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Abstract

The objective in statistical Optimal Transport (OT) is to consistently estimate the1

optimal transport plan/map solely using samples from the given source and target2

marginal distributions. This work takes the novel approach of posing statistical OT3

as that of learning the transport plan’s kernel mean embedding from sample based4

estimates of marginal embeddings. A key result is that, under mild conditions,5

the sample complexity of the resulting estimator for the optimal transport plan6

as well as that for the Barycentric-projection based optimal transport map are7

dimension-free. Moreover, the implicit smoothing in the kernel embeddings not8

only improves the quality of finite sample estimation but also enables out-of-9

sample estimation. Also, complementary to existing φ-divergence (entropy) based10

regularization techniques, our estimator employs a maximum mean discrepancy11

(MMD) based regularization to avoid over-fitting the samples. We present an12

appropriate representer theorem that leads to a kernelized convex formulation,13

which can then be potentially used to perform OT even in non-standard domains.14

Empirical results illustrate the efficacy of the proposed approach.15

1 Introduction16

Optimal Transport is proving to be an increasingly successful tool in solving diverse machine learning17

problems. Recent research shows that variants of Optimal Transport (OT) achieve state-of-the-18

art performance in various machine learning (ML) applications such as domain adaptation [9],19

NLP [2, 40, 41], robust learning [6], etc. It is also shown that OT based (Wasserstein) metrics serve as20

good loss functions in both supervised [15] and unsupervised [19] learning. [30] is a comprehensive21

monologue on the subject with focus on recent developments related to machine learning.22

Given two marginal distributions over source and target domains, and a cost function between23

elements of the domains, the classical OT problem (Kantorovich’s formulation) is that of finding24

the joint distribution whose marginals are equal to the given marginals, and which minimizes the25

expected cost with respect to this joint distribution [22]. This joint distribution is known as the26

(optimal) transport plan or the optimal coupling. A related object of interest for ML applications is27

the so-called Barycentric-projection based transport map corresponding to a transport plan (e.g., refer28

(11) in [34]). Though OT techniques already improve state-of-the-art in many ML applications, there29

are two main bottlenecks that seem to limit OT’s success in ML settings:30

• while continuous distributions are ubiquitous, algorithms for finding the transport plan/map over31

continuous domains are very scarce [18]. The situation is worse in case of non-standard domains,32

which are not uncommon in ML.33
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• the marginal distributions are never available, and merely samples from them are given. The34

variant of OT where the transport plan/map needs to be estimated merely using samples from35

the marginals is known as the statistical OT problem. In case of statistical OT over continuous36

domains, [18, 17, 14, 5] note that estimators that are free from the curse of dimensionality are not37

well-studied.38

The concluding report from a recent workshop on OT (refer section 2 in [5]) summarizes that one of39

the major open problems in this area is to design estimators in context of continuous statistical OT40

whose sample complexity is not a strong function of the dimension (ideally dimension-free).41

Our work focuses on this challenging and important problem of statistical OT over continuous42

domains, and seeks consistent estimators whose sample complexity is dimension-free. To this43

end, we take the novel approach of equivalently re-formulating the statistical OT problem solely in44

terms of the relevant kernel mean embeddings [25]. More specifically, our formulation finds the45

(characterizing) kernel mean embedding of a joint distribution with least expected cost, and whose46

marginal embeddings are close to the given-sample based estimates of the marginal embeddings.47

There are several advantages of this new approach:48

1. because the samples based estimates of the kernel mean embeddings of the marginals are known49

to have sample complexities that are dimension-free, it is expected that the sample complexity50

remains dimension-free even for the proposed estimator of the transport plan embedding.51

2. kernel embeddings provide implicit smoothness, as controlled by the kernel. Appropriate smooth-52

ness not only improves the quality of estimation, but also enable out-of-sample estimation.53

3. while existing estimators employ φ-divergence (or entropy) based regularization, our formulation54

employs Maximum Mean Discrepency (MMD) based regularization to avoid overfitting the55

samples. This is facilitated as MMD is the natural notion of distance in the kernel mean embedding56

space. As discussed in [38], MMD and φ-divergence based regularization exhibit complementary57

properties and hence both are interesting to study.58

To the best of our knowledge, existing works have not employed kernel mean embeddings explicitly59

in the context of OT.60

A key result from this work is that, under mild conditions, the proposed estimator for the optimal61

transport plan as well as the (Barycentric-projection based) optimal transport map is statistically62

consistent with a sample complexity that remains dimension-free. Another key contribution is63

an appropriate representer theorem that guarantees finite characterization for the transport plan64

embedding, which leads to a fully kernelized and convex formulation. Thus the same formulation65

can potentially be used for obtaining estimators in all variants of OT: continuous, semi-discrete, and66

discrete, merely by switching the kernel between the Kronecker delta and the Gaussian kernels. More67

importantly, the same can be used to solve OT problems in non-standard domains using appropriate68

universal kernels [7]. Finally, we present an alternating direction method of multipliers (ADMM)69

based algorithm for efficiently solving the proposed formulation. Empirical results on synthetic and70

real-world datasets illustrate the efficacy of the proposed approach.71

2 Background on Optimal Transport72

Let X ,Y be any two sets that form locally compact Hausdorff topological spaces. We denote the set73

of all Radon probability measures over X byM1(X ); whereas we denote the set of strictly positive74

measures byM1
+(X ) . Let c : X × Y denote a function that evaluates the cost between elements in75

X ,Y and let ps ∈M1
+(X ), pt ∈M1

+(Y). Then, the Kantorovich’s OT formulation [22] is:76

minπ∈M1(X ,Y)

∫
c(x, y) dπ(x, y),

s.t. πX = ps, πY = pt,
(1)

where πX , πY denote the marginal measures of π over X ,Y respectively. An optimal solution of (1)77

is referred to as an optimal transport plan or optimal coupling.78

Statistical OT: In the setting of statistical OT, the marginals ps, pt are not available; however, iid79

samples from them are given. Let Dx = {x1, . . . , xm} denote the set of m iid samples from ps and80

let Dy = {y1, . . . , yn} denote n iid samples from pt. The cost function is known only at the sample81

data points. Let C ∈ Rm×n denote the cost matrix with with (i, j)th entry as c(xi, yj).82
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A popular way to estimate the optimal plan in (1) is to simply employ the sample based plug-in83

estimates for the marginals: p̂s ≡ 1
m

∑m
i=1 δxi and p̂t ≡ 1

n

∑n
j=1 δyj , in place of the true (unknown)84

marginals. Here, δ denotes the Dirac delta function. In such a case, (1) simplifies as the standard85

discrete OT problem:86

minπ∈Rm×n tr(πC>),
s.t. π1 = 1

m1, π>1 = 1
n1, π ≥ 0,

(2)

where tr(M) is the trace of matrix M , and 1,0 denote vectors/matrices with all entries as unity,87

zero respectively (of appropriate dimension). Since the sample complexity of (2) in estimating (1)88

is prohibitively high for high-dimensional domains [12], alternative estimation methods are sought89

after.90

3 Proposed Methodology91

We begin by re-formulating (1) solely in terms of kernel mean embeddings and operators. Let k1, k292

be characteristic kernels [16, 39] defined over X ,Y respectively. By definition, the key advantage of93

a characteristic kernel is that the mapping between kernel mean embeddings andM1 becomes one-to-94

one (injective). For discrete probability measures, the Kronecker delta kernel is characteristic, while95

for continuous measures, the Gaussian kernel is an example of a characteristic as well as a universal96

kernel. Let φ1, φ2 andH1,H2 denote the canonical feature maps and the reproducing kernel Hilbert97

spaces (RKHS) corresponding to the kernels k1, k2 respectively. Let 〈·, ·〉Hi
, ‖·‖Hi

denote the default98

inner-product, norm in the RKHS Hi. Let µs ≡ EX∼ps [φ1(X)] , µt ≡ EY∼pt [φ2(Y )] denote the99

kernel mean embeddings of the marginals ps, pt respectively. Let Σss ≡ EX∼ps [φ1(X)⊗ φ1(X)]100

and Σtt ≡ EY∼pt [φ2(Y )⊗ φ2(Y )] denote the auto-covariance embeddings of ps, pt respectively.101

Here ⊗ denotes tensor product. Using these embeddings one can compute expectations of functions102

of the respective random variables: for e.g., E[f(X)] = E[〈f, φ(x)〉] = 〈f,E[φ(X)]〉 etc.103

Since the variable, π, is a joint measure, the cross-covariance operator, Uπ =104

E(X,Y )∼π [φ1(X)⊗ φ2(Y )], is the suitable kernel mean embedding to be employed. However,105

the constraints involve the marginals of π, whose embeddings cannot be retrieved from the cross-106

covariance operator alone. Hence we also employ the conditional embedding operators, Uπ1 ,Uπ2 ,107

which embed the conditionals πY/X (·/·) and πX/Y(·/·) respectively. The relations between these108

operators and embeddings follow from the definition of conditional embedding and the kernel sum109

rule [37]: U = ΣssU>1 = U2Σtt, U1µs = µt, U2µt = µs.110

In order to re-write the objective using the above operators, we assume that the cost function, c, can111

be embedded inH2 ⊗H1. This assumption is trivially true if the domains are discrete. However, in112

case of continuous domains this need not be true, in general. Hence we additionally assume that the113

kernel corresponding to a continuous domain is universal and that the cost function is continuous in114

that continuous variable. It then follows from the definition of universal kernels that a continuous115

function like c(·, ·) can be arbitrarily closely approximated by elements inH2 ⊗H1 [39]. Note that116

universal kernels are well-studied and known for non-standard domains too [7].117

Now, the objective in (1) can be written as: E [c(X,Y )] = 〈c,U〉H2⊗H1 . This leads to the following118

kernel embedding formulation for OT:119

min
U,U1,U2

〈c,U〉H2⊗H1

s.t. U1µs = µt, U2µt = µs, U = ΣssU>1 = U2Σtt,
U ∈ E (H2,H1) ,U1 ∈ L (H1,H2) ,U2 ∈ L (H2,H1) ,

(3)

where L (H1,H2) is the set of all linear operators from H1 7→ H2, and E (H2,H1) ≡120 {
U ∈ L (H2,H1) | ∃p ∈M1(X ,Y) 3 U = E(X,Y )∼p [φ1(X)⊗ φ2(Y )]

}
is the set of all valid121

cross-covariance operators. The equivalence of (3) and (1) follows from the one-to-one correspon-122

dence between the measures involved and their kernel embeddings, which is guaranteed by the123

characteristic kernels, and from the crucial embedding characterizing constraint: U ∈ E (H2,H1).124

Without this characterizing constraint, the formulation is not meaningful. We summarize the above125

re-formulation in the following theorem:126

Assumption 1. Both kernels k1, k2 are characteristic. Moreover, if ki is over a continuous domain,127

then it is universal.128
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Assumption 2. We assume that c ∈ H2 ⊗ H1, where c denotes either the exact function or the129

(arbitrarily) close approximation of it that can be embedded.130

Theorem 1. Under Assumptions 1-2, the Kantorovich formulation of OT (1) is equivalent to (3).131

Note that unlike existing formulae for the operator embeddings [37], which eliminate two of the132

three operators U ,U1,U2; we critically preserve all of them in (3). This is because they facilitate133

efficient regularization in the statistical estimation set-up and lead to efficient algorithms (as will be134

shown later). Also, the characterization of embedding, E (H1,H2), is included only for the cross-135

covariance, and not explicitly included for the conditional operators. This is because the conditionals136

are well-defined given the cross-covariance, auto-covariance and marginal embeddings.137

The main advantage of the proposed formulation (3) over (1) is that the sample based estimates138

for kernel mean embeddings of the marginals, which are known to have dimension-free sample139

complexities, can be employed directly in the statistical OT setting.140

3.1 Proposed formulation for statistical OT141

As motivated earlier, we aim to employ the standard sample based estimates for the kernel mean142

embeddings of the marginals in the re-formulation (3). To this end, let the estimates for the marginal143

kernel mean embeddings be denoted by: µ̂s ≡ 1
m

∑m
i=1 φ1(xi) and µ̂t ≡ 1

n

∑n
j=1 φ2(yj). Likewise,144

the estimates of the auto-covariance embeddings are given by Σ̂ss ≡ 1
m

∑m
i=1 φ1 (xi)⊗ φ1 (xi) and145

Σ̂tt ≡ 1
n

∑n
j=1 φ2 (yj)⊗ φ2 (yj).146

In the statistical OT setting, the cost function, c, is only available at the given samples. In continuous147

domains, there will exist many functions in the RKHS that will exactly match c restricted to the148

samples. Each such choice will lead to a valid estimator. We choose ĉ ≡
∑m
i=1

∑n
j=1 ρ

∗
ijφ1(xi)⊗149

φ2(yj), where ρ∗ ≡ arg minρ

∥∥∥c−∑m
i=1

∑n
j=1 ρijφ1(xi)⊗ φ2(yj)

∥∥∥
H2⊗H1

and ‖ · ‖H2⊗H1
is the150

Hilbert-Schmidt operator norm. For universal kernels, it follows that ĉ will be equal to c at the given151

samples, and hence the above is a valid choice for estimation. In addition, the above choice of ĉ helps152

us in proving the representer theorem (Theorem 3).153

Now, employing these estimates in (3) must be performed with caution as i) the equality constraints154

now will be in the (potentially infinite dimensional) RKHS, ii) more importantly, matching the155

estimates exactly will lead to over-fitting. Hence, we propose to introduce appropriate regularization156

by insisting that there is a close match rather than an exact match. This leads to the following kernel157

embedding learning formulation:158

min
U,U1,U2

〈ĉ,U〉H2⊗H1

s.t. ‖U1µ̂s − µ̂t‖H2
≤ ∆1, ‖U2µ̂t − µ̂s‖H1

≤ ∆2,∥∥∥U − Σ̂ssU>1
∥∥∥
H2⊗H1

≤ ε1,
∥∥∥U − U2Σ̂tt

∥∥∥
H2⊗H1

≤ ε2,
U ∈ E (H2,H1) ,U1 ∈ L (H1,H2) ,U2 ∈ L (H2,H1) ,

(4)

where ∆1,∆2, ε1, ε2 are regularization hyper-parameters introduced to prevent overfitting to the159

estimates. Setting ∆i = 0 = εi recovers the case where estimates of marginal mean embed-160

dings and auto-covariances are exactly matched but it may lead to overfitting. Also, U1,U2161

are guaranteed to be valid conditional embeddings only as ∆i, εi → 0. Hence, we suggest162

∆i, εi = O
(

1/
√

min(m,n)
)

, following known sample complexities for the marginal embedding163

estimates, which are O (1/
√
m) , O (1/

√
n) respectively [36]. Since the kernel embedding estimates164

have sample complexities that are independent of dimension, it is expected that the statistical esti-165

mation error with the proposed formulation (4) is also independent of dimensionality. In the next166

theorem, we formalize the above statement:167

Assumption 3. Let us assume that the kernels are normalized/bounded i.e., maxx∈X k1(x, x) =168

1,maxy∈Y k2(y, y) = 1.169

Theorem 2. Let g
(
ĉ, µ̂s, µ̂t, Σ̂ss, Σ̂tt

)
denote the optimal objective of (4) in170

Tikhonov form. Under Assumptions 1-3, with high probability we have that,171 ∣∣∣g (ĉ, µ̂s, µ̂t, Σ̂ss, Σ̂tt)− g (c, µs, µt,Σss,Σtt)
∣∣∣ ≤ O

(
1/
√

min(m,n)
)

. The constants in172

the RHS of the inequality are dimension-free.173
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Theorem 2 shows that with appropriate regularization one can obtain statistically consistent estimators174

for the embedding of the optimal transport plan by solving (4). More importantly, its proves that175

the sample complexity of these estimators is dimension-free. The proof of this theorem is detailed176

in Appendix A. The idea is to uniformly bound the difference between the population and sample177

versions of each of the terms in the objective. Interestingly, each of these difference terms can either178

be bounded by relevant estimation errors in embedding space or by approximation errors in the179

RKHS, both of which are known to be dimension-free.180

Note that the regularization in (4) is based on the Maximum Mean Discrepancy (MMD) distances181

between the kernel embeddings. This characteristic of our estimators is in contrast with the popular182

entropic regularization [10], or φ-divergence based regularization [24] in existing OT estimators. [38]183

argue that MMD and φ-divergence based regularization have complementary properties. Hence184

both are interesting to study. While the dependence on dimensionality is adversely exponential with185

entropic regularization, if accurate solutions are desired [17], the proposed MMD based regularization186

for statistical OT leads to dimension-free estimation.187

3.2 Representer theorem & Kernelization188

Interestingly, (4) admits a finite parameterization facilitating it’s efficient optimization. This important189

result is summarized in the representer theorem below:190

Theorem 3. Whenever (4) is solvable, there exists an optimal solution, U∗,U∗1 ,U∗2 , of (4) such191

that U∗ =
∑m
i=1

∑n
j=1 αijφ1(xi) ⊗ φ2(yj),U∗1 =

∑m
i=1

∑n
j=1 βjiφ2(yj) ⊗ φ1(xi),U∗2 =192 ∑m

i=1

∑n
j=1 γijφ1(xi) ⊗ φ2(yj). Here α ∈ Rm×n, β ∈ Rn×m, γ ∈ Rm×n that are an optimal193

solution for the kernelized and convex formulation (5) given below:194

min
α,γ∈Rm×n,β∈Rn×m

tr(αC>)

s.t. 1
m21

>G1β
>G2βG11− 2

mn1
>G2βG11 + 1

n21
>G21 ≤ ∆2

1
1
n21
>G2γ

>G1γG21− 2
mn1

>G1γG21 + 1
m21

>G11 ≤ ∆2
2〈

G1α− 1
mG

2
1β
>, αG2 − 1

mG1β
>G2

〉
F
≤ ε21,〈

αG2 − 1
nγG

2
2, G1α− 1

nG1γG2

〉
F
≤ ε22,

α ≥ 0,1>α1 = 1,

(5)

where,G1 andG2 are the gram-matrices with k1 and k2 over x1, . . . , xm and y1, . . . , yn respectively.195

The proof of this theorem is detailed in Appendix B. Apart from standard representer theorem-type196

arguments, the proof includes arguments that show that the characterizing set E (H2,H1) when197

restricted to the linear combinations of embeddings is exactly same as the convex combinations of198

those. This helps us replace the membership to E (H2,H1) constraint by a simplex constraint.199

We note that (5) is jointly convex in the variables α, β, and γ. This is because the constraints are either200

convex quadratic or linear and the objective is also linear. Hence obtaining consistent estimators using201

(5) is computationally tractable (refer section 3.4). It is easy to verify that (5) simplifies to the discrete202

OT problem (2) if both the kernels are chosen to be the Kronecker delta and all the hyper-parameters203

are set to zero. If one of the kernel is chosen as the Kronecker delta and the other as the Gaussian204

kernel, then (5) can be used for semi-discrete OT in the statistical setting. Additionally, by employing205

appropriate universal kernels, (5) can be used for statistical OT in non-standard domains.206

We end this section with a small technical note. While the cross-covariance operator obtained by207

solving (5) will always be a valid one; for some hyper-parameters, which are too high, it may happen208

that the optimal β, γ induce invalid conditional embeddings. This may make computing the transport209

map (6) intractable. Hence, in practice, we include additional constraints β, γ ≥ 0.210

3.3 Proposed Optimal Map Estimator211

Once the embedding of the transport plan is obtained by solving (5), generic approaches for recovering212

the measure corresponding to a kernel embedding, detailed in [21, 33], can be employed to recover213

the corresponding transport plan. Moreover, since the recovery methods in [33] have dimension-free214

sample complexity, the overall sample complexity for estimating the optimal transport plan hence215

remains dimension-free.216
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We estimate the Barycentric-projection based optimal transport map, T , at any x ∈ X as follows:217

T (x) ≡ argmin
y∈Y

E [c (y, Y ) /x] = argmin
y∈Y

〈c(y, ·),U∗1φ1(x)〉 ,

= argmin
y∈Y

∑n
j=1

(
c(y, yj)

∑n
j=1

(
β∗jik1 (xi, x)

))
,

(6)

where β∗ are obtained by solving (5) and U∗1 is the corresponding conditional embedding. (6) turns out218

to be that of finding the Karcher mean [23], whenever the cost is a squared-metric etc. Alternatively,219

one can directly minimize E [c (y, Y ) /x] with respect to y ∈ Y using stochastic gradient descent220

(SGD). The following theorem summarizes the consistency with SGD:221

Theorem 4. Let the cost be a metric or it’s powers greater than unity and let Y be compact. Then222

the SGD based estimator for T has a sample complexity that remains dimension-free.223

The proof of this theorem is detailed in Appendix C and follows from standard results in stochastic224

convex optimization.225

An advantage with our map estimator is that it can be computed even at out-of-sample x ∈ X . This226

is possible because of the implicit smoothing induced by the kernel.227

3.4 Algorithms228

The structure in the proposed problem (5) can be exploited to derive efficient alternating directions229

method of multipliers (ADMM) [4] based solvers. Further speed-up may be obtained in the special230

case when εi = 0 in (5). This simplifies the constraints corresponding to ε1 and ε2 in (5) as231

α = (1/m)G1β
> and α = (1/n)γG2, respectively. In addition, we re-write the regularizations232

corresponding to ∆2
i in Tikhonov form. The above leads (5) to the following optimization problem:233

min
α∈Amn,β∈Rm×n≥0,γ∈Rm×n≥0

tr(αC>) + λ1

∥∥α1− 1
m1
∥∥2

G1
+ λ2

∥∥α>1− 1
n1
∥∥2

G2

s.t. α = 1
mG1β

>, α = 1
nγG2

(7)

where Amn = {x ∈ Rm×n | x ≥ 0,1>x1 = 1} and λi > 0 are the regularization hyper-parameter234

corresponding to ∆2
i in (5). The updates for the ADMM are summarized below:235

α(k+1) := argmin
α∈Amn

ρ
∥∥∥α+ 1

2

(
D

(k)
1 +D

(k)
2 + C

ρ −
γ(k)G2

n − G1β
(k)>

m

)∥∥∥2

+λ1

∥∥α1− 1
m

∥∥2

G1
+ λ2

∥∥α>1− 1
n

∥∥2

G2
,

β(k+1) := argmin
β≥0

∥∥∥α(k+1) +D
(k)
1 − G1β

>

m

∥∥∥2

,

γ(k+1) := argmin
γ≥0

∥∥∥α(k+1) +D
(k)
2 − γG2

n

∥∥∥2

,

D
(k+1)
1 := D

(k)
1 +

(
α(k+1) − G1β

(k+1)>

m

)
,

D
(k+1)
2 := D

(k)
2 +

(
α(k+1) − γ(k+1)G2

n

)
,

where D1 and D2 are the dual variables corresponding to the constraints α = (1/m)G1β
> and236

α = (1/n)γG2 in (7), respectively. The optimization problems with respect to α, β, and γ can237

be solved efficiently using popular algorithms like conditional gradient descent, mirror descent,238

co-ordinate descent, conjugate gradients, etc. Since the convergence rate of these algorithms is either239

independent or almost independent (logarithmically dependent) on the dimensionality of the problem,240

the computational cost (after neglecting log factors, if any) of solving for: α is O(mn), β is O(m2n),241

and γ is O(mn2). The updates for D1 and D2 have computational costs: O(m2n) and O(mn2).242

Without loss of generality, if we assume m ≥ n, the per iteration cost of ADMM is O(m3).243

As noted earlier, in typical cases where the hyper-parameters ∆i are small enough, explicit constraints244

β ≥ 0, γ ≥ 0 are not needed:245

min
α∈Amn

tr(αC>) + λ1

∥∥α1− 1
m1
∥∥2

G1
+ λ2

∥∥α>1− 1
n1
∥∥2

G2
(8)

Hence the computational cost in this special case is O(mn), which is linear, and hence comparable246

to that of Sinkhorn algorithm popularly used to solve the discrete OT problem.247
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20 40 60 80 100 120 140 160 180 200

Number of samples

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
v
e
ra

g
e
 M

S
E

Proposed: =0.1

Proposed: =0.3

Proposed: =0.5

EMD

(d) Dimension d = 100.

20 40 60 80 100 120 140 160 180 200

Number of samples

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
v
e
ra

g
e
 M

S
E

Proposed: =0.1

Proposed: =0.5

Proposed: =1.0

EMD

(e) Dimension d = 500.

20 40 60 80 100 120 140 160 180 200

Number of samples

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
v
e
ra

g
e
 M

S
E

Proposed: =0.1

Proposed: =0.5

Proposed: =1.0

EMD

(f) Dimension d = 1000.

Figure 1: Performance on the proposed estimator for the transport map (6) and the discrete OT
estimator, EMD, on the problem of learning the optimal transport map between two multivariate
Gaussian distributions. We observe that the proposed estimator outperforms EMD, especially in
higher dimensions.

4 Related Work248

A popular strategy for performing continuous statistical OT is to simply employ the sample based249

plug-in estimates for the marginals. This reduces the statistical OT problem to the classical discrete250

OT problem, for which efficient algorithms exist [10, 1]. However, the sample complexity of the251

discrete OT based estimation is plagued with the curse of dimensionality [12]. [18, 17, 14] note that252

estimators that are free from the curse of dimensionality are not well-studied and propose alternatives.253

While the approach of [18] efficiently estimates the optimal dual objective, recovering the optimal254

transport plan from the dual’s solution again requires the knowledge of the exact marginals (refer255

proposition 2.1 in [18]). Since estimating distributions in high-dimensional settings is known to be256

challenging, this alternative is not attractive for applications where the transport plan is required, e.g.,257

domain adaptation [9] and ecological inference [26], etc.258

[17] observe that continuous statistical OT is the major bottleneck for applying OT in ML prob-259

lems and propose an entropic regularization based alternative. However, their results (e.g., theo-260

rem 3 in [17]) show that the curse of dimensionality is not completely removed, especially if accurate261

solutions are desired. Empirical results in [13, refer Figures 4 and 5] confirm that the quality of the262

solution degrades very quickly with entropic regularization. The alternative in [14] makes strong263

low-rank based assumptions, which may not be realistic in all applications. Infact, the report on a264

recent workshop on OT (refer section 2 in [5]) summarizes that one of the major open problems in265

this area is to design estimators for continuous statistical OT whose sample complexity is not a strong266

function of dimensionality (ideally dimension-free).267

On passing we note that though there are existing works that employ kernels in context of OT [18,268

29, 42, 27], none of them use the notion of kernel embedding of distributions and limit the use of269

kernels to either function approximation or computing MMD distance. Though relations betweeen270

Wasserstein and MMD distance [13] exist, none of them explore regularization with MMD distances.271

5 Experiments272

We evaluate our estimator for the transport map (6) on both synthetic and real-world datasets.273
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(b) Dimension d = 10.
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(c) Dimension d = 50.
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(d) Dimension d = 100.
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(e) Dimension d = 500.
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(f) Dimension d = 1000.

Figure 2: Average out-of-sample mean square error (MSE) obtained by the proposed approach on the
problem of learning the optimal transport map between two multivariate Gaussian distributions. In
general, the average out-of-sample MSE decrease with increasing number of data points sampled to
learn the estimator (the x-axis). We also observe that the best results obtained by proposed solution is
robust to the dimensionality of the data points.

5.1 Learning OT map between multivariate Gaussian distributions274

The optimal transport map between two Gaussian distributions gsource = N(m1,Σ1) and gtarget =275

N(m2,Σ2) with squared Euclidean cost has a closed form expression [30] given by T : x 7→276

m2 + A(x −m1), where A = Σ
− 1

2
1 (Σ

1
2
1 Σ2Σ

1
2
1 )

1
2 Σ
− 1

2
1 . We compare the proposed estimator (6) in277

terms of the deviation from the optimal transport map.278

Experimental setup: We consider mean zero Gaussian distributions with unit-trace covariances.279

The covariance matrices are computed as Σ1 = V1V
>
1 /‖V1‖F and Σ2 = V2V

>
2 /‖V2‖F , where280

V1 ∈ Rd×d and V2 ∈ Rd×d are generated randomly from the uniform distribution. We ex-281

periment with varying dimensions and number of data-points: d ∈ {5, 10, 50, 100, 500, 1000},282

m ∈ {10, 20, 50, 100, 150, 200}, and we set n = m for simplicity. For each dimension d, we283

randomly generate a source-target distribution pair. Subsequently, the source and target datasets (of284

size m) are randomly generated from their respective distributions. For a every (d,m), we repeat the285

experiments five times and report the average mean square error (MSE) results results in Figures 1286

and 2. In a second set of experiments, we also study the variance in the results of a given optimal287

transport problem caused due to random data-points. In this setup a source-target distribution pair is288

randomly generated for a given d. From this distribution pair, source-target datasets are randomly289

generated five times for every m. Average MSE results are reported in Tables 1-3.290

Methods: The proposed approach employs the Gaussian kernels, k(x, z) = exp(−‖x− z‖2/2σ2).291

We chose the same σ values for the kernels over the source and the target domains (k1 and k2,292

respectively). Initial experiments indicate that suitable values of σ include those that does not yield293

high condition number of the Gram matrices (i.e, the Gram matrices are not ill-conditioned). In294

our setup, in general, the condition number of the Gram matrices increase with σ for a fixed d and295

decrease with d for a fixed σ. The σ values used in various experiments are mentioned with the296

results. As a baseline, we also report the results obtained from the discrete OT estimator, henceforth297

referred to as EMD, learned via the discrete OT problem (2).298

Evaluation: For a given data point xs from the source distribution, a transport map estimator maps299

xs to a data point xt in the target distribution. Such a mapping obtained from the optimal transport300
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Table 1: Average MSE on the problem of learning the optimal transport map between two given
multivariate Gaussian distributions with d = 10. For all m, we randomly sample data points from a
fixed randomly sampled source-target distribution. We observe that the proposed approach easily
outperforms EMD.

Method m = 10 m = 20 m = 50 m = 100 m = 150 m = 200

EMD 0.53± 0.18 0.42± 0.11 0.32± 0.06 0.27± 0.04 0.24± 0.02 0.21± 0.01
Proposed (σ = 0.1) 0.45± 0.14 0.23± 0.05 0.23± 0.03 0.19± 0.03 0.17± 0.01 0.15± 0.01
Proposed (σ = 0.2) 0.41± 0.15 0.27± 0.06 0.20± 0.02 0.17± 0.02 0.23± 0.10 0.16± 0.04
Proposed (σ = 0.3) 0.37± 0.14 0.25± 0.06 0.22± 0.03 0.20± 0.03 0.25± 0.11 0.19± 0.01

Table 2: Average MSE on the problem of learning the optimal transport map between two given
multivariate Gaussian distributions with d = 100. For all m, we randomly sample data points from a
fixed randomly sampled source-target distribution. We observe that the proposed approach easily
outperforms EMD.

Method m = 10 m = 20 m = 50 m = 100 m = 150 m = 200

EMD 0.69± 0.11 0.68± 0.15 0.56± 0.06 0.45± 0.03 0.42± 0.01 0.41± 0.01
Proposed (σ = 0.1) 0.54± 0.08 0.54± 0.10 0.41± 0.03 0.36± 0.01 0.35± 0.01 0.34± 0.08
Proposed (σ = 0.3) 0.47± 0.06 0.44± 0.08 0.31± 0.02 0.26± 0.01 0.25± 0.01 0.25± 0.04
Proposed (σ = 0.5) 0.40± 0.06 0.37± 0.07 0.32± 0.02 0.29± 0.01 0.30± 0.02 0.29± 0.01

map (15) is considered as the ground truth. The proposed estimator (8) and the EMD are evaluated in301

terms of the mean squared error (MSE) from the ground truth.302

Results: The results of our first set of experiments are reported in Figures 1(a)-(f). We observe that303

the proposed estimator obtains lower average MSE (and hence better estimation of the transport map)304

than EMD across different number of samples m and dimensions d. The advantage of the proposed305

estimator over the baseline is more pronounced at higher dimension.306

In Table 1, we report the results of the second set of experiments with d = 10. We again observe that307

the proposed approach outperforms EMD. Results on the same experimental setup but with d = 100308

and d = 1000 are report in Tables 2 and 3, respectively.309

Out-of-sample evaluation: We also evaluate our estimator’s ability to map out-of-sample data by310

sampling additionalmoos = 200 points from the source distributions in the above experiments. These311

source points are not used to learn the estimator and are only used for evaluation during the inference312

stage. The results on out-of-sample dataset, corresponding to the first set of experiments (Figure 1)313

are reported in Figure 2. We generate out-of-sample data points for each (d, s) pair, where d is the314

dimension of the data points and s is the random seed (corresponding to five repetition discussed315

earlier). Hence, for a given (d, s) pair, different estimators learned with varying m are evaluated on316

the same set of out-of-sample data points.317

We observe that the performance on out-of-sample data points are similar to the in-sample data points318

(Figures 1(a) & (b)). The average out-of-sample MSE generally decreases with increasing number of319

(training) samples since a better estimator is learned with more number of (training) samples. Overall,320

Table 3: Average MSE on the problem of learning the optimal transport map between two given
multivariate Gaussian distributions with d = 1000. For all m, we randomly sample data points from
a fixed randomly sampled source-target distribution. We observe that the proposed approach easily
outperforms EMD.

Method m = 10 m = 20 m = 50 m = 100 m = 150 m = 200

EMD 0.89± 0.15 0.64± 0.11 0.59± 0.06 0.55± 0.07 0.50± 0.01 0.49± 0.01
Proposed (σ = 0.1) 0.69± 0.12 0.51± 0.06 0.46± 0.04 0.43± 0.03 0.41± 0.01 0.41± 0.01
Proposed (σ = 0.5) 0.53± 0.16 0.36± 0.08 0.33± 0.05 0.31± 0.05 0.29± 0.02 0.29± 0.01
Proposed (σ = 1.0) 0.67± 0.19 0.54± 0.12 0.55± 0.13 0.52± 0.12 0.51± 0.06 0.50± 0.03
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Table 4: Accuracy obtained on the target domains of the Office-Caltech dataset. The knowledge
transfer to the target domain happens via in-sample source data-points, i.e., those source data-points
using which the transport plan was learned.

Task EMD OTLin [28] OTKer [28] Proposed
A→ C 80.68± 1.82 82.92± 1.41 83.07± 0.63 86.27± 1.74
A→ D 72.66± 6.58 82.28± 5.66 82.53± 3.70 84.30± 5.41
A→W 69.05± 5.08 77.70± 3.60 76.35± 4.16 76.22± 3.32
C → A 82.61± 3.45 88.31± 0.94 88.09± 1.50 91.05± 0.79
C → D 68.35± 10.06 79.75± 6.04 78.99± 7.95 82.78± 3.81
C →W 65.54± 2.74 71.89± 3.43 70.00± 3.93 74.46± 4.45
D → A 81.50± 1.99 88.57± 1.86 85.23± 1.71 90.92± 1.23
D → C 76.51± 2.87 82.17± 1.70 78.22± 1.80 86.84± 0.86
D →W 91.89± 2.96 97.57± 1.09 96.35± 1.10 96.22± 1.84
W → A 71.22± 1.54 80.00± 1.74 76.23± 2.50 86.90± 2.42
W → C 69.55± 3.18 77.58± 2.34 73.72± 2.59 82.28± 1.31
W → D 80.76± 4.90 97.72± 1.47 96.20± 2.89 96.20± 3.00

Average 75.86± 1.43 83.87± 0.38 82.08± 0.95 86.20± 0.98

the results illustrate the utility of the proposed approach for out-of-sample estimation. It should be321

noted that the baseline EMD cannot map out-of-sample data points.322

5.2 Domain adaptation323

We experiment on the Caltech-Office dataset [20], which contains images from four domains: Amazon324

(online retail), the Caltech image dataset, DSLR (images taken from a high resolution DSLR camera),325

and Webcam (images taken from a webcam). The domains vary with respect to factors such as326

background, lightning conditions, noise, etc. The number of examples in each domain is: 958327

(Amazon), 1123 (Caltech), 157 (DSLR), and 295 (Webcam). Each domain has images from ten328

classes. We perform multiclass classification in the domain adaptation setting, where each domain is329

in turn considered as the source or the target. Overall, there are twelve adaptation tasks (e.g., task330

A→ C has Amazon as the source and Caltech as the target domain). We employ DeCAF6 features331

to represent the images [11, 28, 8].332

Experimental setup: For learning transport plan, we randomly select ten images per class for the333

source domain (eight per class when DSLR is the source, due to its sample size). The remaining334

samples of the source domain is marked as out-of-sample source data-points. The target domain is335

partitioned equally into training and test sets. The transport map is learned using the source-target336

training sets. The ‘in-sample’ accuracy is then evaluated on the target’s test set. We also evaluate337

the quality of our out-of-sample estimation as follows. Instead of projecting the source training338

set samples onto the target domain, we project only the out-of-sample (OOS) source data-points339

and compute the accuracy over the target’s test set. It should be noted that the transport model has340

not been learned on the OOS data-points, such mappings may not be as accurate as the in-sample341

mapping. The OOS evaluation assesses the downstream effectiveness of OOS estimation on domain342

adaptation. Out-of-sample estimation is especially attractive in big data and online applications. The343

classification in the target domain is performed using a 1-Nearest Neighbor classifier [20, 28, 8]. The344

above experimentation is performed five times. The average in-sample and out-of-sample accuracy345

are reported in Tables 4 & 5, respectively.346

Methods: We compare our approach with EMD, OTLin [28], and OTKer [28]. Both OTLin and347

OTKer aim to solve the discrete optimal transport problem and also learn a transformation approxi-348

mating the corresponding transport map in a joint optimization framework. OTLin learns a linear349

transformation while OTKer learns a non-linear transformation (e.g., via Gaussian kernel). The350

learned transformation allows OTLin and OTKer to perform out-of-sample estimation as well. Both351

OTLin and OTKer employ two regularization parameters. As suggested by their authors [28], both352

the regularization parameters were chosen from the set {10−3, 10−2, 10−1, 100}. It should be noted353

that best regularization parameters were selected for each task. OTKer additionally requires Gaus-354

sian kernel’s hyper-parameter σ, which was chosen from the set {0.1, 0.5, 1, 5, 10}. We use the355
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Table 5: Accuracy obtained on the target domains of the Office-Caltech dataset. The knowledge
transfer to the target domain happens via out-of-sample source data-points, i.e., those source data-
points which were not used for learning the transport plan.

Task OTLin [28] OTKer [28] Proposed
A→ C 56.75± 2.94 79.11± 2.76 84.71± 1.82
A→ D 79.49± 1.86 82.79± 2.06 85.82± 0.95
A→W 55.41± 6.60 76.35± 1.66 81.62± 2.11
C → A 87.79± 3.28 84.54± 2.78 90.66± 0.87
C → D 81.01± 3.75 74.94± 3.53 81.52± 3.97
C →W 70.00± 3.64 68.11± 1.16 74.05± 4.16
D → A 64.53± 5.01 81.95± 2.69 85.47± 2.74
D → C 43.67± 4.80 72.79± 3.04 80.44± 2.19
D →W 90.04± 2.81 82.02± 0.72 88.11± 2.27
W → A 60.09± 4.77 73.88± 2.83 80.04± 4.11
W → C 49.34± 8.78 63.17± 4.14 76.97± 1.52
W → D 95.95± 1.86 90.89± 1.68 93.42± 2.45

Average 69.51± 2.70 77.54± 0.66 83.60± 0.22

Python Optimal Transport (POT) library (https://github.com/PythonOT/POT) implementations356

of OTLin and OTKer in our experiments. For the proposed approach, as in the previous experiments,357

we chose the Gaussian kernels and have same σ values for the kernels over the source and the target358

domains. The σ for our approach was also chosen from the set {0.1, 0.5, 1}.359

Results: We observe from Tables 4 & 5 that the proposed approach outperforms the baselines,360

obtaining the best in-sample and out-of-sample (OOS) accuracy. As discussed, the in-sample accuracy361

is likely to be better than out-of-sample accuracy (for any approach). Interestingly, for a few tasks362

with Amazon and Caltech as the source domains, the OOS accuracy of our approach is comparable to363

our in-sample accuracy. In these domains, the OOS set is larger than the training set. The proposed364

OOS estimation is able to exploit this and provide an effective knowledge transfer. Conversely, we365

observe a drop in our OOS accuracy (when compared with the corresponding in-sample accuracy) in366

tasks with DSLR and Webcam as the source domains since the size of OOS set is quite small and367

hence lesser potential for knowledge transfer. On the other hand, OTLin suffers a significant drop in368

OOS performance, likely due the the overfitting of the learned linear transformation on the source369

training points. While OTKer has better OOS performance than OTLin, it has more variance between370

in-sample and out-of-sample performance than the proposed approach.371

6 Conclusions372

The idea of employing kernel embeddings of distributions in OT seems promising, especially in373

the continuous case. It not only leads to sample complexities that are dimension-free, but also374

provides a new regularization scheme based on MMD distances, which is complementary to existing375

φ-divergence based regularization.376

While the optimal solution of the proposed MMD regularized formulation recovers the transport377

plan, the objective value does not seem to have any special use. On the contrary, it has been shown378

that with entropic, φ-divergence based regularizations the optimal objectives lead to notions of379

Sinkhorn divergences [13] and Hillinger-Kantorovich metrics [24]. We make an initial observation380

that in the special regularization, εi = 0,∆1 = ∆2, and the Tikhonov regularized form of (4), our381

optimal objective resembles that defining the Hillinger-Kantorovich metrics very closely. Hence, we382

conjecture that our optimal objective in this special case may also define a new family of metrics.383

However, we postpone such connections (if any) to future work.384

A Proof for Theorem 2385

Proof. Let ĥ denote the objective in (4), when written in Tikhonov form, as a function of vari-386

ables U ∈ E (H2,H1) ,U1 ∈ L (H1,H2) ,U2 ∈ L (H2,H1) and let h denote that when the true387
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embeddings are employed instead of their estimates. In particular, we have ĥ
(
Û , Û1, Û2

)
=388

g
(
ĉ, µ̂s, µ̂t, Σ̂ss, Σ̂tt

)
, h (U∗,U∗1 ,U∗2 ) = g (c, µs, µt,Σss,Σtt), where Û , Û1, Û2 and U∗,U∗1 ,U∗2389

are optimal solutions to respective problems.390

We begin by noting that the feasibility set of (4) is bounded. This is because: i) the set E (H2,H1)391

is bounded. This is true as U ∈ E (H2,H1) ⇒ there exists p ∈ M1(X × Y) such that392

‖U‖ = ‖E(X,Y )∼p [φ1(X)⊗ φ2(Y )] ‖ ≤ E(X,Y )∼p [‖φ1(X)⊗ φ2(Y )‖] = 1. The first inequality393

follows from Jensens inequality and the second equality is true for any bounded kernel like Gaussian394

and the Kroncker Delta. ii) By triangle inequality,
∣∣∣‖U‖ − ‖Σ̂ssU1‖

∣∣∣ ≤ ∥∥∥U − Σ̂ssU>1
∥∥∥ ≤ ε1.395

This shows that the set of all feasible Σ̂ssU1 is bounded, since U is itself bounded in the396

feasibility set. Now, since maxeig(Σ̂ss) = maxeig(G2)/n ≤ tr(G2)/n = 1 (again397

true for Kronecker and Gaussian kernels), we obtain that set of all feasible U1 is also398

bounded. Similarly, set of all feasible U2 is bounded. Accordingly, we define B (ε1, ε2) ≡399

{(U ∈ E (H2,H1) ,U1 ∈ L (H1,H2) ,U2 ∈ L (H2,H1)) | ‖U‖ ≤ 1, ‖U1‖ ≤ 1 + ε1, ‖U2‖ ≤ 1 + ε2 }.400

By the above argument, it is clear that there is no loss of generality in further restrict-401

ing the search space to that with intersection with this bounded set, B (ε1, ε2), and always402

(U∗,U∗1 ,U∗2 ) ,
(
Û , Û1, Û2

)
∈ B (ε1, ε2) for any m,n ∈ N.403

The rest of the proof follows from the claim below:404

Claim 1. The uniform bound:

max
(U,U1,U2)∈B(ε1,ε2)

∣∣∣ĥ (U ,U1,U2)− h (U ,U1,U2)
∣∣∣ ≤ O (1/

√
min(m,n)

)
holds, where the constants in the RHS are dimension-free.405

Proof. Now consider the Tikhonov regularized form of (4). Then, one of the term in the objective is406

‖U1µ̂s−µ̂t‖ ≤ ‖U1 (µ̂s − µs) ‖+‖µt − µ̂t‖+‖U1µs − µt‖, which is less than ‖U1µs−µt‖+O( 1√
p )407

with high probability. Here, p = min(m,n). The first inequality is by triangle inequality and the408

second is the crucial one that follows from sample complexity of kernel mean embeddings (see409

theorem 2 in [36]), and the boundedness of ‖U1‖. Also, the constants in O( 1√
p ) are independent410

of samples, variables and dimensions. By symmetry, we also have with high probability that411

‖U1µs − µt‖ ≤ ‖U1µ̂s − µ̂t‖+O( 1√
p ). Hence, with high probability, uniformly over the feasibility412

set, |‖U1µs − µt‖ − ‖U1µ̂s − µ̂t‖| ≤ O( 1√
p ). Analogous arguments hold for the other quadratic413

terms too. Now, we analyze the linear objective term. By Jensen’s inequality, |〈ĉ,U〉 − 〈c,U〉| ≤414 √
Eu
[
(ĉ− c)2

]
, where u is the measure corresponding to U . Let ū denote the product measure415

of the given marginals. It is easy to see that {(xi, yj) | i ∈ 1, . . . ,m, j ∈ 1, . . . , n} is an iid set of416

samples from ū. By eqn. (4) in theorem 3.1 in [31] and lemma 1 in [32], we have
√
Eu
[
(ĉ− c)2

]
≤417

‖c‖ū√
mn

(
1 +

√
2 log(1

δ )
)

, with probability δ. Here, ‖ · ‖ū is same as that defined in section III of [31],418

and theorem 3.1 in [31] applies to our case as we assumed normalized kernels. In particular, this419

bound is independent of dimensions and U . To summarize, we have, |〈ĉ,U〉 − 〈c,U〉| ≤ O( 1√
mn

).420

Finally, again by triangle inequality,
∣∣∣ĥ (U ,U1,U2)− h (U ,U1,U2)

∣∣∣ is less than the sum of deviations421

in each of the terms detailed above. Since each of these deviations is upper bounded uniformly by422

O
(

1√
p

)
, the claim is proved.423

The proof of the theorem then follows from standard arguments: ĥ
(
Û , Û1, Û2

)
−424

h (U∗,U∗1 ,U∗2 ) ≤ h
(
Û , Û1, Û2

)
− h (U∗,U∗1 ,U∗2 ) + max(U,U1,U2)∈B(ε1,ε2) ĥ (U ,U1,U2) −425

h (U ,U1,U2) ≤ h
(
Û , Û1, Û2

)
− h (U∗,U∗1 ,U∗2 ) + O

(
1/
√

min(m,n)
)

by the claim.426

Now, the estimation error, h
(
Û , Û1, Û2

)
− h (U∗,U∗1 ,U∗2 ), which is non-negative,427
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is equal to
(
ĥ
(
Û , Û1, Û2

)
− ĥ (U∗,U∗1 ,U∗2 )

)
+

(
h
(
Û , Û1, Û2

)
− ĥ

(
Û , Û1, Û2

))
+428 (

ĥ (U∗,U∗1 ,U∗2 )− h (U∗,U∗1 ,U∗2 )
)
≤ O

(
1/
√

min(m,n)
)

. The last inequality follows429

from the claim and the definition of
(
Û , Û1, Û2

)
that it minimizes ĥ. Analogous arguments give430

h (U∗,U∗1 ,U∗2 )− ĥ
(
Û , Û1, Û2

)
≤ O

(
1/
√

min(m,n)
)

. This not only completes the proof but also431

shows that the estimation error also decays with rate that is dimension-free.432

B Proof of representer theorem433

Proof. Without loss of generality, we consider the parameterization: Uα =
∑m
i=1

∑n
j=1 αijφ1(xi)⊗434

φ2(yj)+U⊥,Uβ1 =
∑m
i=1

∑n
j=1 βjiφ2(yj)⊗φ1(xi)+U⊥1 ,U

γ
2 =

∑m
i=1

∑n
j=1 γijφ1(xi)⊗φ2(yj)+435

U⊥2 , where U⊥,U⊥1 ,U⊥2 are the respective orthogonal complements. It is easy to see that the objective436

as well as the first two inequalities in (4) do not involve the orthogonal complements. Also the term437 ∥∥∥U − Σ̂ssU>1
∥∥∥2

H2⊗H1

can be written as sum of a term not involving the orthogonal complements438

and ‖U⊥ − Σ̂ss
(
U⊥1
)> ‖2H2⊗H1

. Like-wise
∥∥∥U − U2Σ̂tt

∥∥∥2

H2⊗H1

can be written as sum of a term439

not involving the orthogonal complements as ‖U⊥ − U⊥2 Σ̂tt‖2H2⊗H1
.440

Now re-writing (4), where all the norm constraints are equivalently replaced by the norm-441

squared constraints, in Tikhonov regularization form reads as: minf∈S⊆H R̂ [f ] + Ω[f ], where442

f = (U ,U1,U2),H = (H2 ⊗H1) ⊕ (H1 ⊗H2) ⊕ (H2 ⊗H1) ,S = E (H2,H1) × L (H1,H2) ×443

L (H2,H1) ,Ω[f ] ≡ ‖U⊥ − Σ̂ss
(
U⊥1
)> ‖2H2⊗H1

+ ‖U⊥ − U⊥2 Σ̂tt‖2H2⊗H1
and R̂[f ] is the re-444

maining objective that does not involve the orthogonal complements. Also, let Ŝ ⊂ S denote445 {
f = (U ,U1,U2) ∈ S | U⊥ = 0,U⊥1 = 0,U⊥2 = 0

}
and let ΠŜ denote the projection onto Ŝ. Now,446

for any f ∈ H, we have that: R̂[ΠŜ(f)] = R̂[f ] and more importantly, 0 = Ω[ΠŜ(f)] ≤ Ω[f ].447

Consider the following argument1: minf∈S⊂H R̂[f ] + Ω[f ] ≤ minf∈Ŝ⊂H R̂[f ] + Ω[f ] =448

minf∈S⊂H R̂[ΠŜ(f)] + Ω[ΠŜ(f)] ≤ minf∈S⊂H R̂[f ] + Ω[f ]. This proves that the orthogonal449

complements are all zero at optimality.450

Now, let L ≡ {Uα | α ∈ Rm×n}, P ≡
{
Uα | α ∈ Rm×n, α ≥ 0,1>α = 1

}
and A ≡451 {∑m′

i=1

∑n′

j=1 αijφ1(x′i)⊗ φ2(y′j) | α ∈ Rm′×n′ , α ≥ 0,1>α = 1, x′i ∈ X , y′j ∈ Y,m′, n′ ∈ N
}

.452

Then, the only thing left to be shown is that E (H2,H1) ∩ L = P . While P ⊆ E (H2,H1) ∩ L is453

trivial. The converse is true because of the following facts:454

1. E (H2,H1) = cl(A), where cl denotes the set closure. While cl(A) ⊆ E (H2,H1) is trivial,455

the converse follows from the convergence of average of sample embeddings to the true456

embedding (see theorem 2 in [36]).457

2. if U ∈ L\P , then U /∈ A. This is because the expansion of embeddings in RKHS of a458

universal kernel are unique. Also, U ∈ L,U /∈ A ⇒ U /∈ cl(A).459

460

C Proof of Theorem 4461

Proof. Firstly, by theorem 2, for low enough hyper-parameters we know that the conditional operator462

obtained by solving (5) are consistent with dimension-free sample complexity. Hence the Barycentric-463

projection problem is nothing but a stochastic optimization problem with samples as yj with likelihood464 ∑n
j=1

(
β∗jik1 (xi, x)

)
. Using sampling with replacement, these can be converted to m′ iid samples465

with uniform likelihood. Since the cost is assumed to be a metric or it’s power greater than unity,466

the stochastic optimization problem is infact convex wrt y. Since the domain Y is bounded, it is467

1See also [3] for similar a argument.
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also Lipschitz continuous wrt. y. Hence by (7), theorem 3 in [35], the estimation error in optimal468

transport map when solved by SGD is O(1/
√
m′) and remains dimension-free.469
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