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Abstract

Computing the gradient of model hyperparameters, i.e., hypergradient, enables a
promising and natural way to solve the hyperparameter optimization task. However,
gradient-based methods could lead to suboptimal solutions due to the non-convex
nature of optimization in a complex hyperparameter space. In this study, we propose
a hyperparameter mutation (HPM) algorithm to explicitly consider a learnable
trade-off between using global and local search, where we adopt a population
of student models to simultaneously explore the hyperparameter space guided by
hypergradient and leverage a teacher model to mutate the underperforming students
by exploiting the top ones. The teacher model is implemented with an attention
mechanism and is used to learn a mutation schedule for different hyperparameters
on the fly. Empirical evidence on synthetic functions is provided to show that HPM
outperforms hypergradient significantly. Experiments on two benchmark datasets
are also conducted to validate the effectiveness of the proposed HPM algorithm for
training deep neural networks compared with several strong baselines.

1 Introduction

Hyperparameter optimization (HPO) [4, 11] is one of the fundamental research problems in the
field of automated machine learning. It aims to maximize the model performance by tuning model
hyperparameters automatically, which could be achieved either by searching a fixed hyperparame-
ter configuration setting [3, 22, 32, 9] from the predefined hyperparameter space or by learning a
hyperparameter schedule along with the training process [17, 25]. Among existing methods, hypergra-
dient [2, 26] forms a promising direction, as it naturally enables gradient descent on hyperparameters.

Hypergradient is usually defined as the gradient of a validation loss function w.r.t hyperparameters.
Previous methods mainly focus on computing hypergradients by using reverse-mode differentiation [2,
6, 26], or designing a differentiable response function [12, 25] for hyperparameters, yet without
explicitly considering the non-convex optimization nature in a complex hyperparameter space. Thus,
while hypergradient methods could deliver highly-efficient local search solutions, they may easily get
stuck in local minima and achieve suboptimal performance. This can be clearly observed on some
synthetic functions which share a similar shape of parameter space to the HPO problem (see Sec. 4.1).
It also leads to the question: can we find a way to help hypergradient with global information?

The population based hyperparameter search methods work as a good complementary to the hypergra-
dient, such as evolutionary search [27, 5], particle swarm optimization [8], and the population based
∗Work done when Zhiqiang Tao interned at Alibaba Group and worked at Northeastern University.
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training [17, 21, 14], which generally employ a population of agent models to search different hy-
perparameter configurations and update hyperparameters with a mutation operation. The population
could provide sufficient diversity to globally explore hypergradients throughout the hyperparameter
space. However, it is non-trivial to incorporate hypergradients in the population based methods due
to a possible conflict between the hand-crafted mutation operation (e.g., random perturbation) and
the direction of hypergradient descent.

To address the above challenges, we propose a novel hyperparameter mutation (HPM) scheduling
algorithm in this study, which adopts a population based training framework to explicitly learn a
trade-off (i.e., a mutation schedule) between using the hypergradient-guided local search and the
mutation-driven global search. We develop the proposed framework by alternatively proceeding
model training and hyperparameter mutation, where the former jointly optimizes model parameters
and hyperparameters upon gradients, while the latter leverages a student-teaching schema for the
exploration. Particularly, HPM treats the population as a group of student models and employs
a teacher model to mutate the hyperparameters of underperforming students. We instantiate our
teacher model as a neural network with attention mechanism and learn the mutation direction towards
minimizing the validation loss. Benefiting from learning-to-mutate, the mutation is adaptively
scheduled for the population based training with hypergradient.

In the experiments, we extensively discuss the properties of the proposed HPM algorithm and show
that HPM significantly outperforms hypergradient and global search methods on synthetic functions.
We also employ the HPM scheduler in training deep neural networks on two benchmark datasets,
where experimental results validate the effectiveness of HPM compared with several strong baselines.

2 Related Work

Roughly we divide the existing HPO methods into two categories, namely, hyperparameter configu-
ration search and hyperparameter schedule search. Hyperparameter configuration search methods
assume that the optimal hyperparameter is a set of fixed values, whereas hyperparameter schedule
search methods relax this assumption and allow hyperparameters to change in a single trail.

Hyperparameter configuration. For hyperparameter configuration search methods, we may divide
existing methods into three subcategories: model-free, Bayesian optimization, and the gradient-
based methods. The first subcategory includes grid search [31], random search [3], successive
halving [18], Hyperband [22], etc. Grid search adopts an exhausting strategy to select hyperparameter
configurations in pre-defined grids, and the random search method randomly selects hyperparameters
from the configuration space with a given budget. Inspired by the amazing success of random search,
successive halving [18] and Hyperband [22] are further designed with multi-arm bandit strategies to
adjust the computation resource of each hyperparameter configuration upon their performance.

All the above HPO methods are model-free as they do not have any distribution assumption about the
hyperparameters. Differently, Bayesian optimization methods [32, 16, 7]) assume the existence of a
distribution about the model performance over the hyperparameter search space. This category of
methods estimates the model performance distribution based on the tested hyperparameter configu-
rations, and predicts the next hyperparameter configuration by maximizing an acquisition function.
However, due to the distribution estimation, the computation cost of Bayesian optimization methods
could be high, and thus the hyperparameter searching is time-consuming. Recently, BOHB [32, 9]
utilizes model-free methods such as Hyperband to improve the efficiency of Bayesian optimization.

The gradient-based HPO method is closely related to this work. Pioneering works [2, 6] propose to
employ the reverse-mode differentiation (RMD) to calculate hypergradients on the validation loss
based on the minimizer given by a number of model training iterations. Following this line, research
efforts [26] have been made to reduce the memory complexity of RMD to handle the large-scale
HPO problem. A forward-mode differentiation algorithm is proposed in [12] to further improve the
efficiency of computing hypergradients based on the chain rule and a dynamic system formulation.

Hyperparameter Schedule. Two representative ways of changing hyperparameters are gradient-
based methods such as self-tuning networks (STN) [25] and mutation-based methods such as popula-
tion based training (PBT) [17, 21, 14]. STN employs hypernetworks [24] as a response function to
map hyperparameters to model parameters so that it could obtain hypergradient by backpropagating
the validation error through the hypernetworks. PBT performs an evolutionary search over the

2



hyperparameter space with a population of agent models. It provides a discrete mutation schedule via
random perturbation. The other two interesting works related to this regime include hypergradient
descent [1] and online meta-optimization [35]. However, these two works both focus more on online
learning rate adaptation rather than a generic HPO problem. The proposed HPM algorithm belongs
to the category of hyperparameter schedule. Different from existing methods, HPM explicitly learns
suitable mutations when optimizing hypergradient in a complex hyperparameter space.

3 Hyperparameter Mutation (HPM)

3.1 Preliminary

Given input space X and output space Y , we define f(·; θ, h) : X → Y as a model parameterized
by θ and h, where θ ∈ RD represents model parameters and h ∈ RN vectorizes N hyperparameters
sampled from the hyperparameter configuration spaceH = H1×· · ·×HN . Hi is a set of configuration
values for the i-th hyperparameter. Let Dtrn,Dval : {(x, y)} be the training and validation set. We
define L(θ, h) : RD × RN → R as a function of parameter and hyperparameter by

L(θ, h) =
∑

(x,y)∈D

`(f(x; θ, h), y), (1)

where `(·, ·) denotes a loss function and D refers to Dtrn or Dval. Upon Eq. (1), we further define
Ltrn and Lval as the training and validation loss functions by computing L(θ, h) on Dtrn and Dval,
respectively. Generally, we train the model f on Dtrn with the fixed hyperparameter h or a human-
crafted schedule strategy, and peek at the model performance by Lval with the learned parameter θ.
Thus, the validation loss is usually bounded to the hyperparameter selection.

Hyperparameter optimization (HPO) solves the above issue, and it could be formulated as

min
h∈H
Lval(θ∗, h) s.t. θ∗ = argmin

θ
Ltrn(θ, h), (2)

which seeks for an optimal hyperparameter configuration h∗ or an optimal hyperparameter schedule.
Hypergradient [2, 26, 30, 12] provides a natural way to solve Eq. (2) by performing gradient descent.
However, due to the non-convex nature of a hyperparameter space, this kind of method may get stuck
in local minima and thus lead to suboptimal performance. In contrast, the population based methods
utilize a mutation-driven strategy to search the hyperparameter space thoroughly, which provides the
potential to help hypergradient escape from local valleys. In this study, we focus on developing a
trade-off solution between using hypergradient and the mutation-driven search.

3.2 Population Based Hyperparameter Search

We adopt a similar population based training framework as proposed in [17]. Let St = {Skt }Kk=1

be a population of agent models w.r.t f(·; θ, h) at the t-th training step, where Skt refers to the k-th
agent model, T represents the total training steps, and K denotes the population size. Generally, the
iterative optimization method (e.g., stochastic gradient decent) is used to optimize model weights for
each agent. Hence, for ∀k, one training step could be described as

θkt+1 ← Skt (θkt , h
k
t ), (3)

where Skt updates model parameters from θkt to θkt+1 with a fixed hyperparameter hkt during the
training step. The population based hyperparameter search is given by

k∗ = argmin
k
{Lval(θkT , hkT )}Kk=1. (4)

In Eq. (4), θkT = SkT−1(SkT−2(. . . Sk0 (θk0 , h
k
0) . . . , hkT−2), hkT−1) is obtained by chaining a sequence

of update steps with Eq. (3) and the hyperparameters are updated through some pre-defined or
rule-based mutation operations (e.g., random perturbation). More specifically, we summarize the
searching process with population based training [17] as follows.

• Train step updates θkt−1 to θkt and evaluates the validation loss Lval(θkt , hkt ) for each k. One
training step could be one epoch or a fixed number of iterations. An agent model is ready to
be exploited and explored after one step.
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• Exploit St by selection methods, e.g., the truncation selection, which divides St into three
sets of top, middle, and bottom agents in terms of validation performance. The agent models
in bottom exploit the top ones by cloning their model parameters and hyperparameters, i.e.,
(θkt , h

k
t )← (θ∗t , h

∗
t ), where k ∈ bottom and ∗ represents the index of a top performer.

• Explore the hyperparameters with a mutation operation, denoted as Φ. As in [17], Φ keeps
non-bottom agents unchanged, and randomly perturbs a bottom agent’s hyperparameter.

The population based training (PBT) methods [17, 21] simultaneously explore the hyperparameter
space with a group of agent models. PBT inherits the merits of random search and leverages exploit &
explore strategy to alternatively optimize the model parameter θ (by training step) and hyperparameter
h (by mutation). This leads to a joint optimization over θ and h, and eventually provides an optimal
hyperparameter schedule, i.e., hk

∗

0 , . . . , hk
∗

T−1 given by Eq. (4), among the population of agents.
However, PBT has two limitations. 1) For each training step, the joint optimization stays at a coarse
level since St(θt, ht) updates θt by fixing ht. 2) The hyperparameters are mainly updated by the
mutation operation, yet a learnable mutation is under-explored.
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Figure 1: Illustration of the proposed HPM algorithm with an example of three student models. After
performing one hypertraining step for all the students, HPM exploits the population by using the
truncation selection and explores the cloned hyperparameter for the bottom student models with
learnable mutations given by a teacher model.

3.3 Hypergradient Guided Population

We propose to use hypergradient to guide the population based hyperparameter search. To obtain
hypergradient, we define θ(h) : RN → RD as a response function of hyperparameter h to approxi-
mate the model parameter θ. By using θ(h), we could extend the agent model to St(θt(ht), ht), and
formulate our hyperparameter mutation (HPM) scheduling algorithm as

min
hT

{Lval(θkT (hkT ), hkT )}Kk=1, (5)

where (θkT (hkT ), hkT ) is obtained by alternatively proceeding with one hypertraining step and one
learnable mutation step as shown in Fig. 1. It is worth noting that, hT is optimized over the
population in a sequential update way, i.e., (θkt−1(hkt−1), hkt−1)→ (θkt (hkt ), hkt ), where hkt is updated
by hypergradient and mutation at each step t. Thus, optimizing hT in Eq. (5) is equivalent to optimize
the hyperparameter schedule: h0 → · · ·ht · · · → hT .

Hypertraining jointly optimizes θ and h with hypergradients. Specifically, (θ, h) is updated by
θt = θt−1(ht−1)− ηθ∇θ,
ht = ht−1 − ηh∇h,

(6)

where∇θ = ∂Ltrn/∂θ is the gradient of model parameter and∇h is the hypergradient computed by

∇h =
∂Lval(θ(h), h)

∂θ

∂θ

∂h
+
∂Lval(θ(h), h)

∂h
. (7)

The computation of hypergradient in Eq. (7) is mainly depended on the response function θ(h). In
this work, θ(h) is implemented by hypernetworks [24, 25], which provide a flexible and efficient way
to compute hypergradients.
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Algorithm 1 Hyperparameter Optimization via HPM
Let S be a set of student models, and T be the given budget
for t = 1 to T do

for Skt−1 ∈ St−1 (could be parallelized) do
Update Skt−1(θkt−1, h

k
t−1) to Skt (θkt , h

k
t ) by one hypertraining step with Eq. (6) and Eq. (7)

Divide St into top, middle, bottom students by the truncation section method
for Skt ∈ bottom do

Clone model parameters as θkt ← θ∗t where (θ∗t , h
∗
t ) ∈ top

Train the teacher network gφ(hkt ) with Eq. (10) conditioning on (θ∗t , h
∗
t )

Mutate the hyperparameter with Eq. (8) as hkt ← gφ(hkt )� h∗t
return {h∗0, . . . , h∗T−1}, θ∗T

Learnable mutation employs a similar exploit strategy as in Section 3.2 (without hkt ← h∗t ) and
develops a student-teaching schema [10, 34] for exploration. Particularly, after updating St−1 to St
via one hypertraining step, we treat each agent Skt ∈ St as a student model and learn a teacher model
to mutate the underperforming student’s hyperparameters. The mutation module Φ is developed as

hkt = Φ(hkt , h
∗
t ) = α� h∗t , (8)

where hkt ∈ bottom, h∗t ∈ top, � is the hadamard product, and α ∈ RN denotes the mutation
weights. In the following, we will show how to learn α with the teacher network.

3.4 Learning to Mutate

We formulate our teacher model gφ as a neural network with attention mechanism parameterized by
φ = {W,V }, where W ∈ RN×M , V ∈ RN×M are two learnable parameters and M represents the
number of attention units, as shown in Fig. 2. It takes input as a bottom student’s hyperparameter hkt
and computes the mutation weights by

α = gφ(hkt ) = 1 + tanh(c), c = W softmax(V Thkt ), (9)

where α ∈ [0, 2]N and c ∈ RN is a mass vector that tries to characterize the mutation degree for
each dimension of h. The benefits of using attention mechanism lie in two folds. 1) It provides
sufficient model capability with a key-value architecture, which uses the key slots stored in V to
address different underperforming hyperparameters and assign the mutations with the corresponding
memory slots in W . 2) gφ enables a learnable way to adaptively mutate hyperparameters along with
the training process, where α→ 1 gives a mild mutation for a small exploration (update) step, and
α→ 0 or α→ 2 encourages an aggressive exploration to the hyperparameter space.

ℎ!" 𝑐
!
𝛼 = 1 + tanh(𝑐)
ℎ!" ← 𝛼⨀ℎ!∗

ℒ$%&(𝜃!∗ ℎ!" , ℎ!")

dot product softmax weighted sum
𝑉 𝑊

Figure 2: Illustration of our teacher model imple-
mented by an attention network.

We aim to learn the mutation direction towards
minimizing Lval. To this end, we train our
teacher model gφ conditioning on (θ∗t , h

∗
t ) by

min
φ={W,V }

Lval(θ∗t (h′t), h
′
t), (10)

where h′t = α� h∗t = gφ(hkt )� h∗t . The param-
eters of gφ are updated by backpropagating the
hypergradients given in Eq. (7) through the chain rule. By freezing the cloned model parameters and
hyperparameters (θ∗t , h

∗
t ), gφ could be focused on learning the mutations to minimize Lval. Please

refer to the supplementary material for more details about training the teacher model.

Algorithm 1 summarizes the entire HPM scheduling algorithm. Particularly, HPM computes hypergra-
dients with hypernetworks [24, 25], which add a linear transformation between hyperparameters and
model parameters layer-wisely. The hypernetwork can be efficiently computed via feed-forward and
backpropagation operations. Moreover, since the teacher network is trained with the frozen student
model, the additional computing cost it brings in is much less than training a student model. Thus,
the time complexity of HPM is mainly subject to the population size K. While the hypertraining step
could be parallelized, the whole population cannot be asynchronously updated due to the centralized
teaching process. This can be effectively addressed by introducing an asynchronous HPM, similar to
[17]. We leave it as future work and focus on learning to mutate in this study.
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Figure 3: Experiments on synthetic functions. (a)-(b) The mean performance computed by different
methods along with the standard deviation over 10 trials, in terms of different given budget of
iterations. (c) The average mutation values learned by HPM over 10 trials. In each trial, HPM runs
30 iterations in total with a population size of 5, resulting in 6 training steps and 5 mutations.

4 Experiments

4.1 Synthetic Functions

One common strategy for exploring the properties of hyperparameters is to perform hyperparameter
optimization on synthetic loss functions [36]. These loss functions usually have many local minima
and different shapes, and thus could well simulate the optimizing behavior of the real hyperparameters,
yet work as much computationally cheaper testbeds than real-world datasets.

Experimental Settings. We employ the Branin and Hartmann6D function provided by the HPOlib2

library, where Branin is defined in a two-dimensional space with three global minima (f(h∗) =
0.39787) and Hartmann6D is defined over a hypercube of [0, 1]6 with one global minima (f(h∗) =
−3.32237). We compare the proposed HPM with three baseline methods, including 1) random
search [3], 2) population based training (PBT) [17], and 3) Hypergradient. We also compare HPM
with HPM w/o T, which is the ablated HPM model without using a teacher network. It uses a random
perturbation (α is randomly chosen from [0.8, 1.2]) for mutation instead. We ran the random search
algorithm in HPOlib library and implement the PBT scheduler according to [17]. Note that, as we
use the synthetic function f to mimic the loss function of hyperparameters h, the hypergradient is
directly given by ∂f/∂h and is optimized with the gradient descent algorithm.
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Figure 4: Illustration of the optimization behavior
of PBT, Hypergradient, and HPM on the landscape
of the Branin function. We run these three methods
from the same initialization point with a budget of
30 iterations. HPM and PBT perform 6 updates as
they both adopt a population size of 5.

Hyperparameter Optimization Performance.
Fig. 3a and Fig. 3b compare the performance
of different HPO methods on the Branin and
Hartmann6D functions, respectively, where we
have several interesting observations. 1) The
hypergradient method generally performs better
than the global search methods (e.g., random
search and PBT) on Hartmann6D rather than
Branin, which is consistent with the fact that
Hartmann6D has a less number of global min-
ima than Branin. 2) There should be a trade-off
between using hypergradient and global search
methods (e.g., PBT) according to their opposite
performance on these two test functions. 3) The
proposed teacher network leads to a more stable
and faster convergence performance for HPM
compared with HPM w/o T.

Mutation Schedule. Fig. 4 shows the optimization steps of three methods on the Branin function,
where we run PBT, hypergradient, and HPM from the same random initialization point with a budget
of 30 iterations. As can be seen, the hypergradient decreases well along with the direction of gradient
yet may get stuck in local minima. In contrast, while the PBT method could fully explore the
hyperparameter space, it cannot achieve the global minimum without using the gradient guidance.
Guided by the teacher network and hypergradient information, the proposed HPM moves towards the

2https://github.com/automl/HPOlib
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Table 1: Performance comparison for the image classification task on the CIFAR10 dataset by
validation/test loss and the language modeling task on the PTB corpus dataset by perplexity (PPL).

Method CIFAR10 PTB

Val Loss Test Loss Val PPL Test PPL

Fixed
Grid Search 0.7940 0.8090 97.32 94.58
Random Search 0.9210 0.7520 84.81 81.86
Bayesian Optimization 0.6360 0.6510 72.13 69.29
Hyperband [22] 0.7156 0.7491 71.25 68.39

Schedule

PBT [17] 0.6253 0.6437 72.07 69.33
STN [25] 0.5892 0.5878 71.49 68.29
HPM w/o T 0.5724 0.5802 73.18 70.48
HPM 0.5636 0.5649 70.49 67.88

global optimum adaptively, where HPM skips over several areas quickly and half steps to the end.
Interestingly, this is consistent with the mutation schedule as shown in Fig. 3c on Branin, where HPM
employs a larger mutation in the first three steps (α→ 0 or α→ 2) and mild mutations (α→ 1) in
the last two. Hence, benefiting from the learned mutation schedule, the proposed HPM is a good
trade-off between using the hypergradient and mutation-driven update.

4.2 Benchmark Datasets

We validate the effectiveness of HPM for tuning hyperparameters of deep neural networks on two
representative tasks, including image classification with CNN and language modeling with LSTM.

Experimental Settings. For a fair comparison to hypergradient, all the experiments in this section
follow the same setting as in self-tuning networks [25], which is specifically designed for optimizing
hyperparameters of deep neural networks with hypergradients. Particularly, we tune 15 hyperparam-
eters, including 8 dropout rates and 7 data augmentation hyperparameters for AlexNet [20] in the
CIFAR10 image dataset [19], and 7 RNN regularization hyperparameters [13, 33, 29] for LSTM [15]
model in the Penn Treebank (PTB) [28] corpus dataset. We compare our approach with two groups
of HPO methods as 1) fixed hyperparameter and 2) hyperparameter schedule methods. The first
group tries to find a fixed hyperparameter configuration over the hyperparameter space, including
grid search, random search, Bayesian Optimization3 and Hyperband [22]. The second group learns
a dynamical hyperparameter schedule along with the training process, such as population based
training (PBT) [17] and self-tuning network (STN) [25]. Our HPM belongs to the second category.

Implementation Details. We implement PBT with different baseline networks (e.g., AlexNet and
LSTM) and use the truncation selection with random perturbation for exploitation and exploration
according to [17]. For STN, we directly run the authors’ code. We implement our HPM algorithm by
using STN as a student model to proceed the hypertraining. HPM employs the same exploit strategy
as in PBT and performs learnable mutation with a teacher model (e.g., an attention neural network)
for exploration. For both PBT and HPM, we take one training epoch as one training step, and do
exploit & explore operation after each step. The teacher model in HPM is trained by one epoch on
the validation set each time called by an underperforming student model. We also implement a strong
baseline model as HPM w/o T, which incorporates hypergradient in the population based training
without using a teacher network.

All the codes on benchmark datasets were implemented with Pytorch library. We set the population
size as 20 and the truncation selection ratio as 20% for PBT, HPM w/o T, and HPM. We employed
the recommended optimizers and learning rates for all the baseline networks and STN models
following [25]. Our teacher network was implemented with 64 key slots and was trained with
Adam optimizer with a learning rate of 0.001. For the fixed hyperparameter methods, we used
the Hyperband [22] implementation provided in [23] and posted the results of the others reported
in [25]. For all the hyperparameter schedule methods, we ran the experiments in the same computing
environment. STN usually converges within 250 (150) epochs on the CIFAR-10 (PTB) dataset. Thus,
we set T as 250 and 150 for all the population based methods on CIFAR-10 and PTB, respectively.

3https://github.com/HIPS/Spearmint
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Figure 5: Experiments on the CIFAR-10 image dataset. (a) The best validation loss of different
methods over training epochs. (b) The learned schedule for 4 hyperparameters by HPM. (c) The
mutation schedule given by HPM.
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Figure 6: Experiments on the PTB corpus dataset. (a) The best validation perplexity of different
methods over training epochs. (b) The learned schedule for 5 dropout rates by HPM. (c) The mutation
schedule given by HPM.

Image Classification. Table 1 reports the performance of the fixed hyperparameter and hyperparam-
eter schedule methods on the CIFAR-10 dataset in terms of validation and test loss, respectively. As
can be seen, the hyperparameter schedule methods generally perform better than the fixed ones and
the proposed HPM scheduler achieves the best performance, which demonstrates the effectiveness of
using HPM in tuning deep neural networks. Fig. 5a shows the best validation loss of different methods
over training epochs, where the loss of HPM is consistently lower than PBT and STN. We also show
the hyperparameter and mutation schedule learned by HPM in Fig. 5b and Fig. 5c. Specifically,
we select four hyperparameters including the dropout rates of the input, the third and fourth layer
activation, and the rate of adding noise on the hue of an image. We observe that the mutation has a
consistent behavior with the hyperparameter. For example, HPM schedules the dropout rate of Layer
3 with a high variance at the early training stage and assigns it a stable small value after the 150-th
epoch. Accordingly, the mutation α of Layer 3 oscillates between [0.5, 1.75] before 150 epochs and
then tends to be 1. For another example, as Hue and Input have a relatively stable schedule, their
mutation weights spread around 1 with a small variance. These observations indicate that HPM can
learn a meaningful mutation schedule during the training process.

Language Modeling. We summarize the validation and test perplexity of all the methods on the
PTB corpus dataset in Table 1, where HPM also outperforms all the compared methods. One may
note that HPM w/o T performs much worse than PBT and STN. This might be due to the conflict
between hypergradient and the exploration of random perturbation, which justifies that HPM is not a
trivial combination of PBT and STN, and supports that the proposed teacher network plays a key role
in finding the mutation schedule. Fig. 6 shows the best validation perplexity of different methods
over training epochs on the PTB dataset, as well as the hyperparameter and mutation schedules given
by HPM, where a similar observation to the image classification experiment could be obtained.

4.3 Ablation Study

The proposed HPM method adopts a population-based training framework and learns the hyperpa-
rameter schedule by alternatively proceeding with the hypertraining and learnable mutation steps. To
investigate the impact of different components in HPM, we provide more ablated models other than
HPM w/o T as follows: 1) RS+STN combines STN [25] and random search (RS). We ran RS with the
same given budget as the population size in HPM, i.e., K = 20. 2) HPM w/o H freezes hyperparame-
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Table 2: Ablation study on the CIFAR10 dataset by validation/test loss and the PTB corpus dataset
by perplexity (PPL). We investigate the ablated models from four different aspects, including the
hypertraining step, population-based training (PBT), learnable mutation, and teacher network.

Methods Model Components CIFAR10 PTB

Hypertraining PBT Mutation Teacher Val Loss Test Loss Val PPL Test PPL

RS + STN X 0.5817 0.5832 71.62 68.47
HPM w/o H X X X 0.5944 0.6031 73.76 70.73
HPM w/o M X X 0.6139 0.6267 75.24 72.85
HPM w/o T X X X 0.5724 0.5802 73.18 70.48
HPM (T-MLP) X X X X 0.5696 0.5745 70.91 67.94
HPM † X X X X 0.5636 0.5649 70.49 67.88

† indicates the full proposed model.

ters in the hypertraining step and only updates hyperparameters with learnable mutations. Thus, it
could be treated as a PBT model with hypergradient-guided mutations. 3) HPM w/o M disables the
mutation operation in HPM and, instead, performs one more hypergradient descent step on the cloned
hyperparameters for the exploration purpose. 4) In HPM, the mutation is learned by a teacher model
implemented with attention networks. Here HPM (T-MLP) employs a different implementation for
the teacher model. Specifically, it implements the teacher model gφ(h) = 1 + tanh(Wσ(V Th)) by
setting σ as LeakyRelu rather than the softmax function in Eq. (9), in which case, it turns the attention
networks as multilayer perceptron (MLP) networks.

Table 2 shows the ablation study results on two benchmark datasets, where our full model HPM
consistently outperforms all the ablated models. On the one hand, RS+STN achieves a similar
performance compared to STN [25], indicating that, without leveraging an effective exploit &
explore strategy, a simple combination between local gradient and global search may not boost the
performance significantly. On the other hand, while HPM w/o H adopts a learnable mutation, it only
performs hypergradient descent with the teacher model, leading to hyperparameters will be updated
slowly and cannot be seamlessly tuned along with model parameters. Hence, both hypertraining and
learnable mutations are useful for optimizing hyperparameters.

We further compare HPM with two ablated models without using mutations (HPM w/o M) and the
teacher network (HPM w/o T). Particularly, HPM w/o M degrades the performance due to over-
optimizing hyperparameters and the lack of mutation-driven search; HPM w/o T underperforms since
the potential conflict between hypergradient descent and the random-perturbation based mutation.
Hence, the ablation studies in Table 2 demonstrate the effectiveness of learning mutations with a
teacher model. Moreover, we also provide an alternative implementation of the teacher model with
MLP networks, i.e., HPM (T-MLP), which delivers comparative performance to the proposed HPM.

5 Conclusions

We proposed a novel hyperparameter mutation (HPM) algorithm for solving the hyperparameter
optimization task, where we developed a hypergradient-guided population based training framework
and designed a student-teaching schema to deliver adaptive mutations for the underperforming
student models. We implemented a learning-to-mutate algorithm with the attention mechanism
to learn a mutation schedule towards minimizing the validation loss, which provides a trade-off
solution between using the hypergradient-guided local search and the mutation-driven global search.
Experimental results on both synthetic and benchmark datasets clearly demonstrated the benefit of
using the proposed HPM over hypergradient and the population based methods.

Broader Impact

The proposed HPM algorithm addresses the challenge of combining local gradient and global
search for solving the hyperparameter optimization problem. The proposed framework could be
incorporated in many automated machine learning systems to provide an effective hyperparameter
schedule solution. The outcome of this work will benefit both the academic and industry communities
by liberating researchers from the tedious hyperparameter tuning work.
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