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Abstract

Meta-learning is a promising strategy for learning to efficiently learn using data
gathered from a distribution of tasks. However, the meta-learning literature thus
far has focused on the task segmented setting, where at train-time, offline data is
assumed to be split according to the underlying task, and at test-time, the algorithms
are optimized to learn in a single task. In this work, we enable the application
of generic meta-learning algorithms to settings where this task segmentation is
unavailable, such as continual online learning with unsegmented time series data.
We present meta-learning via online changepoint analysis (MOCA), an approach
which augments a meta-learning algorithm with a differentiable Bayesian change-
point detection scheme. The framework allows both training and testing directly
on time series data without segmenting it into discrete tasks. We demonstrate the
utility of this approach on three nonlinear meta-regression benchmarks as well as
two meta-image-classification benchmarks.

1 Introduction

Meta-learning methods have recently shown promise as an effective strategy for enabling efficient
few-shot learning in complex domains from image classification to nonlinear regression [10, 40].
These methods leverage an offline meta-learning phase, in which data from a collection of learning
tasks is used to learn priors and update rules for more efficient learning on new related tasks.

Meta-learning algorithms have thus far solely focused on settings with task segmentation, where the
learning agent knows when the latent task changes. At meta-train time, these algorithms assume
access to a meta-dataset of datasets from individual tasks, and at meta-test time, the learner is evaluated
on a single task. However, there are many applications where task segmentation is unavailable, which
have been under-addressed in the meta-learning literature. For example, environmental factors may
change during a robot’s deployment, and these changes may not be directly observed. Furthermore,
crafting a meta-dataset from an existing stream of experience may require a difficult or expensive
process of detecting switches in the task.

In this work, we aim to enable meta-learning in task-unsegmented settings, operating directly on time
series data in which the latent task undergoes discrete, unobserved switches, rather than requiring
a pre-segmented meta-dataset. Equivalently, from the perspective of online learning, we wish to
optimize an online learning algorithm using past data sequences to perform well in a sequential
prediction setting wherein the underlying data generating process (i.e. the task) may vary with time.

Contributions. Our primary contribution is an algorithmic framework for task unsegmented meta-
learning which we refer to as meta-learning via online changepoint analysis (MOCA). MOCA
wraps arbitrary meta-learning algorithms in a differentiable Bayesian changepoint estimation scheme,
enabling their application to problems that require continual learning on time series data. By
backpropagating through the changepoint estimation framework, MOCA learns both a rapidly
adaptive underlying predictive model (the meta-learning model), as well as an effective changepoint
detection algorithm, optimized to work together. MOCA is a generic framework which works with
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many existing meta-learning algorithms. We demonstrate MOCA on both regression and classification
settings with unobserved task switches.

2 Problem Statement

Our goal is to enable meta-learning in the general setting of sequential prediction, in which we
observe a sequence of inputs xt and their corresponding labels yt. In this setting, the learning agent
makes probabilistic predictions over the labels, leveraging past observations: p✓(ŷt | x1:t,y1:t�1),
where ✓ are the parameters of the learning agent. We assume the data are drawn from an underlying
generative model; thus, given a training sequence from this model Dtrain = (x1:N ,y1:N ), we can
optimize ✓ to perform well on another sample sequence from the same model at test time.

We assume data is drawn according to a latent (unobserved) task Tt, that is xt,yt ⇠ p(x,y | Tt).
Further, we assume that every so often, the task switches to a new task sampled from some distribution
p(T ). At each timestep, the task changes with probability �, which we refer to as the hazard rate. We
evaluate the learning algorithm in terms of a log likelihood, leading to the following objective:

min
✓

E
" 1X

t=1

� log p✓(yt | x1:t,y1:t�1)

#
(1)

subj. to xt,yt ⇠ p(x,y | Tt),

Tt =
⇢
Tt�1 w.p. 1� �

Tt,new w.p. �
, T1 ⇠ p(T ), Tt,new ⇠ p(T )

Given Dtrain, we can approximate this expectation and thus learn ✓ at train time.

Note that just as in standard meta-learning, we leverage data drawn from a diverse collection of tasks
in order to optimize a learning agent to do well on new tasks at test time. However, there are three
key differences from standard meta-learning:

• The learning agent continually adapts as it is evaluated on its predictions, rather than only
adapting on k labeled examples, as is common in few-shot learning.

• At train time, data is unsegmented, i.e. not grouped by the latent task T .
• Similarly, at test time, the task changes with time, so the agent must infer which past data

are drawn from the current task when making predictions.

Thus, the setting we consider here can be considered a generalization of the standard meta-learning
setting, relaxing the requirement of task segmentation at train and test time. Both our problem setting
and an illustration of the MOCA algorithm are presented in Fig. 1.

3 Preliminaries

Meta-Learning. The core idea of meta-learning is to directly optimize the few-shot learning
performance of a machine learning model over a distribution of learning tasks, such that this learning
performance generalizes to other tasks from this distribution.

A meta-learning method consists of two phases: meta-training and online adaptation. Let ✓ be the
parameters of this model learned in meta-training. During online adaptation, the model uses context
data Dt = (x1:t,y1:t) from within one task to compute statistics ⌘t = f✓(Dt), where f is a function
parameterized by ✓. For example, in MAML [10], the statistics are the neural network weights after
gradient updates computed using Dt. For recurrent network-based meta-learning algorithms, these
statistics correspond to the hidden state of the network. For a simple nearest-neighbors model, ⌘
may simply be the context data. The model then performs predictions by using these statistics to
define a conditional distribution on y given new inputs x, which we write y | x,Dt ⇠ p✓(y | x,⌘t).
Adopting a Bayesian perspective, we refer to p✓(y | x,⌘t) as the posterior predictive distribution.
The performance of this model on this task can be evaluated through the log-likelihood of task data
under this posterior predictive distribution L(Dt,✓) = Ex,y⇠p(·,·|Ti)[� log p✓(y | x, f✓(Dt))].

Meta-learning algorithms, broadly, aim to optimize the parameters ✓ such that the model performs
well across a distribution of tasks, min✓ ETi⇠p(T ) [EDt⇠Ti [L(Dt,✓)]] . Across most meta-learning
algorithms, both the update rule f✓(·) and the prediction function are chosen to be differentiable
operations, such that the parameters can be optimized via stochastic gradient descent. Given a dataset
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Figure 1: An illustration of a simplified version of our problem setting and of the MOCA algorithm. An agent
sequentially observes an input x (e.g, an image), makes a probabilistic prediction, and receives the true label y
(here, class 1 or 2). An unobserved change in the task (a “changepoint”) results in a change in the generative
model of x and/or y. In the above image, the images corresponding to label 1 switch from sailboats to school
buses, while the images corresponding to label 2 switch from sloths to geese. MOCA recursively estimates the
time since the last changepoint, and conditions an underlying meta-learning model only on data that is relevant
to the current task to optimize its predictions.

pre-segmented into groups of data from individual tasks, standard meta-learning algorithms can
estimate this expectation by first sampling a group for which T is fixed, then treating one part as
context data Dt, and sampling from the remainder to obtain test points from the same task. While
this strategy is effective for few-shot learning, it fails for settings like sequential prediction, where
the latent task may change over time and segmenting data by task is difficult. Our goal is to bring
meta-learning tools to such settings.

Bayesian Online Changepoint Detection. To enable meta-learning without task segmentation, we
build upon Bayesian online changepoint detection [1], an approach for detecting discrete changes in
a data stream (i.e. task switches), originally presented in an unconditional density estimation context.

BOCPD operates by maintaining a belief distribution over run lengths, i.e. how many past data
points were generated under the current task. A run length rt = 0 implies that the task has switched
at time t, and so the current datapoint yt was drawn from a new task T 0 ⇠ p(T ). We denote this
belief distribution at time t as bt(rt) = p(rt | y1:t�1). We can reason about the overall posterior
predictive by marginalizing over the run length rt according to bt(rt), p(yt | y1:t�1) =

Pt�1
⌧=0 p(yt |

y1:t�1, rt = ⌧)bt(⌧), Given rt = ⌧ , we know the past ⌧ data points all correspond to the current task,
so p(yt | y1:t�1, rt = ⌧) can be computed as the posterior predictive of an underlying predictive
model (UPM), conditioning on the past ⌧ data points.

BOCPD recursively computes posterior predictive densities using this UPM for each value of
rt 2 {0, . . . , t�1}, and then evaluates new datapoints yt+1 under these posterior predictive densities
to update the belief distribution b(rt). In this work, we extend these techniques to conditional density
estimation, deriving update rules which use meta-learning models as the UPM.

4 Meta-Learning via Online Changepoint Analysis

We now present MOCA1, which enables meta-learning in settings without task segmentation, both at
train and test time. In the following subsections, we first extend BOCPD to derive a recursive Bayesian
filtering algorithm for run length, leveraging a base meta-learning algorithm as the underlying
predictive model (UPM). We then outline how the full framework allows both training and evaluating
meta-learning models on time series without task segmentation.

4.1 Bayesian Task Duration Estimation

As in BOCPD, MOCA maintains a belief over possible run lengths rt. Throughout this paper, we
use bt to refer to the belief before observing data at that timestep, (xt,yt). Note that bt is a discrete
distribution with support over rt 2 {0, ..., t � 1}. MOCA also maintains a version of the base
meta-learning algorithm’s posterior parameters ⌘ for every possible run length. We write ⌘t[r] to
refer to the posterior parameters produced by the meta-learning algorithm after adapting to the past r

1Code is available at https://github.com/StanfordASL/moca
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Algorithm 1 Meta-Learning via Online Changepoint Analysis
Require: Training data x1:n,y1:n, number of training iterations N , initial model parameters ✓
1: for i = 1 to N do
2: Sample training batch x1:T ,y1:T from the full timeseries.
3: Initialize run length belief b1(r1 = 0) = 1, posterior statistics ⌘0[r = 0] according to ✓
4: for t = 1 to T do
5: Observe xt, compute bt(rt | xt) via (2)
6: Predict p✓(ŷt | x1:t,y1:t�1) via (5)
7: Observe yt and incur NLL loss `t = � log p✓(yt | x1:t,y1:t�1)
8: Compute updated posteriors ⌘t[rt] for all rt via (6)
9: Compute bt(rt | xt,yt) via (3)

10: Compute updated belief over run length bt+1 via (4)
11: end for
12: Compute r✓

Pk+T
t=k `t and take gradient descent step to update ✓

13: end for

datapoints, (xt�r+1:t,yt�r+1:t). Given this collection of posteriors, we can compute the likelihood
of observing data given the run length r. This allows us to apply rules from Bayesian filtering to
update the run length belief in closed form. These updates involve three steps:

If the base meta-learning algorithm maintains a posterior distribution of inputs p✓(xt | ⌘t�1), then
MOCA can update the belief bt directly after observing xt, as follows

bt(rt | xt) := p(rt | x1:t,y1:t�1) / p✓(xt | ⌘t�1[rt])bt(rt) (2)

which can be normalized by summing over the finite support of bt. This step relies on maintaining
a generative model of the input variable, which is atypical for most regression models and is not
done for discriminative classification models. While this filtering step is optional, it allows MOCA to
detect task switches based on a changes in the input distribution when possible.

Next, upon observing the label yt, we can use the base meta-learning algorithm’s conditional posterior
predictive p✓(yt | xt,⌘t�1) to again update the belief over run length:

bt(rt | xt,yt) := p(rt | x1:t,y1:t) / p✓(yt | xt,⌘t�1[rt])bt(rt | xt), (3)

which can similarly be normalized.

Finally, to push the run length belief forward in time, we note that we assume that the task switches
with probability � at every timestep, and so the task remains fixed with probability 1� �. This yields
the update

bt+1(rt+1 = k) =

⇢
� if k = 0
(1� �)bt(rt = k � 1 | xt,yt) if k > 0

. (4)

For more details on the derivation of these updates, we refer the reader to Appendix A.

4.2 Meta Learning without Task Segmentation

By taking a Bayesian filtering approach to changepoint detection, we avoid hard assignments of
changepoints and instead perform a soft selection over run lengths. In this way, MOCA is able to
backpropagate through the changepoint detection and directly optimize the underlying predictive
model, which may be any meta-learning model that admits a probabilistic interpretation.

MOCA processes a time series sequentially. We initialize b1(r1 = 0) = 1, and initialize the posterior
statistics for ⌘0[r1 = 0] as specified by the parameters ✓ of the meta learning algorithm. Then, at
timestep t, we first observe inputs xt and compute bt(rt | xt) according to (2). Next, we marginalize
to make a probabilistic prediction for the label, p✓(ŷt | x1:t,y1:t�1) equal to

t�1X

rt=0

bt(rt | xt)p✓(ŷt | xt,⌘t�1[rt]) (5)

We then observe the label yt and incur the corresponding loss. We can also use the label both to
compute bt(rt | xt,yt) according to (3), as well as to update the posterior statistics for all the run
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lengths using the labeled example. Many meta-learning algorithms admit a recursive update rule
which allows these parameters to be computed efficiently using the past values of ⌘,

⌘t[r] = h(xt,yt,⌘t�1[r � 1]) 8 r = 1, . . . , t. (6)

While MOCA could work without such a recursive update rule, this would require storing data online
and running the non-recursive posterior computation ⌘t = f✓((xt�rt+1:t,yt�rt+1:t)) for every rt,
which involves t operations using datasets of sizes from 0 to t, and thus can be an O(t2) operation. In
contrast, the recursive updates involve t operations involving just the latest datapoint, yielding O(t)
complexity. Finally, we propagate the belief over run length forward in time to obtain bt(rt+1) to be
ready to process the next data point in the timeseries.

Since all these operations are differentiable, given a training time series in which there are task
switches Dtrain, we can run this procedure, sum the negative log likelihood (NLL) losses incurred at
each step, and use backpropagation within a standard automatic differentiation framework to optimize
the parameters of the base learning algorithm, ✓. Algorithm 1 outlines this training procedure. In
practice, we sample shorter time series of length T from the training data to ease computational
requirements during training; we discuss implications of this in Appendix D. If available, a user
can input various levels of knowledge on task segmentation by manually updating b(rt) at any time;
further details and empirical validation of this task semi-segmented use case are also provided in
Appendix D

4.3 Making your MOCA: Model Instantiations

Thus far, we have presented MOCA at an abstract level, highlighting the fact that it can be used
with any meta-learning model that admits the probabilistic interpretation as the UPM. Practically,
as MOCA maintains several copies of the posterior statistics ⌘, meta-learning algorithms with
lower-dimensional posterior statistics which admit recursive updates yield better computational
efficiency. With this in mind, for our experiments we implemented MOCA using a variety of base
meta-learners: an LSTM-based meta-learning approach [21], as well as meta-learning algorithms
based on Bayesian modeling which exploit conjugate prior/likelihood models allowing for closed-
form recursive posterior updates, specifically ALPaCA [16] for regression and a novel algorithm
in a similar vein which we call PCOC, for probabilistic clustering for online classification, for
classification. Further details on all methods are provided in Appendix B.

LSTM Meta-learner. The LSTM meta-learning approach encodes the information in the observed
samples using hidden state ht of an LSTM [20], and subsequently uses this hidden state to make
predictions. Specifically, we follow the architecture proposed in [21], wherein an encoding of the
current input zt = �(xt,w) as well as the previous label yt�1 are fed as input to the LSTM cell to
update the hidden state ht and cell state ct. For regression, the mean and variance of a Gaussian
posterior predictive distribution are output as a function of the hidden state and encoded input
[µ,⌃] = f(ht, zt;wf ). The function f is a feedforward network in both cases, with weights wf .
Within the MOCA framework, the posterior statistics for this model are ⌘t = {ht, ct,yt}.

ALPaCA: Bayesian Meta-Learning for Regression. ALPaCA is a meta-learning approach which
performs Bayesian linear regression in a learned feature space, such that y | x ⇠ N (KT�(x,w),⌃✏)
where �(x,w) is a feed-forward neural network with weights w mapping inputs x to a n�-
dimensional feature space. ALPaCA maintains a matrix-normal distribution over K, and thus
results in a matrix-normal posterior distribution over K. This posterior inference may be performed
exactly, and computed recursively. The matrix-normal distribution on the last layer results in a
Gaussian posterior predictive density. Note that, as is typical in regression, ALPaCA only models
the conditional density p(y | x), and assumes that p(x) is independent of the underlying task. The
algorithm parameters ✓ are the prior on the last layer, as well as the weights w of the neural network
feature network �. The posterior statistics ⌘ encode the mean and variance of the Gaussian posterior
distribution on the last layer weights.

PCOC: Bayesian Meta-Learning for Classification. In the classification setting, one can obtain a
similar Bayesian meta-learning algorithm by performing Gaussian discriminant analysis in a learned
feature space. We refer to this novel approach to meta-learning for classification as probabilistic
clustering for online classification (PCOC). Labeled input/class pairs (xt, yt) are processed by
encoding the input through an embedding network zt = �(xt;w), and performing Bayesian density
estimation in this feature space for every class. Specifically, we assume a Categorical-Gaussian
generative model in this embedding space, and impose the conjugate Dirichlet prior over the class
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Figure 2: MOCA with ALPaCA on the sinusoid regression problem. Left: The belief over run length versus
time. The intensity of each point in the plot corresponds to the belief in run length at the associated time. The
red lines show the true changepoints. Middle, Right: Visualizations of the posterior predictive density at the
times marked by blue lines in the left figure. The red line denotes the current function (task), and red points
denote data from the current task. Green points denote data from previous tasks, where more faint points are
older. By reasoning about task run-length, MOCA fits the current sinusoid while avoiding negative transfer from
past data, and resets to prior predictions when tasks switch.

probabilities and a Gaussian prior over the mean for each class. This ensures the posterior remains
Dirichlet-Gaussian, whose parameters can be updated recursively. The posterior parameters ⌘ for
this algorithm are the mean and covariance of the posterior distribution on each class mean, as well
as the counts of observations per class. The learner parameters ✓ are the weights of the encoding
network w, the prior parameters, and the covariance assumed for the observation noise. PCOC can
be thought of a Bayesian analogue of prototypical networks [40].

5 Related Work

Online Learning, Continuous Learning, and Concept Drift Adaptation. A substantial literature
exists on online, continual and lifelong learning [18, 6]. These fields all consider learning within
a streaming series of tasks, wherein it is desirable to re-use information from previous tasks while
avoiding negative transfer [12, 42]. Typically, continual learning assumes access to task segmentation
information, whereas online learning does not [3]. Regularization approaches [26, 18, 28] have been
shown to be an effective method for avoiding forgetting in continual learning. By augmenting the loss
function for a new task with a penalty for deviation from the parameters learned for previous tasks, the
regularizing effects of a prior are mimicked; in contrast we explicitly learn a prior over task weights
that is meta-trained to be rapidly adaptive. Thus, MOCA is capable of avoiding substantial negative
transfer by detecting task change, and rapidly adapting to new tasks. [3] loosen the assumption of task
segmentation in continual learning and operate in a similar setting to that addressed herein, but they
aim to optimize one model for all tasks simultaneously; in contrast, our work takes a meta-learning
approach and aims to optimize a learning algorithm to quickly adapt to changing tasks.

Meta-Learning for Continuous and Online Learning. In response to the slow adaption of contin-
ual learning algorithms, there has been substantial interest in applying ideas from meta-learning to
continual learning to enable rapid adaptation to new tasks. To handle streaming data, several works
[31, 19] use a sliding window approach, wherein a fixed amount of past data is used to condition the
meta-learned model. As this window length is not reactive to task change, these models risk suffering
from negative transfer. Indeed, MOCA may be interpreted as sliding window model, that actively
infers the optimal window length. [32] and [24] aim to detect task changes online by combining
mean estimation of the labels with MAML. However, these models are less expressive than MOCA
(which maintains a full Bayesian posterior), and require task segmentation as test time. [36] employ
gradient-based meta-learning to improve transfer between tasks in continual learning; in contrast
MOCA works with any meta-learning algorithm.

Empirical Bayes for Changepoint Models. Follow-on work to BOCPD [1] and the similar simulta-
neous work of [9] has considered applying empirical Bayes to optimize the underlying predictive
model, a similar problem to that addressed herein. In particular, [33] develop a forward-backward
algorithm that allows closed-form max likelihood estimation of the prior for simple distributions
via EM. [43] derive general-purpose gradients for hyperparameter optimization within the BOCPD
model. MOCA pairs these ideas with neural network meta-learning models, and thus can leverage
recent advances in automatic differentiation for gradient computation.
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Figure 3: Performance of MOCA with ALPaCA versus baselines in sinusoid regression (left) and the switching
wheel contextual bandit problem (right). In the bandit problem, we evaluate performance as the regret of the
model (compared to an optimal decision maker with perfect knowledge of switch times) as a percentage of the
regret of the random agent, following previous work [37]. In both problems, lower is better. Confidence intervals
in this figure and throughout are 95%.

Model Test NLL

TOE 0.889 ±0.073
SW5 �3.032 ±0.058
SW10 �3.049 ±0.054
SW50 �3.061 ±0.054
COE �3.044 ±0.059

MOCA �3.291 ±0.074

Figure 4: Left: Test NLL of MOCA + LSTM against baselines. Middle: Visualization of sample trajectory,
segmented by color according to predicted task changes. We see that task changes visually correspond to
different plays. Right: Trajectories plotted against time, together with MOCA’s belief over run length. Task
switches (dashed gray) were placed where the MAP run length drops to a value less than 5.

6 Experimental Results

We investigate the performance of MOCA in five problem settings: three in regression and two in
classification. Our primary goal is to characterize how effectively MOCA can enable meta-learning
algorithms to perform without access to task segmentation. We compare against baseline sliding
window models, which again use the same meta-learning algorithm, but always condition on the
last n data points, for n 2 {5, 10, 50}. These baselines are a competitive approach to learning in
time-varying data streams [13] and have been applied meta-learning in time-varying settings [31]. We
also compare to a “train on everything” model, which only learns a prior and does not adapt online,
corresponding to a standard supervised learning approach. Finally, where possible, we compare
MOCA against an “oracle” model that uses the same base meta-learning algorithm, but has access to
exact task segmentation at train and test time, to explicitly characterize the utility of task segmentation.
Due to space constraints, this section contains only core numerical results for each problem setting;
further experiments and ablations are presented in the appendix. We find by explicitly reasoning
about task run-length, MOCA is able to outperform baselines across all the domains with a variety of
base meta-learning algorithms and provide interpretable estimates of task-switches at test time.

Sinusoid Regression. To characterize MOCA in the regression setting, we investigate the perfor-
mance on a switching sinusoid problem adapted from [10], in which a task change corresponds to a
re-sampled sinusoid phase and amplitude. Qualitative results are visualized for the sinusoid in Fig. 2.
In this problem we pair MOCA with ALPaCA as it outperforms LSTM-based meta-learners. MOCA
is capable of accurate and calibrated posterior inference with only a handful of data points, and is
capable of rapidly identifying task change. Typically, it identifies task change in one timestep, unless
the datapoint happens to have high likelihood under the previous task as in Fig. 2d. Performance of
MOCA against baselines is presented in Fig. 3 for all problem domains. For sinusoid (left), MOCA
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Figure 5: Performance of MOCA with PCOC on rainbow MNIST (left) and miniImageNet (right). In both
problems, higher is better.

achieves performance close to the oracle model and substantially outperforms the sliding window
approaches for all hazard rates.

Wheel Bandit. Bandit problems have seen recent highly fruitful application of meta-learning
algorithms [4, 45, 15]. We investigate the performance of MOCA (paired with ALPaCA) in the
switching bandit problem, in which the reward function of the bandit undergoes discrete changes
[14, 17, 30]. We extend the wheel bandit problem [37], a common benchmark for meta-learning
algorithms [15, 34]. Details of the full bandit problem are provided in the appendix. In this problem,
changepoint identification is difficult, as only a small subset of states contains information about
whether the reward function has changes.

Following [30], we use Thompson sampling for action selection. We use the notion of regret defined
in [14], in which the chosen action is compared to the action with the best mean reward at each time,
with perfect knowledge of switches. As shown in [14], the sliding window baselines have strong
theoretical guarantees on regret, as well as good empirical performance. Performance is plotted
in Fig. 3. MOCA outperforms baselines for lower hazard rates. Detecting task switches requires
observing a state close to the (changing) high-reward boundary, and at high hazard rates, the rapid
task changes make identification of changepoints difficult, and we see that MOCA performance
matches all the sliding windows in this regime.

NBA Player Movement. To test MOCA on a real-world data with an unobserved switching latent
task, we test it on predicting the movement of NBA players, whose intent may switch over time, from,
e.g., running towards a position on the three-point line, to moving inside the key to recover a rebound.
This changing latent state has made it a common benchmark for recurrent predictive models [22, 29].
In our experiments, the input x is an individual player’s current position on the court (xt, yt), and
the label yt = xt+1 � xt is the step the player takes at that time. For this problem, we pair MOCA
with the LSTM meta-learner, since recurrent models are well suited to this task and we saw better
performance relative to ALPaCA. We add a “condition on everything” (COE) baseline which updates
a single set of posterior statistics ⌘ using all available data, as the LSTM can theoretically learn to
only consider relevant data. Nevertheless, we find that that MOCA’s explicit reasoning over task
length yields better performance over COE and other baselines, as shown in Fig. 4. While true
task segmentation is unavailable for this data, we see in the figure that MOCA’s predictions of task
changes correspond intuitively to changes in the player’s intent.

Rainbow MNIST. In the classification setting, we apply MOCA with PCOC to the Rainbow MNIST
dataset of [11]. In this dataset, MNIST digits have been perturbed via a color change, rotation, and
scaling; each task corresponds to a unique combination of these transformations. Relative to baselines,
MOCA approaches oracle performance for low hazard rates, due in part to the fact that task change
can usually be detected prior to prediction via a change in digit color. Seven colors were used, so
with probability 6/7, MOCA has a strong indicator of task change before observing the image class.

miniImageNet. Finally, we investigate the performance of MOCA with PCOC on the miniImageNet
benchmark task [44]. This dataset consists of 100 ImageNet categories [7], each with 600 RGB
images of resolution 84⇥84. In our continual learning setting, we associate each class with a semantic
label that is consistent between tasks. As five-way classification is standard for miniImageNet [44, 40],
we split the miniImageNet dataset in to five approximately balanced “super-classes." For example,
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one super-class is dog breeds, while another is food, kitchen and clothing items; details are provided
in the appendix. Each new task corresponds to resampling a particular class from each super-class
from which to draw inputs x; the labels y remain the five super-classes, enabling knowledge re-
use between classes. This corresponds to a continual learning scenario in which each super-class
experiences distributional shift over time. Fig. 5 shows that MOCA outperforms baselines for all
hazard rates.

7 Discussion and Conclusions

Future Work. In this work, we address the case in which tasks are sampled i.i.d. from a (typically
continuous) distribution, and thus knowledge re-use adds marginal value. However, many domains
may have tasks that can reoccur, or temporal dynamics to task evolution and thus data efficiency may
be improved by re-using information for previous tasks. Previous work [32, 24, 27] has addressed the
case in which tasks reoccur in both meta-learning and the BOCPD framework, and thus knowledge
(in the form of a posterior estimate) may be re-used. Broadly, moving beyond the assumption of i.i.d.
tasks to tasks having associated dynamics [2] represents a promising future direction.

Conclusions. MOCA enables the application of existing meta-learning algorithms to problems
without task segmentation, such as the problem setting of continual learning. We find that by
leveraging a Bayesian perspective on meta-learning algorithms and augmenting these algorithms
with a Bayesian changepoint detection scheme to automatically detect task switches within time
series, we can achieve similar predictive performance when compared to the standard task-segmented
meta-learning setting, without the often prohibitive requirement of supervised task segmentation.
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Broader Impact

Our work provides a method to extend meta-learning algorithms beyond the task-segmented case, to
the time series series domain. Equivalently, our work extends core methods in changepoint detection,
enabling the use of highly expressive predictive models via empirical Bayes. This work has the
potential to extend the domain of applicability of both of these methods. Standard meta-learning
relies on a collection of datasets, each corresponding to discrete tasks. A natural question is how such
datasets are constructed; in many cases, these datasets rely on segmentation of time series data by
experts. Thus, our work has the potential to make meta-learning algorithms applicable to problems
that, previously, would have been too expensive or impossible to segment. Moreover, our work has
the potential to improve the applicability of changepoint detection methods to difficult time series
forecasting problems.

While MOCA has the potential to expand the domain of problems addressable via meta-learning, this
has the effect of amplifying the risks associated with these methods. Meta-learning enables efficient
learning for individual members of a population via leveraging empirical priors. There are clear risks
in few-shot learning generally: for example, efficient facial recognition from a handful of images has
clear negative implications for privacy. Moreover, while there is promising initial work on fairness
for meta-learning [39], we believe considerable future research is required to understand the degree to
which meta-learning algorithms increase undesirable bias or decrease fairness. While it is plausible
that fine-tuning to the individual results in reduced bias, there are potential unforeseen risks associated
with the adaptation process, and future research should address how bias is potentially introduced in
this process. Relative to decision making rules that are fixed across a population, algorithms which
fine-tune decision making to the individual present unique challenges in analyzing fairness. Further
research is required to ensure that the adaptive learning enabled by algorithms such as MOCA do not
lead to unfair outcomes.
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