A Omitted proofs

Proof of Proposition 1. We recall the I-MMSE relation (11):

$$
\frac{d}{d \beta} \frac{1}{\lambda_{N}} \mathrm{D}\left(\mathrm{Q}_{\beta \lambda_{N}, N} \| \mathrm{Q}_{0, N}\right)=\frac{1}{2}-\frac{1}{2} \operatorname{MMSE}_{N}\left(\beta \lambda_{N}\right)
$$

Let us first assume that the all-or-nothing phenomenon holds. Since $\mathrm{D}\left(\mathrm{Q}_{0, N} \| \mathrm{Q}_{0, N}\right)=0$, we can write

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{\lambda_{N}} \mathrm{D}\left(\mathrm{Q}_{\beta \lambda_{N}, N} \| \mathrm{Q}_{0, N}\right) & =\lim _{N \rightarrow \infty} \int_{0}^{\beta} \frac{d}{d \kappa} \frac{1}{\lambda_{N}} \mathrm{D}\left(\mathrm{Q}_{\kappa \lambda_{N}, N} \| \mathrm{Q}_{0, N}\right) \mathrm{d} \kappa \\
& =\lim _{N \rightarrow \infty} \int_{0}^{\beta} \frac{1}{2}-\frac{1}{2} \operatorname{MMSE}_{N}\left(\kappa \lambda_{N}\right) \mathrm{d} \kappa \\
& \stackrel{(*)}{=} \int_{0}^{\beta} \frac{1}{2}-\lim _{N \rightarrow \infty} \operatorname{MMSE}_{N}\left(\kappa \lambda_{N}\right) \mathrm{d} \kappa \\
& =\frac{1}{2}(\beta-1)_{+}
\end{aligned}
$$

where in $(*)$ we have used the dominated convergence theorem and the fact that $\operatorname{MMSE}_{N}\left(\kappa \lambda_{N}\right) \in$ $[0,1]$ and where the last equality follows from the all-or-nothing phenomenon.
In the other direction, we use the fact that $\operatorname{MMSE}_{N}\left(\beta \lambda_{N}\right)$ is a non-increasing function of β [see, e.g., Mio19, Proposition 1.3.1]. Combined with the I-MMSE relation, this immediately yields that $\frac{1}{\lambda_{N}} \mathrm{D}\left(\mathrm{Q}_{\beta \lambda_{N}, N} \| \mathrm{Q}_{0, N}\right)$ is convex. We therefore have by standard facts in convex analysis [HUL93, Proposition 4.3.4] that
$\frac{1}{2}-\frac{1}{2} \lim _{N \rightarrow \infty} \operatorname{MMSE}_{N}\left(\beta \lambda_{N}\right)=\lim _{N \rightarrow \infty} \frac{d}{d \beta} \frac{1}{\lambda_{N}} \mathrm{D}\left(\mathrm{Q}_{\beta \lambda_{N}, N} \| \mathrm{Q}_{0, N}\right)=\frac{d}{d \beta}\left(\lim _{N \rightarrow \infty} \frac{1}{\lambda_{N}} \mathrm{D}\left(\mathrm{Q}_{\beta \lambda_{N}, N} \| \mathrm{Q}_{0, N}\right)\right)$
for all β for which the right side exists. Since we have assumed that

$$
\lim _{N \rightarrow \infty} \frac{1}{\lambda_{N}} \mathrm{D}\left(\mathrm{Q}_{\beta \lambda_{N}, N} \| \mathrm{Q}_{0, N}\right)=\frac{1}{2}(\beta-1)_{+}
$$

the right side is 0 when $\beta<1$ and $\frac{1}{2}$ when $\beta>1$. The all-or-nothing property immediately follows.

Proof of Proposition 2. The first claim follows directly from Lemma 6. Indeed, for the sparse vector model, $\log M_{p}=(1+o(1)) k \log \frac{p}{k}$, and by Lemma 6,

$$
\begin{equation*}
\lim \frac{1}{k \log \frac{p}{k}} \log \mathrm{P}_{p}^{\otimes 2}\left[\left\langle\mathbf{X}, \mathbf{X}^{\prime}\right\rangle \geq t\right]=-t \tag{7}
\end{equation*}
$$

Since $t<\frac{2 t}{1+t}$ for all $t \in(0,1)$, the claim holds.
We now turn to the proof of the all-or-nothing phenomenon. By Theorem 1, it suffices to show

$$
\mathrm{D}\left(\mathrm{Q}_{2 \log M_{p}, p} \| \mathrm{Q}_{0, p}\right)=o\left(\log M_{p}\right)
$$

We write

$$
\begin{aligned}
\mathrm{D}\left(\mathrm{Q}_{2 \log M_{p}, p} \| \mathrm{Q}_{0, p}\right) & =\mathbb{E}_{\mathbf{Y} \sim \mathrm{Q}_{2} \log M_{p}, p} \log \mathbb{E}_{\mathbf{X}^{\prime} \sim \mathrm{P}_{p}} \exp \left(\sqrt{2 \log M_{p}}\left\langle\mathbf{Y}, \mathbf{X}^{\prime}\right\rangle-\log M_{p}\right) \\
& =\mathbb{E}_{\mathbf{X}} \mathbb{E}_{\mathbf{Z}} \log \mathbb{E}_{\mathbf{X}^{\prime} \sim \mathrm{P}_{p}} \exp \left(\sqrt{2 \log M_{p}}\left\langle\mathbf{Z}, \mathbf{X}^{\prime}\right\rangle+2 \log M_{p}\left\langle\mathbf{X}, \mathbf{X}^{\prime}\right\rangle-\log M_{p}\right)
\end{aligned}
$$

Now, given \mathbf{X} and any vector $v \in \mathbb{R}^{p}$, let us denote by $\left.v\right|_{\mathbf{X}} \in \mathbb{R}^{p}$ the vector given by

$$
\left(\left.v\right|_{\mathbf{X}}\right)_{i}:= \begin{cases}v_{i} & \text { if } \mathbf{X}_{i} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Similarly, let $\left.v\right|_{\mathbf{X}^{c}}:=v-\left.v\right|_{\mathbf{X}}$. Given \mathbf{X}, the vectors $\left.\mathbf{Z}\right|_{\mathbf{X}}$ and $\left.\mathbf{Z}\right|_{\mathbf{X}^{c}}$ are independent; thus we can apply Jensen's inequality to the expectation with respect to $\left.\mathbf{Z}\right|_{\mathbf{X}^{c}}$ to obtain

$$
\begin{aligned}
\mathrm{D}\left(\mathrm{Q}_{2 \log M_{p}, p} \| \mathrm{Q}_{0, p}\right) & \leq \mathbb{E}_{\mathbf{X}} \mathbb{E}_{\left.\mathbf{Z}\right|_{\mathbf{X}}} \log \mathbb{E}_{\mathbf{X}^{\prime} \sim \mathrm{P}_{p}} \mathbb{E}_{\left.\mathbf{Z}\right|_{\mathbf{x}^{C}}} \exp \left(\sqrt{2 \log M_{p}}\left\langle\mathbf{Z}, \mathbf{X}^{\prime}\right\rangle+2 \log M_{p}\left\langle\mathbf{X}, \mathbf{X}^{\prime}\right\rangle-\log M_{p}\right) \\
& =\mathbb{E}_{\mathbf{X}} \mathbb{E}_{\left.\mathbf{Z}\right|_{\mathbf{X}}} \log \mathbb{E}_{\mathbf{X}^{\prime} \sim \mathrm{P}_{p}} \exp \left(\sqrt{2 \log M_{p}}\left\langle\left.\mathbf{Z}\right|_{\mathbf{X}}, \mathbf{X}^{\prime} \mid \mathbf{X}\right\rangle+\log M_{p}\left(\left\|\left.\mathbf{X}^{\prime}\right|_{\mathbf{X}^{c}}\right\|^{2}+2\left\langle\mathbf{X}, \mathbf{X}^{\prime}\right\rangle-1\right)\right)
\end{aligned}
$$

Since the entries of \mathbf{X} and \mathbf{X}^{\prime} are all either 0 or $1 / \sqrt{k}$ and \mathbf{X} has unit norm, we have that $\left\langle\mathbf{X}, \mathbf{X}^{\prime}\right\rangle=$ $\left\|\left.\mathbf{X}^{\prime}\right|_{\mathbf{X}}\right\|^{2}$, and since $\left.\mathbf{X}^{\prime}\right|_{\mathbf{X}^{c}}$ and $\left.\mathbf{X}^{\prime}\right|_{\mathbf{X}}$ are orthogonal, we obtain

$$
\left\|\left.\mathbf{X}^{\prime}\right|_{\mathbf{X}^{c}}\right\|^{2}+2\left\langle\mathbf{X}, \mathbf{X}^{\prime}\right\rangle-1=\left\langle\mathbf{X}, \mathbf{X}^{\prime}\right\rangle
$$

Continuing from above and using that $\left\|\left.\mathbf{X}^{\prime}\right|_{\mathbf{X}}\right\|_{\infty} \leq 1 / \sqrt{k}$, we have

$$
\begin{aligned}
\mathrm{D}\left(\mathrm{Q}_{2 \log M_{p}, p} \| \mathrm{Q}_{0, p}\right) & \leq \mathbb{E}_{\mathbf{X}} \mathbb{E}_{\left.\mathbf{Z}\right|_{\mathbf{X}}} \log \mathbb{E}_{\mathbf{X}^{\prime} \sim \mathrm{P}_{p}} \exp \left(\sqrt{2 \log M_{p} / k}\left\|\left.\mathbf{Z}\right|_{\mathbf{X}}\right\|_{1}+\log M_{p}\left\langle\mathbf{X}, \mathbf{X}^{\prime}\right\rangle\right) \\
& =\mathbb{E}_{\mathbf{X}} \log \mathbb{E}_{\mathbf{X}^{\prime} \sim \mathrm{P}_{p}} \exp \left(\log M_{p}\left\langle\mathbf{X}, \mathbf{X}^{\prime}\right\rangle\right)+\mathbb{E}_{\mathbf{X}} \mathbb{E}_{\left.\mathbf{Z}\right|_{\mathbf{X}}} \sqrt{\left(2 \log M_{p} / k\right)}\left\|\left.\mathbf{Z}\right|_{\mathbf{X}}\right\|_{1} \\
& \leq \mathbb{E}_{\mathbf{X}} \log \mathbb{E}_{\mathbf{X}^{\prime} \sim \mathrm{P}_{p}} \exp \left(\log M_{p}\left\langle\mathbf{X}, \mathbf{X}^{\prime}\right\rangle\right)+O\left(\sqrt{2 k \log M_{p}}\right)
\end{aligned}
$$

Since $k=o(p)$, we also have that $k=o\left(k \log \frac{p}{k}\right)=o\left(\log M_{p}\right)$; therefore, the second term is $o\left(\log M_{p}\right)$. Hence it suffices to focus on the first term.
We proceed via a large deviations argument as in the proof of Theorem 4. Write $\rho=\left\langle\mathbf{X}, \mathbf{X}^{\prime}\right\rangle$ for the overlap; note that the law of ρ is the same for all \mathbf{X} in the support of P_{p}, so it suffices to understand $\log \mathbb{E} \exp \left(\rho \log M_{p}\right)$. We have, for any fixed positive integer ℓ,

$$
\begin{aligned}
\mathbb{E} \exp \left(\rho \log M_{p}\right) & \leq \sum_{m=0}^{\ell-1} \mathrm{P}_{N}[\rho \geq m / \ell] \exp \left(\frac{m+1}{\ell} \log M_{p}\right) \\
& \leq \ell \cdot \max _{0 \leq m<\ell} \exp \left(\frac{m+1}{\ell} \log M_{p}+\log P_{N}[\rho \geq m / \ell]\right)
\end{aligned}
$$

which implies

$$
\limsup _{p \rightarrow \infty} \frac{1}{\log M_{p}} \log \mathbb{E} \exp \left(\rho \log M_{p}\right) \leq \max _{0 \leq m<\ell} \frac{m+1}{\ell}-\frac{m}{\ell},
$$

where we have used (7). Therefore $\lim \sup _{p \rightarrow \infty} \frac{1}{\log M_{p}} \log \mathbb{E} \exp \left(\rho \log M_{p}\right)=O(1 / \ell)$, and letting $\ell \rightarrow \infty$ proves the claim.

Proof of Proposition 3. Denote by \mathcal{S}_{k} the set of k-sparse vectors in \mathbb{R}^{p}. Note that the cardinality of $\{0,1 / \sqrt{k}\}^{p} \cap \mathcal{S}_{k}$ is $\binom{p}{k}$ and the cardinality of $\{-1 / \sqrt{k}, 0,1 / \sqrt{k}\}^{p} \cap \mathcal{S}_{k}$ is $\binom{p}{k} 2^{k}$. In the case of the Bernoulli prior, the identification $\mathbf{x} \mapsto x^{\otimes d}$ is a bijection, so M_{N} for the Bernoulli prior is $\binom{p}{k}$. In the case of the Bernoulli-Rademacher prior, when d is odd the map $\mathbf{x} \mapsto x^{\otimes d}$ is still a bijection, but when d is even, the vectors \mathbf{x} and $-\mathbf{x}$ give rise to the same tensor. Therefore M_{N} for the BernoulliRademacher prior is either $\binom{p}{k} 2^{k}$ or $\binom{p}{k} 2^{k-1}$. Nevertheless, using Stirling's approximation, since $k=o(p)$, we have for both the Bernoulli and Bernoulli-Rademacher prior that

$$
\log M_{N}=(1+o(1)) k \log \frac{p}{k}
$$

Now notice that the overlap $\left\langle\mathbf{X}, \mathbf{X}^{\prime}\right\rangle$ in the case that \mathbf{x} is Bernoulli-Rademacher is stochastically dominated by the overlap when \mathbf{x} is Bernoulli. To prove this, let us consider the natural coupling between the two different priors on \mathbf{x} : we first sample \mathbf{x}_{1} from the sparse Bernoulli distribution and then choose uniformly at random the signs for the non-zero values of \mathbf{x}_{1} to form a sample \mathbf{x}_{2} from the Bernoulli-Rademacher distribution. Notice that by triangle inequality under this coupling it holds almost surely

$$
\left\langle\mathbf{x}_{2}^{\otimes d}, \mathbf{x}_{2}^{\prime \otimes d}\right\rangle \leq\left|\left\langle\mathbf{x}_{2}^{\otimes d}, \mathbf{x}_{2}^{\prime \otimes d}\right\rangle\right| \leq\left\langle\mathbf{x}_{1}^{\otimes d}, \mathbf{x}_{1}^{\prime \otimes d}\right\rangle
$$

For this reason it suffices to prove our result only in the case the prior $\widetilde{\mathrm{P}}_{p}$ is the uniform distribution over $\{0,1 / \sqrt{k}\}^{p} \cap \mathcal{S}_{k}$. We therefore focus on this case in the rest of the proof.
Now fix any $t \in[0,1]$ and notice that by elementary algebra for any $v, v^{\prime} \in \mathbb{R}^{p}$ with $\|v\|=\left\|v^{\prime}\right\|=1$ since $d \geq 2$ it holds $\left\langle v^{\otimes d}, v^{\prime \otimes d}\right\rangle=\left\langle v, v^{\prime}\right\rangle^{d} \leq\left\langle v, v^{\prime}\right\rangle^{2}$. Hence as $\mathbf{x}, \mathbf{x}^{\prime}$ live on the sphere of dimension p,

$$
\begin{align*}
\mathrm{P}_{N}^{\otimes 2}\left[\left\langle\mathbf{X}, \mathbf{X}^{\prime}\right\rangle \geq t\right]=\widetilde{\mathrm{P}}_{p}^{\otimes 2}\left[\left\langle\mathbf{x}^{\otimes d}, \mathbf{x}^{\otimes d d}\right\rangle \geq t\right] & =\widetilde{\mathrm{P}}_{p}^{\otimes 2}\left[\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle^{d} \geq t\right] \\
& \leq \widetilde{\mathrm{P}}_{p}^{\otimes 2}\left[\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle^{2} \geq t\right] \\
& =\widetilde{\mathrm{P}}_{p}^{\otimes 2}\left[\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle \geq \sqrt{t}\right] \tag{8}
\end{align*}
$$

Since $\mathbf{x}, \mathbf{x}^{\prime}$ are drawn from the uniform distribution over $\{0,1 / \sqrt{k}\}^{p} \cap \mathcal{S}_{k}$, Lemma 6 combined with (8) yields

$$
\lim _{N \rightarrow+\infty} \frac{1}{\log M_{N}} \log \mathrm{P}_{N}^{\otimes 2}\left[\left\langle\mathbf{X}, \mathbf{X}^{\prime}\right\rangle \geq t\right] \leq-\sqrt{t}
$$

The elementary inequality $-\sqrt{t} \leq-\frac{2 t}{1+t}$ concludes the proof.
Proof of Proposition 4. Let

$$
Z(Y)=\frac{\mathrm{Q}_{\lambda_{N}, N}(Y)}{\mathrm{Q}_{0, N}(Y)}=\mathbb{E}_{\mathbf{X}^{\prime} \sim \mathrm{P}_{N}} \exp \left(\sqrt{\lambda_{N}}\left\langle Y, \mathbf{X}^{\prime}\right\rangle-\frac{\lambda_{N}}{2}\right)
$$

Following mutatis mutandis the first two arguments in the proof of $\left[\mathrm{BMV}^{+} 18\right.$, Theorem 5] we obtain

$$
\begin{equation*}
\mathrm{D}\left(\mathrm{Q}_{\lambda_{N}, N} \| \mathrm{Q}_{0, N}\right) \leq \mathrm{D}\left(\widetilde{\mathrm{Q}}_{\lambda_{N}, N} \| \mathrm{Q}_{0, N}\right)+o(1) \cdot \sqrt{\mathbb{E}_{\mathbf{Y} \sim \mathrm{Q}_{\lambda_{N}, N}}\left[\log ^{2} Z(\mathbf{Y})\right]} \tag{9}
\end{equation*}
$$

It is straightforward to see that for all Y,

$$
|\log Z(Y)| \leq \sqrt{\lambda_{N}} \max _{X^{\prime} \in \operatorname{Support}\left(P_{N}\right)}\left\langle X^{\prime}, Y\right\rangle+\frac{\lambda_{N}}{2}
$$

which implies that

$$
\begin{equation*}
\mathbb{E}_{\mathbf{Y} \sim \mathrm{Q}_{\lambda_{N}, N}} \log ^{2} Z(\mathbf{Y}) \leq 2 \lambda_{N} \cdot \mathbb{E}_{\mathbf{Y} \sim \mathrm{Q}_{\lambda_{N}, N}} \max _{X^{\prime} \in \operatorname{Support}\left(P_{N}\right)}\left\langle X^{\prime}, \mathbf{Y}\right\rangle^{2}+O\left(\lambda_{N}^{2}\right) \tag{10}
\end{equation*}
$$

Now recall $\mathbf{Y}=\sqrt{\lambda_{N}} \mathbf{X}+\mathbf{Z}$ for $\mathbf{Z} \sim Q_{0, N}$ and for all $X^{\prime} \in \operatorname{Support}\left(P_{N}\right)$ it holds $\left|\left\langle\mathbf{X}, X^{\prime}\right\rangle\right| \leq$ $\|\mathbf{X}\|\left\|X^{\prime}\right\|=1$ almost surely. Hence,

$$
\begin{aligned}
\mathbb{E}_{\mathbf{Y} \sim Q_{\lambda_{N}, N}} \max _{X^{\prime} \in \operatorname{Support}\left(P_{N}\right)}\left\langle X^{\prime}, \mathbf{Y}\right\rangle^{2} & =\mathbb{E}_{\mathbf{Z} \sim Q_{0, N}}\left(\max _{X^{\prime} \in \operatorname{Support}\left(P_{N}\right)}\left|\sqrt{\lambda_{N}}\left\langle X^{\prime}, \mathbf{X}\right\rangle+\left\langle X^{\prime}, \mathbf{Z}\right\rangle\right|\right)^{2} \\
& \leq 2 \lambda_{N}+2 \mathbb{E}_{\mathbf{Z} \sim Q_{0, N}} \max _{X^{\prime} \in \operatorname{Support}\left(P_{N}\right)}\left\langle X^{\prime}, \mathbf{Z}\right\rangle^{2} .
\end{aligned}
$$

Since $\mathbf{Q}_{0, N}$ is simply the law of a vector with i.i.d. standard Gaussian coordinates and the cardinality of the discrete subset of the sphere $\operatorname{Support}\left(P_{N}\right)$ is equal to M_{N}, by Lemma 5 we have $\mathbb{E}_{\mathbf{Z} \sim Q_{0, N}} \max _{X^{\prime} \in \operatorname{Support}\left(P_{N}\right)}\left\langle X^{\prime}, \mathbf{Z}\right\rangle^{2}=O\left(\log M_{N}\right)$. Therefore since $\lambda_{N}=O\left(\log M_{N}\right)$,

$$
\mathbb{E}_{\mathbf{Y} \sim Q_{\lambda_{N}, N}} \max _{X^{\prime} \in \operatorname{Support}\left(P_{N}\right)}\left\langle X^{\prime}, \mathbf{Y}\right\rangle^{2} \leq O\left(\lambda_{N}+\log M_{N}\right)=O\left(\log M_{N}\right) .
$$

Combining the last inequality with (10), we conclude that

$$
\mathbb{E}_{\mathbf{Y} \sim Q_{\lambda_{N}, N}} \log ^{2} Z(\mathbf{Y})=O\left(\lambda_{N}^{2}\right)=O\left(\log ^{2} M_{N}\right)
$$

Using (9) completes the proof of the proposition.
Proof of Proposition 5. We let C denote an absolute positive constant whose value may change from line to line. Let us write $\mathbf{W}=\langle X, \mathbf{Z}\rangle / \sqrt{\lambda_{N}}$ and $\mathbf{W}^{\prime}=\left\langle X^{\prime}, \mathbf{Z}\right\rangle / \sqrt{\lambda_{N}}$. Recall that X, X^{\prime} lie on the unit sphere with $\left\langle X, X^{\prime}\right\rangle=\rho$.

Then \mathbf{W} and \mathbf{W}^{\prime} are are jointly Gaussian with mean 0 and covariance $\frac{1}{\lambda_{N}}\left(\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right)=: \frac{1}{\lambda_{N}} \Sigma_{\rho}$. Under this parametrization, we have

$$
\exp \left(\sqrt{\lambda_{N}}\left(\langle X, \mathbf{Z}\rangle+\left\langle X^{\prime}, \mathbf{Z}\right\rangle\right)-\lambda_{N}\right)=\exp \left(\lambda_{N}\left(\mathbf{W}+\mathbf{W}^{\prime}-1\right)\right)
$$

Let us write S for the set $\left\{\left(w, w^{\prime}\right):|w-1| \leq \lambda_{N}^{-1 / 4},\left|w^{\prime}-1\right| \leq \lambda_{N}^{-1 / 4}\right\}$.
We consider three cases:
Case 1: $\rho \leq 0 \quad$ Using the moment generating function of the univariate normal distribution yields

$$
\mathbb{E} \exp \left(\lambda_{N}\left(\mathbf{W}+\mathbf{W}^{\prime}-1\right)\right) \mathbb{1}_{S}\left(\mathbf{W}, \mathbf{W}^{\prime}\right) \leq \mathbb{E} \exp \left(\lambda_{N}\left(\mathbf{W}+\mathbf{W}^{\prime}-1\right)\right)=e^{\lambda_{N} \rho} \leq 1
$$

so

$$
\frac{1}{\lambda_{N}} \log m_{N}(\rho) \leq 0=\left(\frac{\rho}{1+\rho}\right)_{+}
$$

Case 2: $\rho \in(0,1 / 2] \quad$ Write $\phi_{\rho}\left(w, w^{\prime}\right)$ for the joint density of \mathbf{W} and \mathbf{W}^{\prime}. Note that on S

$$
\begin{aligned}
\phi_{\rho}\left(w, w^{\prime}\right) & \leq \frac{\lambda_{N}}{2 \pi\left(1-\rho^{2}\right)} \exp \left(-\frac{\lambda_{N}}{2} \mathbf{w}^{\top} \Sigma_{\rho}^{-1} \mathbf{w}\right), \quad \mathbf{w}=\left(w, w^{\prime}\right) \\
& \leq C e^{-\frac{\lambda_{N}}{1+\rho}+C \lambda_{N}^{3 / 4}}
\end{aligned}
$$

where we use that $\lambda_{N} \rightarrow+\infty$ as $N \rightarrow+\infty$. Hence

$$
\begin{aligned}
\frac{1}{\lambda_{N}} \log m_{N}(\rho) & =\frac{1}{\lambda_{N}} \log \int_{S} e^{\lambda_{N}\left(w+w^{\prime}-1\right)} \phi_{\rho}\left(w, w^{\prime}\right) \mathrm{d} w \mathrm{~d} w^{\prime} \\
& \leq \frac{1}{\lambda_{N}} \log \int_{S} \max _{\left(w, w^{\prime}\right) \in S} e^{\lambda_{N}\left(w+w^{\prime}-1\right)} \cdot \max _{\left(w, w^{\prime}\right) \in S} \phi_{\rho}\left(w, w^{\prime}\right) \mathrm{d} w \mathrm{~d} w^{\prime} \\
& \leq \frac{1}{\lambda_{N}} \log \left(\operatorname{vol}(S) \cdot e^{\lambda_{N}+O\left(\lambda_{N}^{3 / 4}\right)} \cdot C e^{-\frac{\lambda_{N}}{1+\rho}+C \lambda_{N}^{3 / 4}}\right) \\
& \leq \frac{\rho}{1+\rho}+\frac{C}{\lambda_{N}^{1 / 4}}
\end{aligned}
$$

Case 3: $\rho \in(1 / 2,1]$ The sum $\mathbf{W}+\mathbf{W}^{\prime}$ is Gaussian with mean 0 and variance $\frac{2}{\lambda_{N}}(1+\rho)$, and if $\left(w, w^{\prime}\right) \in S$, then $\left|w+w^{\prime}-2\right| \leq 2 \lambda_{N}^{-1 / 4}$.
We obtain

$$
m_{N}(\rho)=\mathbb{E} \exp \left(\lambda_{N}\left(\mathbf{W}+\mathbf{W}^{\prime}-1\right)\right) \mathbb{1}_{S}\left(\mathbf{W}, \mathbf{W}^{\prime}\right) \leq \mathbb{E} \exp \left(\lambda_{N}\left(\mathbf{W}^{\prime \prime}-1\right)\right) \mathbb{1}_{\left|\mathbf{W}^{\prime \prime}-2\right| \leq 2 \lambda_{N}^{-1 / 4}}
$$

where $\mathbf{W}^{\prime \prime} \sim \mathcal{N}\left(0, \frac{2}{\lambda_{N}}(1+\rho)\right)$. Similar with the analysis in Case 2 , the density of $\mathbf{W}^{\prime \prime}$ is bounded by $C e^{-\frac{\lambda_{N}}{1+\rho}+C \lambda_{N}^{3 / 4}}$ on the set $T:=\left\{w^{\prime \prime}:\left|w^{\prime \prime}-2\right| \leq 2 \lambda_{N}^{-1 / 4}\right\}$, and we obtain

$$
\begin{aligned}
\frac{1}{\lambda_{N}} \log m_{N}(\rho) & \leq \frac{1}{\lambda_{N}} \log \int_{T} \max _{w^{\prime \prime} \in T} e^{\lambda_{N}\left(w^{\prime \prime}-1\right)} \cdot C e^{-\frac{\lambda_{N}}{1+\rho}+C \lambda_{N}^{3 / 4}} \\
& \leq \frac{1}{\lambda_{N}} \log \left(\operatorname{vol}(T) \cdot e^{\lambda_{N}+O\left(\lambda_{N}^{3 / 4}\right)} \cdot C e^{-\frac{\lambda_{N}}{1+\rho}+C \lambda_{N}^{3 / 4}}\right) \\
& \leq \frac{\rho}{1+\rho}+\frac{C}{\lambda_{N}^{1 / 4}}
\end{aligned}
$$

as claimed.

B Additional lemmas

Lemma 1. For all N and $\lambda>0$, the function $\beta \mapsto \frac{1}{\lambda} \mathrm{D}\left(\mathrm{Q}_{\beta \lambda, N} \| \mathrm{Q}_{0, N}\right)$ is nonnegative, nondecreasing, and $1 / 2$-Lipschitz.

Proof. Let us fix some N and λ. The nonnegativity follows from the nonnegativity of the KL divergence. By Lemma 2, we have

$$
\frac{1}{\lambda} \mathrm{D}\left(\mathrm{Q}_{\beta \lambda, N} \| \mathrm{Q}_{0, N}\right)=\frac{\beta}{2}-\frac{1}{\lambda} I_{\beta \lambda, N}(\mathbf{X} ; \mathbf{Y})
$$

Differentiating with respect to β and using the I-MMSE theorem [GSV05] we conclude

$$
\begin{equation*}
\frac{d}{d \beta} \frac{1}{\lambda} \mathrm{D}\left(\mathrm{Q}_{\beta \lambda, N} \| \mathrm{Q}_{0, N}\right)=\frac{1}{2}-\frac{1}{2} \operatorname{MMSE}_{N}(\beta \lambda) \tag{11}
\end{equation*}
$$

The results that $\beta \mapsto \frac{1}{\lambda} \mathrm{D}\left(\mathbf{Y}_{\beta \lambda} \| \mathbf{Z}\right)$ is nondecreasing and 1/2-Lipschitz follow directly from the fact that $\operatorname{MMSE}_{N}(\beta \lambda) \in[0,1]$.

Lemma 2. Denote by $I_{\lambda, N}(\mathbf{X} ; \mathbf{Y})$ the mutual information between \mathbf{X} and \mathbf{Y} in (1), and denote by $\mathrm{Q}_{\lambda, N}^{(\mathbf{X}, \mathbf{Y})}$ their joint law. Then

$$
I_{\lambda, N}(\mathbf{X} ; \mathbf{Y})=\mathrm{D}\left(\mathrm{Q}_{\lambda, N}^{(\mathbf{X}, \mathbf{Y})} \| \mathrm{P}_{N} \otimes \mathrm{Q}_{\lambda, N}\right)=\frac{\lambda}{2}-\mathrm{D}\left(\mathrm{Q}_{\lambda, N} \| \mathrm{Q}_{0, N}\right)
$$

Proof. The first equality is the definition of mutual information. We then have

$$
\begin{aligned}
\mathrm{D}\left(\mathrm{Q}_{\lambda, N}^{(\mathbf{X}, \mathbf{Y})} \| \mathrm{P}_{N} \otimes \mathrm{Q}_{\lambda, N}\right) & =\mathbb{E}_{\mathrm{Q}_{\lambda, N}^{(\mathbf{X}, \mathbf{Y})}} \log \frac{\mathrm{Q}_{\lambda, N}(\mathbf{Y} \mid \mathbf{X})}{\mathrm{Q}_{\lambda, N}(\mathbf{Y})} \\
& =\mathbb{E}_{\mathrm{Q}_{\lambda, N}(\mathbf{X}, \mathbf{Y})} \log \frac{\mathrm{Q}_{\lambda, N}(\mathbf{Y} \mid \mathbf{X})}{\mathrm{Q}_{0, N}(\mathbf{Y})}-\mathbb{E}_{\mathrm{Q}_{\lambda, N}} \log \frac{\mathrm{Q}_{\lambda, N}(\mathbf{Y})}{\mathrm{Q}_{0, N}(\mathbf{Y})} .
\end{aligned}
$$

Using the fact that \mathbf{Z} has i.i.d. standard Gaussian entries we have

$$
\mathbb{E}_{\mathrm{Q}_{\lambda, N}^{(\mathbf{x}, \mathbf{Y})}} \log \frac{\mathrm{Q}_{\lambda, N}(\mathbf{Y} \mid \mathbf{X})}{\mathrm{Q}_{0}(\mathbf{Y})}=\mathbb{E}_{\mathrm{Q}_{\lambda, N}^{(\mathbf{X}, \mathbf{Y})}} \frac{\|\mathbf{Y}\|_{2}^{2}-\|\mathbf{Y}-\sqrt{\lambda} \mathbf{X}\|_{2}^{2}}{2}=\frac{\lambda}{2}
$$

and by definition

$$
\mathrm{D}\left(\mathrm{Q}_{\lambda, N} \| \mathrm{Q}_{0, N}\right)=\mathbb{E}_{\mathrm{Q}_{\lambda, N}} \log \frac{\mathrm{Q}_{\lambda, N}(\mathbf{Y})}{\mathrm{Q}_{0, N}(\mathbf{Y})}
$$

The claim follows.
Lemma 3. For all $\lambda \geq 0$,

$$
\mathrm{D}\left(\mathrm{Q}_{\lambda, N} \| \mathrm{Q}_{0, N}\right) \geq \frac{\lambda}{2}-\log M_{N} .
$$

Proof. Writing explicitly the Kullback-Leibler divergence gives

$$
\begin{aligned}
\mathrm{D}\left(\mathrm{Q}_{\lambda, N} \| \mathrm{Q}_{0, N}\right) & =\mathbb{E} \log \frac{1}{M_{N}} \sum_{X^{\prime} \in \operatorname{Support}\left(\mathrm{P}_{N}\right)} \exp \left(\sqrt{\lambda}\left\langle\mathbf{Y}, X^{\prime}\right\rangle-\frac{\lambda}{2}\right) \quad \mathbf{Y} \sim \mathrm{Q}_{\lambda, N} \\
& \geq \mathbb{E} \log \frac{1}{M_{N}} \exp \left(\sqrt{\lambda}\langle\mathbf{Z}, \mathbf{X}\rangle+\frac{\lambda}{2}\right) \\
& =\mathbb{E}\left\{\sqrt{\lambda}\langle\mathbf{Z}, \mathbf{X}\rangle+\frac{\lambda}{2}-\log M_{N}\right\}=\frac{\lambda}{2}-\log M_{N}
\end{aligned}
$$

where the inequality follows from writing $\mathbf{Y}=\sqrt{\lambda} \mathbf{X}+\mathbf{Z}$ and taking only the $X^{\prime}=\mathbf{X}$ term in the sum.

Lemma 4. Let $\alpha_{1}=\left(\alpha_{1}\right)_{N \in \mathbb{N}}$ and $\alpha_{2}=\left(\alpha_{2}\right)_{N \in \mathbb{N}}$ be two sequences in $[0,1]$ such that $\alpha_{1}=1-o(1)$ and $\alpha_{2}=o(1)$ as $N \rightarrow \infty$, and let λ_{N} be any sequence tending to infinity as $N \rightarrow+\infty$ such that $\frac{1}{\lambda_{N}} d\left(\alpha_{1} \| \alpha_{2}\right)$ is bounded. Then

$$
\limsup _{N \rightarrow \infty} \frac{1}{\lambda_{N}} d\left(\alpha_{1} \| \alpha_{2}\right)=\limsup _{N \rightarrow \infty} \frac{1}{\lambda_{N}} \log \frac{1}{\alpha_{2}} .
$$

Proof. The given asymptotics imply

$$
\lim _{N \rightarrow \infty}\left(1-\alpha_{1}\right) \log \frac{1-\alpha_{1}}{1-\alpha_{2}}=0
$$

Moreover, since $\alpha_{1} \log \alpha_{1}$ is bounded, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{\lambda_{N}} \alpha_{1} \log \alpha_{1}=0
$$

Combining these facts yields

$$
\begin{aligned}
\limsup _{N \rightarrow \infty} \frac{1}{\lambda_{N}} d\left(\alpha_{1} \| \alpha_{2}\right) & =\limsup _{N \rightarrow \infty} \frac{1}{\lambda_{N}} \alpha_{1} \log \frac{\alpha_{1}}{\alpha_{2}}+\left(1-\alpha_{1}\right) \log \frac{1-\alpha_{1}}{1-\alpha_{2}} \\
& =\limsup _{N \rightarrow \infty} \frac{1}{\lambda_{N}} \alpha_{1} \log \frac{1}{\alpha_{2}}
\end{aligned}
$$

Since $\frac{1}{\lambda_{N}} d\left(\alpha_{1} \| \alpha_{2}\right)$ is bounded, so is the sequence $\frac{1}{\lambda_{N}} \alpha_{1} \log \frac{1}{\alpha_{2}}$, and since α_{1} is bounded away from 0 , this implies that $\frac{1}{\lambda_{N}} \log \frac{1}{\alpha_{2}}$ is bounded as well. Using that $\lim _{N \rightarrow \infty} \alpha_{1}=1$ therefore yields the claim.

Lemma 5. Let $M, N \in \mathbb{N}$ and let S be a discrete subset of the N-dimensional unit sphere with cardinality M. Then for G the law of the N-dimensional random variable \mathbf{Z} with i.i.d. standard Gaussian coordinates it holds

$$
E_{\mathbf{Z} \sim G} \max _{X^{\prime} \in S}\left\langle X^{\prime}, \mathbf{Z}\right\rangle^{2}=O(\log M)
$$

Proof. It suffices to show that

$$
E_{\mathbf{Z} \sim G} \max _{X^{\prime} \in S}\left\langle X^{\prime}, \mathbf{Z}\right\rangle^{2} \mathbb{1}\left(\max _{X^{\prime} \in S}\left\langle X^{\prime}, \mathbf{Z}\right\rangle^{2} \geq 2 \log M\right)=O(1)
$$

or

$$
\int_{0}^{\infty} G\left(\max _{X^{\prime} \in S}\left\langle X^{\prime}, \mathbf{Z}\right\rangle^{2} \geq 2 \log M+t\right) \mathrm{d} t=O(1)
$$

Using a union bound argument and the fact that for all $X^{\prime} \in S$ the quantity $\left\langle X^{\prime}, \mathbf{Z}\right\rangle$ follows a standard Gaussian distribution, we have for all $t \geq 0$,

$$
G\left(\max _{X^{\prime} \in S}\left\langle X^{\prime}, \mathbf{Z}\right\rangle^{2} \geq 2 \log M+t\right) \leq M \exp \left(-\log M-\frac{t}{2}\right)=\exp \left(-\frac{t}{2}\right)
$$

Hence

$$
\int_{0}^{\infty} G\left(\max _{X^{\prime} \in S}\left\langle X^{\prime}, \mathbf{Z}\right\rangle^{2} \geq 2 \log M+t\right) \mathrm{d} t \leq \int_{0}^{\infty} \exp \left(-\frac{t}{2}\right) \mathrm{d} t=O(1)
$$

as we wanted.

Lemma 6. Suppose that $k=o(p)$ and the prior $\widetilde{\mathrm{P}}_{p}$ is the uniform distribution on all the k-sparse vectors with elements either 0 or $1 / \sqrt{k}$. Then for any $t \in[0,1]$ it holds

$$
\lim _{p \rightarrow+\infty} \frac{1}{k \log \frac{p}{k}} \log \widetilde{\mathrm{P}}_{p}^{\otimes 2}\left[\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle \geq t\right]=-t
$$

Proof. First note that the claim follows immediately when $t=1$ as when $k=o(p)$, the distribution $\widetilde{\mathrm{P}}_{p}$ is distribution over a discrete subset of the unit sphere of cardinality $(1+o(1)) k \log \frac{p}{k}$. Similarly, since for all v, v^{\prime} in the support of $\widetilde{\mathrm{P}}_{p}$ it holds $\left\langle v, v^{\prime}\right\rangle \geq 0$, the claim also follows straightforwardly for $t=0$. For the rest of the proof we assume $t \in(0,1)$.

We first show that the limit superior is bounded above by $-t$. The distribution of the rescaled overlap $k\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle=\left\langle\sqrt{k} \mathbf{x}, \sqrt{k} \mathbf{x}^{\prime}\right\rangle$ follows the Hypergeometric distribution $\operatorname{Hyp}(p, k, k)$ with probability mass function $p(s)=\binom{k}{s}\binom{p-k}{k-s} /\binom{p}{k}$, for $s=0, \ldots, k$. Therefore for a fixed $t \in(0,1]$,

$$
\begin{equation*}
\widetilde{\mathrm{P}}_{p}^{\otimes 2}\left[\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle \geq t\right]=\sum_{s=\lceil t k\rceil}^{k} p(s) \tag{12}
\end{equation*}
$$

Now for any $s \geq\lceil t k\rceil$ it holds

$$
\frac{p(s+1)}{p(s)}=\frac{\binom{k}{s+1}}{\binom{k}{s}} \frac{\binom{p-k}{k-s-1}}{\binom{p-k}{k-s}}=\frac{(k-s)^{2}}{(s+1)(p-2 k+s+1)}
$$

Using that $k=o(p)$ and $s \geq t k$ we conclude that for sufficiently large p and all $s \geq\lceil t k\rceil$ it holds

$$
\frac{p(s+1)}{p(s)} \leq 2 \frac{k}{t p}<\frac{1}{2}
$$

or by telescopic product,

$$
\frac{p(s)}{p(\lceil t k\rceil)} \leq \frac{1}{2^{s-\lceil t k\rceil}}
$$

Hence, using (12) we have for large enough values of p,

$$
\begin{equation*}
\widetilde{\mathrm{P}}_{p}^{\otimes 2}\left[\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle \geq t\right] \leq \sum_{s=\lceil t k\rceil}^{k} p(\lceil t k\rceil) \frac{1}{2^{s-\lceil t k\rceil}} \leq 2 p(\lceil t k\rceil) \tag{13}
\end{equation*}
$$

We have

$$
p(\lceil t k\rceil)=\binom{k}{\lceil t k\rceil}\binom{ p-k}{k-\lceil t k\rceil} /\binom{p}{k}
$$

and combining with the elementary bound $\log \binom{m_{1}}{m_{2}}=m_{2} \log \left(\frac{e m_{1}}{m_{2}}\right)+O\left(m_{2}\right)$, for $m_{1} \leq m_{k}$, we obtain

$$
\begin{align*}
\log p(\lceil t k\rceil) & =t k \log \frac{1}{t}+(1-t) k \log \frac{p-k}{(1-t) k}-k \log \frac{p}{k}+O(k) \\
& =-t k \log \frac{p}{k}+O(k) \tag{14}
\end{align*}
$$

where in the second step we have used that, for fixed $t \in(0,1)$, if $k=o(p)$, then

$$
\log \frac{p-k}{(1-t) k}=\log \frac{p}{k}+O(1)
$$

We therefore conclude

$$
\begin{equation*}
\log \widetilde{\mathrm{P}}_{p}^{\otimes 2}\left[\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle \geq t\right] \leq \log p(\lceil t k\rceil)=-t k \log \frac{p}{k}+O(k) \tag{15}
\end{equation*}
$$

Using the fact that $k=o(p)$ completes the proof of the upper bound.
We now prove the lower bound. By (12),

$$
\widetilde{\mathrm{P}}_{p}^{\otimes 2}\left[\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle \geq t\right] \geq p(\lceil t k\rceil)
$$

and combining this with (14) yields the claim.

