
Appendix

A Instantiations of Functional Regularization

Here we show that several unsupervised (self-supervised) representation learning strategies can be
viewed as imposing a learnable function to regularize the representations being learned. We note that
the class G can be an index set instead of a class of functions; our framework applies as long as the
loss Lr(h, g;x) is well defined (see the manifold learning example). G can also only have a single g,
corresponding to the special case of a fixed regularizer (see the `p norm penalty example).

Auto-encoder. Auto-encoders use an encoder function h to map the input x to a lower dimensional
space φ and a decoder network d to reconstruct the input back from φ using a MSE loss ‖x−d(h(x))‖2.
One can view d as a regularizer on the feature representation φ = h(x) through the regularization
loss Lr(h, g ;x) = ‖x − d(h(x))‖2. HDX ,Lr (τ) is the subset of representation functions with at
most τ reconstruction error using the best decoder in G.

Variants of standard auto-encoders like sparse auto-encoders can be formulated similarly as a func-
tional regularization on the representation being learnt.

Masked Self-supervised Learning. Masked self-supervision techniques, in abstract terms, cover
a portion of the input and then predict the masked input portion [13]. More concretely, say the input
x = [x1, x2, . . . , xd] is masked as x′ = [x1, . . . , xi, 0, . . . , 0, xj , . . . , xd] and a function g is learned
to predict the masked input [xi+1, . . . , xj−1] over an input representation h(x). This function g used
to reconstruct x, can be viewed as imposing a regularization on h through a MSE regularization loss
given by ‖x[i+1:j−1] − g(h(x′))‖2. HDX ,Lr (τ) is the subset of H which have at most τ MSE on
predicting x[i+1:j−1] using the best function g ∈ G.

Variational Auto-encoder. VAEs encode the input x as a distribution qφ(z|x) over a parametric
latent space z instead of a single point, and sample from it to reconstruct x using a decoder pθ(x|z).
The encoder qφ(z|x) is used to model the underlying mean µz and co-variance matrix σz of the
distribution over z. VAEs are trained by minimising a loss

Lx(θ, φ) = −Ez∼qφ(z|x)[log pθ(x|z)] + KL(qφ(z|x)||p(z))
where p(z) is specified as the prior distribution over z (e.g., N (0, 1)). The encoder qφ(z|x) can be
viewed as the representation function h, the decoder pθ(x|z) as the learnable regularization function
g, and the loss Lx(θ, φ) as the regularization loss Lr(h, g;x) in our framework. ThenHDX ,Lr (τ) is
the subset of encoders qφ which have at most τ VAE loss when using the best decoder pθ for it.

Manifold Learning through the Triplet Loss. Learning manifold representations through metric
learning is a popular technique used in computer vision applications [25]. A triplet loss formulation
is used to learn a distance metric for the representations, by trying to minimise this metric between a
baseline and positive sample and maximising the metric between the baseline and a negative sample.
This is achieved by learning a representation function h for an input x. Considering a triple of
input samples x̄ = (xb, xp, xn) corresponding to a baseline, positive and negative sample, we use
a loss LTriplet(x̄) = max(‖h(xb) − h(xp)‖22 − ‖h(xb) − h(xn)‖22, 0) to learn h. This is a special
instantiation of our framework using a dummy G having a single function g, where the regularization
loss Lr(h, g ; x̄) = LTriplet(x̄) is computed over a triple of input samples.

Further, one can also consider some variants of the standard triplet loss formulation
under our functional regularization perspective. For example, let the triplet loss be
L
(α)
Triplet(x̄)= max(‖h(xb)−h(xp)‖22−‖h(xb)−h(xn)‖22+α, 0) where α ∈ R is a margin between

the positive and negative pairs. When α is learnable, this corresponds to a functional regularization
where G = {α : α ∈ R}, and the regularization loss is Lr(h, g; x̄) = L

(α)
Triplet(x̄). In this case, the

class G is not defined on top of the representation h(x). However, our framework and the sample
complexity analysis can still be applied through the definition of Lr(h, g; x̄).

Sparse Dictionary Learning. Sparse dictionary learning is an unsupervised learning approach to
obtain a sparse low-dimensional representation of the input data. Here we consider a distributional

14

view of sparse dictionary learning. Give a distribution DX over unlabeled data x ∈ Rd and a
hyper-parameter λ > 0, we want to find a dictionary matrix D ∈ Rd×K and a sparse representation
z ∈ RK for each x, so as to minimize the error E[LD(x)], where LD(x) is the error on one point
x defined as LD(x) := ‖x −Dz‖22 + λ‖z‖0, subject to the constraint that each column of D has
`2 norm bounded by 1. The learned representations z can then be used for a target prediction task.
Under our framework, we can view the representation function corresponding to z = hD(x) =
arg minz∈RK ‖x − Dz‖22 + λ‖z‖0, and D is the parameter of the representation function. The
regularization function class G has a single g, and the regularization loss is Lr(hD, g;x) = LD(x).

Our framework also captures an interesting variant of dictionary learning. Consider another dictionary
matrix F and a hyper-parameter η > 0. The representation function still corresponds to z = hD(x) =
arg minz∈RK ‖x − Dz‖22 + λ‖z‖0, with D as the parameter. The regularization function class is
now given by G = {gF (z) = Fz : F ∈ Rd×K}, and the regularization loss Lr(hD, gF ;x) is defined
as ‖x− gF (hD(x))‖22 + λ‖z‖0 + η‖D − F‖2F . This special case of dictionary learning allows the
encoding and decoding steps to use two different dictionaries D and E but constraining the difference
between them. When η → +∞, this variant reduces to the original version described earlier.

Explicit `p Norm Penalty. Techniques imposing explicit regularizations on the representation h
being learned, often use an `p norm penalty on h(x) i.e, ‖h(x)‖pp to the prediction loss while jointly
training f and h. This can be viewed as a special case of our framework using a fixed regularization
function g(h(x)) = ‖h(x)‖pp.

Restricted Boltzmann Machines. Restricted Boltzmann Machines (RBM) [48, 24] generate hid-
den representations for an input through unsupervised learning on unlabeled data. RBMs are
characterized by a joint distribution over the input x ∈ {0, 1}d and the representation z ∈ {0, 1}r:
P (x, z) = 1

Z e
−E(x,z), where Z is the partition function and E(x, z) is the energy function defined

as: E(x, z)=−a>x−b>z−x>Wz, where a ∈ Rd, b ∈ Rr,W ∈ Rd×r are parameters to be learned.

Then P (z|x), for a fixed x, is a distribution parameterized by b and W ; which can be denoted as
qW,b(z|x). Similarly, P (x|z) is parameterized by a and W and thus can be denoted as pW,a(x|z).
Given x ∼ DX , the objective of the RBM is to minimize −Ex∼DX [logP (x)].

While the standard RBM objective does not have a direct analogy under our functional regularization
framework, a heuristic variant can be formulated under our framework. If we use EP (x) to denote
the expectation over the marginal distribution of x in the RBM, EP (z) to denote the expectation over
the marginal distribution of z, and EDX to denote the expectation over x ∼ DX . Then the following
hold for the standard RBM:

P (z) = EP (x)[P (z|x)] = EP (x)[qW,b(z|x)] (10)

P (x) = EP (z)[P (x|z)] = EP (z)[pW,a(x|z)] (11)
In the heuristic variant, we replace P (x) with DX in Equation (10):

P̂ (z) = EDX [P (z|x)] = EDX [qW,b(z|x)], P̂ (x) = EP̂ (z)[P (x|z)] = EP̂ (z)[pW,a(x|z)], (12)

and train using the loss:

L(W,a, b;x) := − log P̂ (x)=− logEP̂ (z){pW,a(x|z)}=− logEEDX [qW,b(z|x)]{pW,a(x|z)}. (13)

Furthermore, on introducing another weight matrix F ∈ Rd×r for P (x|z) and a hyper-parameter
η > 0, we can train the RBM using the loss:

Lη(W,a, b;x) := − logEEDX [qW,b(z|x)]{pF,a(x|z)}+ η‖W − F‖2F . (14)

When η → +∞, this loss function reduces to the loss L(W,a, b;x). Here qW,b(z|x) can be viewed
as the representation function h of our framework, pF,a(x|z) as the regularization function g, and
Lη(W,a, b;x) as the regularization loss Lr(h, g;x).

Comparison to GANs. Finally, we would like to comment on Generative Adversarial Networks
(GANs) [21]. While both functional regularization and GANs use auxiliary tasks having a function
class, the goal of GANs is to learn a generative model using an auxiliary task through a discriminative
function (the discriminator), while the goal of functional regularization is to learn a discriminative
model using an auxiliary task which is usually (though not always) through a generative function
(e.g., the decoder in auto-encoders).

15

B Sample Complexity Bounds

B.1 Same Domain, Realizable, Finite Hypothesis Classes

For simplicity, we begin with the realizable case, where the hypothesis classes contain functions
g∗, h∗, f∗ with a zero prediction and regularization loss. Here we consider that the unlabeled U and
labeled S samples are from the same domain distribution DX . We derive the following Theorem.
Theorem 1. Suppose there exist h∗ ∈ H, f∗ ∈ F , g∗ ∈ G such that Lc(f∗, h∗;D) = 0 and
Lr(h

∗, g∗;DX) = 0. For any ε0, ε1 ∈ (0, 1/2), a set U of mu unlabeled examples and a set S of ml

labeled examples are sufficient to learn to an error ε1 with probability 1− δ, where

mu ≥
1

ε0

[
ln |G|+ ln |H|+ ln

2

δ

]
, ml ≥

1

ε1

[
ln |F|+ ln |HDX ,Lr (ε0)|+ ln

2

δ

]
. (5)

In particular, with probability at least 1− δ, all hypotheses h ∈ H, f ∈ F with Lc(f, h;S) = 0 and
Lr(h;U) = 0 will have Lc(f, h;D) ≤ ε1.

Proof. We first show that with high probability, only the hypotheses h in HDX ,Lr (ε0) have
Lr(h;U) = 0. For a given pair g and h with Lr(h, g;DX) ≥ ε0, the probability that Lr(h, g;U) = 0
is at most

P[Lr(h, g;U) = 0] ≤ (1− ε0)mu ≤ δ

2|H||G|
(15)

for the given value of mu. By the union bound, with probability at least 1− δ/2, only those g and
h with Lr(h, g;DX) ≤ ε0 have Lr(h, g;U) = 0. Then only hypotheses h ∈ HDX ,Lr (ε0) have
Lr(h;U) = 0.

Then we show that with high probability, for all h ∈ HDX ,Lr (ε0), only those f and h with
Lc(f, h;D) ≤ ε1 can have Lc(f, h;S) = 0. Similarly as above, for a pair f ∈ F and
h ∈ HDX ,Lr (ε0) with Lc(f, h;D) ≥ ε1, the probability that Lc(f, h;S) = 0 is at most

P[Lc(f, h;S) = 0] ≤ (1− ε1)m` ≤ δ

2|HDX ,Lr (ε0)||G|
(16)

for the given value of m`. By the union bound, with probability 1 − δ/2, for f ∈ F and h ∈
HDX ,Lr (ε0), only those with Lc(f, h;D) ≤ ε1 can have Lc(f, h;S) = 0, proving the theorem.

B.2 Same Domain, Unrealizable Case, Infinite Hypothesis Classes

When the hypothesis classes are of an infinite size, we use metric entropy to measure the capacity.
SupposeH is indexed by parameter set ΘH with norm ‖ · ‖H , G by ΘG with norm ‖ · ‖G, and F by
ΘF with norm ‖ · ‖F . Assume that the losses are L-Lipschitz with respect to the parameters. That is,

|Lr(hθ, g;x)− Lr(hθ′ , g;x)| ≤ L‖θ − θ′‖H ,∀g ∈ G, x ∈ X ,
|Lr(h, gθ;x)− Lr(h, gθ′ ;x)| ≤ L‖θ − θ′‖G,∀h ∈ H, x ∈ X ,
|Lc(hθ, f ;x)− Lc(hθ′ , f ;x)| ≤ L‖θ − θ′‖H ,∀f ∈ F , x ∈ X ,
|Lc(h, fθ;x)− Lc(h, fθ′ ;x)| ≤ L‖θ − θ′‖G,∀h ∈ H, x ∈ X .

Let NG(ε) be the ε-covering number of G w.r.t. the associated norm. This is similarly defined for the
other function classes.

The assumptions that the regularization and prediction losses are 0 are usually impractical due to
noise in the data distribution. Realistically we may assume that there exist ground-truth functions that
can make the regularization and prediction losses small. We begin by considering a setting where the
prediction loss can be zero while the regularization loss is not.
Theorem 4. Suppose there exist h∗ ∈ H, f∗ ∈ F , g∗ ∈ G such that Lc(f∗, h∗;D) = 0 and
Lr(h

∗, g∗;DX) ≤ εr. For any ε0, ε1 ∈ (0, 1/2), a set U of mu unlabeled examples and a set S of
ml labeled examples is sufficient to learn to an error ε1 with probability 1− δ, where

mu ≥
C

ε20
ln

1

δ

[
lnNG

(ε0
4L

)
+ lnNH

(ε0
4L

)]
, (17)

ml ≥
C

ε1
ln

1

δ

[
lnNF

(ε1
4L

)
+ lnNHDX,Lr (εr+ε0)

(ε1
4L

)]
(18)

16

for some absolute constant C. In particular, with probability at least 1 − δ, the hypotheses f ∈
F , h ∈ H with Lc(f, h;S) = 0 and Lr(h, g;U) ≤ εr + ε0 for some g ∈ G satisfy Lc(f, h;D) ≤ ε1.

Proof. First, we show that with mu unlabeled examples, by a covering argument over H and G
(see, e.g., [55]), it is guaranteed that with probability 1 − δ/2, all h ∈ H and g ∈ G satisfy
|Lr(h, g;U)−Lr(h, g;DX)| ≤ ε0. More precisely, let CG

(
ε0
4L

)
be a ε0

4L -covering of G, and CH
(
ε0
4L

)
be a ε0

4L -covering of H. Then by the union bound, all h′ ∈ CH
(
ε0
4L

)
and g′ ∈ CG

(
ε0
4L

)
satisfy

|Lr(h′, g′;U)−Lr(h′, g′;DX)| ≤ ε0/4. Then the claim follows from the definition of the coverings
and the Lipschitzness of the losses.

By the claim, we have Lr(h∗, g∗;U) ≤ Lr(h∗, g∗;DX) + ε0 ≤ εr + ε0. So h∗ ∈ HDX ,Lr (εr + ε0),
and thus the optimal value Lc(f, h;S) subject to Lr(h, g;U) ≤ εr + ε0 for some g ∈ G is 0. On the
other hand, again by a covering argument over H and F , with probability at least 1 − δ/2, for all
h ∈ HDX ,Lr (εr + ε0) and all f ∈ F , only those with Lc(f, h;D) ≤ ε1 can have Lc(f, h;S) = 0.
The theorem statement then follows.

The theorem shows that when the optimal regularization loss is not zero but εr > 0, one needs to do
the learning subject to Lr(h;U) ≤ εr + ε0 and the unlabeled sample complexity has a dependence
on ε0 by 1

ε20
, instead of 1

ε0
.

We are now ready to present the result for the setting where both the optimal prediction and regular-
ization losses are non-zero.
Theorem 2. Suppose there exist h∗ ∈ H, f∗ ∈ F , g∗ ∈ G such that Lc(f∗, h∗;D) ≤ εc and
Lr(h

∗, g∗;DX) ≤ εr. For any ε0, ε1 ∈ (0, 1/2), a set U of mu unlabeled examples and a set S of
ml labeled examples are sufficient to learn to an error εc + ε1 with probability 1− δ, where

mu ≥
C

ε20
ln

1

δ

[
lnNG

(ε0
4L

)
+ lnNH

(ε0
4L

)]
, (6)

ml ≥
C

ε21
ln

1

δ

[
lnNF

(ε1
4L

)
+ lnNHDX,Lr (εr+2ε0)

(ε1
4L

)]
(7)

for some absolute constant C. In particular, with probability at least 1− δ, the h ∈ H, f ∈ F that
optimize Lc(f, h;S) subject to Lr(h;U) ≤ εr + ε0 have Lc(f, h;D) ≤ Lc(f∗, h∗;D) + ε1.

Proof. With mu unlabeled examples, by a standard covering argument, it is guaranteed that with
probability 1− δ/4, all h ∈ H and g ∈ G satisfy |Lr(h, g;U)− Lr(h, g;DX)| ≤ ε0. In particular,
Lr(h

∗, g∗;U) ≤ Lr(h
∗, g∗;DX) + ε0 ≤ εr + ε0. Then again by a covering argument, the labeled

sample size ml implies that with probability at least 1− δ/2, all hypotheses h ∈ HDX ,Lr (εr + 2ε0)
and all f ∈ F have Lc(f, h;S) ≤ Lc(f, h;D) + ε1/2. Finally, by using Hoeffding’s bounds, with
probability at least 1− δ/4, we have

Lc(f
∗, h∗;S) ≤ Lc(f∗, h∗;D) +O

(√
1

ml
ln

1

δ

)
≤ Lc(f∗, h∗;D) + ε1/2.

Therefore, with a probability of at least 1 − δ, the hypotheses f ∈ F , h ∈ H that optimizes
Lc(f, h;S) subject to Lr(h, g;U) ≤ εr + ε0 for some g ∈ G have the following guarantee. First,
since Lr(h, g;U) ≤ εr + ε0, we have Lr(h, g;DX) ≤ εr + 2ε0, and thus h ∈ HDX ,Lr (εr + 2ε0).
Then we have

Lc(f, h;D) ≤ Lc(f, h;S) + ε1/2 (19)
≤ Lc(f∗, h∗;S) + ε1/2 (20)

≤ Lc(f∗, h∗;D) +O
(√

1

ml
ln

1

δ

)
+ ε1/2 (21)

≤ Lc(f∗, h∗;D) + ε1. (22)
This completes the proof of the theorem.

The above analysis also holds with some other capacity measure of the hypothesis classes, like
the VC-dimension or Rademacher complexity. We give an example for using the VC-dimension
(assuming the prediction task is a classification task). The proof follows similarly to Theorem 2, but
using the VC-dimension bound instead of the ε-net argument.

17

Theorem 5. Suppose there exist h∗ ∈ H, f∗ ∈ F , g∗ ∈ G such that Lc(f∗, h∗;D) ≤ εc and
Lr(h

∗, g∗;DX)≤εr. For any ε0, ε1∈(0, 1/2), a set U of mu unlabeled examples and a set S of ml

labeled examples are sufficient to learn to an error εc+ε1 with probability 1−δ, where

mu ≥
C

ε20

[
d(G ◦ H) ln

1

ε0
+ ln

1

δ

]
, ml ≥

C

ε21

[
d(F ◦ HDX ,Lr (εr+2ε0)) ln

1

ε1
+ ln

1

δ

]
(23)

for some absolute constantC. In particular, with probability at least 1−δ, the hypotheses f ∈ F , h ∈
H that optimize Lc(f, h;S) subject to Lr(h;U) ≤ εr + ε0 satisfy Lc(f, h;D) ≤ Lc(f∗, h∗;D)+ ε1.

B.3 Different Domains, Unrealizable, Infinite Hypothesis Classes

In practice, it is often the case that the unlabeled data is from a different domain than the labeled data.
For example, state-of-the-art NLP systems are often trained on a large general unlabeled corpus (e.g.,
the entire Wikipedia) and a small specific labeled corpus (e.g., a set of medical records). That is, the
unlabeled data U is from a distribution UX different from DX , the marginal distribution of x in the
labeled data. In this setting, we show that our previous analysis still holds.
Theorem 3. Suppose the unlabeled data U is from a distribution UX different from DX . Suppose
there exist h∗ ∈ H, f∗ ∈ F , g∗ ∈ G such that Lc(f∗, h∗;D) ≤ εc and Lr(h∗, g∗;UX) ≤ εr. Then
the same sample complexity bounds as in Theorem 2 hold (replacing DX with UX in Equation 7).

Proof. The proof follows that for the setting with the same distribution for input feature vectors in
the labeled data and unlabeled data; here we only mention the proof steps involving UX .

Even when the unlabeled data is from a different distribution UX , we still have that with probability
1− δ/4, all h ∈ H and g ∈ G satisfy |Lr(h, g;U)− Lr(h, g;UX)| ≤ ε0 for the given value of mu.
In particular, Lr(h∗, g∗;U) ≤ Lr(h

∗, g∗;UX) + ε0 ≤ εr + ε0. Then the labeled sample size ml

implies that with probability at least 1− δ/2, all hypotheses h ∈ HUX ,Lr (εr + 2ε0) and all f ∈ F
have Lc(f, h;S) ≤ Lc(f, h;D) + ε1/2. Also, for any h, g with Lr(h, g;U) ≤ εr + ε0, we have
Lr(h, g;UX) ≤ εr + 2ε0, and thus h ∈ HDX ,Lr (εr + 2ε0). The rest of the proof follows that of
Theorem 2.

Remarks We would like to briefly comment on interpreting the reduction in sample complexity
of labeled data when using functional regularization in our bounds. The sample complexity bounds
are upper bounds and are aimed at aiding quantitative analysis by bounding the actual sample size
needed for learning (under assumptions on the data and the hypothesis class). However, there exist
settings where these bounds are nearly tighter mathematically (e.g., the standard lower bound via
VC-dimension). More precisely, there exist hypothesis classes, such that for any learning algorithm,
there exists a data distribution and a target function such that a sample, equal in size to the upper
bound up to logarithmic factors, is required for learning (a more precise statement can be found in
[36]). Additionally, these bounds usually do not take into account the effect of optimization [59].

While these upper bounds are not an exact quantification, they usually align well with the sample size
needed for learning in practice, thereby providing useful insights. The reduction in our bounds on
using functional regularization can roughly estimate the actual reduction in practice. Further this can
provide useful theoretical insights such as the regularization restricting the learning to a subset of the
hypothesis class of representation functions. Similar to prior sample complexity studies, we believe
our sample complexity bounds can prove to be a useful analysis tool.

C Proofs for Applying the Theoretical Framework to Concrete Examples

C.1 Auto-encoder

We first recall the details of the example: H is the class of linear functions from Rd to Rr where
r < d/2, and F to be the class of linear functions over some activations. That is,

z = hW (x) = Wx, y = fa(z) =

r∑
i=1

aiσ(zi) , where W∈Rr×d, a∈Rr (8)

Here σ(t) is an activation function, the rows of W and a have `2 norm bounded by 1. We consider
the Mean Square Error (MSE) prediction loss, i.e., Lc(f, h;x)=‖y−f(h(x))‖22.

18

Also recall that we assume the data distribution having the following property: let the columns of
B ∈ Rd×d be the eigenvectors of Σ:=E[xx>], then the labels are largely determined by the signal
in the first r directions: y=(a∗)>z∗+ν and z∗ = B>1:rx, where a∗ is a ground-truth parameter with
‖a∗‖2≤1, B1:r is the set of first r eigenvectors of Σ, and ν is a small Gaussian noise. We also assume
that the rth and r+1th eigenvalues of Σ are different so that the corresponding eigenvectors can be
distinguished. Let εr denote E‖x−B1:rB

>
1:rx‖22.

Finally, we recall that the functional regularization G we used is given by the class of linear functions
from Rr to Rd, i.e., x̂=gV (z)=V z where V ∈Rd×r with orthonormal columns. The regularization
loss Lr(h, g;x)=‖x−g(h(x))‖22.

For simplicity of analysis, we assume access to infinite unlabeled data, and set the threshold τ = εr.
Strictly speaking, we need to allow Lr(h, g;DX) ≤ εr + ε for a small ε > 0 due to finite unlabeled
data. A similar but more complex argument holds for that case. Here we assume infinite unlabeled
data to simplify the presentation and better illustrate the intuition, since our focus is on quantifying
the reduction in labeled data.

Formally, we calculate the sample complexity bounds in the limit mu→+∞. Equivalently we
consider the learning problem:

min
f∈F,h∈H

Lc(f, h ;S), s.t. Lr(h ;DX) ≤ εr. (24)

Let NC(ε) denote the ε-covering number of a class C w.r.t. the `2 norm (i.e., Euclidean norm
for the weight vector a, and Frobenius norm for the weight matrices W and V). Let L denote
the Lipschitz constant of the losses (See Appendix B.2). Without regularization, the standard ε-
net argument shows that the labeled sample complexity, for an error ε close to the optimal, is
C
ε2

[
lnNF

(
ε
4L

)
+ lnNH

(
ε
4L

)]
for some absolute constant C. Applying our framework when using

regularization, the sample complexity is bounded by C
ε2

[
lnNF

(
ε
4L

)
+ lnNHDX,Lr (εr)

(
ε
4L

)]
. To

quantify the reduction in the bound, we show the following lemma.

Lemma 6. For ε/4L < 1/2,

NH
(ε

4L

)
≥
(
d− r
r

)
NHDX,Lr (εr)

(ε

4L

)
. (25)

Proof. First, recall that the regularization loss is

Lr(h, g;DX) = Ex‖x− g(h(x))‖22
= Ex‖x− VWx‖22 (26)

which is the r-rank approximation of the data. So in the optimal solution, the columns of V and the
rows of W should span the subspace of the top r eigenvectors Σ. More precisely,

Lr(h, g;DX) = Ex[x>(I−VW)>(I−VW)x]

= Ex[trace(x>(I−VW)>(I−VW)x)]

= Ex[trace((I−VW)>(I−VW)xx>)]

= trace((I−VW)>(I−VW)Σ).

= trace((I−VW)Σ). (27)
Since V and W are orthonormal and have rank r, the optimal VW should span the subspace of the
top r eigenvectors of Σ and the optimal loss is given by εr.2 Since the r-th and r + 1-th eigenvalues
of Σ are different, the optimal VW is unique, and thus we have

HDX ,Lr (εr) = {OB>1:r : O ∈ Rr×r, O is orthonormal}.

On the other hand, if BS refers to the sub-matrix of columns in B having indices in S, then clearly,

H ⊇ HS := {OB>S : O ∈ Rr×r, O is orthonormal},

2The optimal product of V and W should span the subspace of the top r eigenvectors of Σ. But note that
there are different pairs of V and W which can achieve the same product.

19

for any S ⊆ {r + 1, r + 2, . . . , d}, |S| = r. By symmetry, NHS (ε′) = NHDX,Lr (εr)
(ε′) for any

ε′ > 0. Now it is sufficient to prove thatHS andHS′ are sufficiently far away for different S and S′.
This is indeed the case, since ‖OB>S −O′B>S′‖2F > 1 for any orthonormal O and O′:

‖OB>S −O′B>S′‖2F = trace
(
(OB>S −O′B>S′)>(OB>S −O′B>S′)

)
(28)

= trace
(
(OB>S)>(OB>S)

)
+ trace

(
(O′B>S′)>(O′B>S′)

)
− trace

(
(OB>S)>(O′B>S′)

)
− trace

(
(O′B>S′)>(OB>S)

)
(29)

= ‖OB>S ‖2F + ‖O′B>S′‖2F
− trace

(
(O′B>S′)(OB>S)>

)
− trace

(
(OB>S)(O′B>S′)>

)
(30)

= ‖B>S ‖2F + ‖BS′‖2F − trace
(
B>S′BS

)
− trace

(
B>S BS′

)
(31)

≥ r + r − (r − 1)− (r − 1) = 2. (32)
This completes the proof.

C.2 Masked Self-supervision

We first recall the details of the example: H is the class of linear functions from Rd to Rr where
r < (d− 1)/2 followed by a quadratic activation, and F is the class of linear functions from Rr to R.
That is,
z = hW (x)=[σ(w>1 x), . . . , σ(w>r x)] ∈ Rr , y = fa(z) = a>z, where wi ∈ Rd , a ∈ Rr. (9)

Here σ(t)=t2 for t ∈ R is the quadratic activation function. Since σ(ct)=c2t2, by scaling, w.l.o.g.
we can assume that ‖wi‖2=1 and ‖a‖2≤1. Without prior knowledge of data, no regularization refers
to end-to-end training on F◦H.

Also recall that we assume the data x satisfies x1 =
∑r
i=1((u∗i)

>x2:d)
2, where x2:d =

[x2, x3, . . . , xd] and u∗i is the i-th eigenvector of Σ := E[x2:dx
>
2:d]. Furthermore, the label y is

given by y =
∑r
i=1 a

∗
i σ((u∗i)

>x2:d) + ν for some ‖a∗‖2≤1 and a small Gaussian noise ν. We also
assume a significant difference in the rth and r+1th eigenvalues of Σ.

Finally, we recall that we used a masked self-supervision functional regularization by constraining
the first coordinate of wi to be 0 for h, and choosing the regularization function g(z)=

∑r
i=1 zi and

the regularization loss Lr(h, g;x)=(x1−g(hW (x)))2. Note that there is only one g ∈ G, which is a
special case of our framework and our sample complexity theorems still apply.

Again for simplicity, we assume access to infinite unlabeled data, and set the threshold τ = 0.
Our framework shows that the functional regularization via masked self-supervision reduces the
labeled sample bound by C

ε2

[
lnNH

(
ε
4L

)
− lnNHDX,Lr (0)

(
ε
4L

)]
for some absolute constantC. The

following lemma then gives an estimation of this reduction.
Lemma 7. For ε/4L < 1/2,

NH
(ε

4L

)
≥
(
d− 1− r

r

)
NHDX,Lr (0)

(ε

4L

)
. (33)

Proof. By definition,

E [Lr(h, g;x)] = E

[
r∑
i=1

u>i x2:dx
>
2:dui −

r∑
i=1

(u∗i)
>x2:dx

>
2:du

∗
i

]2
(34)

≥

(
E|

r∑
i=1

u>i x2:dx
>
2:dui −

r∑
i=1

(u∗i)
>x2:dx

>
2:du

∗
i |

)2

(35)

≥

∣∣∣∣∣E
r∑
i=1

u>i x2:dx
>
2:dui − E

r∑
i=1

(u∗i)
>x2:dx

>
2:du

∗
i

∣∣∣∣∣
2

, (36)

≥

∣∣∣∣∣
r∑
i=1

u>i Σui −
r∑
i=1

(u∗i)
>Σu∗i

∣∣∣∣∣
2

. (37)

20

Therefore, E [Lr(h, g;x)] = 0 if and only if u1, . . . ,ur span the same subspace as u∗1, . . . , u
∗
r , i.e.,

HDX ,Lr (0)={hW (x) : wi = [0, ui], [u1, . . . ,ur]
>=O[u∗1, . . . , u

∗
r]
>, O∈Rr×r, O is orthonormal}.

On the other hand, if u∗1, u
∗
2, . . . , u

∗
d−1 are the eigenvectors of Σ, and U∗I := [u∗i1 , . . . , u

∗
ir

]> for
indices I = {i1, i2, . . . , ir} ⊆ {r + 1, r + 2, . . . , d− 1}, then clearly

H ⊆ HI := {hW (x) : wi = [0, ui], [u1, . . . ,ur]
>=O(U∗I)>, O∈Rr×r, O is orthonormal}

for any I = {i1, i2, . . . , ir} ⊆ {r+ 1, r+ 2, . . . , d− 1}. By symmetry,NHI (ε′) = NHDX,Lr (0)
(ε′)

for any ε′ > 0. Using an argument similar to Section C.1, we can show that for two different index
sets I and I ′, any hypothesis inHI and any hypothesis inHI′ cannot be covered by the same ball in
any ε′-cover with ε′ < 1/2. This completes the proof.

D Experiments on Concrete Functional Regularization Examples

D.1 Auto-Encoder

Data: We first generate d orthonormal vectors({ui}i=di=1) in Rd. We then randomly generate means
µi and variances σi corresponding to each principal component i ∈ [1, d] such that σ1> · · · >σr �
σr+1> · · · >σd. The µi’s are randomly generated integers in [0, 20] and the variances σi , i ∈ [1, r]
are each generated randomly from [1, 10] and σi , i ∈ [r + 1, d] are each generated randomly from
[0, 0.1]. We also generate a vector a ∈ Rr randomly such that ||a||2 ≤ 1. To generate a data point
(x, y), we sample αi∼N (µi, σi) ∀i ∈ [1, d] and set x =

∑d
i=1 αiui and y =

∑r
i=1 aiαi

2 + ν where
ν∼N (0, 10−2). We use an unlabeled dataset of 104 points (when using the auto-encoder functional
regularization), a labeled training set of 104 points and a labeled test set of 103 points.

Models: hW corresponds to a fully connected NN, without any activation function, to transform
x ∈ Rd to its representation h(s) ∈ Rr. For prediction on the target task, we use a linear classifier
after a quadratic activation on h(x) to obtain a scalar output ŷ. For functional regularization gV , we
use a fully connected NN to transform the representation h(s) ∈ Rr to reconstruct the input back
x̂ ∈ Rd. Our example additionally constrains V,W to be orthonormal. For achieving this, we add
an orthonormal regularization [10, 5] penalty for each V,W weighted by hyper-parameters λ1 and
λ2 respectively during the auto-encoder reconstruction. For a matrix M ∈ Ra×b, the orthonormal
regularization penalty to ensure that the rows ofM are orthonormal, is given by

∑
ij |(MM>)ij−Iij |

where
∑
ij is summing over all the matrix elements, I is the identity matrix in Ra×a.

Training Details: For end-to-end training, we train the predictor and h jointly using a MSE
loss between the predicted target ŷ and the true y on the labeled training data set. For functional
regularization, we first train h and g using the MSE loss between the reconstructed input x̂ and
the original input x over the unlabeled data set. Here, we also add the orthonormal regularization
penalties. We tune the weights λ1 and λ2 using grid search in [10−3, 103] in multiplicative steps of
10 to get the best reconstruction (least MSE) on the training data inputs. Now using h initialized
from the auto-encoder, we use the labeled training data set to jointly learn the predictor and h using
a MSE loss between the predicted target ŷ and the true y. We report the MSE on the test set as the
metric. For all optimization steps we use an SGD optimizer with momentum set to 0.9 where the
learning rate is tuned using grid search in [10−5, 10−1] in multiplicative steps of 10. We set the data
dimension d = 100 and report the test MSE averaged over 10 runs.

t-SNE Plots of Functional Approximations To get a functional approximation from a model,
we compute and concatenate the output predictions ŷ from the model over the test data set. For
every model, we obtain a R1000 vector corresponding to the size of the test set. We perform 1000
independent runs for each model (with and without functional regularization) obtaining 2, 000
functional approximation vectors in R1000. We visualise these vectors in 2D using the t-SNE [54]
algorithm.

Varying Dimension d: We plot the reduction in test MSE between end-to-end training and using
functional regularization on varying d in Figure 2. Here we fix r = 30 and vary the data dimension d
and present the test MSE scores normalized with the average norm ‖x‖22 over the test data. As per
indications from our derived bounds, the reduction remains more or less constant on varying d.

21

(a) Auto-Encoder (b) Masked Self-Supervision
Figure 2: Reduction in Test MSE (on using functional regularization with respect to end-to-end
training) with dimension d. Here r = 30 and the Test MSE are normalized by the average test ‖x‖22.

D.2 Masked Self-Supervision

Data: We first generate d−1 orthonormal vectors({ui}i=di=2) in Rd−1. We then randomly gen-
erate means µi and variances σi corresponding to each principal component i ∈ [2, d] such that
σ2> · · · >σr+1 � σr+2> · · · >σd. The µi’s are randomly generated integers in [0, 20] and the
variances σi , i ∈ [2, r + 1] are each generated randomly from [1, 10] and σi , i ∈ [r + 2, d] are each
generated randomly from [0, 0.1]. We also generate a vector a ∈ Rr randomly such that ||a||2 ≤ 1.
To generate a data point (x, y), we sample αi∼N (µi, σi) ∀i ∈ [2, d] and set x1 =

∑r+1
i=2 α

2
i ,

x2:d =
∑d
i=2 αiui and y =

∑r+1
i=2 aiα

2
i + ν where ν∼N (0, 10−2). We use an unlabeled dataset of

104 points, a labeled training set of 104 points and a labeled test set of 103 points.

Models: hW corresponds to a fully connected NN, using a quadratic activation function, to transform
x ∈ Rd to its representation h(s) ∈ Rr. For prediction on the target task we use a linear classifier to
obtain the output ŷ from the representation h(x). For functional regularization, we sum the elements
of the representation h(x) ∈ Rr to reconstruct the first input x̂1 ∈ R back.

Training Details: For functional regularization, we mask the first dimension of the unlabeled data
by setting it to 0 and train h using the MSE loss between the reconstructed x̂1 and the original input
dimension x1. Other experimental details remain similar to Section D.1.

Experimental details for the t-SNE plots of functional approximation remain similar to Section D.1.

Varying Dimension d: Following similar details to Section D.1, we present the graph in Figure 2.
We can observe that the reduction does not change much on varying d here as well.

E Additional Experiments on Functional Regularization

There have been several empirical studies verifying the benefits of functional regularization across
different applications. Here we present empirical results showing the benefits of using functional
regularization on a computer vision and natural language processing application.

E.1 Image Classification

We consider the application of image classification using the Fashion MNIST dataset [57] which
contains 28 × 28 gray-scale images of fashion products from 10 categories. This dataset has 60k
images for training and 10k images for testing. We consider a denoising auto-encoder functional
regularization using unlabeled data and evaluate its benefits to supervised classification using labeled
data.

Experimental Details We use a denoising auto-encoder as the functional regularization when
learning from unlabeled data. The encoder consists of three fully connected layers with ReLU
activations to obtain the input representation h(x) of 1024 dimensions from an input x. The decoder
consists of three fully connected layers with ReLU activations to reconstruct the 28×28 image x̂ back
from the 1024 dimensional representation h(x). For training, the pixel values of x are normalized to

22

(a) (b)
Figure 3: Experimental results on Fashion-MNIST. (a) Test accuracy using de-noising auto-encoder
functional regularization compared to end-to-end training on varying the size of labeled training data.
(b) The 2D visualization of the functional approximation of 100 independent runs for each method.

[0, 1] and independently corrupted by adding a Gaussian noise with mean 0 and standard deviation
0.2. The MSE loss between the x and x̂ is used as the regularization loss Lr. Training is performed
using the Adam optimizer with a learning rate of 3× 10−4. For classification, we use a simple linear
layer which maps h(x) to the class label ŷ. The classifier and the encoder are trained jointly using the
cross entropy loss between ŷ and the original label y. We compare the test set accuracy of 1) directly
training the encoder and the target classifier using the labeled training data, and 2) pre-training the
encoder using the de-noising auto-encoder functional regularization and then fine-tuning its weights
along with the target classifier using the labeled training data. We vary the size of the labeled training
data and plot the test accuracy averaged across 5 runs in Figure 3(a).

To visualize the impact of the denoising auto-encoder functional regularization, we follow the details
in Appendix D.1 to get the functional approximation of the model. For each model, we obtain a
R10000×10 matrix with softmax values for 10 target classes for each of the 10000 test points. We
perform 100 independent runs for each method (with and without the functional regularization)
obtaining 200 functional approximation vectors in R100,000. We visualise these vectors in 2D using
the Isomap [50] algorithm 3 in Figure 3(b).

Results From Figure 3(a), we observe that the test accuracy of end to end training is inferior to
that of using functional regularization with unlabeled data across a variety of labeled data sizes. We
observe that the difference in the test accuracy between the two methods is highest when the amount
of labeled data available is small and the performance gap decreases as the amount of labeled data
increases, as predicted by our theory.

Figure 3(b) visualizes the functional approximation learned by the model. It shows that when
using the denoising auto-encoder functional regularization, the learned functions stay in a smaller
functional space, while they are scattered when using end to end training. This is in line with our
empirical observations on controlled data, and our intuition for the theoretical analysis: pruning the
representation hypothesis space via functional regularization translates to a compact functional space.

E.2 Sentence Pair Classification

We consider the application of sentence pair classification using the Microsoft Research Paraphrase
Corpus [15]4 which has sentence pairs with annotations of whether the two sentences are semantically
equivalent. This dataset has approximately 3.7k and 1.7k sentence pairs in the train and test splits
respectively. Here we specifically choose the MRPC dataset as it has a smaller size of labeled training
data in comparison to most NLP datasets. To show the empirical benefits of using unlabeled data in
addition to the limited train data available, we use a pre-trained BERT [13] language model. BERT,
based on a transformer architecture, has been pre-trained using a masked token self-supervision task
which involves masking a portion of the input sentence and using BERT to predict the masked tokens.

3The t-SNE algorithm focuses more on neighbour distances by allowing large variance in large distances,
while Isomap approximates geodesic distance via shortest paths thereby working well in practice with larger
distances. Compared to the controlled data experiments where the functional approximation lies in R1000, the
functional approximation for Fashion-MNIST lies in R100,000, thereby visualizing better via Isomap than t-SNE.

4https://www.microsoft.com/en-us/download/details.aspx?id=52398

23

https://www.microsoft.com/en-us/download/details.aspx?id=52398

Train Data Size 200 500 1000 2000 3668

BERT-FT 68.1 / 80.6 71.0 / 80.6 72.7 / 81.8 74.9 / 82.4 80.3 / 85.7
Random 64.1 / 74.8 64.7 / 75.66 67.0 / 80.1 68.9 / 79.0 68.9 / 79.3

Random-`1 54.7 / 65.1 62.6 / 75.5 63.6 / 76.7 63.4 / 76.6 66.3 / 79.6
Random-`2 65.3 / 78.6 66.4 / 79.7 65.3 / 78.6 65.0 / 78.4 66.5 / 79.9

Table 1: Performance of fine-tuning pre-trained BERT (BERT-FT) and end-to-end training of a
randomly initialised BERT on varying the MRPC training dataset size. Metrics are reported in the
format Accuracy/F1 scores on the test dataset. The training data size is 3668 sentence pairs.

This pre-training is done over a large text corpus (∼ 2 billion words) and hence we can view the
pre-trained BERT, under our framework, as having already pruned a large fraction of the hypothesis
space ofH for learning the representation on the input text.

Experimental Details We compare the performance of fine-tuning the pre-trained BERT with
training a randomly initialised BERT from scratch. For the latter, we use three different loss
formulations to further study the benefits of regularization on the text representation being learnt:
(i) the Cross-Entropy loss LCE on the predicted output (ii) LCE along with a `1 norm penalty on
the representation (i.e, the 768-dimensional representation from BERT corresponding to the [CLS]
token) (iii) LCE along with a `2 norm penalty on the representation. We refer to these three different
loss formulations as Random, Random-`1 and Random-`2 respectively for notational simplicity. We
want to study how varying the labeled data can impact the performance of different training methods.
We present the results in Table 1. We use the 12-layer BERT Base uncased model for our experiments
with an Adam optimizer having a learning rate 2e−5. We perform end to end training on the training
data and tune the number of fine-tuning epochs. We report the accuracy and F1 scores as the metric
on the test data averaged over 3 runs. When randomly initialising the weights of BERT, we use a
standard normal distribution with mean 0 and standard deviation of 0.02 for the layer weights and set
all the biases to zero vectors. We set the layer norms to have weights as a vector of ones with a zero
vector as the bias. When adding the lp penalty on the BERT representations on randomly initialising
the weights, we choose an appropriate weighting function λ to make the training loss a sum of the
cross entropy classification loss and λ times the lp norm of the BERT representation. The λ is chosen
∈ [10−3, 103] by validation over a set of 300 data points randomly sampled from the training split.
We use the huggingface transformers repository 5 for our experiments.

Results From the table, we observe that the performance of training BERT from pre-trained
weights is better than the performance of training the BERT architecture from randomly initialised
weights. When viewed under our framework, this empirically shows the benefits of using a learnable
regularization function over fixed functions like the `1 or `2 norms of the representation.

On increasing the training data size, we observe that the performance of all the four training modes
increases. However, we can see that the performance improvement of Random, Random-`1 and
Random-`2 is marginal when compared to the improvement in BERT Fine-tuning. The latter can be
attributed to the fact that the pre-trained weights of BERT are adjusted by specialising them towards
the target data domain. To support this, in addition to Table 1, we also experimented by keeping the
BERT weights fixed and only training the classifier. We observe that under such a setting, when we
use a small training set, the model is unable to converge to a model different from the initialisation as
similarly observed by [28]. This means that the learning indeed needs searching over a set of suitable
hypotheses. Thus, we can conclude that unlabeled data helps in restricting the search space, and a
small labeled data set can find a hypothesis suitable for the target domain data within the restricted
search space, consistent with our analysis.

5https://github.com/huggingface/transformers

24

https://github.com/huggingface/transformers

