, for any K, η and β satisfying the conditions of the theorem, there exists a coupling of $(X(\eta), \ldots, X(K \eta))$ and $\left(X_{1}, \ldots, X_{K}\right)$ so that with probability $1-\delta / 3, X_{k}=X(k \eta)$ for all $k=1,2, \ldots, K$. Then, by (B.11) and (B.12), we get

$$
\begin{equation*}
\mathbb{P}\left(\left(X_{1}, \ldots, X_{K}\right) \in \mathcal{A}\right) \leq \mathbb{P}((X(\eta), \ldots, X(K \eta)) \in \mathcal{A})+\frac{\delta}{3} \tag{B.13}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\eta \leq \bar{\eta}_{3}^{U}:=\frac{2 \gamma^{1 / 2} \delta}{3 \sqrt{3 \beta} M\left(C_{v}^{d}+2 M^{2} C_{x}^{d}+2 B^{2}+\frac{2 d \gamma \beta^{-1}}{3}\right)^{1 / 2}\left(\mathcal{T}_{\mathrm{esc}}^{U}\right)^{1 / 2}} \tag{B.14}
\end{equation*}
$$

It remains to estimate the probability of $\mathbb{P}\left((X(\eta), \ldots, X(K \eta)) \in \mathcal{A}_{1} \cap \mathcal{A}_{2}\right)$ for the underdamped Langevin diffusion. Partition the interval [$\left.0, \mathcal{T}_{\text {rec }}^{U}\right]$ using the points $0=t_{1}<t_{1}<\cdots<t_{\left\lceil\eta^{-1} \mathcal{T}_{\text {rec }}^{U}\right.}=$ $\mathcal{T}_{\text {rec }}^{U}$ with $t_{k}=k \eta$ for $k=0,1, \ldots,\left\lceil\eta^{-1} \mathcal{T}_{\text {rec }}^{U}\right\rceil-1$, and consider the event:

$$
\mathcal{B}:=\left\{\max _{0 \leq k \leq\left\lceil\eta^{-1} \mathcal{T}_{\text {rec }}^{U}\right\rceil-1} \max _{t \in\left[t_{k}, t_{k+1}\right]}\left\|X(t)-X\left(t_{k+1}\right)\right\| \leq \frac{\varepsilon}{2}\right\} .
$$

On the event $\left\{(X(\eta), \ldots, X(K \eta)) \in \mathcal{A}_{1}\right\} \cap \mathcal{B}$,

$$
\begin{aligned}
\sup _{t \in\left[0, \mathcal{T}_{\text {rec }}^{U}\right]} \frac{\left\|X(t)-x_{*}\right\|}{\varepsilon+r e^{-\sqrt{m} t}} & =\max _{0 \leq k \leq\left\lceil\eta^{-1} \mathcal{T}_{\text {rec }}^{U}\right\rceil-1} \sup _{t \in\left[t_{k}, t_{k+1}\right]} \frac{\left\|X(t)-x_{*}\right\|}{\varepsilon+r e^{-\sqrt{m} t}} \\
& \leq \frac{1}{2}+\max _{0 \leq k \leq\left\lceil\eta^{-1} \mathcal{T}_{\text {rec }}^{U}\right\rceil-1} \max _{t \in\left[t_{k}, t_{k+1}\right]} \frac{1}{\varepsilon}\left\|X(t)-X\left(t_{k+1}\right)\right\|<1,
\end{aligned}
$$

and thus

$$
\begin{align*}
\mathbb{P}((X(\eta), \cdots, X(K \eta)) \in \mathcal{A}) & \leq \mathbb{P}(\{(X(\eta), \cdots, X(K \eta)) \in \mathcal{A}\} \cap \mathcal{B})+\mathbb{P}\left(B^{c}\right) \\
& \leq \mathbb{P}\left(\tau \in\left[\mathcal{T}_{\text {rec }}^{U}, \mathcal{T}_{\text {esc }}^{U}\right]\right)+\mathbb{P}\left(\mathcal{B}^{c}\right) \\
& \leq \frac{\delta}{3}+\mathbb{P}\left(\mathcal{B}^{c}\right), \tag{B.15}
\end{align*}
$$

511 provided that (by applying Proposition 7 and Lemma 18 (with $\gamma=2 \sqrt{m}$):

$$
\begin{equation*}
\beta \geq \underline{\beta}_{1}^{U}:=\frac{256\left(2 C_{H} m+4 m+(m+1)^{2}\right)}{m \varepsilon^{2}}\left(d \log (2)+\log \left(\frac{6 \sqrt{4 m+M^{2}+1} \mathcal{T}+3}{\delta}\right)\right) . \tag{B.16}
\end{equation*}
$$

To complete the proof, we need to show that $\mathbb{P}\left(\mathcal{B}^{c}\right) \leq \frac{\delta}{3}$ in view of B.13) and B.15). For any $t \in\left[t_{k}, t_{k+1}\right]$, where $t_{k+1}-t_{k}=\eta$, we have

$$
\begin{equation*}
\left\|X(t)-X\left(t_{k+1}\right)\right\| \leq \int_{t}^{t_{k+1}}\|V(s)\| d s \leq \eta\left\|V\left(t_{k+1}\right)\right\|+\int_{t}^{t_{k+1}}\left\|V(s)-V\left(t_{k+1}\right)\right\| d s \tag{B.17}
\end{equation*}
$$

514 and

$$
\begin{align*}
& \left\|V(t)-V\left(t_{k+1}\right)\right\| \\
& \leq \gamma \int_{t}^{t_{k+1}}\|V(s)\| d s+\int_{t}^{t_{k+1}}\|\nabla F(X(s))\| d s+\sqrt{2 \gamma \beta^{-1}}\left\|B_{t}-B_{t_{k+1}}\right\| \\
& \leq \gamma \eta\left\|V\left(t_{k+1}\right)\right\|+\gamma \int_{t}^{t_{k+1}}\left\|V(s)-V\left(t_{k+1}\right)\right\| d s \\
& \quad+M \int_{t}^{t_{k+1}}\left\|X(s)-X\left(t_{k+1}\right)\right\| d s+\eta\left\|\nabla F\left(X\left(t_{k+1}\right)\right)\right\|+\sqrt{2 \gamma \beta^{-1}}\left\|B_{t}-B_{t_{k+1}}\right\| \\
& \leq \gamma \eta\left\|V\left(t_{k+1}\right)\right\|+\gamma \int_{t}^{t_{k+1}}\left\|V(s)-V\left(t_{k+1}\right)\right\| d s \\
& \quad+M \int_{t}^{t_{k+1}}\left\|X(s)-X\left(t_{k+1}\right)\right\| d s+M \eta\left\|X\left(t_{k+1}\right)\right\|+B \eta+\sqrt{2 \gamma \beta^{-1}}\left\|B_{t}-B_{t_{k+1}}\right\| \tag{B.18}
\end{align*}
$$

 sed Lemma 20 By adding the above two inequalities B.17) and (B.18) together, we get

$$
\begin{aligned}
& \left\|X(t)-X\left(t_{k+1}\right)\right\|+\left\|V(t)-V\left(t_{k+1}\right)\right\| \\
& \leq(1+\gamma) \eta\left\|V\left(t_{k+1}\right)\right\|+(1+\gamma) \int_{t}^{t_{k+1}}\left\|V(s)-V\left(t_{k+1}\right)\right\| d s \\
& \quad+M \int_{t}^{t_{k+1}}\left\|X(s)-X\left(t_{k+1}\right)\right\| d s+M \eta\left\|X\left(t_{k+1}\right)\right\|+B \eta+\sqrt{2 \gamma \beta^{-1}}\left\|B_{t}-B_{t_{k+1}}\right\| \\
& \leq(1+\gamma+M) \int_{t}^{t_{k+1}}\left(\left\|V(s)-V\left(t_{k+1}\right)\right\|+\left\|X(s)-X\left(t_{k+1}\right)\right\|\right) d s \\
& \quad+(1+\gamma) \eta\left\|V\left(t_{k+1}\right)\right\|+M \eta\left\|X\left(t_{k+1}\right)\right\|+B \eta+\sqrt{2 \gamma \beta^{-1}} \sup _{t \in\left[t_{k}, t_{k+1}\right]}\left\|B_{t}-B_{t_{k+1}}\right\| .
\end{aligned}
$$

$$
\begin{align*}
& \sup _{t \in\left[t_{k}, t_{k+1}\right]}\left[\left\|X(t)-X\left(t_{k+1}\right)\right\|+\left\|V(t)-V\left(t_{k+1}\right)\right\|\right] \\
& \leq e^{(1+\gamma+M) \eta}\left[(1+\gamma) \eta\left\|V\left(t_{k+1}\right)\right\|+M \eta\left\|X\left(t_{k+1}\right)\right\|+B \eta+\sqrt{2 \gamma \beta^{-1}} \sup _{t \in\left[t_{k}, t_{k+1}\right]}\left\|B_{t}-B_{t_{k+1}}\right\|\right] . \tag{B.19}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbb{P}\left(\left\|X\left(t_{k+1}\right)\right\| \geq u\right) \leq \frac{\sup _{t>0} \mathbb{E}\|X(t)\|^{2}}{u^{2}} \leq \frac{C_{x}^{c}}{u^{2}} \tag{B.21}
\end{equation*}
$$

where C_{v}^{c}, C_{x}^{c} are defined in Lemma 10. By Lemma 19, we have

$$
\mathbb{P}\left(\sup _{t \in\left[t_{k}, t_{k+1}\right]}\left\|B_{t}-B_{t_{k+1}}\right\| \geq u\right) \leq 2^{1 / 4} e^{1 / 4} e^{-\frac{u^{2}}{4 d \eta}}
$$

521 Therefore, we can infer from B.19] that with $K_{0}:=\left\lceil\eta^{-1} \mathcal{T}_{\text {rec }}^{U}\right\rceil$,

$$
\begin{align*}
& \mathbb{P}\left(\mathcal{B}^{c}\right) \\
& \leq \sum_{k=0}^{K_{0}-1} \mathbb{P}\left(\left\|X\left(t_{k+1}\right)\right\| \geq \frac{\varepsilon e^{-(1+\gamma+M) \eta}}{8 M \eta}\right)+\sum_{k=0}^{K_{0}-1} \mathbb{P}\left(\left\|V\left(t_{k+1}\right)\right\| \geq \frac{\varepsilon e^{-(1+\gamma+M) \eta}}{8(1+\gamma) \eta}\right) \\
& \quad+\sum_{k=0}^{K_{0}-1} \mathbb{P}\left(B \geq \frac{\varepsilon e^{-(1+\gamma+M) \eta}}{8 \eta}\right)+\sum_{k=0}^{K_{0}-1} \mathbb{P}\left(\sup _{t \in\left[t_{k}, t_{k+1}\right]}\left\|B_{t}-B_{t_{k+1}}\right\| \geq \frac{\varepsilon e^{-(1+\gamma+M) \eta} \sqrt{\beta}}{8 \sqrt{2 \gamma}}\right) \\
& \leq \frac{64 K_{0}}{\varepsilon^{2}}\left(M^{2} C_{x}^{c}+(1+\gamma)^{2} C_{v}^{c}\right) \cdot \eta^{2} e^{2(1+\gamma+M) \eta} \tag{B.22}\\
& \quad+2^{1 / 4} e^{1 / 4} K_{0} \cdot \exp \left(-\frac{1}{4 d \eta} \frac{\varepsilon^{2} e^{-2(1+\gamma+M) \eta} \beta}{128 \gamma}\right) \tag{B.23}\\
& \quad+K_{0} \mathbb{P}\left(B \geq \frac{\varepsilon e^{-(1+\gamma+M) \eta}}{8 \eta}\right), \tag{B.24}
\end{align*}
$$

where the last inequality follows from (B.20), (B.21) and Lemma 19 . We can choose $\eta \leq 1$ so that

$$
\begin{equation*}
\eta \leq \bar{\eta}_{2}^{U}:=\frac{\delta \varepsilon^{2} e^{-2(1+\gamma+M)}}{384\left(M^{2} C_{x}^{c}+(1+\gamma)^{2} C_{v}^{c}\right) \mathcal{T}_{\text {rec }}^{U}}, \tag{B.25}
\end{equation*}
$$

so that the term in $\overline{\mathrm{B} .22}$ is less than $\delta / 6$, where C_{v}^{c}, C_{x}^{c} are defined in Lemma 10 , and then we choose β so that

$$
\begin{equation*}
\beta \geq \underline{\beta}_{2}^{U}:=\frac{512 d \eta \gamma \log \left(2^{1 / 4} e^{1 / 4} 6 \delta^{-1} \mathcal{T}_{\text {rec }}^{U} / \eta\right)}{\varepsilon^{2} e^{-2(1+\gamma+M) \eta}}, \tag{B.26}
\end{equation*}
$$

$$
\bar{\varepsilon}_{3}^{U}=\frac{\sqrt{m}}{4 L\left(\sqrt{C_{H}+2}+\frac{m+1}{\sqrt{m}}+\frac{\sqrt{\left(C_{H}+2\right) m}+(m+1)}{8 \sqrt{C_{H}+2+(m+1)^{2}}}\right)} \geq \Omega\left(\frac{\sqrt{m}}{L\left(1+\frac{m+1}{\sqrt{m}}+\frac{\sqrt{m}}{m+1}\right)}\right) \geq \Omega(m)
$$

$$
\bar{\eta}_{2}^{U}=\frac{\delta \varepsilon^{2} e^{-2(1+2 \sqrt{m}+M)}}{384\left(M^{2} C_{x}^{c}+(1+2 \sqrt{m})^{2} C_{v}^{c}\right) \mathcal{T}_{\text {rec }}^{U}} \geq \Omega\left(\frac{m^{2} \beta \delta \varepsilon^{2}}{(m d+\beta) \mathcal{T}_{\text {rec }}^{U}}\right) .
$$

Moreover,

$$
\bar{\eta}_{3}^{U}=\frac{2 \sqrt{2} m^{1 / 4} \delta}{3 \sqrt{3 \beta} M\left(C_{v}^{d}+2 M^{2} C_{x}^{d}+2 B^{2}+\frac{4 d \sqrt{m} \beta^{-1}}{3}\right)^{1 / 2}\left(\mathcal{T}_{\text {esc }}^{U}\right)^{1 / 2}} \geq \Omega\left(\frac{m^{5 / 4} \delta}{(d+\beta)^{1 / 2}\left(\mathcal{T}_{\mathrm{esc}}^{U}\right)^{1 / 2}}\right)
$$

where we used $C_{x}^{d} \leq \mathcal{O}\left(\frac{d+\beta}{\beta m^{2}}\right)$ and $C_{v}^{d} \leq \mathcal{O}\left(\frac{d+\beta}{\beta m}\right)$, and

$$
\bar{\eta}_{4}^{U}=\min \left\{1, \frac{2 \sqrt{m}}{\hat{K}_{2}} \frac{d+\bar{A}}{\beta}, \frac{\sqrt{m} \lambda}{\hat{K}_{1}}\right\} \geq \min \left\{\Omega\left(\frac{m^{1 / 2}(d+\beta)}{d m^{1 / 2}+\beta}\right), \Omega\left(m^{5 / 2}\right)\right\}
$$

and

$$
\underline{\beta}_{2}^{U}=\frac{1024 d \eta \sqrt{m} \log \left(2^{1 / 4} e^{1 / 4} 6 \delta^{-1} \mathcal{T}_{\text {rec }}^{U} / \eta\right)}{\varepsilon^{2} e^{-2(1+2 \sqrt{m}+M) \eta}} \leq \mathcal{O}\left(\frac{d \eta m^{1 / 2} \log \left(\delta^{-1} \mathcal{T}_{\text {rec }}^{U} / \eta\right)}{\varepsilon^{2}}\right)
$$

write it in terms of matrix form as:

$$
d\left[\begin{array}{c}
V(t) \\
Y(t)
\end{array}\right]=\left[\begin{array}{cc}
-\gamma I & -H \\
I & 0
\end{array}\right]\left[\begin{array}{c}
V(t) \\
Y(t)
\end{array}\right] d t+\sqrt{2 \gamma \beta^{-1}}\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right] d B_{t}^{(2)}+\left[\begin{array}{c}
\rho(V(t)) \\
0
\end{array}\right] d t
$$

556 where $B_{t}^{(2)}$ is a $2 d$-dimensional standard Brownian motion. Therefore, we have

$$
\left[\begin{array}{c}
V(t) \\
Y(t)
\end{array}\right]=e^{-t H_{\gamma}}\left[\begin{array}{c}
V(0) \\
Y(0)
\end{array}\right]+\sqrt{2 \gamma \beta^{-1}} \int_{0}^{t} e^{(s-t) H_{\gamma}} I^{(2)} d B_{s}^{(2)}+\int_{0}^{t} e^{(s-t) H_{\gamma}}\left[\begin{array}{c}
\rho(V(s)) \\
0
\end{array}\right] d s
$$

where

$$
H_{\gamma}=\left[\begin{array}{cc}
\gamma I & H \tag{B.28}\\
-I & 0
\end{array}\right], \quad I^{(2)}=\left[\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right]
$$

It follows that (with $e^{-1 / 2} \geq 1 / 2$)

$$
\begin{align*}
& \mathbb{P}\left(\tau \in\left[t_{0}, t_{1}\right]\right) \\
& =\mathbb{P}\left(\sup _{t_{0} \leq t \leq t_{1} \wedge \tau} \frac{\|Y(t)\|}{\varepsilon+r e^{-\sqrt{m} t}} \geq 1, \tau \geq t_{0}\right) \\
& \leq \mathbb{P}\left(\sup _{t_{0} \leq t \leq t_{1} \wedge \tau} \frac{\left\|Q_{t_{0}}\left(t_{1}\right) Z_{t}\right\|}{\varepsilon+r e^{-\sqrt{m} t}} \geq \frac{1}{2}, \tau \geq t_{0}\right) \\
& \leq \mathbb{P}\left(\sup _{t_{0} \leq t \leq t_{1} \wedge \tau} \frac{\left\|Q_{t_{0}}\left(t_{1}\right) Z_{t}^{0}\right\|}{\varepsilon+r e^{-\sqrt{m} t}} \geq c_{0}, \tau \geq t_{0}\right)+\mathbb{P}\left(\sup _{t_{0} \leq t \leq t_{1} \wedge \tau} \frac{\left\|Q_{t_{0}}\left(t_{1}\right) Z_{t}^{1}\right\|}{\varepsilon+r e^{-\sqrt{m} t}} \geq c_{1}, \tau \geq t_{0}\right), \tag{B.34}
\end{align*}
$$

570 where $c_{0}+c_{1}=\frac{1}{2}$ and $c_{0}, c_{1}>0$. We will first bound the second term in B.34 which will turn out 571 to be zero, and then use Lemma 8 to bound the first term in B.34).

First, notice that $Z_{t}^{1} \equiv 0$ in the quadratic case and the second term in $(\bar{B} .34)$ is automatically zero. In the more general case, we will show that the second term in B.34 is also zero. On the event $\tau \in\left[t_{0}, t_{1}\right]$, for any $0 \leq s \leq t_{1} \wedge \tau$, we have

$$
\|\rho(Y(s))\| \leq \frac{L}{2}\|Y(s)\|^{2} \leq \frac{L}{2}\left(\varepsilon+r e^{-\sqrt{m} s}\right)^{2}
$$

Therefore, for any $t \in\left[t_{0}, t_{1} \wedge \tau\right]$, by Lemma 2 , we get

$$
\begin{aligned}
& \left\|Q_{t_{0}}\left(t_{1}\right) Z_{t}^{1}\right\| \\
& \leq \int_{0}^{t}\left\|e^{\left(s-t_{1}\right) H_{\gamma}}\right\| \cdot\|\rho(Y(s))\| d s \\
& \leq \frac{L}{2} \int_{0}^{t} \sqrt{C_{H}+2+(m+1)^{2}\left(t_{1}-s\right)^{2}} e^{\left(s-t_{1}\right) \sqrt{m}}\left(\varepsilon+r e^{-\sqrt{m} s}\right)^{2} d s \\
& \leq L \int_{0}^{t}\left(\sqrt{C_{H}+2}+(m+1)\left(t_{1}-s\right)\right) e^{\left(s-t_{1}\right) \sqrt{m}}\left(\varepsilon^{2}+r^{2} e^{-2 \sqrt{m} s}\right) d s \\
& \leq L \int_{0}^{t_{1}}\left(\sqrt{C_{H}+2}+(m+1)\left(t_{1}-s\right)\right) e^{\left(s-t_{1}\right) \sqrt{m}}\left(\varepsilon^{2}+r^{2} e^{-2 \sqrt{m} s}\right) d s \\
& \leq \frac{L}{\sqrt{m}}\left(\left(\sqrt{C_{H}+2}+\frac{m+1}{\sqrt{m}}\right) \varepsilon^{2}+\sqrt{C_{H}+2} r^{2} e^{-\sqrt{m} t_{1}}\right) \\
& \leq \frac{L}{\sqrt{m}}\left(\left(\sqrt{C_{H}+2}+\frac{m+1}{\sqrt{m}}\right) \varepsilon^{2}+\sqrt{C_{H}+2} r^{2} e^{-\sqrt{m} t_{1}}+(m+1) r^{2} t_{1} e^{-t_{1} \sqrt{m}}\right) \\
& \leq \frac{L}{\sqrt{m}}\left(\left(\sqrt{C_{H}+2}+\frac{m+1}{\sqrt{m}}\right) \varepsilon^{2}+\left(\sqrt{\left(C_{H}+2\right) m}+(m+1)\right) r^{2} t_{1} e^{-t_{1} \sqrt{m}}\right) \\
& \leq \frac{L}{\sqrt{m}}\left(\sqrt{C_{H}+2}+\frac{m+1}{\sqrt{m}}+\frac{\sqrt{\left(C_{H}+2\right) m}+(m+1)}{8 \sqrt{C_{H}+2+(m+1)^{2}}}\right) \varepsilon^{2}
\end{aligned}
$$

576 where we used $t_{1} \geq t \geq t_{0} \geq \mathcal{T}_{\text {rec }}^{U} \geq \frac{1}{\sqrt{m}}$, and $t_{1} e^{-t_{1} \sqrt{m}} \leq \mathcal{T}_{\text {rec }}^{U} e^{-\mathcal{T}_{\text {rec }}^{U} \sqrt{m}}$ and the definition of $\mathcal{T}_{\text {rec }}^{U}$:

$$
\sqrt{C_{H}+2+(m+1)^{2}} \mathcal{T}_{\text {rec }}^{U} e^{-\sqrt{m} \mathcal{T}_{\text {rec }}^{U}}=\frac{\varepsilon^{2}}{8 r^{2}}
$$

577 Consequently, if we take $c_{1}=\frac{L}{\sqrt{m}}\left(\sqrt{C_{H}+2}+\frac{m+1}{\sqrt{m}}+\frac{\sqrt{\left(C_{H}+2\right) m}+(m+1)}{8 \sqrt{C_{H}+2+(m+1)^{2}}}\right) \varepsilon$, then,

$$
\sup _{t_{0} \leq t \leq t_{1} \wedge \tau} \frac{\left\|Q_{t_{0}}\left(t_{1}\right) Z_{t}\right\|}{\varepsilon+r e^{-\sqrt{m} t}} \leq \frac{1}{\varepsilon} \sup _{t_{0} \leq t \leq t_{1} \wedge \tau}\left\|Q_{t_{0}}\left(t_{1}\right) Z_{t}\right\| \leq c_{1}
$$

which implies that

$$
\mathbb{P}\left(\sup _{t_{0} \leq t \leq t_{1} \wedge \tau} \frac{\left\|Q_{t_{0}}\left(t_{1}\right) Z_{t}^{1}\right\|}{\varepsilon+r e^{-\sqrt{m} t}} \geq c_{1}, \tau \geq t_{0}\right)=0
$$

Moreover, $c_{0}=\frac{1}{2}-c_{1}=\frac{1}{2}-\frac{L}{\sqrt{m}}\left(\sqrt{C_{H}+2}+\frac{m+1}{\sqrt{m}}+\frac{\sqrt{\left(C_{H}+2\right) m}+(m+1)}{8 \sqrt{C_{H}+2+(m+1)^{2}}}\right) \varepsilon>\frac{1}{4}$ since it is assumed that $\varepsilon<\frac{\sqrt{m}}{4 L\left(\sqrt{C_{H}+2}+\frac{m+1}{\sqrt{m}}+\frac{\sqrt{\left(C_{H}+2\right) m}+(m+1)}{8 \sqrt{C_{H}+2+(m+1)^{2}}}\right)}$.

Second, we will apply Lemma 8 to bound the first term in B.34. By using $V(0)=0$ and $\|Y(0)\| \leq r$ and the definition of $\mu_{t_{1}}$ and $\Sigma_{t_{1}}$ in (B.32) and B.33), we get

$$
\begin{aligned}
& \left\langle\mu_{t_{1}},\left(I-\beta \theta \Sigma_{t_{1}}\right)^{-1} \mu_{t_{1}}\right\rangle \\
& =\left\langle e^{-t_{1} H_{\gamma}}(V(0), Y(0))^{T},\left(I-\beta \theta \Sigma_{t_{1}}\right)^{-1} e^{-t_{1} H_{\gamma}}(V(0), Y(0))^{T}\right\rangle \\
& \leq\left(1-\theta \frac{\gamma\left(2 C_{H} m+4 m+(m+1)^{2}\right)}{2 m \sqrt{m}}\right)^{-1}\left(C_{H}+2+(m+1)^{2} t_{1}^{2}\right) e^{-2 \sqrt{m} t_{1}} r^{2} \\
& \leq 2\left(\left(C_{H}+2\right) m+(m+1)^{2}\right) t_{1}^{2} e^{-2 \sqrt{m} t_{1}} r^{2} \\
& \leq \frac{1}{32} \frac{\left(C_{H}+2\right) m+(m+1)^{2}}{C_{H}+2+(m+1)^{2}} \frac{\varepsilon^{4}}{r^{2}} \leq \frac{1}{32} \varepsilon^{2},
\end{aligned}
$$

by choosing $\theta=\frac{m \sqrt{m}}{\gamma\left(2 C_{H} m+4 m+(m+1)^{2}\right)}$ and $t_{1} \geq \mathcal{T}_{\text {rec }}^{U} \geq \frac{1}{\sqrt{m}}$, and $t_{1} e^{-t_{1} \sqrt{m}} \leq \mathcal{T}_{\text {rec }}^{U} e^{-\mathcal{T}_{\text {rec }}^{U}}$, and using the definition $\sqrt{C_{H}+2+(m+1)^{2}} \mathcal{T}_{\text {rec }}^{U} e^{-\sqrt{m} \mathcal{T}_{\text {rec }}^{U}}=\frac{\varepsilon^{2}}{8 r^{2}}$, and we also used $\varepsilon \leq$ $\sqrt{\frac{C_{H}+2+(m+1)^{2}}{\left(C_{H}+2\right) m+(m+1)^{2}}} r$.
Then with the choice of $h=\left(\varepsilon+r e^{-\sqrt{m} t_{1}}\right) c_{0}$ and $\theta=\frac{m \sqrt{m}}{\gamma\left(2 C_{H} m+4 m+(m+1)^{2}\right)}$ in Lemma 8 and using the fact that $h=\left(\varepsilon+r e^{-\sqrt{m} t_{1}}\right) c_{0} \geq \varepsilon c_{0}$, we get

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{t_{0} \leq t \leq t_{1} \wedge \tau} \frac{\left\|Q_{t_{0}}\left(t_{1}\right) Z_{t}^{0}\right\|}{\varepsilon+r e^{-\sqrt{m} t}} \geq c_{0}, \tau \geq t_{0}\right) \\
& \leq \mathbb{P}\left(\sup _{t_{0} \leq t \leq t_{1}}\left\|Q_{t_{0}}\left(t_{1}\right) Z_{t}^{0}\right\| \geq\left(\varepsilon+r e^{-\sqrt{m} t_{1}}\right) c_{0}\right) \\
& \leq\left(1-\theta \frac{\gamma\left(2 C_{H} m+4 m+(m+1)^{2}\right)}{2 m \sqrt{m}}\right)^{-\frac{2 d}{2}} \cdot \exp \left(-\frac{\beta \theta}{2}\left[h^{2}-\left\langle\mu_{t_{1}},\left(I-\beta \theta \Sigma_{t_{1}}\right)^{-1} \mu_{t_{1}}\right\rangle\right]\right) \\
& \leq 2^{d} \cdot \exp \left(-\frac{\beta \gamma^{-1} m \sqrt{m} \varepsilon^{2}}{2\left(2 C_{H}+4 m+(m+1)^{2}\right)}\left(c_{0}^{2}-\frac{1}{32}\right)\right) \\
& \leq 2^{d} \cdot \exp \left(-\frac{\beta \gamma^{-1} m \sqrt{m} \varepsilon^{2}}{128\left(2 C_{H}+4 m+(m+1)^{2}\right)}\right) .
\end{aligned}
$$

Thus for any $t_{0} \geq \mathcal{T}_{\text {rec }}^{U}$ and $t_{0} \leq t_{1} \leq t_{0}+\frac{1}{2\left\|H_{\gamma}\right\|}$,

$$
\mathbb{P}\left(\tau \in\left[t_{0}, t_{1}\right]\right) \leq 2^{d} \cdot \exp \left(-\frac{\beta \gamma^{-1} m \sqrt{m} \varepsilon^{2}}{128\left(2 C_{H} m+4 m+(m+1)^{2}\right)}\right)
$$

Fix any $\mathcal{T}>0$ and recall the definition of the escape time $\mathcal{T}_{\text {esc }}^{U}=\mathcal{T}+\mathcal{T}_{\text {rec }}^{U}$. Partition the interval $\left[\mathcal{T}_{\text {rec }}^{U}, \mathcal{T}_{\text {esc }}^{U}\right]$ using the points $\mathcal{T}_{\text {rec }}^{U}=t_{0}<t_{1}<\cdots<t_{\left\lceil 2\left\|H_{\gamma}\right\| \mathcal{T}\right\rceil}=\mathcal{T}_{\text {esc }}^{U}$ with $t_{j}=j /\left(2\left\|H_{\gamma}\right\|\right)$, then we have

$$
\begin{aligned}
\mathbb{P}\left(\tau \in\left[\mathcal{T}_{\text {rec }}^{U}, \mathcal{T}_{\text {esc }}^{U}\right]\right) & =\sum_{j=0}^{\left\lceil 2\left\|H_{\gamma}\right\| \mathcal{T}\right\rceil} \mathbb{P}\left(\tau \in\left[t_{j}, t_{j+1}\right]\right) \\
& \leq\left(2\left\|H_{\gamma}\right\| \mathcal{T}+1\right) \cdot 2^{d} \cdot \exp \left(-\frac{\beta \gamma^{-1} m \sqrt{m} \varepsilon^{2}}{128\left(2 C_{H} m+4 m+(m+1)^{2}\right)}\right) \leq \delta,
\end{aligned}
$$

provided that

$$
\beta \geq \frac{128\left(2 C_{H} m+4 m+(m+1)^{2}\right) \gamma}{m \sqrt{m} \varepsilon^{2}}\left(d \log (2)+\log \left(\frac{2\left\|H_{\gamma}\right\| \mathcal{T}+1}{\delta}\right)\right)
$$

Finally, plugging $\gamma=2 \sqrt{m}$ into the above formulas and applying the bound on $\| H_{\gamma}$ from Lemma 18, the conclusion follows.

B.2.3 Uniform L^{2} bounds for underdamped Langevin dynamics

In this section, we state the uniform L^{2} bounds for the continuous time underdamped Langevin dynamics ($(\sqrt[1.4]{ })$ and $(\sqrt{1.5 p})$ and the discrete time iterates ((1.7) and $\sqrt{1.8})$ in Lemma 10 , which is a
modification of Lemma 8 in [GGZ18]. The uniform L^{2} bound for the discrete dynamics (1.7)- 1.8) is used to derive the relative entropy to compare the laws of the continuous time dynamics and the discrete time dynamics, and the uniform L^{2} bound for the continuous dynamics $\sqrt{1.4}-(\sqrt{1.5})$ is used to control the tail of the continuous dynamics in Section B.2.1

Before we proceed, let us first introduce the following Lyapunov function (from the paper [EGZ19]) which will be used in the proof the uniform L^{2} boundedness results for both the continuous and discrete underdamped Langevin dynamics. We define the Lyapunov function \mathcal{V} as:

$$
\begin{equation*}
\mathcal{V}(x, v):=\beta F(x)+\frac{\beta}{4} \gamma^{2}\left(\left\|x+\gamma^{-1} v\right\|^{2}+\left\|\gamma^{-1} v\right\|^{2}-\lambda\|x\|^{2}\right) \tag{B.35}
\end{equation*}
$$

and λ is a positive constant less than $1 / 4$ according to [EGZ19]. We will first show in the following lemma that we can find explicit constants $\lambda \in\left(0, \min \left(1 / 4, m /\left(M+\gamma^{2} / 2\right)\right)\right)$ and $\bar{A} \in(0, \infty)$ so that the drift condition (B.38) is satisfied. The drift condition is needed in [EGZ19], which is applied to obtain the uniform L^{2} bounds in [GGZ18] (Lemma 8) that implies the uniform L^{2} bounds in our current setting (the following Lemma 10).
Lemma 9. Let us define:

$$
\begin{align*}
& \lambda=\frac{1}{2} \min \left(1 / 4, m /\left(M+\gamma^{2} / 2\right)\right) \tag{B.36}\\
& \bar{A}=\frac{\beta}{2} \frac{m}{M+\frac{1}{2} \gamma^{2}}\left(\frac{B^{2}}{2 M+\gamma^{2}}+\frac{b}{m}\left(M+\frac{1}{2} \gamma^{2}\right)+A\right), \tag{B.37}
\end{align*}
$$

then the following drift condition holds:

$$
\begin{equation*}
x \cdot \nabla F(x) \geq 2 \lambda\left(F(x)+\gamma^{2}\|x\|^{2} / 4\right)-2 \bar{A} / \beta . \tag{B.38}
\end{equation*}
$$

The following lemma provides uniform L^{2} bounds for the continuous-time underdamped Langevin diffusion process $(X(t), V(t))$ defined in (1.4)-(1.5) and discrete-time underdamped Langevin dynamics $\left(X_{k}, V_{k}\right)$ defined in (1.7)-(1.8).
Lemma 10 (Uniform L^{2} bounds). Suppose parts (i), (ii), (iii), (iv) of Assumption 1 and the drift condition $\overline{\mathrm{B} .38)}$ hold. $\gamma>0$ is arbitrary and λ, \bar{A} are defined in $\overline{\mathrm{B} .36}$) and $\overline{\mathrm{B} .37)}$.
(i) It holds that

$$
\begin{align*}
& \sup _{t \geq 0} \mathbb{E}\|X(t)\|^{2} \leq C_{x}^{c}:=\frac{\left(\frac{\beta M}{2}+\frac{\beta \gamma^{2}(2-\lambda)}{4}\right) R^{2}+\beta B R+\beta A+\frac{3}{4} \beta\|V(0)\|^{2}+\frac{d+\bar{A}}{\lambda}}{\frac{1}{8}(1-2 \lambda) \beta \gamma^{2}}, \tag{B.39}\\
& \sup _{t \geq 0} \mathbb{E}\|V(t)\|^{2} \leq C_{v}^{c}:=\frac{\left(\frac{\beta M}{2}+\frac{\beta \gamma^{2}(2-\lambda)}{4}\right) R^{2}+\beta B R+\beta A+\frac{3}{4} \beta\|V(0)\|^{2}+\frac{d+\bar{A}}{\lambda}}{\frac{\beta}{4}(1-2 \lambda)}, \tag{B.40}
\end{align*}
$$

(ii) For any stepsize η satisfying:

$$
\begin{equation*}
0<\eta \leq \bar{\eta}_{4}^{U}:=\min \left\{1, \frac{\gamma}{\hat{K}_{2}}(d / \beta+\bar{A} / \beta), \frac{\gamma \lambda}{2 \hat{K}_{1}}\right\} \tag{B.41}
\end{equation*}
$$

where

$$
\begin{align*}
\hat{K}_{1} & :=K_{1}+Q_{1} \frac{4}{1-2 \lambda}+Q_{2} \frac{8}{(1-2 \lambda) \gamma^{2}} \tag{B.42}\\
\hat{K}_{2} & :=K_{2}+Q_{3} \tag{B.43}
\end{align*}
$$

where

$$
\begin{align*}
& K_{1}:=\max \left\{\frac{32 M^{2}\left(\frac{1}{2}+\gamma\right)}{(1-2 \lambda) \beta \gamma^{2}}, \frac{8\left(\frac{1}{2} M+\frac{1}{4} \gamma^{2}-\frac{1}{4} \gamma^{2} \lambda+\gamma\right)}{\beta(1-2 \lambda)}\right\}, \tag{B.44}\\
& K_{2}:=2 B^{2}\left(\frac{1}{2}+\gamma\right), \tag{B.45}
\end{align*}
$$

and thus, we have

$$
\left\|\Sigma_{t_{1}}\right\| \leq 2 \gamma \beta^{-1} \int_{0}^{t_{1}}\left(C_{H}+2+(m+1)^{2} t^{2}\right) e^{-2 \sqrt{m} t} d t \leq \gamma \beta^{-1} \frac{2 C_{H} m+4 m+(m+1)^{2}}{2 m \sqrt{m}}
$$

and

$$
\begin{align*}
Q_{1}:= & \frac{1}{2} c_{0}\left(\left(5 M+4-2 \gamma+\left(c_{0}+\gamma^{2}\right)\right)+(1+\gamma)\left(\frac{5}{2}+c_{0}(1+\gamma)\right)+2 \gamma^{2} \lambda\right), \tag{B.46}\\
Q_{2}:= & \frac{1}{2} c_{0}\left[\left((1+\gamma)\left(c_{0}(1+\gamma)+\frac{5}{2}\right)+c_{0}+2+\lambda \gamma^{2}+2\left(M c_{0}+M+1\right)\right) \cdot 2 M^{2}\right. \\
& \left.\quad+\left(2 M^{2}+\gamma^{2} \lambda+\frac{3}{2} \gamma^{2}(1+\gamma)\right)\right], \tag{B.47}\\
& \quad+\frac{1}{2} \gamma^{3} \beta^{-1} c_{22}+\gamma^{2} \beta^{-1} c_{12}+M \gamma \beta^{-1} c_{22},
\end{align*}
$$

where

$$
\begin{equation*}
c_{0}:=1+\gamma^{2}, \quad c_{12}:=\frac{d}{2}, \quad c_{22}:=\frac{d}{3}, \tag{B.49}
\end{equation*}
$$

we have

$$
\begin{align*}
& \sup _{j \geq 0} \mathbb{E}\left\|X_{j}\right\|^{2} \leq C_{x}^{d}:=\frac{\left(\frac{\beta M}{2}+\frac{\beta \gamma^{2}(2-\lambda)}{4}\right) R^{2}+\beta B R+\beta A+\frac{3}{4} \beta\|V(0)\|^{2}+\frac{4(d+\bar{A})}{\lambda}}{\frac{1}{8}(1-2 \lambda) \beta \gamma^{2}}, \tag{B.50}\\
& \sup _{j \geq 0} \mathbb{E}\left\|V_{j}\right\|^{2} \leq C_{v}^{d}:=\frac{\left(\frac{\beta M}{2}+\frac{\beta \gamma^{2}(2-\lambda)}{4}\right) R^{2}+\beta B R+\beta A+\frac{3}{4} \beta\|V(0)\|^{2}+\frac{4(d+\bar{A})}{\lambda}}{\frac{\beta}{4}(1-2 \lambda)} . \tag{B.51}
\end{align*}
$$

B.2.4 Proofs of auxiliary results

Proof of Lemma 8 . Note that $Q_{t_{0}}\left(t_{1}\right) Z_{t}^{0}$ is a $2 d$-dimensional martingale and by Doob's martingale inequality, for any $h>0$,

$$
\begin{align*}
\mathbb{P}\left(\sup _{t_{0} \leq t \leq t_{1}}\left\|Q_{t_{0}}\left(t_{1}\right) Z_{t}^{0}\right\| \geq h\right) & \leq e^{-\beta \theta h^{2} / 2} \mathbb{E}\left[e^{(\beta \theta / 2)\left\|Q_{t_{0}}\left(t_{1}\right) Z_{t_{1}}^{0}\right\|^{2}}\right] \\
& =e^{-\beta \theta h^{2} / 2} \frac{1}{\sqrt{\operatorname{det}\left(I-\beta \theta \Sigma_{t_{1}}\right)}} e^{\frac{\beta \theta}{2}\left\langle\mu_{t_{1}},\left(I-\beta \theta \Sigma_{t_{1}}\right)^{-1} \mu_{t_{1}}\right\rangle} \tag{B.52}
\end{align*}
$$

where the last line above uses the fact that $Q_{t_{0}}\left(t_{1}\right) Z_{t_{1}}$ is a Gaussian random vector with mean

$$
\mu_{t_{1}}=e^{-t_{1} H_{\gamma}}(V(0), Y(0))^{T}
$$

and covariance matrix

$$
\begin{aligned}
\Sigma_{t_{1}} & =2 \gamma \beta^{-1} \int_{0}^{t_{1}}\left(e^{\left(s-t_{1}\right) H_{\gamma}} I^{(2)}\right)\left(e^{\left(s-t_{1}\right) H_{\gamma}} I^{(2)}\right)^{T} d s \\
& =2 \gamma \beta^{-1} \int_{0}^{t_{1}} e^{-s H_{\gamma}} I^{(2)} e^{-s H_{\gamma}^{T}} d s
\end{aligned}
$$

We next estimate $\operatorname{det}\left(I-\beta \theta \Sigma_{t_{1}}\right)$ fron $(\bar{B} .52)$. Let us recall from Lemma 2 that if $\gamma=2 \sqrt{m}$, then we recall from Lemma 2 that,

$$
\left\|e^{-t H_{\gamma}}\right\| \leq \sqrt{C_{H}+2+(m+1)^{2} t^{2}} \cdot e^{-\sqrt{m} t}
$$

Therefore we infer that the eigenvalues of $I-\beta \theta \Sigma$ are bounded below by $1-\theta \frac{\gamma\left(2 C_{H} m+4 m+(m+1)^{2}\right)}{2 m \sqrt{m}}$. The conclusion then follows from B.52.

Proof of Lemma 10 According to Lemma EC. 1 in [GGZ18],

$$
\begin{aligned}
& \sup _{t \geq 0} \mathbb{E}\|X(t)\|^{2} \leq \frac{\int_{\mathbb{R}^{2 d}} \mathcal{V}(x, v) d \mu_{0}(x, v)+\frac{d+\bar{A}}{\lambda}}{\frac{1}{8}(1-2 \lambda) \beta \gamma^{2}}, \\
& \sup _{t \geq 0} \mathbb{E}\|V(t)\|^{2} \leq \frac{\int_{\mathbb{R}^{2 d}} \mathcal{V}(x, v) d \mu_{0}(x, v)+\frac{d+\bar{A}}{\lambda}}{\frac{\beta}{4}(1-2 \lambda)}
\end{aligned}
$$

Proof of Lemma 9 By Assumption 1 (iii), $x \cdot \nabla F(x) \geq m\|x\|^{2}-b$. Thus in order to show the drift condition (B.38), it suffices to show that

$$
\begin{equation*}
m\|x\|^{2}-b-2 \lambda\left(F(x)+\gamma^{2}\|x\|^{2} / 4\right) \geq-2 \bar{A} / \beta \tag{B.53}
\end{equation*}
$$

Given the definition of λ in B.36, by Lemma 20, we get

$$
\begin{aligned}
& m\|x\|^{2}-b-2 \lambda\left(F(x)+\gamma^{2}\|x\|^{2} / 4\right) \\
& \geq m\|x\|^{2}-b-\frac{m}{M+\frac{1}{2} \gamma^{2}}\left(F(x)+\gamma^{2}\|x\|^{2} / 4\right) \\
& \geq \frac{m M+\frac{1}{4} m \gamma^{2}}{M+\frac{1}{2} \gamma^{2}}\|x\|^{2}-b-\frac{m}{M+\frac{1}{2} \gamma^{2}}\left(\frac{M}{2}\|x\|^{2}+B\|x\|+A\right) \\
& =\frac{m}{M+\frac{1}{2} \gamma^{2}}\left(\frac{1}{2} M\|x\|^{2}+\frac{1}{4} \gamma^{2}\|x\|^{2}-B\|x\|-\frac{b}{m}\left(M+\frac{1}{2} \gamma^{2}\right)-A\right) \\
& \geq \frac{m}{M+\frac{1}{2} \gamma^{2}}\left(-\frac{B^{2}}{2 M+\gamma^{2}}-\frac{b}{m}\left(M+\frac{1}{2} \gamma^{2}\right)-A\right)=-2 \bar{A} / \beta
\end{aligned}
$$

by the definition of \bar{A} in $\bar{B} .37$. Hence, $(\bar{B} .53)$ holds and the proof is complete.
where \mathcal{V} is the Lyapunov function defined in (B.35) and μ_{0} is the initial distribution of $(X(0), V(0))$ and in our case, $\mu_{0}=\delta_{(X(0), V(0))}$ and $\|X(0)\| \leq R$ and $V(0) \in \mathbb{R}^{d}$, and for any $0<\eta \leq$ $\min \left\{1, \frac{\gamma}{\hat{K}_{2}}(d / \beta+\bar{A} / \beta), \frac{\gamma \lambda}{2 \hat{K}_{1}}\right\}$ with \hat{K}_{1} and \hat{K}_{2} given in (B.42) and B.43), ${ }^{3}$ and according to Lemma EC. 5 in [GGZ18], we also have

$$
\begin{aligned}
& \sup _{j \geq 0} \mathbb{E}\left\|X_{j}\right\|^{2} \leq \frac{\int_{\mathbb{R}^{2 d}} \mathcal{V}(x, v) \mu_{0}(d x, d v)+\frac{4(d+\bar{A})}{\lambda}}{\frac{1}{8}(1-2 \lambda) \beta \gamma^{2}} \\
& \sup _{j \geq 0} \mathbb{E}\left\|V_{j}\right\|^{2} \leq \frac{\int_{\mathbb{R}^{2 d}} \mathcal{V}(x, v) \mu_{0}(d x, d v)+\frac{4(d+\bar{A})}{\lambda}}{\frac{\beta}{4}(1-2 \lambda)}
\end{aligned}
$$

643
We recall from B.35) that $\mathcal{V}(x, v)=\beta F(x)+\frac{\beta}{4} \gamma^{2}\left(\left\|x+\gamma^{-1} v\right\|^{2}+\left\|\gamma^{-1} v\right\|^{2}-\lambda\|x\|^{2}\right)$, and $\|X(0)\| \leq R$ and $V(0) \in \mathbb{R}^{d}$. By Lemma 20, we get

$$
\mathcal{V}(x, v) \leq \frac{\beta M}{2}\|x\|^{2}+\beta B\|x\|+\beta A+\frac{\beta}{4} \gamma^{2}\left(\left\|x+\gamma^{-1} v\right\|^{2}+\left\|\gamma^{-1} v\right\|^{2}-\lambda\|x\|^{2}\right)
$$

so that

$$
\begin{aligned}
& \mathcal{V}(X(0), V(0)) \\
& =\frac{\beta M}{2}\|X(0)\|^{2}+\beta B\|X(0)\|+\beta A+\frac{\beta}{4} \gamma^{2}\left(2\|X(0)\|^{2}+3 \gamma^{-2}\|V(0)\|^{2}-\lambda\|X(0)\|^{2}\right) \\
& \leq\left(\frac{\beta M}{2}+\frac{\beta \gamma^{2}(2-\lambda)}{4}\right) R^{2}+\beta B R+\beta A+\frac{3}{4} \beta\|V(0)\|^{2}
\end{aligned}
$$

Hence, the conclusion follows.

[^1]
B. 3 Proof of Theorem 4

The proof of Theorem 4 is similar to the proof of Theorem 3 For brevity, we omit some of the details, and only outline the key steps and the propositions and lemmas used for the proof of Theorem 4
Proposition 11. Fix any $r>0$ and $0<\varepsilon<\min \left\{\bar{\varepsilon}_{1}^{J}, \bar{\varepsilon}_{2}^{J}\right\}$, where

$$
\begin{equation*}
\bar{\varepsilon}_{1}^{J}:=\frac{m_{J}(\tilde{\varepsilon})}{4 C_{J}(\tilde{\varepsilon})(1+\|J\|) L\left(1+\frac{1}{64 C_{J}(\tilde{\varepsilon})^{2}}\right)}, \quad \bar{\varepsilon}_{2}^{J}:=8 r C_{J}(\tilde{\varepsilon}) \tag{B.54}
\end{equation*}
$$

Consider the stopping time:

$$
\tau:=\inf \left\{t \geq 0:\left\|X(t)-x_{*}\right\| \geq \varepsilon+r e^{-m_{J}(\tilde{\varepsilon}) t}\right\}
$$

For any initial point $X(0)=x$ with $\left\|x-x_{*}\right\| \leq r$, and

$$
\beta \geq \frac{128 C_{J}(\tilde{\varepsilon})^{2}}{m_{J}(\tilde{\varepsilon}) \varepsilon^{2}}\left(\frac{d}{2} \log (2)+\log \left(\frac{2(1+\|J\|) M \mathcal{T}+1}{\delta}\right)\right)
$$

we have

$$
\mathbb{P}_{x}\left(\tau \in\left[\mathcal{T}_{\text {rec }}^{J}, \mathcal{T}_{\text {esc }}^{J}\right]\right) \leq \delta
$$

B.3.1 Completing the proof of Theorem 4

We first compare the discrete dynamics (1.10) and the continuous dynamics (1.9). Define:

$$
\begin{equation*}
\tilde{X}(t)=X_{0}-\int_{0}^{t} A_{J}(\nabla F(\tilde{X}(\lfloor s / \eta\rfloor \eta))) d s+\sqrt{2 \gamma \beta^{-1}} \int_{0}^{t} d B_{s} \tag{B.55}
\end{equation*}
$$

The process \tilde{X} defined in $\overline{\mathrm{B} .55}$ is the continuous-time interpolation of the iterates $\left\{X_{k}\right\}$. In particular, the joint distribution of $\left\{X_{k}: k=1,2, \ldots, K\right\}$ is the same as $\{\tilde{X}(t): t=\eta, 2 \eta, \ldots, K \eta\}$ for any positive integer K.

By following Lemma 7 in [RRT17] and apply the uniform L^{2} bounds for X_{k} in Corollary 17 provided that the stepsize η is sufficiently small (we apply the bound $\left\|A_{J}\right\| \leq 1+\|J\|$ to Corollary 17)

$$
\begin{equation*}
\eta \leq \bar{\eta}_{4}^{J}:=\frac{1}{M(1+\|J\|)^{2}} \tag{B.56}
\end{equation*}
$$

we will obtain an upper bound on the relative entropy $D(\cdot \| \cdot)$ between the law $\tilde{\mathbb{P}}^{K \eta}$ of $(\tilde{X}(t): t \leq K \eta)$ and the law $\mathbb{P}^{K \eta}$ of $(X(t): t \leq K \eta)$, and by Pinsker's inequality an upper bound on the total variation $\|\cdot\|_{T V}$ as well. More precisely, we have

$$
\begin{equation*}
\left\|\tilde{\mathbb{P}}^{K \eta}-\mathbb{P}^{K \eta}\right\|_{T V}^{2} \leq \frac{1}{2} D\left(\tilde{\mathbb{P}}^{K \eta} \| \mathbb{P}^{K \eta}\right) \leq \frac{1}{2} C_{1} K \eta^{2}, \tag{B.57}
\end{equation*}
$$

where (we use the bound $\left\|A_{J}\right\| \leq 1+\|J\|$)

$$
\begin{equation*}
C_{1}:=6\left(\beta\left((1+\|J\|)^{2} M^{2} C_{d}+B^{2}\right)+d\right)(1+\|J\|)^{2} M^{2} \tag{B.58}
\end{equation*}
$$

where C_{d} is defined in B.72).
Let us now complete the proof of Theorem 4 . We need to show that

$$
\mathbb{P}\left(\left(X_{1}, \ldots, X_{K}\right) \in \mathcal{A}\right) \leq \delta,
$$

667
where $K=\left\lfloor\eta^{-1} \mathcal{T}_{\text {esc }}^{J}\right\rfloor$ and $\mathcal{A}:=\mathcal{A}_{1} \cap \mathcal{A}_{2}$:

$$
\begin{aligned}
& \mathcal{A}_{1}:=\left\{\left(x_{1}, \ldots, x_{K}\right) \in\left(\mathbb{R}^{d}\right)^{K}: \max _{k \leq \eta^{-1} \mathcal{T}_{\text {rec }}^{J}} \frac{\left\|x_{k}-x_{*}\right\|}{\left.\varepsilon+r e^{-m_{J}(\tilde{\varepsilon}) k \eta} \leq \frac{1}{2}\right\}}\right. \\
& \mathcal{A}_{2}:=\left\{\left(x_{1}, \ldots, x_{K}\right) \in\left(\mathbb{R}^{d}\right)^{K}: \max _{\eta^{-1} \mathcal{T}_{\text {rec }}^{J} \leq k \leq K} \frac{\left\|x_{k}-x_{*}\right\|}{\left.\varepsilon+r e^{-m_{J}(\tilde{\varepsilon}) k \eta} \geq 1\right\}} .\right.
\end{aligned}
$$

Similar to the proof in Section B.2.1 and by B.57, we get

$$
\begin{equation*}
\mathbb{P}\left(\left(X_{1}, \ldots, X_{K}\right) \in \mathcal{A}\right) \leq \mathbb{P}((X(\eta), \ldots, X(K \eta)) \in \mathcal{A})+\frac{\delta}{3} \tag{B.59}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\eta \leq \bar{\eta}_{3}^{J}:=\frac{2 \delta^{2}}{9 C_{1} \mathcal{T}_{\mathrm{esc}}^{J}} \tag{B.60}
\end{equation*}
$$

674 provided that (by applying Proposition 11):

$$
\begin{equation*}
\beta \geq \underline{\beta}_{1}^{J}:=\frac{128 C_{J}(\tilde{\varepsilon})^{2}}{m_{J}(\tilde{\varepsilon}) \varepsilon^{2}}\left(\frac{d}{2} \log (2)+\log \left(\frac{6(1+\|J\|) M \mathcal{T}+3}{\delta}\right)\right) . \tag{B.62}
\end{equation*}
$$

It remains to estimate the probability of $\mathbb{P}\left((X(\eta), \ldots, X(K \eta)) \in \mathcal{A}_{1} \cap \mathcal{A}_{2}\right)$ for the non-reversible Langevin diffusion. Partition the interval $\left[0, \mathcal{T}_{\text {rec }}^{J}\right]$ using the points $0=t_{1}<t_{1}<\cdots<t_{\left\lceil\eta^{-1} \mathcal{T}_{\text {rec }}^{J}\right\rceil}=$ $\mathcal{T}_{\text {rec }}^{J}$ with $t_{k}=k \eta$ for $k=0,1, \ldots,\left\lceil\eta^{-1} \mathcal{T}_{\text {rec }}^{J}\right\rceil-1$, and consider the event:

$$
\mathcal{B}:=\left\{\max _{0 \leq k \leq\left\lceil\eta^{-1} \mathcal{T}_{\text {rec }}^{J}\right\rceil-1} \max _{t \in\left[t_{k}, t_{k+1}\right]}\left\|X(t)-X\left(t_{k+1}\right)\right\| \leq \frac{\varepsilon}{2}\right\} .
$$

Similar to the proof in Section B.2.1 we get

$$
\begin{equation*}
\mathbb{P}((X(\eta), \cdots, X(K \eta)) \in \mathcal{A}) \leq \frac{\delta}{3}+\mathbb{P}\left(\mathcal{B}^{c}\right) \tag{B.61}
\end{equation*}
$$

To complete the proof, we need to show that $\mathbb{P}\left(\mathcal{B}^{c}\right) \leq \frac{\delta}{3}$ in view of (B.59) and B.61). For any $t \in\left[t_{k}, t_{k+1}\right]$, where $t_{k+1}-t_{k}=\eta$, we have

$$
\begin{aligned}
& \left\|X(t)-X\left(t_{k+1}\right)\right\| \\
& \leq \int_{t}^{t_{k+1}}\left\|A_{J} \nabla F(X(s))\right\| d s+\sqrt{2 \beta^{-1}}\left\|B_{t}-B_{t_{k+1}}\right\| \\
& \leq\left\|A_{J}\right\| M \int_{t}^{t_{k+1}}\left\|X(s)-X\left(t_{k+1}\right)\right\| d s+\eta\left\|A_{J} \nabla F\left(X\left(t_{k+1}\right)\right)\right\|+\sqrt{2 \beta^{-1}}\left\|B_{t}-B_{t_{k+1}}\right\| \\
& \begin{array}{l}
\leq\left\|A_{J}\right\| M \int_{t}^{t_{k+1}}\left\|X(s)-X\left(t_{k+1}\right)\right\| d s \\
\quad+\eta\left\|A_{J}\right\| \cdot\left(M\left\|X\left(t_{k+1}\right)\right\|+B\right)+\sqrt{2 \beta^{-1}}\left\|B_{t}-B_{t_{k+1}}\right\| .
\end{array}
\end{aligned}
$$ and

$$
\begin{equation*}
\eta \leq \bar{\eta}_{2}^{J}:=\frac{\delta \varepsilon^{2} e^{-2(1+\|J\|) M}}{384(1+\|J\|)^{2} M^{2} C_{c} \mathcal{T}_{\text {rec }}^{J}} \tag{B.64}
\end{equation*}
$$

681 where C_{c} is defined in B.71 and

$$
\begin{equation*}
\beta \geq \underline{\beta}_{2}^{J}:=\frac{512 d \eta \log \left(2^{1 / 4} e^{1 / 4} 6 \delta^{-1} \mathcal{T}_{\text {rec }}^{J} / \eta\right)}{\varepsilon^{2} e^{-2(1+\|J\|) M \eta}} \tag{B.65}
\end{equation*}
$$

Then, by following the same argument as in Section B.2.1 and also apply $\left\|A_{J}\right\| \leq 1+\|J\|$, we can show that $\mathbb{P}\left(\mathcal{B}^{c}\right) \leq \frac{\delta}{3}$ provided that $\eta \leq 1$ and

$$
\begin{equation*}
\eta \leq \bar{\eta}_{1}^{J}:=\frac{\varepsilon e^{-(1+\|J\|) M}}{8(1+\|J\|) B} \tag{B.63}
\end{equation*}
$$

To complete the proof, we need work on the leading orders of the constants. We treat $\|J\|, M, L$ as constant. The argument is similar to the argument in the proof of Theorem 3 and is thus omitted here. The proof is now complete.

B.3.2 Proof of Proposition 11

Before we proceed to the proof of Proposition 11. let us first state the following two lemmas that will be used in the proof of Proposition 11
Lemma 12. For any $\theta \in\left(0, \frac{\lambda_{1}^{J}-\tilde{\varepsilon}}{\left(C_{J}(\tilde{\varepsilon})\right)^{2}}\right), h>0$ and $y_{0} \in \mathbb{R}^{d}$,

$$
\mathbb{P}\left(\sup _{t_{0} \leq t \leq t_{1}}\left\|Q_{t_{0}}\left(t_{1}\right) Z_{t}^{0}\right\| \geq h\right) \leq\left(1-\theta \frac{\left(C_{J}(\tilde{\varepsilon})\right)^{2}}{\lambda_{1}^{J}-\tilde{\varepsilon}}\right)^{-d / 2} e^{-\frac{\beta \theta}{2}\left[h^{2}-\left\langle\mu_{t_{1}},\left(I-\beta \theta \Sigma_{t_{1}}\right)^{-1} \mu_{t_{1}}\right\rangle\right]}
$$

where $Q_{t_{0}}\left(t_{1}\right)$ is defined in B.67), Z_{t}^{0} is defined in B.68), and

$$
\begin{equation*}
\mu_{t}:=e^{-t A_{J} H} y_{0}, \quad \Sigma_{t}:=2 \beta^{-1} \int_{0}^{t} e^{-s\left(A_{J} H\right)} e^{-s\left(A_{J} H\right)^{T}} d s \tag{B.66}
\end{equation*}
$$

Lemma 13. Given $t_{0} \leq t \leq\left(t_{1} \wedge \tau\right)$, where τ is the stopping time defined in Proposition 11 we have

$$
\left\|Q_{t_{0}}\left(t_{1}\right) Z_{t}^{1}\right\| \leq \frac{C_{J}(\tilde{\varepsilon})\left\|A_{J}\right\| L}{2} \int_{0}^{t} e^{\left(s-t_{1}\right) m_{J}(\tilde{\varepsilon})}\left(\varepsilon+r e^{-m_{J}(\tilde{\varepsilon}) s}\right)^{2} d s
$$

where $Q_{t_{0}}\left(t_{1}\right)$ is defined in B .67 , and Z_{t}^{1} is defined in $\mathrm{B.69}$.
Proof of Proposition 11. We recall x_{*} is a local minimum of F and H is the Hessian matrix: $H=$ $\nabla^{2} F\left(x_{*}\right)$, and we write

$$
X(t)=Y(t)+x_{*} .
$$

Thus, we have the decomposition

$$
\nabla F(X(t))=H Y(t)-\rho(Y(t))
$$

where $\|\rho(Y(t))\| \leq \frac{1}{2} L\|Y(t)\|^{2}$ since the Hessian of F is L-Lipschitz (Lemma 1.2.4. [Nes13]). This implies that

$$
d Y(t)=-A_{J} H Y(t) d t+A_{J} \rho(Y(t)) d t+\sqrt{2 \beta^{-1}} d B_{t} .
$$

Thus, we get

$$
Y(t)=e^{-t A_{J} H} Y(0)+\sqrt{2 \beta^{-1}} \int_{0}^{t} e^{(s-t) A_{J} H} d B_{s}+\int_{0}^{t} e^{(s-t) A_{J} H} A_{J} \rho(Y(s)) d s
$$

Given $0 \leq t_{0} \leq t_{1}$, we define the matrix flow

$$
\begin{equation*}
Q_{t_{0}}(t):=e^{\left(t_{0}-t\right) A_{J} H} \tag{B.67}
\end{equation*}
$$

and $Z_{t}:=e^{\left(t-t_{0}\right) A_{J} H} Y_{t}$ so that

$$
Z_{t}=e^{-t_{0} A_{J} H} Y(0)+\sqrt{2 \beta^{-1}} \int_{0}^{t} e^{\left(s-t_{0}\right) A_{J} H} d B_{s}+\int_{0}^{t} e^{\left(s-t_{0}\right) A_{J} H} A_{J} \rho(Y(s)) d s
$$

We define the decomposition $Z_{t}=Z_{t}^{0}+Z_{t}^{1}$, where

$$
\begin{align*}
Z_{t}^{0} & =e^{-t_{0} A_{J} H} Y(0)+\sqrt{2 \beta^{-1}} \int_{0}^{t} e^{\left(s-t_{0}\right) A_{J} H} d B_{s} \tag{B.68}\\
Z_{t}^{1} & =\int_{0}^{t} e^{\left(s-t_{0}\right) A_{J} H} A_{J} \rho(Y(s)) d s \tag{B.69}
\end{align*}
$$

It follows that for any $t_{0} \leq t \leq t_{1}$,

$$
\begin{aligned}
Q_{t_{0}}\left(t_{1}\right) Z_{t}^{1} & =\int_{0}^{t} e^{\left(s-t_{1}\right) A_{J} H} A_{J} \rho(Y(s)) d s \\
Q_{t_{0}}\left(t_{1}\right) Z_{t}^{0} & =e^{-t_{1} A_{J} H} Y(0)+\sqrt{2 \beta^{-1}} \int_{0}^{t} e^{\left(s-t_{1}\right) A_{J} H} d B_{s}
\end{aligned}
$$

The rest of the proof is similar to the proof of Proposition 7 . We apply Lemma 13 to bound the term $Q_{t_{0}}\left(t_{1}\right) Z_{t}^{1}$ and apply Lemma 12 to bound the term $Q_{t_{0}}\left(t_{1}\right) Z_{t}^{0}$. By letting $\gamma=1$ in Proposition 7 and replacing d by $d / 2$ due to Lemma 12 , and $\left\|H_{\gamma}\right\|$ by $\left\|A_{J} H\right\|$ and using the bounds $\left\|A_{J}\right\| \leq(1+\|J\|)$ and $\left\|A_{J} H\right\| \leq(1+\|J\|) M$, we obtain the desired result in Proposition 11 .

Hence, by the definition of Σ_{t} from ($\overline{\text { B.66) }}$, we get

$$
\left\|\Sigma_{t}\right\| \leq 2 \beta^{-1} \int_{0}^{\infty}\left(C_{J}(\tilde{\varepsilon})\right)^{2} e^{-2\left(\lambda_{1}^{J}-\tilde{\varepsilon}\right) t} d t=\frac{\beta^{-1}\left(C_{J}(\tilde{\varepsilon})\right)^{2}}{\lambda_{1}^{J}-\tilde{\varepsilon}} .
$$

B.3.3 Uniform L^{2} bounds for NLD

In this section we establish uniform L^{2} bounds for both the continuous time dynamics (1.9) and discrete time dynamics (1.10). The main idea of the proof is to use Lyapunov functions. Our local analysis result relies on the approximation of the continuous time dynamics 1.9 by the discrete time dynamics 1.10 . The uniform L^{2} bound for the discrete dynamics 1.10 is used to derive the relative entropy to compare the laws of the continuous time dynamics and the discrete time dynamics, and the uniform L^{2} bound for the continuous dynamics $\sqrt[1.9]{ }$ is used to control the tail of the continuous dynamics in Section B.3.1. We first recall the continuous-time dynamics from (1.9):

$$
d X(t)=-A_{J}(\nabla F(X(t))) d t+\sqrt{2 \beta^{-1}} d B_{t}, \quad A_{J}=I+J
$$

where J is a $d \times d$ anti-symmetric matrix, i.e. $J^{T}=-J$. The generator of this continuous time process is given by

$$
\mathcal{L}=-A_{J} \nabla F \cdot \nabla+\beta^{-1} \Delta
$$

Lemma 14. Given $X(0)=x \in \mathbb{R}^{d}$,

$$
\mathbb{E}[F(X(t))] \leq F(x)+\frac{B}{2}+A+\frac{b(M+B)}{m}+\frac{2 M \beta^{-1} d(M+B)}{m^{2}}
$$

Since F has at most the quadratic growth (due to Lemma 20, we immediately have the following corollary.
Corollary 15. Given $\|X(0)\| \leq R=\sqrt{b / m}$,
$\mathbb{E}\left[\|X(t)\|^{2}\right] \leq C_{c}:=\frac{M R^{2}+2 B R+B+4 A}{m}+\frac{2 b(M+B)}{m^{2}}+\frac{4 M \beta^{-1} d(M+B)}{m^{3}}+\frac{b}{m} \log 3$.

We next show uniform L^{2} bounds for the discrete iterates X_{k}, where we recall from (1.10) that the non-reversible Langevin dynamics is given by:

$$
X_{k+1}=X_{k}-\eta A_{J}\left(\nabla F\left(X_{k}\right)\right)+\sqrt{2 \eta \beta^{-1}} \xi_{k} .
$$

Lemma 16. Given that $\eta \leq \frac{1}{M\left\|A_{J}\right\|^{2}}$, we have

$$
\mathbb{E}_{x}\left[F\left(X_{k}\right)\right] \leq F(x)+\frac{B}{2}+A+\frac{4(M+B) M \beta^{-1} d}{m^{2}}+\frac{(M+B) b}{m}
$$

Since F has at most the quadratic growth (due to Lemma 20, we immediately have the following corollary.
Corollary 17. Given that $\eta \leq \frac{1}{M\left\|A_{J}\right\|^{2}}$ and $\|X(0)\| \leq R=\sqrt{b / m}$, we have

$$
\mathbb{E}\left[\left\|X_{k}\right\|^{2}\right] \leq C_{d}:=\frac{M R^{2}+2 B R+B+4 A}{m}+\frac{8(M+B) M \beta^{-1} d}{m^{3}}+\frac{2(M+B) b}{m^{2}}+\frac{b}{m} \log 3 .
$$

B.3.4 Proofs of auxiliary results

Proof of Lemma 12 By following the proof of Lemma 8 We get

$$
\mathbb{P}\left(\sup _{t_{0} \leq t \leq t_{1}}\left\|Q_{t_{0}}\left(t_{1}\right) Z_{t}^{0}\right\| \geq h\right) \leq \frac{1}{\sqrt{\operatorname{det}\left(I-\beta \theta \Sigma_{t_{1}}\right)}} e^{-\frac{\beta \theta}{2}\left[h^{2}-\left\langle\mu_{t_{1}},\left(I-\beta \theta \Sigma_{t_{1}}\right)^{-1} \mu_{t_{1}}\right\rangle\right]}
$$

Recall from (2.3) that for any $\tilde{\varepsilon}>0$, there exists some $C_{J}(\tilde{\varepsilon})$ such that for every $t \geq 0$,

$$
\left\|e^{-t A_{J} H}\right\| \leq C_{J}(\tilde{\varepsilon}) e^{-\left(\lambda_{1}^{J}-\tilde{\varepsilon}\right) t}
$$

The rest of the proof follows similarly as in the proof of Lemma 8

Therefore, we have

$$
\mathcal{L} F(x) \leq-\frac{m^{2}}{2(M+B)} F(x)+\frac{m^{2}\left(\frac{B}{2}+A\right)}{2(M+B)}+\frac{m b}{2}+M \beta^{-1} d
$$

751
Proof of Lemma 13 Note that

$$
\left\|Q_{t_{0}}\left(t_{1}\right) Z_{t}^{1}\right\| \leq \int_{0}^{t}\left\|e^{\left(s-t_{1}\right) A_{J} H}\right\|\left\|A_{J}\right\|\|\rho(Y(s))\| d s
$$

and by applying $\|\rho(Y(t))\| \leq \frac{1}{2} L\|Y(t)\|^{2}$ and $\sqrt{2.3}$, and $t_{0} \leq t \leq\left(t_{1} \wedge \tau\right)$ and the definition of the stopping time τ in Proposition 11, we get the desired result.

Proof of Lemma 14 Note that if we can show that $F(x)$ is a Lyapunov function for $X(t)$:

$$
\mathcal{L} F(x) \leq-\epsilon_{1} F(x)+b_{1}
$$

for some $\epsilon_{1}, b_{1}>0$, then

$$
\mathbb{E}[F(X(t))] \leq F(x)+\frac{b_{1}}{\epsilon_{1}}
$$

Let us first prove this. Applying Ito formula to $e^{\epsilon_{1} t} F(X(t))$, we obtain from Dynkin formula and the drift condition $\left(\overline{\mathrm{B} .73)}\right.$ that for $t_{K}:=\min \left\{t, \tau_{K}\right\}$ with τ_{K} be the exit time of $X(t)$ from a ball centered at 0 with radius K with $X(0)=x$,

$$
\mathbb{E}\left[e^{\epsilon_{1} t_{K}} F\left(X\left(t_{K}\right)\right)\right] \leq F(x)+\mathbb{E}\left[\int_{0}^{t_{K}} b_{1} e^{\epsilon_{1} s} d s\right] \leq F(x)+\int_{0}^{t} b_{1} e^{\epsilon_{1} s} d s \leq F(x)+\frac{b_{1}}{\epsilon_{1}} \cdot e^{\epsilon_{1} t}
$$

Let $K \rightarrow \infty$, then we can infer from Fatou's lemma that for any t :

$$
\mathbb{E}\left[e^{\epsilon_{1} t} F(X(t))\right] \leq F(x)+\frac{b_{1}}{\epsilon_{1}} \cdot e^{\epsilon_{1} t}
$$

Hence, we have

$$
\mathbb{E}[F(X(t))] \leq F(x)+\frac{b_{1}}{\epsilon_{1}}
$$

Next, let us prove B.73). By the definition of \mathcal{L} in B.70, we can compute that

$$
\begin{aligned}
\mathcal{L} F(x) & =-A_{J} \nabla F(x) \cdot \nabla F(x)+\beta^{-1} \Delta F(x) \\
& =-\|\nabla F(x)\|^{2}+\beta^{-1} \Delta F(x),
\end{aligned}
$$

since J is anti-symmetric so that $\langle\nabla F(x), J \nabla F(x)\rangle=0$. Moreover,

$$
\|x\| \cdot\|\nabla F(x)\| \geq\langle x, \nabla F(x)\rangle \geq m\|x\|^{2}-b
$$

implies that

$$
\|\nabla F(x)\| \geq m\|x\|-\frac{b}{\|x\|} \geq \frac{1}{2} m\|x\|
$$

provided that $\|x\| \geq \sqrt{2 b / m}$, and thus

$$
\mathcal{L} F(x) \leq-\frac{m^{2}}{4}\|x\|^{2}+\beta^{-1} \Delta F(x) \leq-\frac{m^{2}}{4}\|x\|^{2}+\frac{m b}{2}+\beta^{-1} \Delta F(x)
$$

for any $\|x\| \geq \sqrt{2 b / m}$. On the other hand, for any $\|x\| \leq \sqrt{2 b / m}$, we have

$$
\mathcal{L} F(x) \leq \beta^{-1} \Delta F(x) \leq-\frac{m^{2}}{4}\|x\|^{2}+\frac{m b}{2}+\beta^{-1} \Delta F(x)
$$

Hence, for any $x \in \mathbb{R}^{d}$,

$$
\mathcal{L} F(x) \leq-\frac{m^{2}}{4}\|x\|^{2}+\frac{m b}{2}+\beta^{-1} \Delta F(x)
$$

Next, recall that F is M-smooth, and thus

$$
\Delta F(x) \leq M d
$$

Finally, by Lemma 20.

$$
F(x) \leq \frac{M}{2}\|x\|^{2}+B\|x\|+A \leq \frac{M+B}{2}\|x\|^{2}+\frac{B}{2}+A .
$$

Hence, the proof is complete.

Then it follows from (B.80) that

$$
\mathbb{E}_{x}\left[r^{\tau_{k, K}} F\left(X_{\tau_{k, K}}\right)\right] \leq F(x)+b_{2} \eta \sum_{i=1}^{k} r^{i} .
$$

As $\tau_{k, K} \rightarrow k$ almost surely as $K \rightarrow \infty$, we infer from Fatou's Lemma that

$$
\mathbb{E}_{x}\left[r^{k} F\left(X_{k}\right)\right] \leq F(x)+b_{2} \eta \sum_{i=1}^{k} r^{i}
$$

which implies that for all k,

$$
\mathbb{E}_{x}\left[F\left(X_{k}\right)\right] \leq F(x)+\frac{b_{2} \eta}{r-1}=F(x)+\frac{b_{2}\left(1-\eta_{2} \epsilon_{2}\right)}{\epsilon_{2}} \leq F(x)+\frac{b_{2}}{\epsilon_{2}}
$$

as $r=1 /\left(1-\eta_{2} \epsilon_{2}\right)$. Hence we have

$$
\mathbb{E}_{x}\left[F\left(X_{k}\right)\right] \leq F(x)+\frac{b_{2}}{\epsilon_{2}}
$$

It remains to prove $\overline{\mathrm{B} .79}$. Note that as ∇F is Lipschitz continuous with constant M so that:

$$
F(y) \leq F(x)+\nabla F(x)(y-x)+\frac{M}{2}\|y-x\|^{2}
$$

Therefore, we have

$$
\frac{\mathbb{E}_{x}\left[F\left(X_{1}\right)\right]-F(x)}{\eta} \leq-\frac{m^{2}}{4(M+B)} F(x)+\frac{m^{2}\left(\frac{B}{2}+A\right)}{4(M+B)}+M \beta^{-1} d+\frac{m b}{4}
$$

Hence, the proof is complete.
Proof of Corollary 17 The proof is similar to the proof of Corollary 15 and is thus omitted.

C Proof of Proposition 5 and Proposition 6

Proof of Proposition 55 Write u as the corresponding eigenvector of $A_{J} \mathbb{L}^{\sigma}$ for the eigenvalue $-\mu_{J}^{*}<$ 0 , so we have

$$
\begin{equation*}
A_{J} \mathbb{L}^{\sigma} u=-\mu_{J}^{*} u \tag{C.1}
\end{equation*}
$$

Then it follows that

$$
\left(-\mu_{J}^{*}\right) u^{*} \mathbb{L}^{\sigma} u=u^{*} \mathbb{L}^{\sigma}\left(-\mu_{J}^{*} u\right)=u^{*} \mathbb{L}^{\sigma} A_{J} \mathbb{L}^{\sigma} u=u^{*}\left(\mathbb{L}^{\sigma}\right)^{T} A_{J} \mathbb{L}^{\sigma} u=\left|\mathbb{L}^{\sigma} u\right|^{2}+u^{*}\left(\mathbb{L}^{\sigma}\right)^{T} J \mathbb{L}^{\sigma} u,
$$

where u^{*} denotes the conjugate transpose of $u,\left(\mathbb{L}^{\sigma}\right)^{T}$ denotes the transpose of \mathbb{L}^{σ}, and $\left(\mathbb{L}^{\sigma}\right)^{T}=\mathbb{L}^{\sigma}$ as \mathbb{L}^{σ} is a real symmetric matrix. It is easy to see that $u^{*} \mathbb{L}^{\sigma} u$ is a real number as $\left(u^{*} \mathbb{L}^{\sigma} u\right)^{*}=u^{*} \mathbb{L}^{\sigma} u$. In addition, $u^{*}\left(\mathbb{L}^{\sigma}\right)^{T} J \mathbb{L}^{\sigma} u$ is pure imaginary, since $\left(u^{*}\left(\mathbb{L}^{\sigma}\right)^{T} J \mathbb{L}^{\sigma} u\right)^{*}=u^{*}\left(\mathbb{L}^{\sigma}\right)^{T} J^{T} \mathbb{L}^{\sigma} u=$ $-u^{*}\left(\mathbb{L}^{\sigma}\right)^{T} J \mathbb{L}^{\sigma} u$ by the fact that J is an anti-symmetric real matrix. Hence, we deduce that

$$
u^{*}\left(\mathbb{L}^{\sigma}\right)^{T} J \mathbb{L}^{\sigma} u=0
$$

and it implies that

$$
\begin{equation*}
\left(-\mu_{J}^{*}\right) u^{*} \mathbb{L}^{\sigma} u=\left|\mathbb{L}^{\sigma} u\right|^{2} \tag{C.2}
\end{equation*}
$$

Note $u^{*} \mathbb{L}^{\sigma} u \neq 0$ as otherwise 0 becomes an eigenvalue of \mathbb{L}^{σ} from C.2), which is a contradiction. In fact, we obtain from (C.2) that $-u^{*} \mathbb{L}^{\sigma} u>0$ as $\mu_{J}^{*}>0$ and $\left|\mathbb{L}^{\sigma} u\right|^{2}>0$.
Since \mathbb{L}^{σ} is a real symmetric matrix, we have

$$
\begin{equation*}
\mathbb{L}^{\sigma}=S^{T} D S \tag{C.3}
\end{equation*}
$$

for a real orthogonal matrix S, where $D=\operatorname{diag}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{d}\right)$ with $\mu_{1}<0<\mu_{2}<\ldots<\mu_{d}$ being the eigenvalues of \mathbb{L}^{σ}. Then we obtain

$$
\begin{equation*}
\mu_{J}^{*}=\frac{\left|\mathbb{L}^{\sigma} u\right|^{2}}{-u^{*} \mathbb{L}^{\sigma} u}=\frac{u^{*} S^{*} D^{2} S u}{-u^{*} S^{*} D S u}=\frac{\sum_{i=1}^{d} \mu_{i}^{2}\left|(S u)_{i}\right|^{2}}{\sum_{i=1}^{d}-\mu_{i}\left|(S u)_{i}\right|^{2}}, \tag{C.4}
\end{equation*}
$$

where $(S u)_{i}$ denotes the i-th component of the vector $S u$. Since $\mu_{1}<0<\mu_{2}<\ldots<\mu_{d}$, we then have $(S u)_{1} \neq 0$ as otherwise $-u^{*} \mathbb{L}^{\sigma} u=\sum_{i=1}^{n}-\mu_{i}\left|(S u)_{i}\right|^{2} \leq 0$, which is a contradiction. Therefore, we conclude from (C.4) that

$$
\begin{equation*}
\mu_{J}^{*} \geq\left|\mu_{1}\right|=\mu^{*}(\sigma) . \tag{C.5}
\end{equation*}
$$

The equality $\mu_{J}^{*}=\left|\mu_{1}\right|=\mu^{*}(\sigma)$ is attained if and only if $(S u)_{i}=0$ for $i=2, \ldots, n$. Or equivalently if and only if the vector $S u=a e_{1}$ where a is a non-zero constant and $e_{1}=\left[\begin{array}{lll}10 & \ldots\end{array}\right]^{T}$ is the first basis vector. Since $S^{-1}=S^{T}$, this is also equivalent to $u=a v$ where $v=S^{T} e_{1}$ is an eigenvector of \mathbb{L}^{σ} corresponding to the eigenvalue μ_{1}. Since u and v are related up to a constant, this is the same as saying v is an eigenvector of $A_{J} \mathbb{L}^{\sigma}$ satisfying (C.1). Since v is also an eigenvalue of \mathbb{L}^{σ} and J being anti-symmetric, has only purely imaginary eigenvalues except a zero eigenvalue, this is if and only if $J v=0$. In other words, the equality $\mu_{J}^{*}=\left|\mu_{1}\right|=\mu^{*}(\sigma)$ is attained if and only if the eigenvector of \mathbb{L}^{σ} corresponding to the negative eigenvalue μ_{1} is an eigenvector of J for the eigenvalue 0 .
We note finally that Equation (3.5) then readily follows from (3.4) and (C.5).
Proof of Proposition 6. Write $\tau_{a_{1} \rightarrow a_{2}}^{\beta, n}$ for the first time that the continuous-time dynamics $\{X(t)\}$ starting from a_{1} to exit the region D_{n}. Then by monotone convergence theorem, we have

$$
\lim _{R \rightarrow \infty} \mathbb{E}\left[\tau_{a_{1} \rightarrow a_{2}}^{\beta, n}\right]=\mathbb{E}\left[\tau_{a_{1} \rightarrow a_{2}}^{\beta}\right]
$$

Hence, for fixed $\epsilon>0$, one can choose a sufficiently large n such that

$$
\begin{equation*}
\left|\mathbb{E}\left[\tau_{a_{1} \rightarrow a_{2}}^{\beta, n}\right]-\mathbb{E}\left[\tau_{a_{1} \rightarrow a_{2}}^{\beta}\right]\right|<\epsilon \tag{C.6}
\end{equation*}
$$

We next control the expected difference between the exit times $\hat{\tau}_{a_{1} \rightarrow a_{2}}^{\beta, n}$ of the discrete dynamics, and $\tau_{a_{1} \rightarrow a_{2}}^{\beta, n}$ of the continuous dynamics, from the bounded domain D_{n}. For fixed ϵ and large n, we can infer from Theorem 4.2 in [GM05] that ${ }^{4}$ for sufficiently small stepsize $\eta \leq \bar{\eta}(\epsilon, n, \beta)$,

$$
\begin{equation*}
\left|\mathbb{E}\left[\hat{\tau}_{a_{1} \rightarrow a_{2}}^{\beta, n}\right]-\mathbb{E}\left[\tau_{a_{1} \rightarrow a_{2}}^{\beta, n}\right]\right|<\epsilon \tag{C.7}
\end{equation*}
$$

Together with (C.6, we obtain for η sufficiently small,

$$
\left|\mathbb{E}\left[\hat{\tau}_{a_{1} \rightarrow a_{2}}^{\beta, n}\right]-\mathbb{E}\left[\tau_{a_{1} \rightarrow a_{2}}^{\beta}\right]\right|<2 \epsilon .
$$

The proof is therefore complete.

D Supporting technical lemmas

Lemma 18. Consider the square matrix H_{γ} defined by (2.2). We have

$$
\left\|H_{\gamma}\right\| \leq \sqrt{\gamma^{2}+M^{2}+1}
$$

Proof. It follows from (B.1) that

$$
\begin{equation*}
\left\|H_{\gamma}\right\|=\left\|T_{\gamma}\right\|=\max _{i}\left\|T_{i}(\gamma)\right\| \tag{D.1}
\end{equation*}
$$

We also compute

$$
\left\|T_{i}(\gamma)\right\|^{2}=\lambda_{\max }\left(T_{i}(\gamma) T_{i}(\gamma)^{T}\right)=\lambda_{\max }\left(\left[\begin{array}{cc}
\gamma^{2}+\lambda_{i}^{2} & -\gamma \\
-\gamma & 1
\end{array}\right]\right)
$$

[^2]where $\lambda_{\text {max }}$ denotes the largest real part of the eigenvalues. This leads to
$$
\left\|T_{i}(\gamma)\right\|^{2}=\frac{\gamma^{2}+\lambda_{i}^{2}+1+\sqrt{\left(\gamma^{2}+\lambda_{i}^{2}+1\right)^{2}-4 \lambda_{i}^{2}}}{2} \leq \gamma^{2}+\lambda_{i}^{2}+1
$$
$$
\mathbb{P}\left(\sup _{t \in\left[t_{0}, t_{1}\right]}\left\|B_{t}-B_{t_{1}}\right\| \geq u\right) \leq 2^{1 / 4} e^{1 / 4} e^{-\frac{u^{2}}{4 d \eta}}
$$

821

$$
\mathbb{P}\left(\sup _{t \in\left[t_{0}, t_{1}\right]}\left\|B_{t}-B_{t_{1}}\right\| \geq u\right) \leq 2^{1 / 4} e^{1 / 4} e^{-\frac{u^{2}}{4 d \eta}}
$$

$$
\|\nabla f(x, z)\| \leq M\|x\|+B,
$$

830 and

$$
\frac{m}{3}\|x\|^{2}-\frac{b}{2} \log 3 \leq f(x, z) \leq \frac{M}{2}\|x\|^{2}+B\|x\|+A
$$

[^0]: ${ }^{2}$ The 2-norm of a rank-one matrix $R=u v^{*}$ should be exactly equal to $\sigma=\|u\|\|v\|$. This follows from the fact that we can write $R=\sigma \tilde{u} \tilde{v}^{T}$ where \tilde{u} and \tilde{v} have unit norm. This would be a singular value decomposition of R, showing that all the singular values are zero except a singular value at σ. Because the 2 -norm is equal to the largest singular value, the 2-norm of R is equal to σ.

[^1]: ${ }^{3}$ Note that in the definition of \hat{K}_{1}, \hat{K}_{2} in [GGZ18], there is a constant δ, which is simply zero, in the context of the current paper.

[^2]: ${ }^{4}$ The Assumption (H2') in Theorem 4.2 of [GM05] can be readily verified in our setting: for both reversible and non-reversible SDE, the drift and diffusion coefficients are clearly Lipschitz; the diffusion matrix is uniformly elliptic; and the domain D_{n} is bounded and it satisfies the exterior cone condition.

