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1 Comparison of Training Time and Memory Consumption

We report in Table 1 the comparison of training time and GPU memory consumption between our
proposed ProxyGML and two types of state-of-the-art methods, i.e., sampling-based Semi-Hard [6],
Margin [10], HDML [11], MS [9], and proxy-based ProxyNCA [3]. Inception [7] pretrained on the
ImageNet [5] dataset is employed as the backbone feature embedding network (embedding dimension
is 512) for all the compared methods. The other parameters (e.g., batch size) follow the default
settings of these methods. All experiments are implemented with an NVIDIA TITAN XP GPU of
12GB memory.

Technically, ProxyGML adaptively selects a few proxies for each sample to construct informative
k-NN subgraphs, which can be viewed as a novel sampling strategy in the proxy level. In contrast to
other sampling-based methods, according to Table 1, ProxyGML iterates and converges faster with a
less memory requirement. The main reason is two-fold: 1) ProxyGML selects the proxies using a
simple ranking algorithm instead of the cumbersome sampling strategies in the sample level, and
most of calculations in ProxyGML are also simple matrix/vector multiplications; 2) since proxies can
collectively approximate the global geometry of raw data samples, a large batch size is unnecessary
for ProxyGML; so ProxyGML converges fast even with a small batch size.

Specifically, compared against ProxyNCA [3], ProxyGML introduces a proxy sampling phase, which
increases the iteration time; the extra uncertainties also increase the convergence time. In ProxyGML,
multiple trainable proxies are assigned to each class, which also increases the memory consumption.
We believe that the additional training time and memory requirement are worthy given the brought
great gain in accuracy (cf. Table 2 in the original paper).

In conclusion, ProxyGML is more efficient than the aforementioned sampling-based methods, and we
argue that sampling in the proxy level should be more promising than sampling in the sample level.

Table 1: Comparison of iteration time (training time per iteration), convergence time (training time
till convergence), and maximum GPU memory consumption on the Cars196 dataset.

Time/Memory Semi-Hard [6] Margin [10] ProxyNCA [3] HDML [11] MS [9] ProxyGML

Iteration time 0.48 s 0.56 s 0.17 s 1.1 s 0.75 s 0.23 s
Convergence time 1.01 h 1.12 h 0.51 h 2.25 h 0.88 h 0.81 h
Max GPU memory 4.90 GB 4.90 GB 1.54 GB 8.96 GB 3.52 GB 2.18 GB

The codes are downloaded from

1) https://github.com/Confusezius/Deep-Metric-Learning-Baselines (Semi-Hard [6],
Margin [10], and ProxyNCA [3]);
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N/r r=0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.8 1
N=1 0.441 0.748 0.793 0.796 0.8 0.789 0.766 0.726 0.532 0.522 0.518 0.506 0.498 0.49 0.487 0.472 0.46

2 0.43 0.81 0.824 0.82 0.81 0.776 0.726 0.634 0.61 0.58 0.566 0.554 0.531 0.53 0.521 0.51 0.49
3 0.438 0.83 0.832 0.824 0.815 0.775 0.712 0.681 0.667 0.654 0.632 0.622 0.61 0.59 0.584 0.563 0.55
4 0.436 0.83 0.839 0.832 0.82 0.8 0.733 0.695 0.67 0.654 0.643 0.632 0.628 0.62 0.619 0.602 0.59
5 0.441 0.831 0.839 0.835 0.83 0.812 0.78 0.751 0.71 0.698 0.686 0.674 0.666 0.66 0.655 0.641 0.63
6 0.442 0.832 0.838 0.839 0.838 0.82 0.806 0.789 0.75 0.757 0.732 0.71 0.708 0.697 0.685 0.676 0.67
7 0.438 0.826 0.842 0.843 0.838 0.836 0.814 0.8 0.763 0.755 0.742 0.74 0.739 0.73 0.731 0.726 0.72
8 0.435 0.82 0.841 0.844 0.844 0.833 0.82 0.812 0.802 0.778 0.77 0.751 0.743 0.75 0.735 0.748 0.74
9 0.446 0.816 0.844 0.846 0.845 0.838 0.831 0.817 0.806 0.799 0.786 0.779 0.773 0.77 0.763 0.757 0.75

10 0.446 0.801 0.847 0.846 0.848 0.847 0.843 0.823 0.818 0.813 0.81 0.802 0.787 0.79 0.795 0.782 0.78
11 0.439 0.792 0.842 0.848 0.851 0.847 0.842 0.836 0.826 0.822 0.815 0.813 0.8 0.8 0.794 0.801 0.79
12 0.44 0.74 0.84 0.845 0.855 0.849 0.847 0.846 0.84 0.83 0.824 0.822 0.812 0.817 0.798 0.794 0.79
13 0.44 0.735 0.841 0.84 0.852 0.85 0.847 0.841 0.837 0.835 0.829 0.818 0.817 0.818 0.823 0.817 0.812
14 0.446 0.7 0.841 0.852 0.85 0.846 0.847 0.844 0.839 0.839 0.834 0.833 0.825 0.835 0.827 0.822 0.821
15 0.434 0.689 0.834 0.838 0.845 0.843 0.84 0.841 0.838 0.838 0.84 0.837 0.831 0.83 0.826 0.825 0.822
16 0.448 0.664 0.828 0.844 0.845 0.843 0.844 0.842 0.84 0.834 0.835 0.834 0.832 0.831 0.836 0.831 0.823
17 0.447 0.652 0.835 0.839 0.842 0.838 0.842 0.841 0.84 0.838 0.839 0.83 0.838 0.841 0.836 0.839 0.824
18 0.435 0.64 0.836 0.842 0.845 0.84 0.842 0.843 0.84 0.842 0.834 0.835 0.837 0.835 0.835 0.824 0.828
19 0.442 0.62 0.83 0.838 0.84 0.843 0.84 0.837 0.84 0.842 0.84 0.838 0.827 0.84 0.831 0.832 0.83
20 0.437 0.586 0.833 0.837 0.84 0.842 0.84 0.84 0.84 0.837 0.834 0.836 0.832 0.837 0.832 0.833 0.83
21 0.44 0.592 0.835 0.835 0.84 0.839 0.84 0.841 0.841 0.835 0.834 0.834 0.836 0.838 0.834 0.832 0.831
22 0.44 0.602 0.825 0.838 0.84 0.84 0.842 0.841 0.841 0.842 0.831 0.835 0.837 0.836 0.837 0.838 0.835
23 0.443 0.591 0.823 0.836 0.838 0.841 0.84 0.841 0.834 0.839 0.838 0.839 0.832 0.836 0.83 0.835 0.835
24 0.434 0.59 0.827 0.836 0.835 0.835 0.834 0.836 0.835 0.831 0.834 0.832 0.834 0.838 0.832 0.833 0.834
25 0.44 0.56 0.822 0.83 0.835 0.835 0.834 0.839 0.834 0.838 0.832 0.837 0.832 0.837 0.833 0.831 0.831
26 0.443 0.564 0.821 0.824 0.835 0.835 0.836 0.835 0.834 0.832 0.833 0.831 0.83 0.838 0.832 0.831 0.826
27 0.44 0.54 0.816 0.827 0.835 0.831 0.832 0.836 0.835 0.831 0.832 0.831 0.832 0.829 0.834 0.832 0.828
28 0.44 0.57 0.817 0.825 0.833 0.835 0.834 0.835 0.836 0.831 0.832 0.834 0.832 0.831 0.835 0.834 0.83
29 0.441 0.589 0.821 0.82 0.835 0.832 0.836 0.836 0.832 0.83 0.826 0.833 0.832 0.834 0.831 0.826 0.828
30 0.444 0.56 0.823 0.824 0.829 0.828 0.835 0.836 0.834 0.835 0.828 0.833 0.834 0.83 0.836 0.828 0.825

r=
N/r 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.8 1
N=1 44.1 74.8 79.3 79.6 80 78.9 69.6 72.6 53.2 52.2 51.8 50.6 49.8 49 48.7 47.2 46

2 43 81 82.4 82 81 77.6 72.4 63.4 61 58 56.6 55.4 53.1 53 52.1 51 49
3 43.8 83 83.2 82.4 81.5 77.5 74.8 68.1 66.7 65.4 63.2 62.2 61 59 58.4 56.3 55
4 43.6 83 83.9 83.2 82 80 77.3 69.5 67 65.4 64.3 63.2 62.8 62 61.9 60.2 59
5 44.1 83.1 83.9 83.5 83 81.2 78.8 75.1 71 69.8 68.6 67.4 66.6 66 65.5 64.1 63
6 44.2 83.2 83.8 83.9 83.8 82 80.6 78.9 75 75.7 73.2 71 70.8 69.7 68.5 67.6 67
7 43.8 82.6 84.2 84.3 83.8 83.6 81.4 80 76.3 75.5 74.2 74 73.9 73 73.1 72.6 72
8 43.5 82 84.1 84.4 84.4 83.3 82 81.2 80.2 77.8 77 75.1 74.3 75 73.5 74.8 74
9 44.6 81.6 84.4 84.6 84.5 83.8 83.1 81.7 80.6 79.9 78.6 77.9 77.3 77 76.3 75.7 75

10 44.6 80.1 84.7 84.6 84.8 84.7 84.3 82.3 81.8 81.3 81 80.2 78.7 79 79.5 78.2 78
11 43.9 79.2 84.2 84.8 85.1 84.7 84.2 83.6 82.6 82.2 81.5 81.3 80 80 79.4 80.1 79
12 44 74 84 84.5 85.5 84.9 84.7 84.6 84 83 82.4 82.2 81.2 81.7 79.8 79.4 79
13 44 73.5 84.1 84 85.2 85 84.7 84.1 83.7 83.5 82.9 81.8 81.7 81.8 82.3 81.7 81.2
14 44.6 70 84.1 85.2 85 84.6 84.7 84.4 83.9 83.9 83.4 83.3 82.5 83.5 82.7 82.2 82.1
15 43.4 68.9 83.4 83.8 84.5 84.3 84 84.1 83.8 83.8 84 83.7 83.1 83 82.6 82.5 82.2
16 44.8 66.4 82.8 84.4 84.5 84.3 84.4 84.2 84 83.4 83.5 83.4 83.2 83.1 83.6 83.1 82.3
17 44.7 65.2 83.5 83.9 84.2 83.8 84.2 84.1 84 83.8 83.9 83 83.8 84.1 83.6 83.9 82.4
18 43.5 64 83.6 84.2 84.5 84 84.2 84.3 84 84.2 83.4 83.5 83.7 83.5 83.5 82.4 82.8
19 44.2 62 83 83.8 84 84.3 84 83.7 84 84.2 84 83.8 82.7 84 83.1 83.2 83
20 43.7 58.6 83.3 83.7 84 84.2 84 84 84 83.7 83.4 83.6 83.2 83.7 83.2 83.3 83
21 44 59.2 83.5 83.5 84 83.9 84 84.1 84.1 83.5 83.4 83.4 83.6 83.8 83.4 83.2 83.1
22 44 60.2 82.5 83.8 84 84 84.2 84.1 84.1 84.2 83.1 83.5 83.7 83.6 83.7 83.8 83.5
23 44.3 59.1 82.3 83.6 83.8 84.1 84 84.1 83.4 83.9 83.8 83.9 83.2 83.6 83 83.5 83.5
24 43.4 59 82.7 83.6 83.5 83.5 83.4 83.6 83.5 83.1 83.4 83.2 83.4 83.8 83.2 83.3 83.4
25 44 56 82.2 83 83.5 83.5 83.4 83.9 83.4 83.8 83.2 83.7 83.2 83.7 83.3 83.1 83.1
26 44.3 56.4 82.1 82.4 83.5 83.5 83.6 83.5 83.4 83.2 83.3 83.1 83 83.8 83.2 83.1 82.6
27 44 54 81.6 82.7 83.5 83.1 83.2 83.6 83.5 83.1 83.2 83.1 83.2 82.9 83.4 83.2 82.8
28 44 57 81.7 82.5 83.3 83.5 83.4 83.5 83.6 83.1 83.2 83.4 83.2 83.1 83.5 83.4 83
29 44.1 58.9 82.1 82 83.5 83.2 83.6 83.6 83.2 83 82.6 83.3 83.2 83.4 83.1 82.6 82.8
30 44.4 56 82.3 82.4 82.9 82.8 83.5 83.6 83.4 83.5 82.8 83.3 83.4 83 83.6 82.8 82.5
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Figure 1: Recall@1 values of ProxyGML on Cars196 with different combinations of N and r.

2) https://github.com/wzzheng/HDML (HDML [11]);
3) https://github.com/MalongTech/research-ms-loss (MS [9]).

The datasets are available at

1) https://ai.stanford.edu/~jkrause/cars/car_dataset.html (Cars196 [2]);
2) http://www.vision.caltech.edu/visipedia/CUB-200-2011.html (CUB-200-2011 [8]);
3) https://cvgl.stanford.edu/projects/lifted_struct/ (Stanford Online Products [4]).

2 Comparison with Proxy-Anchor [1]

We also compare our proposed ProxyGML against newly proposed Proxy-Anchor [1] using its official
code, and the Recall@1 results are listed in Table 2. In particular, we have found that Proxy-Anchor
relies on a large batch size, and is implemented with three additional engineering skills, i.e., 1)
a combination of an average- and a max- pooling layers following the Inception backbone, 2) a
warm-up strategy for stabilizing proxy learning, and 3) an AdamW optimizer instead of original
Adam. For fair comparison, we evaluate Proxy-Anchor under our setting — with batch size 32 and the
three engineering skills removed; it is also evaluated with the three skills enabled (indicated by “∗”),

2
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Table 2: Comparison with Proxy-Anchor on the Cars196 dataset. The performance of image retrieval
is measured by Recall@n (%).

Method CUB Cars196 SOP

ProxyGML32 66.6 85.5 78.0
Proxy-Anchor32 35.8 20.3 41.4
Proxy-Anchor∗32 65.4 83.1 75.7
Proxy-Anchor180 66.1 84.2 54.5

Proxy-Anchor∗30 65.9 84.6 76.0

and with its optimal batch size 180. Since time does not allow any further tuning for Proxy-Anchor,
we report here the result with batch size 30 (also the skills are used) provided in its paper for reference.
Please note that this is only a preliminary experiment. Still, we can infer from the table the advantage
of our ProxyGML over Proxy-Anchor. We will further conduct more experiments of Proxy-Anchor
with a careful tuning and ProxyGML with large batch size and the three skills added, which will be
available at https://github.com/YuehuaZhu/ProxyGML.

3 Sensitivity Test for λ

lambda R@1 Accuracy 
0.03 0.848 84.8
0.06 0.849 84.9
0.09 0.85 85
0.3 0.855 85.5
0.6 0.853 85.3
0.9 0.852 85.2

3 0.85 85
6 0.847 84.7
9 0.85 85

30 0.848 84.8
60 0.846 84.6
90 0.849 84.9

Method Semi-Hard Margin ProxyNCA HDML MS ProxyGML
Iterations/Sec 0.48秒 0.56秒 0.17秒 1.1秒 0.75秒 0.23秒
Training time 1.01时 1.12时 0.51时 2.25时 0.88时 0.81时
Max memory 4.90GB 4.90GB 1.54G 8.96GB 3.52GB 2.18GB
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Figure 2: Recall@1 values of ProxyGML on the
Cars196 dataset with different λ.

As shown in Fig. 2, the tradeoff hyper-parameter
λ imposed on the regularizer Lp on proxies is
insensitive. Particularly, as demonstrated in Ta-
ble 1 in the original paper, both the positive
mask Spos and regularizer Lp are conducive to
learning better proxies, i.e., better local clus-
ter centers in each class. Therefore, the pres-
ence or absence of the regularizer Lp will not
greatly affect the overall performance when the
positive mask Spos exists, so the tradeoff hyper-
parameter λ on Lp is insensitive.

4 Impact of Broader Combinations of N and r

We show in Fig. 1 the impact of representative combinations of different N and r on Cars196
whose number of classes C is 98. Specifically, for the i-th sample (xs

i , y
s
i ) in a mini-batch, its

98-dimensional prediction score vector can be derived from the i-th row of Z (Eq. (5) in the original
paper) through a softmax operation. In fact, the value of Zij reflects the cumulative similarity between
the sample xs

i and the j-th class proxies, i.e., N positive proxies and (dr × 98×Ne −N) negative
proxies (cf. Sec. 3.2 in the original paper).

Now we consider two special cases. When r = 0.01, no negative proxies will be selected. In this
case, negative elements in the prediction scores will all be zeros (cf. Fig. 2 in the original paper),
i.e., the prediction score corresponding to class ysi will be equal to 1, such that the cross-entropy
loss will be zero and the trainable parameters will not be updated at all, causing poor performance
shown in Fig. 1. When r = 1 and N = 1, only 1 positive proxy will be selected while the number of
negative ones is 97. After softmax operation, the prediction score corresponding to class ysi will be
restricted to far smaller than 1, making it hard to be optimized to fit the one-hot ground-truth label
distribution and also leading to poor performance. Overall, we can observe the optimal performance
when r = 0.05 and N = 12.
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