
A Overview of Supplemental Material

We organize supplementary material as follows. In Section B, we present our results compared to
baselines on the full-to-full matching task between two complete shapes. In Section C, we show
a small set of qualitative results for animal shapes. In Section D, we explain the implementation
details of reweighting module, which is an important component of our transformation regularization
module. In Section E, we detail the back-propagation rule for the regression submodule that estimates
local transformations, as described in Equation (2). Finally, in Section F we prove Theorem 1 on the
exact recovery conditions for our transformation sychronization formulation.

B Full-to-full Matching Results

In this section, we compare our method with the four baselines, namely, DeepGeoFunc [11],
DHBC [51], 3D-CODED [13], and three variants of LES [10]: point translation and patch de-
formation 3D (LES-PTD3), point translation 10D (LES-PT10), patch deformation 10D (LES-PD10).
All correspondences are refined by designated algorithms: 3D-CODED and LES use deformation
during prediction, DeepGeoFunc uses ZoomOut [35], and DHBC and our method uses non-rigid
ICP for correspondence refinement. All statistics are reported in Table 2 and qualitative results are
provided in Figure 4.

Overall, our method achieved competitive results when compared against these state-of-the-art
baselines. Specifically, we achieved 1.74cm/1.72cm/1.42cm/3.50cm average correspondence error on
the SURREAL/FAUST-inter/FAUST-intra/SHREC19 datasets, where the top-performing baseline
achieved 2.54cm/1.64cmm/1.45cm/5.02cm. We achieved the most improvement on SHREC19, which
is recognized as the most difficult dataset due to large domain gap. This result demonstrates the
power of our regularization module.

It should be noted that all the baseline approaches involve isometry-invariance constraints (e.g.,
spectral techniques and those preserve geodesic distances) possess strong regularizations in the
full-2-full setting. Still, our approach, which leverages the implicit articulated deformation structure,
outperform them by a considerable margin. This shows the advantages of modeling approximated
piece-wise rigidity constraints for establishing dense correspondences between 3D models of humans.

SURREAL FAUST-inter FAUST-intra SHREC19
Method AE(cm) 5cm-recall 10cm-recall AE(cm) 5cm-recall 10cm-recall AE(cm) 5cm-recall 10cm-recall AE(cm) 5cm-recall 10cm-recall
DHBC / / / 2.35 0.900 0.972 2.00 0.911 0.975 / / /

3D-CODED 2.89 0.958 0.971 2.08 0.956 0.983 1.97 0.964 0.986 6.69 0.740 0.898
LES-PTD3 2.74 0.962 0.971 1.64 0.969 0.992 1.49 0.976 0.992 6.75 0.742 0.894
LES-PT10 2.54 0.962 0.971 1.69 0.971 0.991 1.45 0.976 0.992 6.95 0.733 0.895
LES-PD10 2.75 0.962 0.972 2.05 0.949 0.978 2.32 0.949 0.971 5.02 0.766 0.948

DeepGeoFunc 3.45 0.905 0.971 2.92 0.828 0.972 2.11 0.886 0.975 17.02 0.440 0.727
Ours-Refine-ICP 1.74 0.980 0.990 1.72 0.962 0.990 1.42 0.969 0.992 3.50 0.824 0.968

Table 2: Evaluation of all correspondence computation methods for the full-to-full correspondence
task. We report the average correspondence error, 5cm-recall, and 10cm-recall for all correspondence
computation methods on each dataset. The unit of error is cm. All reported correspondences results
are evaluated after designated refinement methods have been applied. All the results are reported
the same set of datasets reported in this paper by running the code from the authors of the baseline
approaches.

C Qualitative Results on Animal Shapes

As an additional experiment, we train our model on a synthetic dataset utilizing SMAL [61]. We
generate 20K triangular meshes using latent parameters generated from a gaussian distribution. For
each mesh, we rendered 100 depth scans from random viewpoints. The model was trained in a similar
fashion as the human shape and evaluated on the horse class of TOSCA dataset [7] (see Figure 5).
The results indicates the usefulness of our transformation synchronization module. For more results,
please refer to our code base.

D Implementation of Reweighting Module

In this section, we demonstrate the implementation details of reweighting module.
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Figure 4: Qualitative comparisons between our approach and top performing baseline on FAUST-inter,
FAUST-intra and SHREC19. For each dataset, we report from left to right: target mesh, error maps
of two top-performing baselines and our method after refinement. For each method, the error (cm) is
visualized on the source mesh.

Figure 5: Qualitative Results evaluated on the horse class of TOSCA dataset [7]. From left to right:
1) Ground Truth Correspondence on source shape. 2) Initial Correspondence before transformation
regularization. 3) Correspondence after transformation regularization.

The input to this module is a point cloud with vertex-wise correspondences and transformations. The
goal is to update vertex weights and edge weights to prepare for transformation propagation by (6).

The design of reweighting module is illustrated in figure 6. Specifically, we propagate messages
m

(k)
i among vertices and aggregate them by element-wise maximum MAX(·) as in the message

passing framework [12]. This is repeated by kmax iterations, where in the last layer m(kmax)
i is a

scalar indicating the vertex-wise weights.
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Figure 6: Illustration of Reweighting Module. Note that yi ∈ R3 are point locations on template
mesh.

E Back-Propagation Rule for (2)

We consider a general objective function for pose regression:

Rin
i , t

in
i = argmin

R,t

∑
j∈N (i)

wj‖Rpj + t− qcj‖
2 (12)

where wj > 0. Our goal is derive the partial derivatives of Rin
i and tini with respect to wj .

The following proposition, which is due to [18], characterizes a closed-form expression for Rin
i and

tini .
Proposition 1. Let

cp =
∑

j∈N (i)

wjpj/
∑

j∈N (i)

wj , cq =
∑

j∈N (i)

wjqcj/
∑

j∈N (i)

wj .

Denote
S =

∑
j∈N (i)

wj(pj − cp)(qcj − cq)T .

Let S = UΣV T be the singular-value decomposition of S. Then

Rin
i = V

(
1 0 0
0 1 0
0 0 sign(det(S))

)
UT , tini = cq −Rcp. (13)

The following proposition characterizes the derivatives of Rin
i with respect to elements of S, which

then determines the derivatives with respect to wj .
Lemma 1. The derivatives of R with respect to S is given by

dR =
∑

1≤i 6=j≤3

vi · uT
j ·

uT
j · dS · vi − uT

i · dS · vj

σi + σj

+ (sign(det(S))− 1)

2∑
j=1

(
uT
j dSv3 ·

σ3v3u
T
j + σjvju

T
3

σ2
3 − σ2

j

+ uT
3 dSvj ·

σ3vju
T
3 + σjv3u

T
j

σ2
3 − σ2

j

)
(14)

where U = (u1,u2,u3), V = (v1,v2,v3), and Σ = diag(σ1, σ2, σ3).

Proof. It is clear that
Svi = σiui,u

T
i S = σiv

T
i , 1 ≤ i ≤ 3.

Taking the differential on both sides, we obtain

dS · vi + S · dvi = dσi · ui + σi · dui (15)

duT
i S + uT

i dS = dσiv
T
i + σidv

T
i (16)
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Left multiplying both sides of (15) by uj with j 6= i and observing that uT
j ui = 0, we obtain

uT
j dSvi + uT

j Sdvi = σiu
T
j dui. (17)

Similarly right multiplying both sides of (16) by vT
j with j 6= i gives

duT
i Svj + uT

i dSvj = σidv
T
i vj . (18)

It follows that

uT
j dSvi + σjv

T
j dvi = σiu

T
j dui (19)

σj · duT
i uj + uT

i dSvj = σidv
T
i vj (20)

Observe that ujTdui + duT
i uj = 0 and vT

j dvi + dvT
i vj = 0. Combining (19) and (20) to solve

for uT
j dui and vT

j dvi, we obtain

uT
j dui =

σiu
T
j dSvi + σju

T
i dSvj

σ2
i − σ2

j

(21)

vT
k dvi =

σiu
T
i dSvj + σju

T
j dSvi

σ2
i − σ2

j

(22)

Since uidui = 0, we have

dui =
∑
j 6=i

σiu
T
j dSvi + σju

T
i dSvj

σ2
i − σ2

j

uj

dvi =
∑
j 6=i

σiu
T
i dSvj + σju

T
j dSvi

σ2
i − σ2

j

vj

In the case det(S) > 0, we have

dR =
∑(

vidu
T
i + dviu

T
i

)
∑

1≤i 6=j≤3

vi · uT
j ·

uT
j · dS · vi − uT

i · dS · vj

σi + σj
.

The proof for the case det(S) < 0 is similar and it omitted for brevity.

For the network training, at each iteration and for each instance, we fix the nearest neighbors and apply
the expression described above to back-propagation the gradients from the initial transformations to
the descriptor tower.

F Proof of Robust Recovery Condition

This section presents the proof of Theorem. We begin with a few useful lemmas in Section F.1. We
then complete the proof in Section F.2.

F.1 Useful Lemmas

The first lemma concerns the relation between different norms of a symmetric matrix A.
Lemma 2. Given a symmetric matrix A, we have

‖A‖ ≤ ‖A‖1. (23)

Proof. Consider any eigenvalue λ of A. Denote x = (x1, · · · , xn)T ∈ Rn as its corresponding
eigenvector. Let

i? = argmax
1≤i≤n

|xi|.
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Then
n∑

j=1

aijxj = λxi? .

It follows that

|λ||xi? | ≤ |
n∑

j=1

aijxj | ≤
n∑

j=1

|aij ||xj | ≤
n∑

j=1

|aij ||xi? | ≤ ‖A‖1 · |xi? |

It follows that
|λ| ≤ ‖A‖1,

which ends the proof.

The second lemma concerns the L1 norm of (A−B)−1.

Lemma 3. Suppose ‖A− 1
2 ‖21‖B‖1 < 1. Then

‖(A−B)−1‖1 ≤
‖A− 1

2 ‖21
1− ‖A− 1

2 ‖21‖B‖1
. (24)

Proof. First of all, since ‖A− 1
2 ‖21‖B‖1 < 1. It follows that

‖A− 1
2BA−

1
2 ‖ < 1.

In other words, we have

(A−B)−1 = A−
1
2

(
I −A− 1

2BA−
1
2

)
A−

1
2

= A−
1
2 ·
∞∑
i=0

(
A−

1
2BA−

1
2

)i ·A− 1
2 .

Therefore

‖(A−B)−1‖1 ≤ ‖A−
1
2 ‖21 ·

∞∑
i=0

‖
(
A−

1
2BA−

1
2

)i‖1
≤ ‖A− 1

2 ‖21 ·
∞∑
i=0

(
‖A− 1

2 ‖21‖B‖1
)i

≤ ‖A− 1
2 ‖21

1− ‖A− 1
2 ‖21‖B‖1

.

F.2 Completing the Proof

Note that our reweighted least square formulation solves the following linear system at each iteration:

min
vi,1≤i≤n

n∑
i=1

w
(t)
i ‖vi − vin

i ‖2 + λ
∑

(i,j)∈E

w
(t)
ij ‖vi − vj‖2 (25)

where w(t)
i , 1 ≤ i ≤ n and w(t)

ij , (i, j) ∈ E are weights associated with vertices and edges at iteration
t. Define

W
(t)
V := Diag(w

(t)
i |1≤i≤n) ∈ Rn×n, W

(t)
E := Diag(w

(t)
ij |(i,j)∈E) ∈ R|E|×|E|.

Proposition 2. Suppose vi = vgt
i + δi, 1 ≤ i ≤ n and δij = vgt

i −vgt
j , (i, j) ∈ E . Then the solution

x(t) to (25) satisfies
v(t) − vgt := L(t)−1

r(t).
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where

L(t) := W
(t)
V + λJTW

(t)
E J (26)

r(t) := W
(t)
V mat(δi) + λJTW

(t)
E mat(δij). (27)

where J ∈ R|E|×n is the vertex and edge indicator matrix; mat(δi) ∈ Rn×12 collects the vertex
indicators;mat(δij) ∈ R|E|×12 collects the edge indicators.

Proof. Let V = (v1, · · · ,vn)T ∈ Rn×12. It is clear that (25) is identical to

min
V

Trace
(
V TL(t)V

)
− 2Trace

(
V Tr(t)

)
which ends the proof.

Let V(t) ⊂ [n] and E(t) ⊂ E be the remaining edges at iteration t. By the default setting, we assume
V(t) and E(t) satisfy the recursion properties:

Vg ⊂ V(t) ⊂ [n]

Eg ⊂ E(t) ⊂ E

Moreover,

‖δi‖ ≤ c0ct, ∀1 ≤ i ≤ n
‖δij‖ ≤ c0ct, ∀(i, j) ∈ E

It follows that

‖r(t)‖∞ ≤ max
(
ε0‖Dg

W ‖1 + c0c
t‖Lg,ol

W ‖1, c0c
t(‖Db

W ‖1 + ‖Lb,ol
W ‖1)

)
(28)

Note that the solution at the next iteration satisfies

‖V (t+1) − V gt‖∞ ≤ ‖L(t)−1
‖1‖r(t)‖∞. (29)

Applying Lemma 3, we have

‖L(t)−1
‖1 ≤

‖L− 1
2 ‖21

1− ‖L− 1
2 ‖21‖Lol‖1

≤ ‖L− 1
2 ‖21

1− ‖L− 1
2 ‖21 max

(
‖Lg,ol

W ‖1, ‖Db
W ‖1 + ‖Lb,ol

W ‖1
) . (30)

where L = DW +LW , and Lol collects all the elements of L that are attached to outlier observations.

Combing (28)-(30), we have

‖V (t+1)−V gt‖∞ ≤
‖L− 1

2 ‖21 ·max
(
ε0‖Dg

W ‖1 + c0c
t‖Lg,ol

W ‖1, c0ct(‖Db
W ‖1 + ‖Lb,ol

W ‖1)
)

1− ‖L− 1
2 ‖21 max

(
‖Lg,ol

W ‖1, ‖Db
W ‖1 + ‖Lb,ol

W ‖1
) (31)

Therefore, under the assumptions of the theorem, i.e.,

‖(DW + LW )−
1
2 ‖21 ·max

(
‖ 1

c1
Dg

W + 2Lg,ol
W ‖1, ‖D

b
W + 2Lb,ol

W ‖1
)
≤ c

2 + c

we have
‖r(t)‖∞ ≤

1

2
max(c1ε0, c0c

t+1)

This means the iterative procedure only prunes the outliers, and now we end the proof.
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