
Reviewer 1: 1. Computation analysis. Thanks for this useful suggestion! The proposed HPM computes the hyper-1

gradient with hypernetworks following STN [8], which adds a linear transformation between hyperparameters and2

model parameters layer-wisely. Thus, the additional computing cost is comparable to the original one and the whole3

model could be also efficiently trained by feed-forward and backpropagation operations. On another hand, we train the4

proposed teacher network (i.e., a small attention network) by freezing the student model, leading to a computational5

cost less than one hypergradient descent step. A more detailed computational analysis will be added in the final version.6

2. Performance variance & Reference. We ran HPM on CIFAR-10 three times and obtained validation/test loss as 1)7

0.5598/0.5664; 2) 0.5606/0.5640; and 3) 0.5647/0.5704, showing our result is relatively stable. This is consistent with8

the observations on synthetic functions. We also thank the reviewer for pointing out the valuable reference. Due to the9

limited time and space here, we will report performance variance and discuss the provided reference in the final version.10

Reviewer 2: 1. Experimental setting. Thanks for the useful suggestion! In this work, we mainly follow the experimental11

setting in [8] for a fair comparison to other HPO methods. The validation/test accuracy (%) of PBT [7], STN [8] and12

HPM on CIFAR-10 are 78.5/78.1, 80.3/80.1, and 81.7/81.1, respectively. We will include them in the final version.13

2. More baseline results. In Table 1, we implement 1) GB-HPO + RS by running STN [8] with Random Search given14

20 trials and 2) HPM w/o hypertraining by only updating hyperparameters with learnable mutation. Compared with15

HPM, GB-HPO + RS may not fully explore the hyperparameter space due to the lack of mutation-driven search. While16

the HPM w/o hypertraining adopts learnable mutation, the hypergradient will decrease slowly and the hyperparameters17

cannot be seamlessly updated along with model parameters. More results will be included in the final version.18

Table 1: More baseline results on CIFAR-10.
Methods Val Loss Test Loss

GB-HPO + RS 0.5817 0.5832
HPM w/o hypertraining 0.5944 0.6031
HPM (proposed method) 0.5636 0.5649

3. Further questions. 1) S in Eq (3). S denotes a agent model19

in the population-based training, which maintains its parameters20

(θ, h) and performs one training step (with SGD) once being called.21

2) Subscript T in Eqs (4-5). hT is obtained in a chained update22

sequence, (θkt (h
k
t ), h

k
t )← (θkt−1(h

k
t−1), h

k
t−1), where ht is updated23

by hypergradient and mutation in each step t. Thus, minimizing hT24

is equivalent to minimize this schedule: hT ← · · ·ht · · · ← h0. We will clarify these in the final version.25

Reviewer 3: 1. Additional cost by attention networks. Thanks for the valuable feedback! The proposed teacher network26

(i.e., attention networks) is retrained for adapting to the model training process and mutating the hyperparameters on27

the fly. We agree that it will bring additional cost. Fortunately, the teacher network is trained on the validation set by28

freezing the student model, which needs a much less computing cost than training students.29

2. Activation functions. Previous works like PBT [7] mainly use discrete mutation weights sampled from {0.8, 1.2}. To30

empower the flexibility of mutation, we leverage the tanh function to describe the mutation degree in [−1, 1], leading to31

continuous mutation weights in [0, 2] with Eq. (9). The softmax function is used to compute attention scores. Table 232

compares using LeakyRelu and Softmax in teacher model. We will provide more comparison results in the final version.33

3. Hypergradient directed mutation.Thanks for the useful suggestion! We train the teacher model by minimizing Lval34

w.r.t the mutated hyperparameters. Thus, the hypergradient could be backpropagated to mutation weights and update the35

teacher network. Due to the limited space, please refer to Appendix A in the supplementary material for more details.36

4. Large-scale experiments. The hypernetworks inside HPM are scalable and memory-efficient to compute hypergradi-37

ents. By using the population-based training, HPM could be further parallelized to handle large-scale datasets.38

Reviewer 4: 1. Learnable mutation. Thanks for this useful suggestion! The teacher model is trained along with39

hypergradient descent to mutate hyperparameters adaptively, which could provide aggressive mutations in early training40

steps (when hkt exhibits a high variance) and tend to mild mutations when Lval gets converged (see Fig. 4 in the41

paper). We implement HPM w/o learnable mutation by performing one more hypergradient update step over the42

cloned hyperparameters. As shown in Table 2, this baseline method degrades the performance due to over-optimizing43

hyperparameters (the cloned model parameters remained unchanged) and the lack of mutation-driven search.44

Table 2: More ablation studies on CIFAR-10.
Methods Val Loss Test Loss

HPM w/o learnable mutation 0.6139 0.6267
HPM (the proposed method) 0.5636 0.5649
HPM (T-MLP-LeakyRelu) 0.5696 0.5745

2. Implementation of teacher model. We thank the reviewer for this45

great suggestion! In our paper, we implement the teacher model46

as attention networks, i.e., gφ(h) = 1 + tanh(Wσ(V Th)) where σ47

denotes the Softmax function. We expect to use attention mechanism48

to make V memorize different hyperparameter queries and W focus49

on learning mutation degree. However, the main contribution of50

HPM is to learn the mutations with a teacher model for combining the local hypergradient and global population-based51

search. Hence, some other common network choices in the learning-to-learn regime, like MLP, can also be used as the52

teacher model of HPM. Particularly, we could implement teacher-MLP by setting the activation function σ in gφ other53

than Softmax, e.g., setting σ as LeakyRelu. Table 2 shows the comparison result between these two teacher forms.54


