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Figure 1: The norm ‖e−tHγ‖ is optimized for the choice of γ = 2
√
m. This is illustrated in the

figure for m = 0.01.

Figure 2: A double-well example. Here, ∆F = F (σ)− F (a1). There are exactly two local minima
a1 and a2 which are separated with a saddle point σ.

B Proof of results in Section 2440

B.1 Proof of Lemma 2441

Proof. Let H be a symmetric positive definite matrix with eigenvalue decomposition H = QDQT ,442

where D is diagonal with eigenvalues in increasing order m := λ1 ≤ λ2 ≤ · · · ≤ λd =: M of the443

matrix H . Recall Hγ from (2.2). Note that444

Hγ =

[
Q 0
0 Q

]
Gγ

[
QT 0
0 QT

]
, Gγ :=

[
γI D
−I 0

]
.

Therefore Hγ and Gγ have the same eigenvalues. Due to the structure of Gγ , it can be seen that there445

exists a permutation matrix P such that446

Tγ := PGγP
T =


T1(γ) 0 0 0

0 T2(γ) 0 0
... · · ·

. . .
...

0 0 0 Td(γ)

 , where Ti(γ) :=

[
γ λi
−1 0

]
, (B.1)

with i = 1, 2, . . . , d, and Ti(γ) are 2× 2 block matrices with the eigenvalues:447

µi,± :=
γ ±

√
γ2 − 4λi
2

. i = 1, 2, . . . , d . (B.2)
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We observe that Tγ and Gγ (and therefore Hγ) have the same eigenvalues and the eigenvalues of Tγ448

are determined by the eigenvalues of the 2× 2 block matrices Ti(γ).449

Since Hγ is unitarily equivalent to the matrix Tγ , i.e. there exists a unitary matrix U such that450

Hγ = UTγU
∗, we have

∥∥e−tHγ∥∥ =
∥∥Ue−tTγU∗∥∥ =

∥∥e−tTγ∥∥. Since Tγ is a block diagonal matrix451

with 2 × 2 blocks Ti(γ) we have
∥∥e−tTγ∥∥ = max1≤i≤d

∥∥e−tTi(γ)
∥∥. Assume that γ2 − 4λ1 =452

γ2 − 4m ≤ 0 so that the eigenvalues µi,± of Ti(γ) (see Eqn. (B.2)) are real when γ = 2
√
m and453

complex when λ < 2
√
m. Note that454 ∥∥∥e−tTi(γ)

∥∥∥ = e−tγ/2
∥∥∥e−tT̃i(γ)

∥∥∥ , where T̃i(γ) := Ti(γ)− γ

2
I, 1 ≤ i ≤ d. (B.3)

We consider γ ∈ (0, 2
√
m]. Depending on the value of λi and γ, there are two cases:455

Case 1. If γ < 2
√
m or (λi > m and γ = 2

√
m), then T̃i(γ) has purely imaginary eigenvalues456

that are complex conjugates which we denote by µ̃i,± = ±i
√

4λi−γ2

2 , 1 ≤ i ≤ d. We will show457

that the last term in (B.3) stays bounded due to the imaginariness of the eigenvalues of T̃i(γ). It458

is easy to check that 2 × 2 matrix T̃i(γ) have the eigenvectors vi,± = [µi,±,−1]T . If we set459

Gi := [vi,+ vi,−] ∈ C2×2, the eigenvalue decomposition of T̃i(γ) is given by460

T̃i(γ) = Gi

[
µ̃i,+ 0

0 µ̃i,−

]
G−1
i , where G−1

i =
1

detGi

[
−1 −µi,−
1 µi,+

]
,

and detGi = i
√

4λi − γ2. We can compute that461

e−tT̃i(γ) = Gi

[
e−it
√

4λi−γ2/2 0

0 eit
√

4λi−γ2/2

]
G−1
i

=
1

detGi

[
µi,+ µi,−
−1 −1

][
−e−it

√
4λi−γ2/2 −µi,−e−it

√
4λi−γ2/2

eit
√

4λi−γ2/2 µi,+e
it
√

4λi−γ2/2

]

=
1

i
√

4λi − γ2

2Imag
(
µi,−e

it
√

4λi−γ2/2
)

2i|µi,+|2 sin
(
t
√

4λi − γ2/2
)

−2i sin
(
t
√

4λi − γ2/2
)

2Imag
(
µi,+e

it
√

4λi−γ2/2
)  ,

where Imag(a+ ib) := ib denotes the imaginary part of a complex number. As a consequence, by462

taking componentwise absolute values463 ∥∥∥e−tT̃i(γ)
∥∥∥ ≤ 1√

4λi − γ2

∥∥∥∥[2|µi,−| 2|µi,+|2
2 2|µi,+|

]∥∥∥∥ =
1√

4λi − γ2

∥∥∥∥[2√λi 2λi
2 2

√
λi

]∥∥∥∥
=

1√
4λi − γ2

∥∥∥∥[2√λi2

] [
1
√
λi
]∥∥∥∥ =

1√
4λi − γ2

∥∥∥∥[2√λi2

]∥∥∥∥ ∥∥[1 √
λi
]∥∥

=
2(1 + λi)√

4λi − γ2
, (B.4)

where the second from last equality used the fact that the 2-norm of a rank-one matrix is equal464

to its Frobenius norm. 2 Then, it follows from (B.3) that
∥∥e−tTi(γ)

∥∥ = e−tγ/2
∥∥∥e−tT̃i(γ)

∥∥∥ ≤465

2(1+λi)√
4λi−γ2

e−tγ/2, which implies
∥∥e−tHγ∥∥ =

∥∥e−tTγ∥∥ ≤ max1≤i≤d
∥∥e−tTi(γ)

∥∥ ≤ 2(1+M)√
4m−γ2

e−tγ/2,466

provided that γ2 − 4m < 0. In particular, if we choose ε̂ = 1− γ
2
√
m

for any ε̂ > 0, we obtain467 ∥∥e−tHγ∥∥ ≤ 1 +M√
m(1− (1− ε̂)2)

e−
√
m(1−ε̂)t.

2The 2-norm of a rank-one matrix R = uv∗ should be exactly equal to σ = ‖u‖‖v‖. This follows from the
fact that we can write R = σũṽT where ũ and ṽ have unit norm. This would be a singular value decomposition
of R, showing that all the singular values are zero except a singular value at σ. Because the 2-norm is equal to
the largest singular value, the 2-norm of R is equal to σ.
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The proof for Case 1 is complete.468

Case 2. If γ = 2
√
m and λi = m, then T̃i(γ) has double eigenvalues at zero and is not diagonalizable.

It admits the Jordan decomposition

T̃i(γ) = Gi

[
0 1
0 0

]
G−1
i with Gi =

[√
m 1
−1 0

]
and G−1

i =

[
0 −1
1
√
m

]
.

By a direct computation, we obtain

e−tT̃i(γ) = Gi

[
1 −t
0 1

]
G−1
i =

[
1− t

√
m −tm

t 1 + t
√
m

]
.

A simple computation reveals469 ∥∥∥e−tT̃i(γ)
∥∥∥ ≤√Tr

(
e−tT̃i(γ)e−tT̃i(γ)T

)
=
√

2 + (m+ 1)2t2. (B.5)

To finish the proof of Case 2, let γ = 2
√
m. We compute470

max
1≤i≤d

∥∥∥e−tT̃i(γ)
∥∥∥ = max

{
max
i:λi=m

∥∥∥e−tT̃i(γ)
∥∥∥ , max

i:λi>m

∥∥∥e−tT̃i(γ)
∥∥∥}

≤ max

{√
2 + (m+ 1)2t2, max

i:λi>m

(1 + λi)√
λi −m

}
,

where we used (B.4) and (B.5) in the last inequality. We conclude from (B.3) for Case 2.471

B.2 Proof of Theorem 3472

The main result we use to prove Theorem 3 is the following proposition. The proof of the following473

result will be presented later in Section B.2.2.474

Proposition 7. Assume γ = 2
√
m. Fix any r > 0 and475

0 < ε < min
{
εU1 , ε

U
2 , ε

U
3

}
,

where476

εU1 :=

√
CH + 2 + (m+ 1)2

(CH + 2)m+ (m+ 1)2
r, (B.6)

εU2 := 2
√

2
(
CH + 2 + (m+ 1)2

)1/4 e−1/2r

m1/4
, (B.7)

εU3 :=

√
m

4L

(√
CH + 2 + m+1√

m
+

√
(CH+2)m+(m+1)

8
√
CH+2+(m+1)2

) . (B.8)

Consider the stopping time:477

τ := inf
{
t ≥ 0 : ‖X(t)− x∗‖ ≥ ε+ re−

√
mt
}
.

For any initial point X(0) = x with ‖x− x∗‖ ≤ r, and478

β ≥ 256(2CHm+ 4m+ (m+ 1)2)

mε2

(
d log(2) + log

(
2‖H2

√
m‖T + 1

δ

))
,

we have479

Px
(
τ ∈ [T Urec, T Uesc]

)
≤ δ.

We are now ready to complete the proof of Theorem 3.480
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B.2.1 Completing the proof of Theorem 3481

Assume that γ = 2
√
m. Let us compare the discrete dynamics (1.7)-(1.8) and the continuous482

dynamics (1.4)-(1.5). Define:483

Ṽ (t) = V0 −
∫ t

0

γṼ (bs/ηcη) ds−
∫ t

0

∇F
(
X̃ (bs/ηcη)

)
ds+

√
2γβ−1

∫ t

0

dBs, (B.9)

X̃(t) = X0 +

∫ t

0

Ṽ (bs/ηcη) ds. (B.10)

The process (Ṽ , X̃) defined in (B.9) and (B.10) is the continuous-time interpolation of the iterates484

{(Vk, Xk)}. In particular, the joint distribution of {(Vk, Xk) : k = 1, 2, . . . ,K} is the same as485

{(Ṽ (t), X̃(t)) : t = η, 2η, . . . ,Kη} for any positive integer K.486

It is derived in the proof of Lemma EC.6 in [GGZ18] that the relative entropy D(·‖·) between the487

law P̃Kη of ((Ṽ (t), X̃(t)) : t ≤ Kη) and the law PKη of ((V (t), X(t)) : t ≤ Kη) is upper bounded488

as follows:489

D
(
P̃Kη

∥∥∥PKη) ≤ 3βM2

2γ
Kη3

(
Cdv + 2M2Cdx + 2B2 +

2dγβ−1

3

)
,

provided that η ≤ min
{

1, γ

K̂2
(d/β +A/β), γλ

2K̂1

}
, where Cdv is defined in Lemma 10. Using490

Pinsker’s inequality, we obtain an upper bound on the total variation ‖ · ‖TV :491 ∥∥∥P̃Kη − PKη
∥∥∥2

TV
≤ 3βM2

4γ
Kη3

(
Cdv + 2M2Cdx + 2B2 +

2dγβ−1

3

)
.

Using a result about an optimal coupling (Theorem 5.2., [Lin92]), that is, given any two random492

elements X ,Y of a common standard Borel space, there exists a coupling P of X and Y such that493

P(X 6= Y) ≤ ‖L(X )− L(Y)‖TV .
Hence, given any β > 0 and Kη ≤ T Uesc, we can choose494

η2 ≤ 4γδ2

3βM2(Cdv + 2M2Cdx + 2B2 + 2dγβ−1

3 )T Uesc

, (B.11)

so that there is a coupling of {(V (kη), X(kη)) : k = 1, 2, . . . ,K} and {(Vk, Xk) : k = 1, 2, . . . ,K}495

such that496

P(((V (η), X(η)), . . . , (V (Kη), X(Kη))) 6= ((V1, X1), . . . , (VK , XK)) ≤ δ. (B.12)

It follows that497

P(((V1, X1), . . . , (VK , XK)) ∈ ·) ≤ P(((V (η), X(η)), . . . , (V (Kη), X(Kη))) ∈ ·) + δ.

Let us now complete the proof of Theorem 3. We need to show that498

P ((X1, . . . , XK) ∈ A) ≤ δ,
where K = bη−1T Uescc and A := A1 ∩ A2, where499

A1 :=

{
(x1, . . . , xK) ∈ (Rd)K : max

k≤η−1T Urec

‖xk − x∗‖
ε+ re−

√
mkη

≤ 1

2

}
,

A2 :=

{
(x1, . . . , xK) ∈ (Rd)K : max

η−1T Urec≤k≤K

‖xk − x∗‖
ε+ re−

√
mkη

≥ 1

}
.

We can choose β sufficiently large so that with probability at least 1− δ/3, we have either ‖X(t)−500

x∗‖ ≥ ε+re−
√
mt for some t ≤ T Urec or ‖X(t)−x∗‖ ≤ ε+re−

√
mt for all t ≤ T Uesc. Moreover, for any501

K, η and β satisfying the conditions of the theorem, there exists a coupling of (X(η), . . . , X(Kη))502

and (X1, . . . , XK) so that with probability 1− δ/3, Xk = X(kη) for all k = 1, 2, . . . ,K. Then, by503

(B.11) and (B.12), we get504

P((X1, . . . , XK) ∈ A) ≤ P((X(η), . . . , X(Kη)) ∈ A) +
δ

3
, (B.13)
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provided that505

η ≤ ηU3 :=
2γ1/2δ

3
√

3βM(Cdv + 2M2Cdx + 2B2 + 2dγβ−1

3 )1/2(T Uesc)
1/2

. (B.14)

It remains to estimate the probability of P((X(η), . . . , X(Kη)) ∈ A1 ∩ A2) for the underdamped506

Langevin diffusion. Partition the interval [0, T Urec] using the points 0 = t1 < t1 < · · · < tdη−1T Urec e =507

T Urec with tk = kη for k = 0, 1, . . . , dη−1T Urece − 1, and consider the event:508

B :=

{
max

0≤k≤dη−1T Urec e−1
max

t∈[tk,tk+1]
‖X(t)−X(tk+1)‖ ≤ ε

2

}
.

On the event {(X(η), . . . , X(Kη)) ∈ A1} ∩ B,509

sup
t∈[0,T Urec ]

‖X(t)− x∗‖
ε+ re−

√
mt

= max
0≤k≤dη−1T Urec e−1

sup
t∈[tk,tk+1]

‖X(t)− x∗‖
ε+ re−

√
mt

≤ 1

2
+ max

0≤k≤dη−1T Urec e−1
max

t∈[tk,tk+1]

1

ε
‖X(t)−X(tk+1)‖ < 1,

and thus510

P((X(η), · · · , X(Kη)) ∈ A) ≤ P({(X(η), · · · , X(Kη)) ∈ A} ∩ B) + P(Bc)

≤ P(τ ∈ [T Urec, T Uesc]) + P(Bc)

≤ δ

3
+ P(Bc) , (B.15)

provided that (by applying Proposition 7 and Lemma 18) (with γ = 2
√
m):511

β ≥ βU
1

:=
256(2CHm+ 4m+ (m+ 1)2)

mε2

(
d log(2) + log

(
6
√

4m+M2 + 1T + 3

δ

))
.

(B.16)

To complete the proof, we need to show that P(Bc) ≤ δ
3 in view of (B.13) and (B.15). For any512

t ∈ [tk, tk+1], where tk+1 − tk = η, we have513

‖X(t)−X(tk+1)‖ ≤
∫ tk+1

t

‖V (s)‖ds ≤ η‖V (tk+1)‖+

∫ tk+1

t

‖V (s)− V (tk+1)‖ds, (B.17)

and514

‖V (t)− V (tk+1)‖

≤ γ
∫ tk+1

t

‖V (s)‖ds+

∫ tk+1

t

‖∇F (X(s))‖ds+
√

2γβ−1‖Bt −Btk+1
‖

≤ γη‖V (tk+1)‖+ γ

∫ tk+1

t

‖V (s)− V (tk+1)‖ds

+M

∫ tk+1

t

‖X(s)−X(tk+1)‖ds+ η‖∇F (X(tk+1))‖+
√

2γβ−1‖Bt −Btk+1
‖

≤ γη‖V (tk+1)‖+ γ

∫ tk+1

t

‖V (s)− V (tk+1)‖ds

+M

∫ tk+1

t

‖X(s)−X(tk+1)‖ds+Mη‖X(tk+1)‖+Bη +
√

2γβ−1‖Bt −Btk+1
‖ ,

(B.18)
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where the second inequality above used M -Lipschitz property of ∇F and the last inequality above515

used Lemma 20. By adding the above two inequalities (B.17) and (B.18) together, we get516

‖X(t)−X(tk+1)‖+ ‖V (t)− V (tk+1)‖

≤ (1 + γ)η‖V (tk+1)‖+ (1 + γ)

∫ tk+1

t

‖V (s)− V (tk+1)‖ds

+M

∫ tk+1

t

‖X(s)−X(tk+1)‖ds+Mη‖X(tk+1)‖+Bη +
√

2γβ−1‖Bt −Btk+1
‖

≤ (1 + γ +M)

∫ tk+1

t

(‖V (s)− V (tk+1)‖+ ‖X(s)−X(tk+1)‖) ds

+ (1 + γ)η‖V (tk+1)‖+Mη‖X(tk+1)‖+Bη +
√

2γβ−1 sup
t∈[tk,tk+1]

‖Bt −Btk+1
‖.

By applying Gronwall’s inequality, we get517

sup
t∈[tk,tk+1]

[‖X(t)−X(tk+1)‖+ ‖V (t)− V (tk+1)‖]

≤ e(1+γ+M)η

[
(1 + γ)η‖V (tk+1)‖+Mη‖X(tk+1)‖+Bη +

√
2γβ−1 sup

t∈[tk,tk+1]

‖Bt −Btk+1
‖

]
.

(B.19)

We have from Lemma 10 that for any u > 0,518

P(‖V (tk+1)‖ ≥ u) ≤
supt>0 E‖V (t)‖2

u2
≤ Ccv
u2
, (B.20)

and519

P(‖X(tk+1)‖ ≥ u) ≤
supt>0 E‖X(t)‖2

u2
≤ Ccx
u2
, (B.21)

where Ccv , Ccx are defined in Lemma 10. By Lemma 19, we have520

P

(
sup

t∈[tk,tk+1]

‖Bt −Btk+1
‖ ≥ u

)
≤ 21/4e1/4e−

u2

4dη .

Therefore, we can infer from (B.19) that with K0 := dη−1T Urece,521

P (Bc)

≤
K0−1∑
k=0

P
(
‖X(tk+1)‖ ≥ εe−(1+γ+M)η

8Mη

)
+

K0−1∑
k=0

P
(
‖V (tk+1)‖ ≥ εe−(1+γ+M)η

8(1 + γ)η

)

+

K0−1∑
k=0

P
(
B ≥ εe−(1+γ+M)η

8η

)
+

K0−1∑
k=0

P

(
sup

t∈[tk,tk+1]

‖Bt −Btk+1
‖ ≥ εe−(1+γ+M)η

√
β

8
√

2γ

)

≤ 64K0

ε2

(
M2Ccx + (1 + γ)2Ccv

)
· η2e2(1+γ+M)η (B.22)

+ 21/4e1/4K0 · exp

(
− 1

4dη

ε2e−2(1+γ+M)ηβ

128γ

)
(B.23)

+K0P
(
B ≥ εe−(1+γ+M)η

8η

)
, (B.24)

where the last inequality follows from (B.20), (B.21) and Lemma 19. We can choose η ≤ 1 so that522

η ≤ ηU2 :=
δε2e−2(1+γ+M)

384(M2Ccx + (1 + γ)2Ccv)T Urec
, (B.25)

so that the term in (B.22) is less than δ/6, where Ccv , Ccx are defined in Lemma 10, and then we523

choose β so that524

β ≥ βU
2

:=
512dηγ log(21/4e1/46δ−1T Urec/η)

ε2e−2(1+γ+M)η
, (B.26)
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so that the term in (B.23) is also less than δ/6, and we can choose η so that η ≤ 1 and525

η ≤ ηU1 :=
εe−(1+γ+M)

8B
, (B.27)

so that the term in (B.24) is zero.526

To complete the proof, let us work on the leading orders of the constants. For the sake of convenience,527

we hide the dependence onM andL and assume thatM,L = O(1). We also assume thatCH = O(1).528

Recall that 0 < ε ≤ min{εU1 , εU2 , εU3 }, where it is easy to check that It is easy to check that529

εU1 =

√
CH + 2 + (m+ 1)2

(CH + 2)m+ (m+ 1)2
r ≥ Ω

(
C

1/2
H r

C
1/2
H m1/2 +m+ 1

)
≥ Ω(r),

where we used m ≤M = O(1) and530

εU2 = 2
√

2(CH + 2 + (m+ 1)2)1/4 e
−1/2r

m1/4
≥ Ω

(
(1 + C

1/4
H )r

m1/4

)
≥ Ω

( r

m1/4

)
,

and531

εU3 =

√
m

4L

(√
CH + 2 + m+1√

m
+

√
(CH+2)m+(m+1)

8
√
CH+2+(m+1)2

) ≥ Ω

 √
m

L
(

1 + m+1√
m

+
√
m

m+1

)
 ≥ Ω(m),

where we used the fact that m+ 1 ≥ 2
√
m. Hence, we can take532

ε ≤ min
{
O (r) ,O

( r

m1/4

)
,O(m)

}
.

Moreover, m ≤M = O(1). Hence, we can take533

ε ≤ min {O(r),O(m)} .

Next, we recall the recurrence time:534

T Urec = − 1√
m
W−1

(
−ε2
√
m

8r2
√
CH + 2 + (m+ 1)2

)
,

and since W−1(−x) ∼ log(1/x) for x→ 0+, and we assume CH = O(1), we get535

T Urec = O
(

1√
m

log
( r

εm

))
≤ O

(
| log(m)|√

m
log
(r
ε

))
.

Next, we recall that stepsize η satisfies η ≤ min{1, ηU1 , ηU2 , ηU3 , ηU4 } and it is easy to check that536

ηU1 =
εe−(1+2

√
m+M)

8B
≥ Ω

(
εe−(2m1/2+M)

)
≥ Ω(ε),

and537

ηU2 =
δε2e−2(1+2

√
m+M)

384(M2Ccx + (1 + 2
√
m)2Ccv)T Urec

≥ Ω

(
δε2e−(4m1/2+2M)

(M2Ccx + (1 +m)Ccv)T Urec

)
.

Moreover, we have (note that R =
√
b/m in the definition of Ccx, C

c
v)538

Ccx ≤ O

(
1 + 1

m + d
β

m

)
, Ccv ≤ O

(
1 +

1

m
+
d

β

)
,

together with m ≤M = O(1) implies that539

ηU2 =
δε2e−2(1+2

√
m+M)

384(M2Ccx + (1 + 2
√
m)2Ccv)T Urec

≥ Ω

(
m2βδε2

(md+ β)T Urec

)
.
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Moreover,540

ηU3 =
2
√

2m1/4δ

3
√

3βM(Cdv + 2M2Cdx + 2B2 + 4d
√
mβ−1

3 )1/2(T Uesc)
1/2
≥ Ω

(
m5/4δ

(d+ β)1/2(T Uesc)
1/2

)
,

where we used Cdx ≤ O
(
d+β
βm2

)
and Cdv ≤ O

(
d+β
βm

)
, and541

ηU4 = min

{
1,

2
√
m

K̂2

d+A

β
,

√
mλ

K̂1

}
≥ min

{
Ω

(
m1/2(d+ β)

dm1/2 + β

)
,Ω(m5/2)

}
,

where we used λ = Ω(m), A = Ω(β), K1 = O( 1
βm ), K2 = O(1), K̂1 = O( 1

m ), K̂2 = O(1 +542

d
β

√
m), and the minimum between m1/2(d+β)

dm1/2+β
and m5/2 is m5/2. Hence, we can take543

η ≤ min

{
O(ε),O

(
m2βδε2

(md+ β)T Urec

)
,O
(

m5/4δ

(d+ β)1/2(T Uesc)
1/2

)
,O(m5/2)

}
.

Finally, β satisfies β ≥ max{βU
1
, βU

2
}, and We have544

βU
1

=
256(2CHm+ 4m+ (m+ 1)2)

mε2

(
d log(2) + log

(
6(4m+M2 + 1)1/2T + 3

δ

))
≤ O

(
d+ log((T + 1)/δ)

mε2

)
,

and545

βU
2

=
1024dη

√
m log(21/4e1/46δ−1T Urec/η)

ε2e−2(1+2
√
m+M)η

≤ O
(
dηm1/2 log(δ−1T Urec/η)

ε2

)
,

where we used e2(1+2
√
m+M)η = eO(ε) = O(1).546

Hence, we can take547

β ≥ max

{
Ω

(
d+ log((T + 1)/δ)

mε2

)
,Ω

(
dηm1/2 log(δ−1T Urec/η)

ε2

)}
.

The proof is now complete.548

B.2.2 Proof of Proposition 7549

In this section, we focus on the proof of Proposition 7. We adopt some ideas from [BG03, TLR18].550

We recall x∗ is a local minimum of F and H is the Hessian matrix: H = ∇2F (x∗), and we write551

X(t) = Y (t) + x∗.

Thus, we have the decomposition552

∇F (X(t)) = HY (t)− ρ(Y (t)),

where ‖ρ(Y (t))‖ ≤ 1
2L‖Y (t)‖2 since the Hessian of F is L-Lipschitz (Lemma 1.2.4. [Nes13]).553

Then, we have554

dV (t) = −γV (t)dt− (H(Y (t))− ρ(Y (t)))dt+
√

2γβ−1dBt,

dY (t) = V (t)dt.

We can write it in terms of matrix form as:555

d

[
V (t)
Y (t)

]
=

[
−γI −H
I 0

] [
V (t)
Y (t)

]
dt+

√
2γβ−1

[
I 0
0 0

]
dB

(2)
t +

[
ρ(V (t))

0

]
dt,

where B(2)
t is a 2d-dimensional standard Brownian motion. Therefore, we have556 [

V (t)
Y (t)

]
= e−tHγ

[
V (0)
Y (0)

]
+
√

2γβ−1

∫ t

0

e(s−t)Hγ I(2)dB(2)
s +

∫ t

0

e(s−t)Hγ
[
ρ(V (s))

0

]
ds,
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where557

Hγ =

[
γI H
−I 0

]
, I(2) =

[
I 0
0 0

]
. (B.28)

Given 0 ≤ t0 ≤ t1, we define the matrix flow558

Qt0(t) := e(t0−t)Hγ (B.29)

and we also define559

Z(t) := e(t−t0)Hγ

[
V (t)
Y (t)

]
= Z0

t + Z1
t ,

where560

Z0
t = e−t0Hγ

[
V (0)
Y (0)

]
+
√

2γβ−1

∫ t

0

e(s−t0)Hγ I(2)dB(2)
s , (B.30)

Z1
t =

∫ t

0

e(s−t0)Hγ

[
ρ(V (s))

0

]
ds. (B.31)

Note that561

Qt0(t1)Z0
t = e−t1Hγ

[
V (0)
Y (0)

]
+
√

2γβ−1

∫ t

0

e(s−t1)Hγ I(2)dB(2)
s

is a martingale. Before we proceed to the proof of Proposition 7, we state the following lemma,562

which will be used in the proof of Proposition 7.563

Lemma 8. Assume γ = 2
√
m. Define:564

µt := e−tHγ (V (0), Y (0))T , (B.32)

Σt := 2γβ−1

∫ t

0

e(s−t)Hγ I(2)e(s−t)HTγ ds. (B.33)

For any θ ∈
(

0, 2m
√
m

γ(2CHm+4m+(m+1)2)

)
, and h > 0 and any (V (0), Y (0)),565

P
(

sup
t0≤t≤t1

‖Qt0(t1)Z0
t ‖ ≥ h

)
≤
(

1− θγ(2CHm+ 4m+ (m+ 1)2)

2m
√
m

)−d
e−

βθ
2 [h2−〈µt1 ,(I−βθΣt1 )−1µt1 〉].

Finally, let us complete the proof of Proposition 7.566

Proof of Proposition 7. Since ‖Y (0)‖ = ‖X(0) − x∗‖ ≤ r, we know that τ > 0. Fix some567

T Urec ≤ t0 ≤ t1, such that t1 − t0 ≤ 1
2‖Hγ‖ . Then, for every t ∈ [t0, t1],568

‖Y (t)‖ ≤
∥∥∥e(t1−t)HγQt0(t1)Zt

∥∥∥ ≤ e 1
2 ‖Qt0(t1)Zt‖ .

It follows that (with e−1/2 ≥ 1/2)569

P(τ ∈ [t0, t1])

= P
(

sup
t0≤t≤t1∧τ

‖Y (t)‖
ε+ re−

√
mt
≥ 1, τ ≥ t0

)
≤ P

(
sup

t0≤t≤t1∧τ

‖Qt0(t1)Zt‖
ε+ re−

√
mt
≥ 1

2
, τ ≥ t0

)
≤ P

(
sup

t0≤t≤t1∧τ

‖Qt0(t1)Z0
t ‖

ε+ re−
√
mt
≥ c0, τ ≥ t0

)
+ P

(
sup

t0≤t≤t1∧τ

‖Qt0(t1)Z1
t ‖

ε+ re−
√
mt
≥ c1, τ ≥ t0

)
,

(B.34)

where c0 + c1 = 1
2 and c0, c1 > 0. We will first bound the second term in (B.34) which will turn out570

to be zero, and then use Lemma 8 to bound the first term in (B.34).571
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First, notice that Z1
t ≡ 0 in the quadratic case and the second term in (B.34) is automatically zero.572

In the more general case, we will show that the second term in (B.34) is also zero. On the event573

τ ∈ [t0, t1], for any 0 ≤ s ≤ t1 ∧ τ , we have574

‖ρ(Y (s))‖ ≤ L

2
‖Y (s)‖2 ≤ L

2

(
ε+ re−

√
ms
)2

.

Therefore, for any t ∈ [t0, t1 ∧ τ ], by Lemma 2, we get575 ∥∥Qt0(t1)Z1
t

∥∥
≤
∫ t

0

∥∥∥e(s−t1)Hγ
∥∥∥ · ‖ρ(Y (s))‖ds

≤ L

2

∫ t

0

√
CH + 2 + (m+ 1)2(t1 − s)2e(s−t1)

√
m
(
ε+ re−

√
ms
)2

ds

≤ L
∫ t

0

(√
CH + 2 + (m+ 1)(t1 − s)

)
e(s−t1)

√
m
(
ε2 + r2e−2

√
ms
)
ds

≤ L
∫ t1

0

(√
CH + 2 + (m+ 1)(t1 − s)

)
e(s−t1)

√
m
(
ε2 + r2e−2

√
ms
)
ds

≤ L√
m

((√
CH + 2 +

m+ 1√
m

)
ε2 +

√
CH + 2r2e−

√
mt1

)
+ L(m+ 1)r2

∫ t1

0

(t1 − s)e(s−t1)
√
me−2

√
msds

≤ L√
m

((√
CH + 2 +

m+ 1√
m

)
ε2 +

√
CH + 2r2e−

√
mt1 + (m+ 1)r2t1e

−t1
√
m

)
≤ L√

m

((√
CH + 2 +

m+ 1√
m

)
ε2 +

(√
(CH + 2)m+ (m+ 1)

)
r2t1e

−t1
√
m

)
≤ L√

m

(√
CH + 2 +

m+ 1√
m

+

√
(CH + 2)m+ (m+ 1)

8
√
CH + 2 + (m+ 1)2

)
ε2

where we used t1 ≥ t ≥ t0 ≥ T Urec ≥ 1√
m

, and t1e−t1
√
m ≤ T Urece

−T Urec
√
m and the definition of T Urec:576

√
CH + 2 + (m+ 1)2T Urece

−
√
mT Urec =

ε2

8r2
.

Consequently, if we take c1 = L√
m

(√
CH + 2 + m+1√

m
+

√
(CH+2)m+(m+1)

8
√
CH+2+(m+1)2

)
ε, then,577

sup
t0≤t≤t1∧τ

‖Qt0(t1)Zt‖
ε+ re−

√
mt
≤ 1

ε
sup

t0≤t≤t1∧τ
‖Qt0(t1)Zt‖ ≤ c1,

which implies that578

P
(

sup
t0≤t≤t1∧τ

‖Qt0(t1)Z1
t ‖

ε+ re−
√
mt
≥ c1, τ ≥ t0

)
= 0.

Moreover, c0 = 1
2 − c1 = 1

2 −
L√
m

(√
CH + 2 + m+1√

m
+

√
(CH+2)m+(m+1)

8
√
CH+2+(m+1)2

)
ε > 1

4 since it is579

assumed that ε <
√
m

4L

(√
CH+2+m+1√

m
+

√
(CH+2)m+(m+1)

8
√
CH+2+(m+1)2

) .580
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Second, we will apply Lemma 8 to bound the first term in (B.34). By using V (0) = 0 and ‖Y (0)‖ ≤ r581

and the definition of µt1 and Σt1 in (B.32) and (B.33), we get582 〈
µt1 , (I − βθΣt1)−1µt1

〉
=
〈
e−t1Hγ (V (0), Y (0))T , (I − βθΣt1)−1e−t1Hγ (V (0), Y (0))T

〉
≤
(

1− θγ(2CHm+ 4m+ (m+ 1)2)

2m
√
m

)−1 (
CH + 2 + (m+ 1)2t21

)
e−2
√
mt1r2

≤ 2
(
(CH + 2)m+ (m+ 1)2

)
t21e
−2
√
mt1r2

≤ 1

32

(CH + 2)m+ (m+ 1)2

CH + 2 + (m+ 1)2

ε4

r2
≤ 1

32
ε2,

by choosing θ = m
√
m

γ(2CHm+4m+(m+1)2) and t1 ≥ T Urec ≥ 1√
m

, and t1e
−t1
√
m ≤ T Urece

−T Urec ,583

and using the definition
√
CH + 2 + (m+ 1)2T Urece

−
√
mT Urec = ε2

8r2 , and we also used ε ≤584 √
CH+2+(m+1)2

(CH+2)m+(m+1)2 r.585

Then with the choice of h = (ε+re−
√
mt1)c0 and θ = m

√
m

γ(2CHm+4m+(m+1)2) in Lemma 8, and using586

the fact that h = (ε+ re−
√
mt1)c0 ≥ εc0, we get587

P
(

sup
t0≤t≤t1∧τ

‖Qt0(t1)Z0
t ‖

ε+ re−
√
mt
≥ c0, τ ≥ t0

)
≤ P

(
sup

t0≤t≤t1
‖Qt0(t1)Z0

t ‖ ≥
(
ε+ re−

√
mt1
)
c0

)

≤
(

1− θγ(2CHm+ 4m+ (m+ 1)2)

2m
√
m

)− 2d
2

· exp

(
−βθ

2

[
h2 − 〈µt1 , (I − βθΣt1)−1µt1〉

])
≤ 2d · exp

(
− βγ−1m

√
mε2

2(2CH + 4m+ (m+ 1)2)

(
c20 −

1

32

))
≤ 2d · exp

(
− βγ−1m

√
mε2

128(2CH + 4m+ (m+ 1)2)

)
.

Thus for any t0 ≥ T Urec and t0 ≤ t1 ≤ t0 + 1
2‖Hγ‖ ,588

P(τ ∈ [t0, t1]) ≤ 2d · exp

(
− βγ−1m

√
mε2

128(2CHm+ 4m+ (m+ 1)2)

)
.

Fix any T > 0 and recall the definition of the escape time T Uesc = T + T Urec. Partition the interval589

[T Urec, T Uesc] using the points T Urec = t0 < t1 < · · · < td2‖Hγ‖T e = T Uesc with tj = j/(2‖Hγ‖), then we590

have591

P
(
τ ∈

[
T Urec, T Uesc

])
=

d2‖Hγ‖T e∑
j=0

P(τ ∈ [tj , tj+1])

≤ (2‖Hγ‖T + 1) · 2d · exp

(
− βγ−1m

√
mε2

128(2CHm+ 4m+ (m+ 1)2)

)
≤ δ,

provided that592

β ≥ 128(2CHm+ 4m+ (m+ 1)2)γ

m
√
mε2

(
d log(2) + log

(
2‖Hγ‖T + 1

δ

))
.

Finally, plugging γ = 2
√
m into the above formulas and applying the bound on ‖Hγ from Lemma593

18, the conclusion follows.594

B.2.3 Uniform L2 bounds for underdamped Langevin dynamics595

In this section, we state the uniform L2 bounds for the continuous time underdamped Langevin596

dynamics ((1.4) and (1.5)) and the discrete time iterates ((1.7) and (1.8)) in Lemma 10, which is a597
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modification of Lemma 8 in [GGZ18]. The uniform L2 bound for the discrete dynamics (1.7)-(1.8)598

is used to derive the relative entropy to compare the laws of the continuous time dynamics and the599

discrete time dynamics, and the uniform L2 bound for the continuous dynamics (1.4)-(1.5) is used to600

control the tail of the continuous dynamics in Section B.2.1.601

Before we proceed, let us first introduce the following Lyapunov function (from the paper [EGZ19])602

which will be used in the proof the uniform L2 boundedness results for both the continuous and603

discrete underdamped Langevin dynamics. We define the Lyapunov function V as:604

V(x, v) := βF (x) +
β

4
γ2
(
‖x+ γ−1v‖2 + ‖γ−1v‖2 − λ‖x‖2

)
, (B.35)

and λ is a positive constant less than 1/4 according to [EGZ19]. We will first show in the following605

lemma that we can find explicit constants λ ∈ (0,min(1/4,m/(M + γ2/2))) and A ∈ (0,∞) so606

that the drift condition (B.38) is satisfied. The drift condition is needed in [EGZ19], which is applied607

to obtain the uniform L2 bounds in [GGZ18] (Lemma 8) that implies the uniform L2 bounds in our608

current setting (the following Lemma 10).609

Lemma 9. Let us define:610

λ =
1

2
min(1/4,m/(M + γ2/2)), (B.36)

A =
β

2

m

M + 1
2γ

2

(
B2

2M + γ2
+

b

m

(
M +

1

2
γ2

)
+A

)
, (B.37)

then the following drift condition holds:611

x · ∇F (x) ≥ 2λ(F (x) + γ2‖x‖2/4)− 2A/β . (B.38)

The following lemma provides uniform L2 bounds for the continuous-time underdamped Langevin612

diffusion process (X(t), V (t)) defined in (1.4)-(1.5) and discrete-time underdamped Langevin dy-613

namics (Xk, Vk) defined in (1.7)-(1.8).614

Lemma 10 (Uniform L2 bounds). Suppose parts (i), (ii), (iii), (iv) of Assumption 1 and the drift615

condition (B.38) hold. γ > 0 is arbitrary and λ, A are defined in (B.36) and (B.37).616

(i) It holds that617

sup
t≥0

E‖X(t)‖2 ≤ Ccx :=

(
βM

2 + βγ2(2−λ)
4

)
R2 + βBR+ βA+ 3

4β‖V (0)‖2 + d+A
λ

1
8 (1− 2λ)βγ2

,

(B.39)

sup
t≥0

E‖V (t)‖2 ≤ Ccv :=

(
βM

2 + βγ2(2−λ)
4

)
R2 + βBR+ βA+ 3

4β‖V (0)‖2 + d+A
λ

β
4 (1− 2λ)

,

(B.40)

(ii) For any stepsize η satisfying:618

0 < η ≤ ηU4 := min

{
1,

γ

K̂2

(d/β +A/β),
γλ

2K̂1

}
, (B.41)

where619

K̂1 := K1 +Q1
4

1− 2λ
+Q2

8

(1− 2λ)γ2
, (B.42)

K̂2 := K2 +Q3, (B.43)

where620

K1 := max

{
32M2

(
1
2 + γ

)
(1− 2λ)βγ2

,
8
(

1
2M + 1

4γ
2 − 1

4γ
2λ+ γ

)
β(1− 2λ)

}
, (B.44)

K2 := 2B2

(
1

2
+ γ

)
, (B.45)
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and621

Q1 :=
1

2
c0

(
(5M + 4− 2γ + (c0 + γ2)) + (1 + γ)

(
5

2
+ c0(1 + γ)

)
+ 2γ2λ

)
,

(B.46)

Q2 :=
1

2
c0

[(
(1 + γ)

(
c0(1 + γ) +

5

2

)
+ c0 + 2 + λγ2 + 2(Mc0 +M + 1)

)
· 2M2

+

(
2M2 + γ2λ+

3

2
γ2(1 + γ)

)]
, (B.47)

Q3 := c0

(
(1 + γ)

(
c0(1 + γ) +

5

2

)
+ c0 + 2 + λγ2 + 2(Mc0 +M + 1)

)
B2 + c0B

2

+
1

2
γ3β−1c22 + γ2β−1c12 +Mγβ−1c22, (B.48)

where622

c0 := 1 + γ2, c12 :=
d

2
, c22 :=

d

3
, (B.49)

we have623

sup
j≥0

E‖Xj‖2 ≤ Cdx :=

(
βM

2 + βγ2(2−λ)
4

)
R2 + βBR+ βA+ 3

4β‖V (0)‖2 + 4(d+A)
λ

1
8 (1− 2λ)βγ2

,

(B.50)

sup
j≥0

E‖Vj‖2 ≤ Cdv :=

(
βM

2 + βγ2(2−λ)
4

)
R2 + βBR+ βA+ 3

4β‖V (0)‖2 + 4(d+A)
λ

β
4 (1− 2λ)

.

(B.51)

B.2.4 Proofs of auxiliary results624

Proof of Lemma 8. Note that Qt0(t1)Z0
t is a 2d-dimensional martingale and by Doob’s martingale625

inequality, for any h > 0,626

P
(

sup
t0≤t≤t1

‖Qt0(t1)Z0
t ‖ ≥ h

)
≤ e−βθh

2/2E
[
e(βθ/2)‖Qt0 (t1)Z0

t1
‖2
]

= e−βθh
2/2 1√

det(I − βθΣt1)
e
βθ
2 〈µt1 ,(I−βθΣt1 )−1µt1 〉, (B.52)

where the last line above uses the fact that Qt0(t1)Zt1 is a Gaussian random vector with mean627

µt1 = e−t1Hγ (V (0), Y (0))T ,

and covariance matrix628

Σt1 = 2γβ−1

∫ t1

0

(
e(s−t1)Hγ I(2)

)(
e(s−t1)Hγ I(2)

)T
ds

= 2γβ−1

∫ t1

0

e−sHγ I(2)e−sH
T
γ ds.

We next estimate det(I − βθΣt1) fron (B.52). Let us recall from Lemma 2 that if γ = 2
√
m, then629

we recall from Lemma 2 that,630 ∥∥e−tHγ∥∥ ≤√CH + 2 + (m+ 1)2t2 · e−
√
mt,

and thus, we have631

‖Σt1‖ ≤ 2γβ−1

∫ t1

0

(
CH + 2 + (m+ 1)2t2

)
e−2
√
mtdt ≤ γβ−1 2CHm+ 4m+ (m+ 1)2

2m
√
m

.

Therefore we infer that the eigenvalues of I−βθΣ are bounded below by 1−θ γ(2CHm+4m+(m+1)2)
2m
√
m

.632

The conclusion then follows from (B.52).633
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Proof of Lemma 9. By Assumption 1 (iii), x · ∇F (x) ≥ m‖x‖2 − b. Thus in order to show the drift634

condition (B.38), it suffices to show that635

m‖x‖2 − b− 2λ(F (x) + γ2‖x‖2/4) ≥ −2A/β. (B.53)

Given the definition of λ in (B.36), by Lemma 20, we get636

m‖x‖2 − b− 2λ(F (x) + γ2‖x‖2/4)

≥ m‖x‖2 − b− m

M + 1
2γ

2
(F (x) + γ2‖x‖2/4)

≥
mM + 1

4mγ
2

M + 1
2γ

2
‖x‖2 − b− m

M + 1
2γ

2

(
M

2
‖x‖2 +B‖x‖+A

)
=

m

M + 1
2γ

2

(
1

2
M‖x‖2 +

1

4
γ2‖x‖2 −B‖x‖ − b

m

(
M +

1

2
γ2

)
−A

)
≥ m

M + 1
2γ

2

(
− B2

2M + γ2
− b

m

(
M +

1

2
γ2

)
−A

)
= −2A/β,

by the definition of A in (B.37). Hence, (B.53) holds and the proof is complete.637

Proof of Lemma 10. According to Lemma EC.1 in [GGZ18],638

sup
t≥0

E‖X(t)‖2 ≤
∫
R2d V(x, v)dµ0(x, v) + d+A

λ
1
8 (1− 2λ)βγ2

,

sup
t≥0

E‖V (t)‖2 ≤
∫
R2d V(x, v)dµ0(x, v) + d+A

λ
β
4 (1− 2λ)

,

where V is the Lyapunov function defined in (B.35) and µ0 is the initial distribution of (X(0), V (0))639

and in our case, µ0 = δ(X(0),V (0)) and ‖X(0)‖ ≤ R and V (0) ∈ Rd, and for any 0 < η ≤640

min
{

1, γ

K̂2
(d/β +A/β), γλ

2K̂1

}
with K̂1 and K̂2 given in (B.42) and (B.43), 3 and according to641

Lemma EC.5 in [GGZ18], we also have642

sup
j≥0

E‖Xj‖2 ≤
∫
R2d V(x, v)µ0(dx, dv) + 4(d+A)

λ
1
8 (1− 2λ)βγ2

,

sup
j≥0

E‖Vj‖2 ≤
∫
R2d V(x, v)µ0(dx, dv) + 4(d+A)

λ
β
4 (1− 2λ)

.

We recall from (B.35) that V(x, v) = βF (x) + β
4 γ

2(‖x + γ−1v‖2 + ‖γ−1v‖2 − λ‖x‖2), and643

‖X(0)‖ ≤ R and V (0) ∈ Rd. By Lemma 20, we get644

V(x, v) ≤ βM

2
‖x‖2 + βB‖x‖+ βA+

β

4
γ2(‖x+ γ−1v‖2 + ‖γ−1v‖2 − λ‖x‖2) ,

so that645

V(X(0), V (0))

=
βM

2
‖X(0)‖2 + βB‖X(0)‖+ βA+

β

4
γ2(2‖X(0)‖2 + 3γ−2‖V (0)‖2 − λ‖X(0)‖2)

≤
(
βM

2
+
βγ2(2− λ)

4

)
R2 + βBR+ βA+

3

4
β‖V (0)‖2.

Hence, the conclusion follows.646

3Note that in the definition of K̂1, K̂2 in [GGZ18], there is a constant δ, which is simply zero, in the context
of the current paper.
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B.3 Proof of Theorem 4647

The proof of Theorem 4 is similar to the proof of Theorem 3. For brevity, we omit some of the details,648

and only outline the key steps and the propositions and lemmas used for the proof of Theorem 4.649

Proposition 11. Fix any r > 0 and 0 < ε < min{εJ1 , εJ2 }, where650

εJ1 :=
mJ(ε̃)

4CJ(ε̃)(1 + ‖J‖)L(1 + 1
64CJ (ε̃)2 )

, εJ2 := 8rCJ(ε̃). (B.54)

Consider the stopping time:651

τ := inf
{
t ≥ 0 : ‖X(t)− x∗‖ ≥ ε+ re−mJ (ε̃)t

}
.

For any initial point X(0) = x with ‖x− x∗‖ ≤ r, and652

β ≥ 128CJ(ε̃)2

mJ(ε̃)ε2

(
d

2
log(2) + log

(
2(1 + ‖J‖)MT + 1

δ

))
,

we have653

Px
(
τ ∈ [T Jrec, T Jesc]

)
≤ δ.

B.3.1 Completing the proof of Theorem 4654

We first compare the discrete dynamics (1.10) and the continuous dynamics (1.9). Define:655

X̃(t) = X0 −
∫ t

0

AJ

(
∇F (X̃(bs/ηcη))

)
ds+

√
2γβ−1

∫ t

0

dBs. (B.55)

The process X̃ defined in (B.55) is the continuous-time interpolation of the iterates {Xk}. In particu-656

lar, the joint distribution of {Xk : k = 1, 2, . . . ,K} is the same as {X̃(t) : t = η, 2η, . . . ,Kη} for657

any positive integer K.658

By following Lemma 7 in [RRT17] and apply the uniform L2 bounds forXk in Corollary 17 provided659

that the stepsize η is sufficiently small (we apply the bound ‖AJ‖ ≤ 1 + ‖J‖ to Corollary 17)660

η ≤ ηJ4 :=
1

M(1 + ‖J‖)2
, (B.56)

we will obtain an upper bound on the relative entropyD(·‖·) between the law P̃Kη of (X̃(t) : t ≤ Kη)661

and the law PKη of (X(t) : t ≤ Kη), and by Pinsker’s inequality an upper bound on the total variation662

‖ · ‖TV as well. More precisely, we have663 ∥∥∥P̃Kη − PKη
∥∥∥2

TV
≤ 1

2
D
(
P̃Kη

∥∥∥PKη) ≤ 1

2
C1Kη

2, (B.57)

where (we use the bound ‖AJ‖ ≤ 1 + ‖J‖)664

C1 := 6(β((1 + ‖J‖)2M2Cd +B2) + d)(1 + ‖J‖)2M2, (B.58)

where Cd is defined in (B.72).665

Let us now complete the proof of Theorem 4. We need to show that666

P ((X1, . . . , XK) ∈ A) ≤ δ,
where K = bη−1T Jescc and A := A1 ∩ A2:667

A1 :=

{
(x1, . . . , xK) ∈ (Rd)K : max

k≤η−1T Jrec

‖xk − x∗‖
ε+ re−mJ (ε̃)kη

≤ 1

2

}
,

A2 :=

{
(x1, . . . , xK) ∈ (Rd)K : max

η−1T Jrec≤k≤K

‖xk − x∗‖
ε+ re−mJ (ε̃)kη

≥ 1

}
.

Similar to the proof in Section B.2.1 and by (B.57), we get668

P((X1, . . . , XK) ∈ A) ≤ P((X(η), . . . , X(Kη)) ∈ A) +
δ

3
, (B.59)
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provided that669

η ≤ ηJ3 :=
2δ2

9C1T Jesc
. (B.60)

It remains to estimate the probability of P((X(η), . . . , X(Kη)) ∈ A1 ∩ A2) for the non-reversible670

Langevin diffusion. Partition the interval [0, T Jrec] using the points 0 = t1 < t1 < · · · < tdη−1T Jrece =671

T Jrec with tk = kη for k = 0, 1, . . . , dη−1T Jrece − 1, and consider the event:672

B :=

{
max

0≤k≤dη−1T Jrece−1
max

t∈[tk,tk+1]
‖X(t)−X(tk+1)‖ ≤ ε

2

}
.

Similar to the proof in Section B.2.1, we get673

P((X(η), · · · , X(Kη)) ∈ A) ≤ δ

3
+ P(Bc) , (B.61)

provided that (by applying Proposition 11):674

β ≥ βJ
1

:=
128CJ(ε̃)2

mJ(ε̃)ε2

(
d

2
log(2) + log

(
6(1 + ‖J‖)MT + 3

δ

))
. (B.62)

To complete the proof, we need to show that P(Bc) ≤ δ
3 in view of (B.59) and (B.61). For any675

t ∈ [tk, tk+1], where tk+1 − tk = η, we have676

‖X(t)−X(tk+1)‖

≤
∫ tk+1

t

‖AJ∇F (X(s))‖ds+
√

2β−1‖Bt −Btk+1
‖

≤ ‖AJ‖M
∫ tk+1

t

‖X(s)−X(tk+1)‖ds+ η‖AJ∇F (X(tk+1))‖+
√

2β−1‖Bt −Btk+1
‖

≤ ‖AJ‖M
∫ tk+1

t

‖X(s)−X(tk+1)‖ds

+ η‖AJ‖ · (M‖X(tk+1)‖+B) +
√

2β−1‖Bt −Btk+1
‖ .

By Gronwall’s inequality, we get the key estimate:677

sup
t∈[tk,tk+1]

‖X(t)−X(tk+1)‖

≤ eη‖AJ‖M
[
η‖AJ‖ · (M‖X(tk+1)‖+B) +

√
2β−1 sup

t∈[tk,tk+1]

‖Bt −Btk+1
‖

]
.

Then, by following the same argument as in Section B.2.1 and also apply ‖AJ‖ ≤ 1 + ‖J‖, we can678

show that P(Bc) ≤ δ
3 provided that η ≤ 1 and679

η ≤ ηJ1 :=
εe−(1+‖J‖)M

8(1 + ‖J‖)B
, (B.63)

and680

η ≤ ηJ2 :=
δε2e−2(1+‖J‖)M

384(1 + ‖J‖)2M2CcT Jrec
, (B.64)

where Cc is defined in (B.71) and681

β ≥ βJ
2

:=
512dη log(21/4e1/46δ−1T Jrec/η)

ε2e−2(1+‖J‖)Mη
. (B.65)

To complete the proof, we need work on the leading orders of the constants. We treat ‖J‖, M , L as682

constant. The argument is similar to the argument in the proof of Theorem 3 and is thus omitted here.683

The proof is now complete.684

27



B.3.2 Proof of Proposition 11685

Before we proceed to the proof of Proposition 11, let us first state the following two lemmas that will686

be used in the proof of Proposition 11.687

Lemma 12. For any θ ∈ (0,
λJ1−ε̃

(CJ (ε̃))2 ), h > 0 and y0 ∈ Rd,688

P
(

sup
t0≤t≤t1

∥∥Qt0(t1)Z0
t

∥∥ ≥ h) ≤ (1− θ (CJ(ε̃))2

λJ1 − ε̃

)−d/2
e−

βθ
2 [h2−〈µt1 ,(I−βθΣt1 )−1µt1 〉],

where Qt0(t1) is defined in (B.67), Z0
t is defined in (B.68), and689

µt := e−tAJHy0, Σt := 2β−1

∫ t

0

e−s(AJH)e−s(AJH)T ds. (B.66)

Lemma 13. Given t0 ≤ t ≤ (t1 ∧ τ), where τ is the stopping time defined in Proposition 11, we690

have691 ∥∥Qt0(t1)Z1
t

∥∥ ≤ CJ(ε̃)‖AJ‖L
2

∫ t

0

e(s−t1)mJ (ε̃)
(
ε+ re−mJ (ε̃)s

)2

ds,

where Qt0(t1) is defined in (B.67), and Z1
t is defined in (B.69).692

Proof of Proposition 11. We recall x∗ is a local minimum of F and H is the Hessian matrix: H =693

∇2F (x∗), and we write694

X(t) = Y (t) + x∗.

Thus, we have the decomposition695

∇F (X(t)) = HY (t)− ρ(Y (t)),

where ‖ρ(Y (t))‖ ≤ 1
2L‖Y (t)‖2 since the Hessian of F is L-Lipschitz (Lemma 1.2.4. [Nes13]). This696

implies that697

dY (t) = −AJHY (t)dt+AJρ(Y (t))dt+
√

2β−1dBt.

Thus, we get698

Y (t) = e−tAJHY (0) +
√

2β−1

∫ t

0

e(s−t)AJHdBs +

∫ t

0

e(s−t)AJHAJρ(Y (s))ds.

Given 0 ≤ t0 ≤ t1, we define the matrix flow699

Qt0(t) := e(t0−t)AJH , (B.67)

and Zt := e(t−t0)AJHYt so that700

Zt = e−t0AJHY (0) +
√

2β−1

∫ t

0

e(s−t0)AJHdBs +

∫ t

0

e(s−t0)AJHAJρ(Y (s))ds.

We define the decomposition Zt = Z0
t + Z1

t , where701

Z0
t = e−t0AJHY (0) +

√
2β−1

∫ t

0

e(s−t0)AJHdBs, (B.68)

Z1
t =

∫ t

0

e(s−t0)AJHAJρ(Y (s))ds. (B.69)

It follows that for any t0 ≤ t ≤ t1,702

Qt0(t1)Z1
t =

∫ t

0

e(s−t1)AJHAJρ(Y (s))ds,

Qt0(t1)Z0
t = e−t1AJHY (0) +

√
2β−1

∫ t

0

e(s−t1)AJHdBs.

The rest of the proof is similar to the proof of Proposition 7. We apply Lemma 13 to bound the term703

Qt0(t1)Z1
t and apply Lemma 12 to bound the term Qt0(t1)Z0

t . By letting γ = 1 in Proposition 7 and704

replacing d by d/2 due to Lemma 12, and ‖Hγ‖ by ‖AJH‖ and using the bounds ‖AJ‖ ≤ (1 +‖J‖)705

and ‖AJH‖ ≤ (1 + ‖J‖)M , we obtain the desired result in Proposition 11.706
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B.3.3 Uniform L2 bounds for NLD707

In this section we establish uniform L2 bounds for both the continuous time dynamics (1.9) and708

discrete time dynamics (1.10). The main idea of the proof is to use Lyapunov functions. Our local709

analysis result relies on the approximation of the continuous time dynamics (1.9) by the discrete time710

dynamics (1.10). The uniform L2 bound for the discrete dynamics (1.10) is used to derive the relative711

entropy to compare the laws of the continuous time dynamics and the discrete time dynamics, and712

the uniform L2 bound for the continuous dynamics (1.9) is used to control the tail of the continuous713

dynamics in Section B.3.1. We first recall the continuous-time dynamics from (1.9):714

dX(t) = −AJ(∇F (X(t)))dt+
√

2β−1dBt, AJ = I + J,

where J is a d × d anti-symmetric matrix, i.e. JT = −J . The generator of this continuous time715

process is given by716

L = −AJ∇F · ∇+ β−1∆ (B.70)
Lemma 14. Given X(0) = x ∈ Rd,717

E[F (X(t))] ≤ F (x) +
B

2
+A+

b(M +B)

m
+

2Mβ−1d(M +B)

m2
.

Since F has at most the quadratic growth (due to Lemma 20), we immediately have the following718

corollary.719

Corollary 15. Given ‖X(0)‖ ≤ R =
√
b/m,720

E[‖X(t)‖2] ≤ Cc :=
MR2 + 2BR+B + 4A

m
+

2b(M +B)

m2
+

4Mβ−1d(M +B)

m3
+

b

m
log 3.

(B.71)

We next show uniform L2 bounds for the discrete iterates Xk, where we recall from (1.10) that the721

non-reversible Langevin dynamics is given by:722

Xk+1 = Xk − ηAJ(∇F (Xk)) +
√

2ηβ−1ξk.

Lemma 16. Given that η ≤ 1
M‖AJ‖2 , we have723

Ex[F (Xk)] ≤ F (x) +
B

2
+A+

4(M +B)Mβ−1d

m2
+

(M +B)b

m
.

Since F has at most the quadratic growth (due to Lemma 20), we immediately have the following724

corollary.725

Corollary 17. Given that η ≤ 1
M‖AJ‖2 and ‖X(0)‖ ≤ R =

√
b/m, we have726

E[‖Xk‖2] ≤ Cd :=
MR2 + 2BR+B + 4A

m
+

8(M +B)Mβ−1d

m3
+

2(M +B)b

m2
+

b

m
log 3.

(B.72)

B.3.4 Proofs of auxiliary results727

Proof of Lemma 12. By following the proof of Lemma 8. We get728

P
(

sup
t0≤t≤t1

∥∥Qt0(t1)Z0
t

∥∥ ≥ h) ≤ 1√
det(I − βθΣt1)

e−
βθ
2 [h2−〈µt1 ,(I−βθΣt1 )−1µt1 〉],

Recall from (2.3) that for any ε̃ > 0, there exists some CJ(ε̃) such that for every t ≥ 0,729 ∥∥e−tAJH∥∥ ≤ CJ(ε̃)e−(λJ1−ε̃)t,

Hence, by the definition of Σt from (B.66), we get730

‖Σt‖ ≤ 2β−1

∫ ∞
0

(CJ(ε̃))2e−2(λJ1−ε̃)tdt =
β−1(CJ(ε̃))2

λJ1 − ε̃
.

The rest of the proof follows similarly as in the proof of Lemma 8.731
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Proof of Lemma 13. Note that732 ∥∥Qt0(t1)Z1
t

∥∥ ≤ ∫ t

0

∥∥∥e(s−t1)AJH
∥∥∥ ‖AJ‖ ‖ρ(Y (s))‖ ds,

and by applying ‖ρ(Y (t))‖ ≤ 1
2L‖Y (t)‖2 and (2.3), and t0 ≤ t ≤ (t1 ∧ τ) and the definition of the733

stopping time τ in Proposition 11, we get the desired result.734

Proof of Lemma 14. Note that if we can show that F (x) is a Lyapunov function for X(t):735

LF (x) ≤ −ε1F (x) + b1, (B.73)
for some ε1, b1 > 0, then736

E[F (X(t))] ≤ F (x) +
b1
ε1
.

Let us first prove this. Applying Ito formula to eε1tF (X(t)), we obtain from Dynkin formula and737

the drift condition (B.73) that for tK := min{t, τK} with τK be the exit time of X(t) from a ball738

centered at 0 with radius K with X(0) = x,739

E[eε1tKF (X(tK))] ≤ F (x) + E
[∫ tK

0

b1e
ε1sds

]
≤ F (x) +

∫ t

0

b1e
ε1sds ≤ F (x) +

b1
ε1
· eε1t.

Let K →∞, then we can infer from Fatou’s lemma that for any t:740

E
[
eε1tF (X(t))

]
≤ F (x) +

b1
ε1
· eε1t.

Hence, we have741

E[F (X(t))] ≤ F (x) +
b1
ε1
.

Next, let us prove (B.73). By the definition of L in (B.70), we can compute that742

LF (x) = −AJ∇F (x) · ∇F (x) + β−1∆F (x)

= −‖∇F (x)‖2 + β−1∆F (x),

since J is anti-symmetric so that 〈∇F (x), J∇F (x)〉 = 0. Moreover,743

‖x‖ · ‖∇F (x)‖ ≥ 〈x,∇F (x)〉 ≥ m‖x‖2 − b, (B.74)
implies that744

‖∇F (x)‖ ≥ m‖x‖ − b

‖x‖
≥ 1

2
m‖x‖, (B.75)

provided that ‖x‖ ≥
√

2b/m, and thus745

LF (x) ≤ −m
2

4
‖x‖2 + β−1∆F (x) ≤ −m

2

4
‖x‖2 +

mb

2
+ β−1∆F (x), (B.76)

for any ‖x‖ ≥
√

2b/m. On the other hand, for any ‖x‖ ≤
√

2b/m, we have746

LF (x) ≤ β−1∆F (x) ≤ −m
2

4
‖x‖2 +

mb

2
+ β−1∆F (x). (B.77)

Hence, for any x ∈ Rd,747

LF (x) ≤ −m
2

4
‖x‖2 +

mb

2
+ β−1∆F (x). (B.78)

Next, recall that F is M -smooth, and thus748

∆F (x) ≤Md.

Finally, by Lemma 20,749

F (x) ≤ M

2
‖x‖2 +B‖x‖+A ≤ M +B

2
‖x‖2 +

B

2
+A.

Therefore, we have750

LF (x) ≤ − m2

2(M +B)
F (x) +

m2(B2 +A)

2(M +B)
+
mb

2
+Mβ−1d.

Hence, the proof is complete.751
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Proof of Corollary 15. Recall from Lemma 20 that752

F (x) ≥ m

2
‖x‖2 − b

2
log 3,

which implies that753

‖x‖2 ≤ 2

m
F (x) +

b

m
log 3.

It then follows from Lemma 14 that754

E[‖X(t)‖2] ≤ 2

m
F (x) +

B

m
+

2A

m
+

2b(M +B)

m2
+

4Mβ−1d(M +B)

m3
+

b

m
log 3.

Recall that ‖X(0)‖ = ‖x‖ ≤ R and by Lemma 20 we get F (x) ≤ M
2 ‖x‖

2 +B‖x‖+A, and thus755

E[‖X(t)‖2] ≤ Cc =
MR2 + 2BR+B + 4A

m
+

2b(M +B)

m2
+

4Mβ−1d(M +B)

m3
+

b

m
log 3.

756

Proof of Lemma 16. Suppose we have757

Ex[F (X1)]− F (x)

η
≤ −ε2F (x) + b2, (B.79)

uniformly for small η, where ε2, b2 are positive constants that are independent of η, then we will first758

show below that759

Ex[F (Xk)] ≤ F (x) +
b2
ε2
.

We will use the discrete Dynkin’s formula (see, e.g. Section 4.2 in [MT92]). Let Fi denote the760

filtration generated by X0, . . . , Xi. Note {Xk : k ≥ 0} is a time-homogeneous Markov process, so761

the drift condition (B.79) implies that762

E[F (Xi)|Fi−1] ≤ (1− ηε2)F (Xi−1) + b2.

Then by letting r = 1/(1− ηε2), we obtain763

E [rF (Xi)|Fi−1] ≤ F (Xi−1) + rb2.

Then we can compute that764

E
[
riF (Xi)|Fi−1

]
− ri−1F (Xi−1) = ri−1 · [E[rF (Xi)|Fi−1]− F (Xi−1)] ≤ rib2. (B.80)

Define the stopping time τk,K = min{k, inf{i : |Xi| ≥ K}}, where K is a positive integer, so that765

Xi is essentially bounded for i ≤ τk,K . Applying the discrete Dynkin’s formula (see, e.g. Section766

4.2 in [MT92]), we have767

Ex
[
rτk,KF (Xτk,K )

]
= Ex [F (X0)] + E

[τk,K∑
i=1

(
E[riF (Xi)|Fi−1]− ri−1F (Xi−1)

)]
.

Then it follows from (B.80) that768

Ex
[
rτk,KF (Xτk,K )

]
≤ F (x) + b2η

k∑
i=1

ri.

As τk,K → k almost surely as K →∞, we infer from Fatou’s Lemma that769

Ex
[
rkF (Xk)

]
≤ F (x) + b2η

k∑
i=1

ri,

which implies that for all k,770

Ex [F (Xk)] ≤ F (x) +
b2η

r − 1
= F (x) +

b2(1− η2ε2)

ε2
≤ F (x) +

b2
ε2
,
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as r = 1/(1− η2ε2). Hence we have771

Ex [F (Xk)] ≤ F (x) +
b2
ε2
.

It remains to prove (B.79). Note that as∇F is Lipschitz continuous with constant M so that:772

F (y) ≤ F (x) +∇F (x)(y − x) +
M

2
‖y − x‖2.

Therefore,773

Ex[F (X1)]− F (x)

η
=

1

η

(
Ex
[
F (x− ηAJ(∇F (x)) +

√
2ηβ−1ξ0)

]
− F (x)

)
≤ −∇F (x)AJ∇F (x) +

M

2η
Ex
[∥∥∥−ηAJ(∇F (x)) +

√
2ηβ−1ξ0

∥∥∥2
]

= −‖∇F (x)‖2 +
M

2
η‖AJ∇F (x)‖2 +Mβ−1d

≤ −1

2
‖∇F (x)‖2 +Mβ−1d ,

provided that M2 ‖AJ‖
2η ≤ 1

2 . Similar to the arguments in (B.74)-(B.78), we get774

Ex[F (X1)]− F (x)

η
≤ −m

2

8
‖x‖2 +Mβ−1d+

mb

4
.

Finally, by Lemma 20,775

F (x) ≤ M

2
‖x‖2 +B‖x‖+A ≤ M +B

2
‖x‖2 +

B

2
+A.

Therefore, we have776

Ex[F (X1)]− F (x)

η
≤ − m2

4(M +B)
F (x) +

m2(B2 +A)

4(M +B)
+Mβ−1d+

mb

4
.

Hence, the proof is complete.777

Proof of Corollary 17. The proof is similar to the proof of Corollary 15 and is thus omitted.778

C Proof of Proposition 5 and Proposition 6779

Proof of Proposition 5. Write u as the corresponding eigenvector ofAJLσ for the eigenvalue−µ∗J <780

0, so we have781

AJLσu = −µ∗Ju. (C.1)
Then it follows that782

(−µ∗J)u∗Lσu = u∗Lσ(−µ∗Ju) = u∗LσAJLσu = u∗(Lσ)TAJLσu = |Lσu|2 + u∗(Lσ)TJLσu,

where u∗ denotes the conjugate transpose of u, (Lσ)T denotes the transpose of Lσ , and (Lσ)T = Lσ783

as Lσ is a real symmetric matrix. It is easy to see that u∗Lσu is a real number as (u∗Lσu)∗ = u∗Lσu.784

In addition, u∗(Lσ)TJLσu is pure imaginary, since (u∗(Lσ)TJLσu)∗ = u∗(Lσ)TJTLσu =785

−u∗(Lσ)TJLσu by the fact that J is an anti-symmetric real matrix. Hence, we deduce that786

u∗(Lσ)TJLσu = 0,

and it implies that787

(−µ∗J)u∗Lσu = |Lσu|2. (C.2)
Note u∗Lσu 6= 0 as otherwise 0 becomes an eigenvalue of Lσ from (C.2), which is a contradiction.788

In fact, we obtain from (C.2) that −u∗Lσu > 0 as µ∗J > 0 and |Lσu|2 > 0.789

Since Lσ is a real symmetric matrix, we have790

Lσ = STDS, (C.3)
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for a real orthogonal matrix S, where D = diag(µ1, µ2, . . . , µd) with µ1 < 0 < µ2 < . . . < µd791

being the eigenvalues of Lσ . Then we obtain792

µ∗J =
|Lσu|2

−u∗Lσu
=

u∗S∗D2Su

−u∗S∗DSu
=

∑d
i=1 µ

2
i |(Su)i|2∑d

i=1−µi|(Su)i|2
, (C.4)

where (Su)i denotes the i-th component of the vector Su. Since µ1 < 0 < µ2 < . . . < µd, we793

then have (Su)1 6= 0 as otherwise −u∗Lσu =
∑n
i=1−µi|(Su)i|2 ≤ 0, which is a contradiction.794

Therefore, we conclude from (C.4) that795

µ∗J ≥ |µ1| = µ∗(σ). (C.5)

The equality µ∗J = |µ1| = µ∗(σ) is attained if and only if (Su)i = 0 for i = 2, . . . , n. Or equivalently796

if and only if the vector Su = ae1 where a is a non-zero constant and e1 = [1 0 . . . 0]T is the first797

basis vector. Since S−1 = ST , this is also equivalent to u = av where v = ST e1 is an eigenvector of798

Lσ corresponding to the eigenvalue µ1. Since u and v are related up to a constant, this is the same as799

saying v is an eigenvector of AJLσ satisfying (C.1). Since v is also an eigenvalue of Lσ and J being800

anti-symmetric, has only purely imaginary eigenvalues except a zero eigenvalue, this is if and only if801

Jv = 0. In other words, the equality µ∗J = |µ1| = µ∗(σ) is attained if and only if the eigenvector of802

Lσ corresponding to the negative eigenvalue µ1 is an eigenvector of J for the eigenvalue 0.803

We note finally that Equation (3.5) then readily follows from (3.4) and (C.5).804

Proof of Proposition 6. Write τβ,na1→a2 for the first time that the continuous-time dynamics {X(t)}805

starting from a1 to exit the region Dn. Then by monotone convergence theorem, we have806

lim
R→∞

E
[
τβ,na1→a2

]
= E

[
τβa1→a2

]
.

Hence, for fixed ε > 0, one can choose a sufficiently large n such that807 ∣∣E [τβ,na1→a2
]
− E

[
τβa1→a2

]∣∣ < ε. (C.6)

We next control the expected difference between the exit times τ̂β,na1→a2 of the discrete dynamics, and808

τβ,na1→a2 of the continuous dynamics, from the bounded domain Dn. For fixed ε and large n, we can809

infer from Theorem 4.2 in [GM05] that4, for sufficiently small stepsize η ≤ η̄(ε, n, β),810 ∣∣E [τ̂β,na1→a2
]
− E

[
τβ,na1→a2

]∣∣ < ε. (C.7)

Together with (C.6), we obtain for η sufficiently small,811 ∣∣E [τ̂β,na1→a2
]
− E

[
τβa1→a2

]∣∣ < 2ε.

The proof is therefore complete.812

D Supporting technical lemmas813

Lemma 18. Consider the square matrix Hγ defined by (2.2). We have

‖Hγ‖ ≤
√
γ2 +M2 + 1.

Proof. It follows from (B.1) that814

‖Hγ‖ = ‖Tγ‖ = max
i
‖Ti(γ)‖. (D.1)

We also compute815

‖Ti(γ)‖2 = λmax

(
Ti(γ)Ti(γ)T

)
= λmax

([
γ2 + λ2

i −γ
−γ 1

])
,

4The Assumption (H2’) in Theorem 4.2 of [GM05] can be readily verified in our setting: for both reversible
and non-reversible SDE, the drift and diffusion coefficients are clearly Lipschitz; the diffusion matrix is uniformly
elliptic; and the domain Dn is bounded and it satisfies the exterior cone condition.
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where λmax denotes the largest real part of the eigenvalues. This leads to816

‖Ti(γ)‖2 =
γ2 + λ2

i + 1 +
√

(γ2 + λ2
i + 1)2 − 4λ2

i

2
≤ γ2 + λ2

i + 1.

Since m ≤ λi ≤M for every i, we obtain817

max
i
‖Ti(γ)‖2 ≤ max

i

(
γ2 + λ2

i + 1
)

= γ2 +M2 + 1.

We conclude from (D.1).818

Lemma 19. Let Bt be a standard d-dimensional Brownian motion. For any u > 0 and any819

t1 > t0 ≥ 0 with t1 − t0 = η > 0, we have820

P

(
sup

t∈[t0,t1]

‖Bt −Bt1‖ ≥ u

)
≤ 21/4e1/4e−

u2

4dη .

Proof. Also, by the time reversibility, stationarity of time increments of Brownian motion and Doob’s821

martingale inequality, for any θ > 0 so that 2θη < 1, we have822

P

(
sup

t∈[t0,t1]

‖Bt −Bt1‖ ≥ u

)
= P

(
sup
t∈[0,η]

‖Bt −B0‖ ≥ u

)
≤ e−θu

2

E
[
eθ‖Bη−B0‖2

]
= e−θu

2

(1− 2θη)−d/2.

By choosing θ = 1/(4dη), we get823

P

(
sup

t∈[t0,t1]

‖Bt −Bt1‖ ≥ u

)
≤
(

1− 1

2d

)− d2
e−

u2

4dη .

Note that for any x > 0, (1 + 1
x )x < e. Let us define x > 0 via824

1− 1

2d
=

1

1 + x
.

Then, we get d = 1+x
2x and x = 1

1− 1
2d

− 1 ≤ 1, and825

(
1− 1

2d

)− d2
=

(
1

1 + x

)− 1+x
4x

= (1 + x)
1
4 (1 + x)

1
4x ≤ 21/4e1/4.

Hence,826

P

(
sup

t∈[t0,t1]

‖Bt −Bt1‖ ≥ u

)
≤ 21/4e1/4e−

u2

4dη .

827

Lemma 20 (See Lemma 2 in [RRT17]). If parts (i) and (ii) of Assumption 1 hold, then for all828

x ∈ Rd and z ∈ Z ,829

‖∇f(x, z)‖ ≤M‖x‖+B,

and830
m

3
‖x‖2 − b

2
log 3 ≤ f(x, z) ≤ M

2
‖x‖2 +B‖x‖+A.
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