
The Surprising Simplicity of the Early-Time Learning
Dynamics of Neural Networks

Wei Hu∗ Lechao Xiao† Ben Adlam‡ Jeffrey Pennington§

Abstract

Modern neural networks are often regarded as complex black-box functions whose
behavior is difficult to understand owing to their nonlinear dependence on the data
and the nonconvexity in their loss landscapes. In this work, we show that these
common perceptions can be completely false in the early phase of learning. In
particular, we formally prove that, for a class of well-behaved input distributions,
the early-time learning dynamics of a two-layer fully-connected neural network
can be mimicked by training a simple linear model on the inputs. We additionally
argue that this surprising simplicity can persist in networks with more layers and
with convolutional architecture, which we verify empirically. Key to our analysis
is to bound the spectral norm of the difference between the Neural Tangent Kernel
(NTK) at initialization and an affine transform of the data kernel; however, unlike
many previous results utilizing the NTK, we do not require the network to have
disproportionately large width, and the network is allowed to escape the kernel
regime later in training.

1 Introduction

Modern deep learning models are enormously complex function approximators, with many state-
of-the-art architectures employing millions or even billions of trainable parameters [Radford et al.,
2019, Adiwardana et al., 2020]. While the raw parameter count provides only a crude approximation
of a model’s capacity, more sophisticated metrics such as those based on PAC-Bayes [McAllester,
1999, Dziugaite and Roy, 2017, Neyshabur et al., 2017b], VC dimension [Vapnik and Chervonenkis,
1971], and parameter norms [Bartlett et al., 2017, Neyshabur et al., 2017a] also suggest that modern
architectures have very large capacity. Moreover, from the empirical perspective, practical models
are flexible enough to perfectly fit the training data, even if the labels are pure noise [Zhang et al.,
2017]. Surprisingly, these same high-capacity models generalize well when trained on real data, even
without any explicit control of capacity.

These observations are in conflict with classical generalization theory, which contends that models of
intermediate complexity should generalize best, striking a balance between the bias and the variance
of their predictive functions. To reconcile theory with observation, it has been suggested that deep
neural networks may enjoy some form of implicit regularization induced by gradient-based training
algorithms that biases the trained models towards simpler functions. However, the exact notion of
simplicity and the mechanism by which it might be achieved remain poorly understood except in
certain simplistic settings.

∗Princeton University. Work partly performed at Google. Email: huwei@cs.princeton.edu
†Google Research, Brain Team. Email: xlc@google.com
‡Google Research, Brain Team. Work done as a member of the Google AI Residency program (http:

//g.co/brainresidency). Email: adlam@google.com
§Google Research, Brain Team. Email: jpennin@google.com

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

http://g.co/brainresidency
http://g.co/brainresidency

One concrete mechanism by which such induced simplicity can emerge is the hypothesis that neural
networks learn simple functions early in training, and increasingly build up their complexity in later
time. In particular, recent empirical work Nakkiran et al. [2019] found that, intriguingly, in some
natural settings the simple function being learned in the early phase may just be a linear function of
the data.

In this work, we provide a novel theoretical result to support this hypothesis. Specifically, we
formally prove that, for a class of well-behaved input distributions, the early-time learning dynamics
of gradient descent on a two-layer fully-connected neural network with any common activation can
be mimicked by training a simple model of the inputs. When training the first layer only, this simple
model is a linear function of the input features; when training the second layer or both layers, it is a
linear function of the features and their `2 norm. This result implies that neural networks do not fully
exercise their nonlinear capacity until late in training.

Key to our technical analysis is a bound on the spectral norm of the difference between the Neural
Tangent Kernel (NTK) [Jacot et al., 2018] of the neural network at initialization and that of the linear
model; indeed, a weaker result, like a bound on the Frobenius norm, would be insufficient to establish
our result. Although the NTK is usually associated with the study of ultra-wide networks, our result
only has a mild requirement on the width and allows the network to leave the kernel regime later
in training. While our formal result focuses on two-layer fully-connected networks and data with
benign concentration properties (specified in Assumption 3.1), we argue with theory and provide
empirical evidence that the same linear learning phenomenon persists for more complex architectures
and real-world datasets.

Related work. The early phase of neural network training has been the focus of considerable recent
research. Frankle and Carbin [2019] found that sparse, trainable subnetworks – “lottery tickets” –
emerge early in training. Achille et al. [2017] showed the importance of early learning from the
perspective of creating strong connections that are robust to corruption. Gur-Ari et al. [2018] observed
that after a short period of training, subsequent gradient updates span a low-dimensional subspace. Li
et al. [2019a], Lewkowycz et al. [2020] showed that an initial large learning rate can benefit late-time
generalization performance.

Implicit regularization of (stochastic) gradient descent has also been studied in various settings,
suggesting a bias towards large-margin, low-norm, or low-rank solutions [Gunasekar et al., 2017,
2018, Soudry et al., 2018, Li et al., 2018, Ji and Telgarsky, 2019a,b, Arora et al., 2019a, Lyu and Li,
2019, Chizat and Bach, 2020, Razin and Cohen, 2020]. These results mostly aim to characterize the
final solutions at convergence, while our focus is on the early-time learning dynamics. Another line
of work has identified that deep linear networks gradually increase the rank during training [Arora
et al., 2019a, Saxe et al., 2014, Lampinen and Ganguli, 2018, Gidel et al., 2019].

A line of work adopted the Fourier perspective and demonstrated that low-frequency functions are
often learned first [Rahaman et al., 2018, Xu, 2018, Xu et al., 2019a,b]. Based on the NTK theory,
Arora et al. [2019c] showed that for very wide networks, components lying in the top eigenspace of
the NTK are learned faster than others. Using this principle, Su and Yang [2019], Cao et al. [2019]
analyzed the spectrum of the infinite-width NTK. However, in order to obtain precise characterization
of the spectrum these papers require special data distributions such as uniform distribution on the
sphere.

Most relevant to our work is the finding of Nakkiran et al. [2019] that a neural network learned in the
early phase of training can be almost fully explained by a linear function of the data. They supported
this claim empirically by examining an information theoretic measure between the predictions of
the neural network and the linear model. Our result formally proves that neural network and a
corresponding linear model make similar predictions in early time, thus providing a theoretical
explanation of their empirical finding.

Paper organization. In Section 2, we introduce notation and briefly recap the Neural Tangent
Kernel. In Section 3, we present our main theoretical results on two-layer neural networks as well as
empirical verification. In Section 4, we discuss extensions to more complicated architecture from
both theoretical and empirical aspects. We conclude in Section 5, and defer additional experimental
results and all the proofs to the appendices.

2

2 Preliminaries

Notation. We use bold lowercases a, b,α,β, . . . to represent vectors, bold uppercasesA,B, . . .
to represent matrices, and unbold letters a, b, α, β, . . . to represent scalars. We use [A]i,j or [a]i to
index the entries in matrices or vectors. We denote by ‖·‖ the spectral norm (largest singular value)
of a matrix or the `2 norm of a vector, and denote by ‖·‖F the Frobenius norm of a matrix. We use
〈·, ·〉 to represent the standard Euclidean inner product between vectors or matrices, and use � to
denote the Hadamard (entry-wise) product between matrices. For a positive semidefinite (psd) matrix
A, letA1/2 be the psd matrix such that (A1/2)2 = A; let λmax(A) and λmin(A) be the maximum
and minimum eigenvalues ofA.

Let [n] := {1, 2, . . . , n}. For a, b ∈ R (b > 0), we use a± b to represent any number in the interval
[a−b, a+b]. Let Id be the d×d identity matrix, 0d be the all-zero vector in Rd, and 1d be the all-one
vector in Rd; we write I,0,1 when their dimensions are clear from context. We denote by Unif(A)
the uniform distribution over a set A, and by N (µ, σ2) or N (µ,Σ) the univariate/multivariate
Gaussian distribution. Throughout the paper we let g be a random variable with the standard normal
distribution N (0, 1).

We use the standard O(·), Ω(·) and Θ(·) notation to only hide universal constant factors. For a, b ≥ 0,
we also use a . b or b & a to mean a = O(b), and use a � b or b � a to mean b ≥ Ca for a
sufficiently large universal constant C > 0. Throughout the paper, “high probability” means a large
constant probability arbitrarily close to 1 (such as 0.99).

Recap of Neural Tangent Kernel (NTK) [Jacot et al., 2018]. Consider a single-output neural
network f(x;θ) where x is the input and θ is the collection of parameters in the network. Around a
reference network with parameters θ̄, we can do a local first-order approximation:

f(x;θ) ≈ f(x; θ̄) + 〈∇θf(x; θ̄),θ − θ̄〉.

Thus when θ is close to θ̄, for a given input x the network can be viewed as linear in ∇θf(x; θ̄).
This gradient feature map x 7→ ∇θf(x; θ̄) induces a kernelKθ̄(x,x′) := 〈∇θf(x; θ̄),∇θf(x′; θ̄)〉
which is called the NTK at θ̄. Gradient descent training of the neural network can be viewed as kernel
gradient descent on the function space with respect to the NTK. We use NTK matrix to refer to an
n× n matrix that is the NTK evaluated on n datapoints.

While in general the NTK is random at initialization and can vary significantly during training, it
was shown that, for a suitable network parameterization (known as the “NTK parameterization”),
when the width goes to infinity or is sufficiently large, the NTK converges to a deterministic limit
at initialization and barely changes during training [Jacot et al., 2018, Lee et al., 2019, Arora et al.,
2019b, Yang, 2019], so that the neural network trained by gradient descent is equivalent to a kernel
method with respect to a fixed kernel. However, for networks with practical widths, the NTK does
usually stray far from its initialization.

3 Two-Layer Neural Networks

We consider a two-layer fully-connected neural network with m hidden neurons defined as:

f(x;W ,v) :=
1√
m

m∑
r=1

vrφ
(
w>r x/

√
d
)

=
1√
m
v>φ

(
Wx/

√
d
)
, (1)

where x ∈ Rd is the input,W = [w1, . . . ,wm]> ∈ Rm×d is the weight matrix in the first layer, and
v = [v1, . . . , vm]> ∈ Rm is the weight vector in the second layer.5 Here φ : R→ R is an activation
function that acts entry-wise on vectors or matrices.

Let {(xi, yi)}ni=1 ⊂ Rd ×R be n training samples where xi’s are the inputs and yi’s are their associ-
ated labels. Denote byX = [x1, . . . ,xn]> ∈ Rn×d the data matrix and by y = [y1, . . . , yn]> ∈ Rn
the label vector. We assume |yi| ≤ 1 for all i ∈ [n].

5The scaling factors 1√
d

and 1√
m

are due to the NTK parameterization such that the weights can be initialized
fromN (0, 1). The standard parameterization can also be equivalently realized with the NTK parameterization
by properly setting different learning rates in different layers [Lee et al., 2019], which we do allow here.

3

We consider the following `2 training loss:

L(W ,v) :=
1

2n

n∑
i=1

(f(xi;W ,v)− yi)2
, (2)

and run vanilla gradient descent (GD) on the objective (2) starting from random initialization.
Specifically, we use the following symmetric initialization for the weights (W ,v):

w1, . . . ,wm/2
i.i.d.∼ N (0d, Id), wi+m/2 = wi (∀i ∈ [m/2]),

v1, . . . , vm/2
i.i.d.∼ Unif({1,−1}), 6 vi+m/2 = −vi (∀i ∈ [m/2]).

(3)

The above initialization scheme was used by Chizat et al. [2019], Zhang et al. [2019], Hu et al.
[2020], Bai and Lee [2020], etc. It initializes the network to be the difference between two identical
(random) networks, which has the benefit of ensuring zero output: f(x;W ,v) = 0 (∀x ∈ Rd),
without altering the NTK at initialization. An alternative way to achieve the same effect is to subtract
the function output at initialization [Chizat et al., 2019].

Let (W (0),v(0)) be a set of initial weights drawn from the symmetric initialization (3). Then the
weights are updated according to GD:
W (t+ 1) = W (t)− η1∇WL (W (t),v(t)) , v(t+ 1) = v(t)− η2∇vL (W (t),v(t)) , (4)

where η1 and η2 are the learning rates. Here we allow potentially different learning rates for flexibility.

Now we state the assumption on the input distribution used in our theoretical results.
Assumption 3.1 (input distribution). The datapoints x1, . . . ,xn are i.i.d. samples from a distribution
D over Rd with mean 0 and covariance Σ such that Tr[Σ] = d and ‖Σ‖ = O(1). Moreover, x ∼ D
can be written as x = Σ1/2x̄ where x̄ ∈ Rd satisfies E[x̄] = 0d, E[x̄x̄>] = Id, and x̄’s entries are
independent and are all O(1)-subgaussian.7

Note that a special case that satisfies Assumption 3.1 is the Gaussian distribution N (0,Σ), but we
allow a much larger class of distributions here. The subgaussian assumption is made due to the
probabilistic tail bounds used in the analysis, and it can be replaced with a weaker bounded moment
condition. The independence between x̄’s entries may also be dropped if its density is strongly
log-concave. We choose to use Assumption 3.1 as the most convenient way to present our results.

We allow φ to be any of the commonly used activation functions, including ReLU, Leaky ReLU, Erf,
Tanh, Sigmoid, Softplus, etc. Formally, our requirement on φ is the following:
Assumption 3.2 (activation function). The activation function φ(·) satisfies either of the followings:

(i) smooth activation: φ has bounded first and second derivatives: |φ′(z)| = O(1) and |φ′′(z)| =
O(1) (∀z ∈ R), or

(ii) piece-wise linear activation: φ(z) =

{
z (z ≥ 0)

az (z < 0)
for some a ∈ R, |a| = O(1).8

We will consider the regime where the data dimension d is sufficiently large (i.e., larger than any
constant) and the number of datapoints n is at most some polynomial in d (i.e., n ≤ dO(1)). These
imply log n = O(log d) < dc for any constant c > 0.

Under Assumption 3.1, the datapoints satisfy the following concentration properties:

Claim 3.1. Suppose n � d. Then under Assumption 3.1, with high probability we have ‖xi‖
2

d =

1±O
(√

logn
d

)
(∀i ∈ [n]), |〈xi,xj〉|d = O

(√
logn
d

)
(∀i, j ∈ [n], i 6= j), and

∥∥XX>∥∥ = Θ(n).

The main result in this section is to formally prove that the neural network trained by GD is
approximately a linear function in the early phase of training. As we will see, there are distinct
contributions coming from the two layers. Therefore, it is helpful to divide the discussion into the
cases of training the first layer only, the second layer only, and both layers together. All the omitted
proofs in this section are given in Appendix D.

6Our results also hold forN (0, 1) initialization in the second layer. Here we use Unif({±1}) for simplicity.
7Recall that a zero-mean random variable X is σ2-subgaussian if E[exp(sX)] ≤ exp(σ2s2/2) (∀s ∈ R).
8We define φ′(0) = 1 in this case.

4

3.1 Training the First Layer

Now we consider only training the first layer weightsW , which corresponds to setting η2 = 0 in (4).
Denote by f1

t : Rd → R the network at iteration t in this case, namely f1
t (x) := f(x;W (t),v(t)) =

f(x;W (t),v(0)) (note that v(t) = v(0)).

The linear model which will be proved to approximate the neural network f1
t in the early phase of

training is f lin1(x;β) := β>ψ1(x), where

ψ1(x) :=
1√
d

[
ζx
ν

]
, with ζ = E[φ′(g)] and ν = E[gφ′(g)] ·

√
Tr[Σ2]/d. (5)

Here recall that g ∼ N (0, 1). We also consider training this linear model via GD on the `2 loss, this
time starting from zero:

β(0) = 0d+1, β(t+ 1) = β(t)− η1∇β
1

2n

n∑
i=1

(
f lin1(xi;β(t))− yi

)2
. (6)

We let f lin1
t be the model learned at iteration t, i.e., f lin1

t (x) := f lin1(x;β(t)).

We emphasize that (4) and (6) have the same learning rate η1. Our theorem below shows that f1
t and

f lin1
t are close to each other in the early phase of training:

Theorem 3.2 (main theorem for training the first layer). Let α ∈ (0, 1
4) be a fixed constant. Suppose

the number of training samples n and the network width m satisfy n & d1+α and m & d1+α.
Suppose η1 � d and η2 = 0. Then there exists a universal constant c > 0 such that with high
probability, for all 0 ≤ t ≤ T = c · d log d

η1
simultaneously, the learned neural network f1

t and the
linear model f lin1

t at iteration t are close on average on the training data:

1

n

n∑
i=1

(
f1
t (xi)− f lin1

t (xi)
)2

. d−Ω(α). (7)

Moreover, f1
t and f lin1

t are also close on the underlying data distribution D. Namely, with high
probability, for all 0 ≤ t ≤ T simultaneously, we have

Ex∼D
[
min{(f1

t (x)− f lin1
t (x))2, 1}

]
. d−Ω(α) +

√
log T
n . (8)

Theorem 3.2 ensures that the neural network f1
t and the linear model f lin1

t make almost the same
predictions in the early time of training. This agreement is not only on the training data, but also over
the underlying input distribution D. Note that this does not mean that f1

t and f lin1
t are the same on

the entire space Rd – they might still differ significantly at low-density regions of D. We also remark
that our result has no assumption on the labels {yi} except they are bounded.

The width requirement in Theorem 3.2 is very mild as it only requires the width m to be larger than
d1+α for some small constant α. Note that the width is allowed to be much smaller than the number
of samples n, which is usually the case in practice.

The agreement guaranteed in Theorem 3.2 is up to iteration T = c · d log d
η1

(for some constant c). It
turns out that for well-conditioned data, after T iterations, a near optimal linear model will have been
reached. This means that the neural network in the early phase approximates a linear model all the
way until the linear model converges to the optimum. See Corollary 3.3 below.

Corollary 3.3 (well-conditioned data). Under the same setting as Theorem 3.2, and additionally
assume that the data distributionD’s covariance Σ satisfies λmin(Σ) = Ω(1). Let β∗ ∈ Rd+1 be the
optimal parameter for the linear model that GD (6) converges to, and denote f lin1

∗ (x) := f lin1(x;β∗).
Then with high probability, after T = c · d log d

η1
iterations (for some universal constant c), we have

1

n

n∑
i=1

(
f1
T (xi)− f lin1

∗ (xi)
)2

. d−Ω(α), Ex∼D
[
min{(f1

T (x)− f lin1
∗ (x))2, 1}

]
. d−Ω(α) +

√
log T
n .

5

3.1.1 Proof Sketch of Theorem 3.2

The proof of Theorem 3.2 consists of showing that the NTK matrix for the first layer at random
initialization evaluated on the training data is close to the kernel matrix corresponding to the linear
model (5), and that furthermore this agreement persists in the early phase of training up to iteration
T . Specifically, the NTK matrix Θ1(W) ∈ Rn×n at a given first-layer weight matrix W , and the
kernel matrix Θlin1 ∈ Rn×n for the linear model (5) can be computed as:

Θ1(W) :=
(
φ′(XW>/

√
d)φ′(XW>/

√
d)>/m

)
� (XX>/d), Θlin1 := (ζ2XX> + ν211>)/d.

We have the following result that bounds the difference between Θ1(W (0)) and Θlin1 in spectral
norm:

Proposition 3.4. With high probability over the random initializationW (0) and the training data
X , we have

∥∥Θ1(W (0))−Θlin1
∥∥ . n

d1+α .

Notice that
∥∥Θlin1

∥∥ = Θ(nd) according to Claim 3.1. Thus the bound n
d1+α in Proposition 3.4 is of

smaller order. We emphasize that it is important to bound the spectral norm rather than the more
naive Frobenius norm, since the latter would give

∥∥Θ1(W (0))−Θlin1
∥∥
F
& n

d , which is not useful.
(See Figure 5 for a numerical verification.)

To prove Proposition 3.4, we first use the matrix Bernstein inequality to bound the perturbation of
Θ1(W (0)) around its expectation with respect to W (0):

∥∥Θ1(W (0))− EW (0)[Θ1(W (0))]
∥∥ .

n
d1+α . Then we perform an entry-wise Taylor expansion of EW (0)[Θ1(W (0))], and it turns out that
the top-order terms exactly constitute Θlin1, and the rest can be bounded in spectral norm by n

d1+α .

After proving Proposition 3.4, in order to prove Theorem 3.2, we carefully track (i) the prediction
difference between f1

t and f lin1
t , (ii) how much the weight matrixW move away from initialization,

as well as (iii) how much the NTK changes. To prove the guarantee on the entire data distribution we
further need to utilize tools from generalization theory. The full proof is given in Appendix D.

3.2 Training the Second Layer

Next we consider training the second layer weights v, which corresponds to η1 = 0 in (4). Denote by
f2
t : Rd → R the network at iteration t in this case. We will show that training the second layer is

also close to training a simple linear model f lin2(x;γ) := γ>ψ2(x) in the early phase, where:

ψ2(x) :=


1√
d
ζx

1√
2d
ν

ϑ0 + ϑ1(‖x‖√
d
− 1) + ϑ2(‖x‖√

d
− 1)2

 ,

ζ and ν are defined in (5),
ϑ0 = E[φ(g)],

ϑ1 = E[gφ′(g)],

ϑ2 = E[(1
2g

3 − g)φ′(g)].

(9)

As usual, this linear model is trained with GD starting from zero:

γ(0) = 0d+2, γ(t+ 1) = γ(t)− η2∇γ
1

2n

n∑
i=1

(f lin2(xi;γ(t))− yi)2. (10)

We denote by f lin2
t the resulting model at iteration t.

Note that strictly speaking f lin2(x;γ) is not a linear model in x because the feature map ψ2(x)

contains a nonlinear feature depending on ‖x‖ in its last coordinate. Because ‖x‖√
d
≈ 1 under our

data assumption according to Claim 3.1, its effect might often be invisible. However, we emphasize
that in general the inclusion of this norm-dependent feature is necessary, for example when the target
function explicitly depends on the norm of the input. We illustrate this in Section 3.4.

Similar to Theorem 3.2, our main theorem for training the second layer is the following:

Theorem 3.5 (main theorem for training the second layer). Let α ∈ (0, 1
4) be a fixed constant. Sup-

pose n & d1+α and
{
m & d1+α, if E[φ(g)] = 0

m & d2+α, otherwise
. Suppose

{
η2 � d/ log n, if E[φ(g)] = 0

η2 � 1, otherwise
and η1 = 0. Then there exists a universal constant c > 0 such that with high probability, for all

6

100 101 102 103 104 105

Step
10 1

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Lo
ss

Lin-Train
FC-Train

Lin-Test
FC-Test

(a) Loss

100 101 102 103 104 105

Step

100

10 1

10 2

0

10 2

10 1

100

Lo
gi

t Lin-Test
FC-Test

(b) Test logits

100 101 102 103 104 105

Step
0

10 5

10 4

10 3

10 2

10 1

100

M
SE

d=4
d=8
d=16

d=32
d=64
d=128

(c) Discrepancy

Figure 1: Two-layer neural network learns a linear model early in training. (a) Losses of a
neural network and the corresponding linear model predicted by (11). Solid (dashed) lines represent
the training (test) losses. We have d = 50, and use 20,000 training samples and 2,000 test samples.
The neural network and the linear model are indistinguishable in the first 1,000 steps, after which
linear learning finishes and the network continues to make progress. (b) Evolution of logits (i.e.,
outputs) of 5 random test examples. We see excellent agreement between the predictions of the neural
network and the linear model in early time. (c) Discrepancy (in MSE) between the outputs of the
network and the linear model for various values of d. As predicted, the discrepancy becomes smaller
as d increases.

0 ≤ t ≤ T = c · d log d
η2

simultaneously, we have

1

n

n∑
i=1

(
f2
t (xi)− f lin2

t (xi)
)2

. d−Ω(α), Ex∼D
[
min{(f2

t (x)− f lin2
t (x))2, 1}

]
. d−Ω(α).

Similar to Theorem 3.2, an important step in proving Theorem 3.5 is to prove that the NTK matrix
for the second layer is close to the kernel for the linear model (9). Note that the theorem treats the
case ϑ0 = E[φ(g)] = 0 differently. This is because when ϑ0 6= 0, the second layer NTK has a large
eigenvalue of size Θ(n), while when ϑ0 = 0, its largest eigenvalue is only O(n logn

d).

We remark that if the data distribution is well-conditioned, we can also have a guarantee similar to
Corollary 3.3.

3.3 Training Both Layers

Finally we consider the case where both layers are trained, in which η1 = η2 = η > 0 in (4). Since
the NTK for training both layers is simply the sum of the first-layer NTK and the second-layer
NTK, the corresponding linear model should have its kernel being the sum of the kernels for linear
models (5) and (9), which can be derived easily:

f lin(x; δ) := δ>ψ(x), ψ(x) :=


√

2
dζx√
3
2dν

ϑ0 + ϑ1(‖x‖√
d
− 1) + ϑ2(‖x‖√

d
− 1)2

 , (11)

where the constants are from (9). Note that 〈ψ(x),ψ(x′)〉 = 〈ψ1(x),ψ1(x′)〉+ 〈ψ2(x),ψ2(x′)〉.
Again, we can show that the neural network is close to the linear model (11) in early time. The
guarantee is very similar to Theorems 3.2 and 3.5, so we defer the formal theorem to Appendix D; see
Theorem D.1. Note that our result can be directly generalized to the case where η1 6= η2, for which
we just need to redefine the linear model using a weighted combination of the kernels for (5) and (9).

3.4 Empirical Verification

Verifying the early-time agreement between neural network and linear model. We verify our
theory by training a two-layer neural network with erf activation and width 256 on synthetic data
generated by x ∼ N (0, I) and y = sign(f∗(x)), where f∗ is a ground-truth two-layer erf network
with width 5. In Figure 1a, we plot the training and test losses of the neural network (colored in

7

100 101 102 103

Step
10 3

10 2

10 1

Te
st

 lo
ss

NN
Lin
Naive Lin

Figure 2: The norm-dependent feature is necessary.
For the task of learning a norm-dependent function, test
losses are shown for a neural network with ReLU activa-
tion, its corresponding linear model predicted by (11), and
a naive linear model by resetting ϑ1 = ϑ2 = 0 in (11).
Our predicted linear model is a much better approximation
to the neural network than the naive linear model.

blue) and its corresponding linear model f lin (in red).9 In the early training phase (up to 1,000 steps),
the training/test losses of the network and the linear model are indistinguishable. After that, the
optimal linear model is reached, and the network continues to make progress. In Figure 1b, we plot
the evolution of the outputs (logits) of the network and the linear model on 5 random test examples,
and we see excellent early-time agreement even on each individual sample. Finally, in Figure 1c, we
vary the input dimension d, and for each case plot the mean squared error (MSE) of the discrepancies
between the outputs of the network and the linear model. We see that the discrepancy indeed becomes
smaller as d increases, matching our theoretical prediction.

The necessity of the norm-dependent feature. We now illustrate the necessity of including the
norm-dependent feature in (11) and (9) through an example of learning a norm-dependent function.
We generate data from x ∼ N (0, I) and y = ‖x‖√

d
+ ReLU(a>x) (‖a‖ = O(1)), and train a

two-layer network with ReLU activation. We also train the corresponding linear model f lin (11)
as well as a “naive linear model” which is identical to f lin except ϑ1 and ϑ2 are replaced with 0.
Figure 2 shows that f lin is indeed a much better approximation to the neural network than the naive
linear model.

4 Extensions to Multi-Layer and Convolutional Neural Networks

In this section, we provide theoretical and empirical evidence supporting that the agreement between
neural networks and linear models in the early phase of training may continue to hold for more
complicated network architectures and datasets than what we analyzed in Section 3.

4.1 Theoretical Observations

Multi-layer fully-connected (FC) neural networks. For multi-layer FC networks, it was known
that their infinite-width NTKs have the form K(x,x′) = h(‖x‖

2

d , ‖x
′‖2
d , 〈x,x

′〉
d) (x,x′ ∈ Rd) for

some function h : R3 → R [Yang and Salman, 2019]. Let Θ be the NTK matrix on the n training
data: [Θ]i,j = K(xi,xj). Under Assumption 3.1, we know from Claim 3.1 that ‖xi‖

2

d ≈ 1 and
〈xi,xj〉

d ≈ 0 (i 6= j). Hence we can Taylor expand h around (1, 1, 0) for the off-diagonal entries of Θ
and around (1, 1, 1) for the diagonal entries. Similar to our analysis of two-layer networks, we should
be able to bound the higher-order components in the expansion, and only keep the simple ones like
XX>, 11>, etc. This suggests that the early-time linear learning behavior which we showed for
two-layer FC networks may persist in multi-layer FC networks.

Convolutional neural networks (CNNs). We consider a simple 1-dimensional CNN with one
convolutional layer and without pooling (generalization to the commonly used 2-dimensional CNNs
is straightforward):

fCNN(x;W ,V) :=
1√
md

m∑
r=1

v>r φ (wr ∗ x/
√
q) . (12)

Here x ∈ Rd is the input,W = [w1, . . . ,wm]> ∈ Rm×q and V = [v1, . . . ,vm]> ∈ Rm×d contain
the weights, where m is the number of channels (or width), and q ≤ d is the filter size. All the
weights are initialized i.i.d from N (0, 1). The convolution operator ∗ is defined as: for input x ∈ Rd

9For φ = erf , we have ϑ0 = ϑ1 = ϑ2 = 0, so f lin in (11) is a linear model in x without the nonlinear
feature.

8

100 101 102 103 104 105

Step
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Lin:Vlin
Lin:Vlin
FC:Vlin
CNN:Vlin

(a) Test loss decomposition

100 101 102 103 104

Step
100

10 1

10 2

0

10 2

10 1

100

Lo
gi

t

CNN-Test
Lin-Test
FC-Test

(b) Test logits

100 101 102 103 104 105

Step
0.00

0.02

0.04

0.06

0.08

0.10

Re
la

tiv
e

M
SE

CNN
FC

(c) Relative MSE of discrepancy

Figure 3: Good agreement between 4-hidden-layer CNN/FC network and linear model on
CIFAR-10 early in training. (a) Decomposition of the test losses onto Vlin (solid lines) and V ⊥lin
(dashed lines) for CNN, FC and the corresponding linear model. (b) Three randomly selected test
outputs for different models. (c) The relative MSE between the networks and the linear model.
Note that we adjust the learning rates of CNN and FC so that their corresponding linear models are
identical.

and filterw ∈ Rq , we havew ∗x ∈ Rd with [w ∗ x]i :=
∑q
j=1 [w]j [x]i+j−1. We consider circular

padding (as in Xiao et al. [2018], Li et al. [2019b]), so the indices in input should be understood as
[x]i = [x]i+d.

We have the following result concerning the NTK of this CNN:

Proposition 4.1. Let φ = erf . Suppose n & d1+α and q & d
1
2 +2α for some constant α ∈ (0, 1

4).

Consider n datapoints x1, . . . ,xn
i.i.d.∼ Unif({±1}d). Then the corresponding NTK matrix ΘCNN ∈

Rn×n of the CNN (12) in the infinite-width limit (m→∞) satisfies
∥∥ΘCNN − 2ζ2XX>/d

∥∥ . n
d1+α

with high probability, where ζ = E[φ′(g)].

The proof is given in Appendix E. The above result shows that the NTK of a CNN can also be close
to the (scaled) data kernel, which implies the linear learning behavior in the early time of training the
CNN. Our empirical results will show that this behavior can even persist to multi-layer CNNs and
real data beyond our analysis.

4.2 Empirical Results

We perform experiments on a binary classification task from CIFAR-10 (“cats” vs “horses”) using
a multi-layer FC network and a CNN. The numbers of training and test data are 10,000 and 2,000.
The original size of the images is 32× 32× 3, and we down-sample the images into size 8× 8× 3
using a 4 × 4 average pooling. Then we train a 4-hidden-layer FC net and a 4-hidden-layer CNN
with erf activation. To have finer-grained examination of the evolution of the losses, we decompose
the residual of the predictions on test data (namely, ft(x)− y for all test data collected as a vector
in R2000) onto Vlin, the space spanned by the inputs (of dimension d = 192), and its complement
V ⊥lin (of dimension 2000− d). For both networks, we observe in Figure 3a that the test losses of the
networks and the linear model are almost identical up to 1,000 steps, and the networks start to make
progress in V ⊥lin after that. In Figure 3b we plot the logit evolution of 3 random test datapoints and
again observe good agreement in early time. In Figure 3c, we plot the relative MSE between the
network and the linear model (i.e., Ex‖ft(x)− f lin

t (x)‖2/Ex‖f lin
t (x)‖2 evaluated on test data). We

observe that this quantity for either network is small in the first 1,000 steps and grows afterwards. The
detailed setup and additional results for full-size CIFAR-10 and MNIST are deferred to Appendix A.

5 Conclusion
This work gave a novel theoretical result rigorously showing that gradient descent on a neural network
learns a simple linear function in the early phase. While we mainly focused on two-layer fully-
connected neural networks, we further provided theoretical and empirical evidence suggesting that
this phenomenon continues to exist in more complicated models. Formally extending our result to
those settings is a direction of future work. Another interesting direction is to study the dynamics of
neural networks after the initial linear learning phase.

9

Broader Impact

This work is theoretical and does not present any foreseeable societal consequence.

Acknowledgments and Disclosure of Funding

WH was supported by NSF, ONR, Simons Foundation, Schmidt Foundation, Amazon Research,
DARPA and SRC.

References
Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep neural

networks. arXiv preprint arXiv:1711.08856, 2017.

Daniel Adiwardana, Minh-Thang Luong, David R So, Jamie Hall, Noah Fiedel, Romal Thoppilan,
Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, et al. Towards a human-like open-
domain chatbot. arXiv preprint arXiv:2001.09977, 2020.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. In Advances in Neural Information Processing Systems, pages 7411–7422, 2019a.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. arXiv preprint arXiv:1904.11955, 2019b.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. arXiv preprint
arXiv:1901.08584, 2019c.

Yu Bai and Jason D. Lee. Beyond linearization: On quadratic and higher-order approximation of
wide neural networks. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=rkllGyBFPH.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Information Processing Systems, pages 6241–6250, 2017.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, and Skye Wanderman-Milne. JAX: composable transformations of Python+NumPy programs,
2018. URL http://github.com/google/jax.

Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understanding the
spectral bias of deep learning. arXiv preprint arXiv:1912.01198, 2019.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. arXiv preprint arXiv:2002.04486, 2020.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
In Advances in Neural Information Processing Systems, pages 2933–2943, 2019.

Simon S Du, Wei Hu, Sham M Kakade, Jason D Lee, and Qi Lei. Few-shot learning via learning the
representation, provably. arXiv preprint arXiv:2002.09434, 2020.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. arXiv preprint
arXiv:1703.11008, 2017.

Noureddine El Karoui. The spectrum of kernel random matrices. The Annals of Statistics, 38(1):
1–50, 2010.

10

https://openreview.net/forum?id=rkllGyBFPH
http://github.com/google/jax

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJl-b3RcF7.

Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete gradient
dynamics in linear neural networks. In Advances in Neural Information Processing Systems, pages
3196–3206, 2019.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. In Advances in Neural Information Processing
Systems, pages 6151–6159, 2017.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Implicit bias of gradient descent on
linear convolutional networks. arXiv preprint arXiv:1806.00468, 2018.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

Wei Hu, Zhiyuan Li, and Dingli Yu. Simple and effective regularization methods for training on
noisily labeled data with generalization guarantee. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=Hke3gyHYwH.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
Conference on Learning Theory, pages 1772–1798, 2019a.

Ziwei Ji and Matus Jan Telgarsky. Gradient descent aligns the layers of deep linear networks. In 7th
International Conference on Learning Representations, ICLR 2019, 2019b.

Yegor Klochkov and Nikita Zhivotovskiy. Uniform hanson-wright type concentration inequalities for
unbounded entries via the entropy method. Electronic Journal of Probability, 25, 2020.

Andrew K Lampinen and Surya Ganguli. An analytic theory of generalization dynamics and transfer
learning in deep linear networks. arXiv preprint arXiv:1809.10374, 2018.

Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Jascha Sohl-Dickstein, and Jeffrey
Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.
arXiv preprint arXiv:1902.06720, 2019.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large
learning rate phase of deep learning: the catapult mechanism. arXiv preprint arXiv:2003.02218,
2020.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference On Learning Theory,
pages 2–47, 2018.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. In Advances in Neural Information Processing Systems,
pages 11669–11680, 2019a.

Zhiyuan Li, Ruosong Wang, Dingli Yu, Simon S Du, Wei Hu, Ruslan Salakhutdinov, and Sanjeev
Arora. Enhanced convolutional neural tangent kernels. arXiv preprint arXiv:1911.00809, 2019b.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
arXiv preprint arXiv:1906.05890, 2019.

David A McAllester. Pac-bayesian model averaging. In Proceedings of the twelfth annual conference
on Computational learning theory, pages 164–170, 1999.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT
Press, 2012.

11

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=Hke3gyHYwH

Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L Edelman, Fred Zhang,
and Boaz Barak. Sgd on neural networks learns functions of increasing complexity. arXiv preprint
arXiv:1905.11604, 2019.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. A PAC-
Bayesian approach to spectrally-normalized margin bounds for neural networks. arXiv preprint
arXiv:1707.09564, 2017a.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generaliza-
tion in deep learning. In Advances in Neural Information Processing Systems, pages 5947–5956,
2017b.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A Alemi, Jascha Sohl-Dickstein, and
Samuel S Schoenholz. Neural tangents: Fast and easy infinite neural networks in python. arXiv
preprint arXiv:1912.02803, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. arXiv preprint
arXiv:1806.08734, 2018.

Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable by
norms. arXiv preprint arXiv:2005.06398, 2020.

Mark Rudelson and Roman Vershynin. Hanson-wright inequality and sub-gaussian concentration.
Electronic Communications in Probability, 18, 2013.

AM Saxe, JL McClelland, and S Ganguli. Exact solutions to the nonlinear dynamics of learning in
deep linear neural networks. International Conference on Learning Representations, 2014.

Jssai Schur. Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen verän-
derlichen. Journal für die reine und angewandte Mathematik (Crelles Journal), 1911(140):1–28,
1911.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. Journal of Machine Learning Research, 19(70), 2018.

Lili Su and Pengkun Yang. On learning over-parameterized neural networks: A functional approxi-
mation perspective. In Advances in Neural Information Processing Systems, pages 2637–2646,
2019.

Joel A Tropp. An introduction to matrix concentration inequalities. Foundations and Trends R© in
Machine Learning, 8(1-2):1–230, 2015.

VN Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies of events to
their probabilities. Theory of Probability & Its Applications, 16(2):264–280, 1971.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge University Press, 2019.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington.
Dynamical isometry and a mean field theory of cnns: How to train 10,000-layer vanilla convo-
lutional neural networks. In International Conference on Machine Learning, pages 5393–5402,
2018.

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019a.

Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. Training behavior of deep neural network in
frequency domain. In International Conference on Neural Information Processing, pages 264–274.
Springer, 2019b.

12

Zhiqin John Xu. Understanding training and generalization in deep learning by fourier analysis.
arXiv preprint arXiv:1808.04295, 2018.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760,
2019.

Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural networks. arXiv preprint
arXiv:1907.10599, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In Proceedings of the International Conference
on Learning Representations (ICLR), 2017.

Yaoyu Zhang, Zhi-Qin John Xu, Tao Luo, and Zheng Ma. A type of generalization error induced by
initialization in deep neural networks. arXiv preprint arXiv:1905.07777, 2019.

13

A Experiment Setup and Additional Plots

We provide additional plots and describe additional experiment details in this section.

In Figure 4, we repeat the same experiments in Figure 3 on the full-size (32× 32× 3) CIFAR-10 as
well as MNIST datasets, using the same 4-hidden-layer FC and CNN architectures. For both datasets
we take two classes and perform binary classification. We see very good early-time agreement except
for CNN on CIFAR-10, where the agreement only lasts for a shorter time.

For the experiments in Figures 3 and 4, the FC network has width 512 in each of the 4 hidden
layers, and the CNN uses circular padding and has 256 channels in each of the 4 hidden layers. For
CIFAR-10 and MNIST images, we use standard data pre-processing, i.e., normalizing each image to
have zero mean and unit variance. To ensure the initial outputs are always 0, we subtract the function
output at initialization for each datapoint (as discussed in Section 3). We train and test using the
`2 loss with ±1 labels. We use vanilla stochastic gradient descent with batch size 500, and choose
a small learning rate (roughly 0.01

‖NTK‖) so that we can better observe early time of training (similar
to Nakkiran et al. [2019]).

We use the Neural Tangents Library [Novak et al., 2019] and JAX [Bradbury et al., 2018] for our
experiments.

100 101 102 103 104 105

Step
0.30

0.35

0.40

0.45

0.50

0.55

0.60

Lo
ss

Lin:Vlin
Lin:Vlin
FC:Vlin
CNN:Vlin

(a) Test loss

100 101 102 103 104

Step
100

10 1

10 2

0

10 2

10 1

Lo
gi

t

CNN-Test
Lin-Test
FC-Test

(b) Test logits

100 101 102 103 104 105

Step
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Re
la

tiv
e

M
SE

CNN
FC

(c) Relative MSE of discrepancy

100 101 102 103 104 105

Step
0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Lin:Vlin
Lin:Vlin
FC:Vlin
CNN:Vlin

(d) Test loss decomposition

100 101 102 103 104 105

Step

100

10 1

10 2

0

10 2

10 1

100

Lo
gi

t

CNN-Test
Lin-Test
FC-Test

(e) Test logits

100 101 102 103 104 105

Step
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Re
la

tiv
e

M
SE

CNN
FC

(f) Relative MSE of discrepancy

Figure 4: Replication of Figure 3 on full-size CIFAR-10 (top row) and MNIST (bottom row). In
Figure 4a, there is no projection onto V ⊥lin because the data dimension 32× 32× 3 is larger than the
number of test data 2,000.

B Additional Notation and Lemmas

We introduce some additional notation and lemmas that will be used in the proofs.

We use Õ(·) to hide poly-logarithmic factors in n (the number of training datapoints). Denote by
1{E} the indicator function for an event E. For a vector a, we let diag(a) be a diagonal matrix
whose diagonal entries constitute a. For a matrixA, we use vec (A) to denote the vectorization of
A in row-first order.

For a square matrixA, we denote its diagonal and off-diagonal parts asAdiag andAoff , respectively.
Namely, we haveA = Adiag +Aoff , where [Adiag]i,j = [A]i,j 1{i=j} and [Aoff]i,j = [A]i,j 1{i 6=j}.
Equivalently,Adiag = A� I andAoff = A� (11> − I).

14

Lemma B.1. For any matrixA and a submatrixA1 ofA, we have ‖A1‖ ≤ ‖A‖.

Proof. For simplicity we assume that A1 is in the top-left corner of A, i.e. A =

[
A1 A2

A3 A4

]
. The

same proof works whenA1 is any other submatrix ofA.

By the definition of spectral norm, we have

‖A‖ = max
‖x‖=‖y‖=1

x>Ay

= max
‖x‖=‖y‖=1

x>
[
A1 A2

A3 A4

]
y

≥ max
‖x1‖=‖y1‖=1

[x>1 ,0
>]

[
A1 A2

A3 A4

] [
y1

0

]
= max
‖x1‖=‖y1‖=1

x>1 A1y1

= ‖A1‖ .
Lemma B.2. For any square matrixA, we have ‖Adiag‖ ≤ ‖A‖ and ‖Aoff‖ ≤ 2 ‖A‖.

Proof. From Lemma B.1 we know that
∣∣∣[A]i,i

∣∣∣ ≤ ‖A‖ for all i since [A]i,i can be viewed as a
submatrix ofA. Thus we have

‖Adiag‖ = max
i

∣∣∣[A]i,i

∣∣∣ ≤ ‖A‖ .
It follows that

‖Aoff‖ = ‖A−Adiag‖ ≤ ‖A‖+ ‖Adiag‖ ≤ 2 ‖A‖ .

Lemma B.3 (Schur [1911]). For any two positive semidefinite matricesA,B, we have

‖A�B‖ ≤ ‖A‖ ·max
i

[B]i,i .

C General Result on the Closeness between Two Dynamics

We present a general result that shows how the GD trajectory for a non-linear least squares problem
can be simulated by a linear one. Later we will specialize this result to the settings considered in the
paper.

We consider an objective function of the form:

F (θ) =
1

2n
‖f(θ)− y‖2 ,

where f : RN 7→ Rn is a general differentiable function, and y ∈ Rn satisfies ‖y‖ ≤
√
n. We

denote by J : RN 7→ Rn×N the Jacobian map of f . Then starting from some θ(0) ∈ RN , the GD
updates for minimizing F can be written as:

θ(t+ 1) = θ(t)− η∇F (θ(t)) = θ(t)− 1

n
ηJ(θ(t))>(f(θ(t))− y).

Consider another linear least squares problem:

G(ω) =
1

2n
‖Φω − y‖2 ,

where Φ ∈ Rn×M is a fixed matrix. Its GD dynamics started from ω(0) ∈ RM can be written as:

ω(t+ 1) = ω(t)− η∇G(ω(t)) = ω(t)− 1

n
ηΦ>(Φω(t)− y).

LetK := ΦΦ>, and let

u(t) := f(θ(t)),

15

ulin(t) := Φω(t),

which stand for the predictions of these two models at iteration t.

The linear dynamics admit a very simple analytical form, summarized below.

Claim C.1. For all t ≥ 0 we have ulin(t)− y =
(
I − 1

nηK
)t

(ulin(0)− y). As a consequence, if
η ≤ 2n

‖K‖ , then we have
∥∥ulin(t)− y

∥∥ ≤ ∥∥ulin(0)− y
∥∥ for all t ≥ 0.

Proof. By definition we have ulin(t + 1) = ulin(t) − 1
nηK(ulin(t) − y), which implies ulin(t +

1) − y =
(
I − 1

nηK
)

(ulin(t) − y). Thus the first statement follows directly. Then the second
statement can be proved by noting that

∥∥I − 1
nηK

∥∥ ≤ 1 when η ≤ 2n
‖K‖ .

We make the following assumption that connects these two problems:
Assumption C.1. There exist 0 < ε < ‖K‖ , R > 0 such that for any θ,θ′ ∈ RN , as long as
‖θ − θ(0)‖ ≤ R and ‖θ′ − θ(0)‖ ≤ R, we have∥∥J(θ)J(θ′)> −K

∥∥ ≤ ε.
Based on the above assumption, we have the following theorem showing the agreement between u(t)
and ulin(t) as well as the parameter boundedness in early time.

Theorem C.2. Suppose that the initializations are chosen so that u(0) = ulin(0) = 0, and that the
learning rate satisfies η ≤ n

‖K‖ . Suppose that Assumption C.1 is satisfied with R2ε < n. Then there

exists a universal constant c > 0 such that for all 0 ≤ t ≤ cR
2

η :

• (closeness of predictions)
∥∥u(t)− ulin(t)

∥∥ . ηtε√
n

;

• (boundedness of parameter movement) ‖θ(t)− θ(0)‖ ≤ R, ‖ω(t)− ω(0)‖ ≤ R.

Proof. We first prove the first two properties, and will prove the last property ‖ω(t)− ω(0)‖ ≤ R at
the end.

We use induction to prove
∥∥u(t)− ulin(t)

∥∥ . ηtε√
n

and ‖θ(t)− θ(0)‖ ≤ R. For t = 0, these

statements are trivially true. Now suppose for some 1 ≤ t ≤ cR
2

η we have
∥∥u(τ)− ulin(τ)

∥∥ . ητε√
n

and ‖θ(τ)− θ(0)‖ ≤ R for τ = 0, 1, . . . , t − 1. We will now prove
∥∥u(t)− ulin(t)

∥∥ . ηtε√
n

and
‖θ(t)− θ(0)‖ ≤ R under these induction hypotheses.

Notice that from
∥∥u(τ)− ulin(τ)

∥∥ . ητε√
n
≤ cR2ε√

n
.
√
n and Claim C.1 we know ‖u(τ)− y‖ .

√
n for all τ < t.

Step 1: proving ‖θ(t)− θ(0)‖ ≤ R. We define

J(θ → θ′) :=

∫ 1

0

J(θ + x(θ′ − θ))dx.

We first prove ‖θ(t− 1)− θ(0)‖ ≤ R
2 . If t = 1, this is trivially true. Now we assume t ≥ 2. For

each 0 ≤ τ < t− 1, by the fundamental theorem for line integrals we have

u(τ + 1)− u(τ) = J(θ(τ)→ θ(τ + 1)) · (θ(τ + 1)− θ(τ))

= − η
n
J(θ(τ)→ θ(τ + 1))J(θ(τ))>(u(τ)− y).

Let E(τ) := J(θ(τ) → θ(τ + 1))J(θ(τ))> − K. Since ‖θ(τ)− θ(0)‖ ≤ R and
‖θ(τ + 1)− θ(0)‖ ≤ R, from Assumption C.1 we know that ‖E(τ)‖ ≤ ε. We can write

u(τ + 1)− y =
(
I − η

n
J(θ(τ)→ θ(τ + 1))J(θ(τ))>

)
(u(τ)− y)

=
(
I − η

n
K
)

(u(τ)− y)− η

n
E(τ)(u(τ)− y).

(13)

16

It follows that

‖u(τ + 1)− y‖2

≤
∥∥∥(I − η

n
K
)

(u(τ)− y)
∥∥∥2

+ 2
∥∥∥(I − η

n
K
)

(u(τ)− y)
∥∥∥ · ∥∥∥ η

n
E(τ)(u(τ)− y)

∥∥∥
+
∥∥∥ η
n
E(τ)(u(τ)− y)

∥∥∥2

≤
∥∥∥(I − η

n
K
)

(u(τ)− y)
∥∥∥2

+O

(√
n · η

n
ε
√
n+

(η
n
ε
√
n
)2
)

=
∥∥∥(I − η

n
K
)

(u(τ)− y)
∥∥∥2

+O(ηε) (ηε . n)

= ‖u(τ)− y‖2 − 2η

n
(u(τ)− y)>K(u(τ)− y) +

η2

n2
‖K(u(τ)− y)‖2 +O(ηε)

≤ ‖u(τ)− y‖2 − 2η

n
(u(τ)− y)>K(u(τ)− y) +

η2

n2
‖K‖ ·

∥∥∥K1/2(u(τ)− y)
∥∥∥2

+O(ηε)

≤ ‖u(τ)− y‖2 − η

n
(u(τ)− y)>K(u(τ)− y) +O(ηε). (η

2‖K‖
n2 ≤ η

n)

On the other hand, we have

‖θ(τ + 1)− θ(τ)‖2

=
η2

n2

∥∥J(θ(τ))>(u(τ)− y)
∥∥2

=
η2

n2
(u(τ)− y)>J(θ(τ))J(θ(τ))>(u(τ)− y)

≤ η2

n2

(
(u(τ)− y)>K(u(τ)− y) + ‖u(τ)− y‖2

∥∥J(θ(τ))J(θ(τ))> −K
∥∥)

≤ η2

n2

(
(u(τ)− y)>K(u(τ)− y) +O(nε)

)
.

(14)

Combining the above two inequalities, we obtain

‖u(τ + 1)− y‖2 − ‖u(τ)− y‖2

≤ − η

n

(
n2

η2
‖θ(τ + 1)− θ(τ)‖2 −O(nε)

)
+O(ηε)

= − n

η
‖θ(τ + 1)− θ(τ)‖2 +O(ηε).

Taking sum over τ = 0, . . . , t− 2, we get

‖u(t− 1)− y‖2 − ‖u(0)− y‖2 ≤ −n
η

t−2∑
τ=0

‖θ(τ + 1)− θ(τ)‖2 +O(ηtε),

which implies

n

η

t−2∑
τ=0

‖θ(τ + 1)− θ(τ)‖2 ≤ ‖y‖2 +O(ηtε) ≤ ‖y‖2 +O(R2ε) = O(n).

Then by the Cauchy-Schwartz inequality we have

‖θ(t− 1)− θ(0)‖ ≤
t−2∑
τ=0

‖θ(τ + 1)− θ(τ)‖ ≤

√√√√(t− 1)

t−2∑
τ=0

‖θ(τ + 1)− θ(τ)‖2

≤
√
t ·O(η) ≤

√
c
R2

η
·O(η).

Choosing c sufficiently small, we can ensure ‖θ(t− 1)− θ(0)‖ ≤ R
2 .

17

Now that we have proved ‖θ(t− 1)− θ(0)‖ ≤ R
2 , to prove ‖θ(t)− θ(0)‖ ≤ R it suffices to bound

the one-step deviation ‖θ(t)− θ(t− 1)‖ by R
2 . Using the exact same method in (14), we have

‖θ(t)− θ(t− 1)‖ ≤ η

n

√
n ‖K‖+O(nε) . η

√
‖K‖ /n =

√
η ‖K‖ /n√η ≤

√
cR,

where we have used η ≤ n
‖K‖ and η ≤ ηt ≤ cR2. Choosing c sufficiently small, we can ensure

‖θ(t)− θ(t− 1)‖ ≤ R
2 . Therefore we conclude that ‖θ(t)− θ(0)‖ ≤ R.

Step 2: proving
∥∥u(t)− ulin(t)

∥∥ . ηtε√
n

. Same as (13) we have

u(t)− y =
(
I − η

n
K
)

(u(t− 1)− y)− η

n
E(t− 1)(u(t− 1)− y),

where E(t − 1) = J(θ(t − 1),θ(t))J(θ(t − 1))> − K. Since ‖θ(t− 1)− θ(0)‖ ≤ R and
‖θ(t)− θ(0)‖ ≤ R, we know from Assumption C.1 that ‖E(t− 1)‖ ≤ ε. Moreover, from Claim C.1
we know

ulin(t)− y =
(
I − η

n
K
)

(ulin(t− 1)− y).

It follows that

u(t)− ulin(t) =
(
I − η

n
K
)

(u(t− 1)− ulin(t− 1))− η

n
E(t− 1)(u(t− 1)− y),

which implies∥∥u(t)− ulin(t)
∥∥ ≤ ∥∥∥(I − η

n
K
)

(u(t− 1)− ulin(t− 1))
∥∥∥+

∥∥∥ η
n
E(t− 1)(u(t− 1)− y)

∥∥∥
≤
∥∥u(t− 1)− ulin(t− 1)

∥∥+O
(η
n
ε
√
n
)

=
∥∥u(t− 1)− ulin(t− 1)

∥∥+O

(
ηε√
n

)
.

Therefore from
∥∥u(t− 1)− ulin(t− 1)

∥∥ . η(t−1)ε√
n

we know
∥∥u(t)− ulin(t)

∥∥ . ηtε√
n

, completing
the proof.

Finally, we prove the last statement in the theorem, i.e., ‖ω(t)− ω(0)‖ ≤ R. In fact we have already
proved this – notice that we have proved ‖θ(t)− θ(0)‖ ≤ R and that a special instance of this
problem is when θ(t) = ω(t), i.e., the two dynamics are the same. Applying our result on that
problem instance, we obtain ‖ω(t)− ω(0)‖ ≤ R.

D Omitted Details in Section 3

In Appendix D.1, we present the formal theoretical guarantee (Theorem D.1) for the case of training
both layers.

In Appendix D.2, we calculate the formulae of various Jacobians and NTKs that will be used in the
analysis.

In Appendix D.3, we prove Theorem 3.2 (training the first layer).

In Appendix D.4, we prove Corollary 3.3 (training the first layer with well-conditioned data).

In Appendix D.5, we prove Theorem 3.5 (training the second layer).

In Appendix D.6, we prove Theorem D.1 (training both layers).

In Appendix D.7, we prove Claim 3.1 (data concentration properties).

D.1 Guarantee for Training Both Layers

Now we state our guarantee for the case of training both layers, continuing from Section 3.3. Recall
that the neural network weights (W (t),v(t)) are updated according to GD (4) with learning rate
η1 = η2 = η. The linear model f lin(x; δ) in (11) is also trained with GD:

δ(0) = 0d+2, δ(t+ 1) = δ(t)− η∇δ
1

2n

n∑
i=1

(f lin(xi; δ(t))− yi)2.

18

We let ft and f lin
t be the neural network and the linear model at iteration t, i.e., ft(x) :=

f(x;W (t),v(t)) and f lin
t (x) := f lin(x; δ(t)).

Theorem D.1 (main theorem for training both layers). Let α ∈ (0, 1
4) be a fixed constant. Suppose

n & d1+α andm & d2+α. Suppose
{
η � d/ log n, if E[φ(g)] = 0

η � 1, otherwise
. Then there exists a universal

constant c > 0 such that with high probability, for all 0 ≤ t ≤ T = c · d log d
η simultaneously, we have

1

n

n∑
i=1

(
ft(xi)− f lin

t (xi)
)2

. d−Ω(α), Ex∼D
[
min{(ft(x)− f lin

t (x))2, 1}
]
. d−Ω(α) +

√
log T
n .

We remark that if the data distribution is well-conditioned, we can also have a guarantee similar to
Corollary 3.3.

D.2 Formulae of Jacobians and NTKs

We first calculate the Jacobian of the network outputs at the training data X with respect to the
weights in the network. The Jacobian for the first layer is:

J1(W ,v) := [J1(w1, v1),J1(w2, v2), . . . ,J1(wm, vm)] ∈ Rn×md, (15)

where
J1(wr, vr) :=

1√
md

vrdiag
(
φ′(Xwr/

√
d)
)
X ∈ Rn×d, r ∈ [m].

The Jacobian for the second layer is:

J2(W) :=
1√
m
φ(XW>/

√
d) ∈ Rn×m. (16)

Here we omit v in the notation since it does not affect the Jacobian. The Jacobian for both layers is
simply J(W ,v) := [J1(W ,v),J2(W)] ∈ Rn×(md+m).

After calculating the Jacobians, we can calculate the NTK matrices for the first layer, the second
layer, and both layers as follows:

Θ1(W ,v) :=J1(W ,v)J1(W ,v)> =
1

m

m∑
r=1

v2
r

(
φ′(Xwr/

√
d)φ′(Xwr/

√
d)>

)
� XX

>

d
,

Θ2(W) :=J2(W)J2(W)> =
1

m
φ(XW>/

√
d)φ(XW>/

√
d)>,

Θ(W ,v) :=J(W ,v)J(W ,v)> = Θ1(W ,v) + Θ2(W).
(17)

We also denote the expected NTK matrices at random initialization as:

Θ∗1 :=Ew∼N (0,I),v∼Unif{±1}

[
v2
(
φ′(Xw/

√
d)φ′(Xw/

√
d)>

)]
� XX

>

d

=Ew∼N (0,I)

[(
φ′(Xw/

√
d)φ′(Xw/

√
d)>

)]
� XX

>

d
,

Θ∗2 :=Ew∼N (0,I)

[
φ(Xw/

√
d)φ(Xw/

√
d)>

]
,

Θ∗ := Θ∗1 + Θ∗2.

(18)

These are also the NTK matrices at infinite width (m→∞).

Next, for the three linear models (5), (9) and (11) defined in Section 3, denote their feature/Jacobian
matrices by:

Ψ1 := [ψ1(x1), . . . ,ψ1(xn)]>,

Ψ2 := [ψ2(x1), . . . ,ψ2(xn)]>,

Ψ := [ψ(x1), . . . ,ψ(xn)]>.

(19)

19

101 102

d

100

101

102

no
rm

|| 1 lin1||

spectral, log-log LS fit, slope=-1.263
Frobenius, log-log LS fit, slope=-0.718
spectral norm
Frobenius norm

Figure 5: Verification of Proposition 3.4/D.2. We simulate the dependence of the spectral and
Frobenius norms of Θ1(W (0))−Θlin1 on d. We set φ = erf , n = 104 andm = 2×104, and generate
data from N (0, I) for various d. We perform a linear least-squares fit on the log mean norms against
log(d). Numerically we find

∥∥Θ1(W (0))−Θlin1
∥∥ ∝ d−1.263 and

∥∥Θ1(W (0))−Θlin1
∥∥
F
∝

d−0.718.

Consequently, their corresponding kernel matrices are:

Θlin1 := Ψ1Ψ
>
1 =

1

d
(ζ2XX> + ν211>),

Θlin2 := Ψ2Ψ
>
2 =

1

d

(
ζ2XX> +

1

2
ν211>

)
+ qq>,

Θlin := ΨΨ> =
1

d

(
2ζ2XX> +

3

2
ν211>

)
+ qq>.

(20)

Here the constants are defined in (9), and q ∈ Rn is defined as [q]i := ϑ0 +ϑ1(‖xi‖√
d
−1)+ϑ2(‖xi‖√

d
−

1)2 for each i ∈ [n].

D.3 Proof of Theorem 3.2 (Training the First Layer)

For convenience we let v = v(0) which is the fixed second layer. Since we have vr ∈ {±1}
(∀r ∈ [m]), we can write the first-layer NTK matrix as

Θ1(W ,v) =
1

m

m∑
r=1

(
φ′(Xwr/

√
d)φ′(Xwr/

√
d)>

)
� XX

>

d
.

Because it does not depend on v, we denote Θ1(W) := Θ1(W ,v) for convenience.

D.3.1 The NTK at Initialization

Now we prove Proposition 3.4, restated below:
Proposition D.2 (restatement of Proposition 3.4). With high probability over the random initialization
W (0) and the training dataX , we have∥∥Θ1(W (0))−Θlin1

∥∥ .
n

d1+α
.

We perform a simulation to empirically verify Proposition D.2 in Figure 5. Here we fix n and m to be
large and look at the dependence of

∥∥Θ1(W (0))−Θlin1
∥∥ on d. We find that

∥∥Θ1(W (0))−Θlin1
∥∥

indeed decays faster than 1
d . In contrast,

∥∥Θ1(W (0))−Θlin1
∥∥
F

decays slower than 1
d , indicating

that bounding the Frobenius norm is insufficient.

To prove Proposition D.2, we will prove Θ1(W (0)) is close to its expectation Θ∗1 (defined in (18)),
and then prove Θ∗1 is close to Θlin1. We do these steps in the next two propositions.

20

Proposition D.3. With high probability over the random initializationW (0) and the training data
X , we have

‖Θ1(W (0))−Θ∗1‖ ≤
n

d1+α
.

Proof. For convenience we denoteW = W (0) and Θ1 = Θ1(W) = Θ1(W (0)) in this proof.

From Claim 3.1 we know
∥∥XX>∥∥ = O(n) with high probability. For the rest of the proof we will

be conditioned onX and on Claim 3.1, and only consider the randomness inW .

We define Θ
(r)
1 :=

(
φ′(Xwr/

√
d)φ′(Xwr/

√
d)>

)
�XX

>

d for each r ∈ [m]. Then we have Θ1 =

1
m

∑m
r=1 Θ

(r)
1 . According to the initialization scheme (3), we know that Θ

(1)
1 ,Θ

(2)
1 , . . . ,Θ

(m/2)
1 are

independent, Θ
(m/2+1)
1 ,Θ

(m/2+2)
1 , . . . ,Θ

(m)
1 are independent, and E[Θ

(r)
1] = Θ∗1 for all r ∈ [m].

Next we will apply the matrix Bernstein inequality (Theorem 1.6.2 in Tropp [2015]) to bound
‖Θ1 −Θ∗1‖. We will first consider the first half of independent neurons, i.e. r ∈ [m/2]. For each r
we have ∥∥∥Θ(r)

1

∥∥∥ =

∥∥∥∥diag
(
φ′(Xwr/

√
d)
)
· XX

>

d
· diag

(
φ′(Xwr/

√
d)
)∥∥∥∥

≤
∥∥∥diag

(
φ′(Xwr/

√
d)
)∥∥∥ · ∥∥∥∥XX>d

∥∥∥∥ · ∥∥∥diag
(
φ′(Xwr/

√
d)
)∥∥∥

≤ O(1) ·O(n/d) ·O(1)

= O(n/d).

Here we have used the boundedness of φ′(·) (Assumption 3.2). Since Θ∗1 = E[Θ
(r)
1], it follows that

‖Θ∗1‖ ≤ O(n/d),∥∥∥Θ(r)
1 −Θ∗1

∥∥∥ ≤ O(n/d), ∀r ∈ [m/2]∥∥∥∥∥∥
m/2∑
r=1

E[(Θ
(r)
1 −Θ∗1)2]

∥∥∥∥∥∥ ≤
m/2∑
r=1

∥∥∥E[(Θ
(r)
1 −Θ∗1)2]

∥∥∥ ≤ O(mn2/d2).

Therefore, from the the matrix Bernstein inequality, for any s ≥ 0 we have:

Pr

∥∥∥∥∥∥
m/2∑
r=1

(Θ
(r)
1 −Θ∗1)

∥∥∥∥∥∥ ≥ s
 ≤ 2n · exp

(
−s2/2

O(mn2/d2 + sn/d)

)
.

Letting s = m
2 ·

n
d1+α , we obtain

Pr

∥∥∥∥∥∥
m/2∑
r=1

(Θ
(r)
1 −Θ∗1)

∥∥∥∥∥∥ ≥ m

2
· n

d1+α

 ≤ 2n · exp

(
−Ω

(
m2n2/d2+2α

mn2/d2 +mn2/d2+α

))
= 2n · exp

(
−Ω

(m

d2α

))
= dO(1) · e−Ω(d1−α)

� 1,

where we have used m = Ω(d1+α) and n = dO(1). Therefore with high probability we have∥∥∥∥∥∥
m/2∑
r=1

(Θ
(r)
1 −Θ∗1)

∥∥∥∥∥∥ ≤ m

2
· n

d1+α
.

Similarly, for the second half of the neurons we also have with high probability∥∥∥∥∥∥
m∑

r=m/2+1

(Θ
(r)
1 −Θ∗1)

∥∥∥∥∥∥ ≤ m

2
· n

d1+α
.

21

Finally, by the triangle inequality we have

‖Θ1 −Θ∗1‖ =
1

m

∥∥∥∥∥
m∑
r=1

(Θ
(r)
1 −Θ∗1)

∥∥∥∥∥ ≤ 1

m

(m
2
· n

d1+α
+
m

2
· n

d1+α

)
=

n

d1+α

with high probability, completing the proof.

Proposition D.4. With high probability over the training dataX , we have∥∥Θ∗1 −Θlin1
∥∥ .

n

d1+α
.

Proof. We will be conditioned on the high probability events stated in Claim 3.1.

By the definition of Θ∗1, we know

[Θ∗1]i,j =
1

d
x>i xj · Ew∼N (0,I)

[
φ′(w>xi/

√
d)φ′(w>xj/

√
d)>

]
, i, j ∈ [n].

We define

Φ(a, b, c) := E(z1,z2)∼N (0,Λ)[φ
′(z1)φ′(z2)], where Λ =

(
a c
c b

)
, a ≥ 0, b ≥ 0, |c| ≤

√
ab.

Then we can write

[Θ∗1]i,j =
1

d
x>i xj · Φ

(
‖xi‖2

d
,
‖xj‖2

d
,
x>i xj
d

)
.

We consider the diagonal and off-diagonal entries of Θ∗1 separately.

For i 6= j, from Claim 3.1 we know ‖xi‖
2

d = 1±Õ(1√
d
), ‖xj‖

2

d = 1±Õ(1√
d
) and x>i xj

d = ±Õ(1√
d
).

Hence we apply Taylor expansion of Φ around (1, 1, 0):

Φ

(
‖xi‖2

d
,
‖xj‖2

d
,
x>i xj
d

)

= Φ(1, 1, 0) + c1

(
‖xi‖2

d
− 1

)
+ c2

(
‖xj‖2

d
− 1

)
+ c3

(x>i xj)
2

d

±O

(‖xi‖2
d
− 1

)2

+

(
‖xj‖2

d
− 1

)2

+

(
(x>i xj)

2

d

)2


= Φ(1, 1, 0) + c1

(
‖xi‖2

d
− 1

)
+ c2

(
‖xj‖2

d
− 1

)
+ c3

(x>i xj)
2

d
± Õ

(
1

d

)
.

Here (c1, c2, c3) := ∇Φ(1, 1, 0). Note that Φ(1, 1, 0) and all first and second order derivatives of Φ
at (1, 1, 0) exist and are bounded for activation φ that satisfies Assumption 3.2. In particular, we have
Φ(1, 1, 0) = (E[φ′(g)])

2
= ζ2 and c3 = (E[gφ′(g)])

2. Using the above expansion, we can write

(Θ∗1)off = ζ2

(
XX>

d

)
off

+ c1

(
diag(ε) · XX

>

d

)
off

+ c2

(
XX>

d
· diag(ε)

)
off

+ c3

(
XX>

d
� XX

>

d

)
off

+E,

(21)

where ε ∈ Rn is defined as [ε]i = ‖xi‖2
d − 1, and [E]i,j = ±Õ(1

d) · x
>
i xj
d 1{i 6=j} = ±Õ(1

d1.5).

Now we treat the terms in (21) separately. First, we have∥∥∥∥diag(ε) · XX
>

d

∥∥∥∥ ≤ ‖diag(ε)‖ ·
∥∥∥∥XX>d

∥∥∥∥ = max
i∈[n]

∣∣∣ [ε]i ∣∣∣ · ∥∥∥∥XX>d
∥∥∥∥ ≤ Õ(1√

d

)
·O
(n
d

)
22

= Õ
(n

d1.5

)
.

Similarly, we have
∥∥∥XX>d · diag(ε)

∥∥∥ ≤ Õ (n
d1.5

)
.

Next, for
(
XX>

d � XX>

d

)
off

, we can use the 4th moment method in El Karoui [2010] to show

that it is close to its mean. Specifically, the mean at each entry is E
[(

x>i xj
d

)2
]

= Tr[Σ2]
d2 (i 6= j),

and the moment calculation in El Karoui [2010] shows the following bound on the error matrix
F =

(
XX>

d � XX>

d − Tr[Σ2]
d2 11>

)
off

:

E
[
‖F ‖4

]
≤ E

[
Tr[F 4]

]
≤ Õ

(
n4

d6
+
n3

d4

)
≤ Õ

(
n4

d5

)
,

where we have used n & d. Therefore by Markov inequality we know that with high probability,
‖F ‖ ≤ Õ

(
n

d1.25

)
.

For the final term E in (21), we have

‖E‖ ≤ ‖E‖F ≤

√
n2 · Õ

(
1

d3

)
= Õ

(n

d1.5

)
.

Put together, we can obtain the following bound regarding (Θ∗1)off :∥∥∥∥(Θ∗1 − ζ2XX
>

d
− c3

Tr[Σ2]

d2
11>

)
off

∥∥∥∥
≤ c1 · Õ

(n

d1.5

)
+ c2 · Õ

(n

d1.5

)
+ c3 · Õ

(n

d1.25

)
+ Õ

(n

d1.5

)
= Õ

(n

d1.25

)
.

(22)

Here we have used Lemma B.2 to bound the spectral norm of the off-diagonal part of a matrix by the
spectral norm of the matrix itself. Notice c3

Tr[Σ2]
d = (E[gφ′(g)])

2 · Tr[Σ2]
d = ν2 (c.f. (5)). Hence (22)

becomes ∥∥(Θ∗1 −Θlin1
)

off

∥∥ = Õ
(n

d1.25

)
. (23)

For the diagonal entries of Θ∗1, we have [Θ∗1]i,i = ‖xi‖2
d · Φ

(
‖xi‖2
d , ‖xi‖

2

d , ‖xi‖
2

d

)
. We denote

Φ̄(a) := Φ(a, a, a) (a ≥ 0). When φ is a smooth activation as in Assumption 3.2, we know that Φ̄
has bounded derivative, and thus we get

[Θ∗1]i,i =
‖xi‖2

d
· Φ̄

(
‖xi‖2

d

)
=

(
1± Õ

(
1√
d

))
·
(

Φ̄(1)± Õ
(

1√
d

))
= Φ̄(1)± Õ

(
1√
d

)
.

(24)
When φ is a piece-wise linear activation as in Assumption 3.2, Φ̄(a) is a constant, so we have
Φ̄
(
‖xi‖2
d

)
= Φ̄(1). Therefore (24) also holds. Notice that Φ̄(1) = E[(φ′(g))2] =: γ. It follows

from (24) that

‖(Θ∗1)diag − γI‖ = Õ

(
1√
d

)
.

Also note that ∥∥Θlin1
diag − ζ2I

∥∥ = Õ

(
1√
d

)
.

Therefore we obtain ∥∥∥(Θ∗1 −Θlin1
)

diag
− (γ − ζ2)I

∥∥∥ = Õ

(
1√
d

)
. (25)

23

Combining the off-diagonal and diagonal approximations (23) and (25), we obtain∥∥Θ∗1 −Θlin1 − (γ − ζ2)I
∥∥ = Õ

(n

d1.25

)
.

Finally, when n & d1+α (0 < α < 1
4), we have ‖I‖ = 1 . n

d1+α . Hence we can discard the identity
component above and get ∥∥Θ∗1 −Θlin1

∥∥ = O
(n

d1+α

)
.

This completes the proof.

Combining Propositions D.3 and D.4 directly gives Proposition D.2.

D.3.2 Agreement on Training Data

Now we prove the first part of Theorem 3.2, i.e., (7), which says that the neural network f1
t and the

linear model f lin1
t are close on the training data. We will use Theorem C.2, and the most important

step is to verify Assumption C.1. To this end we prove the following Jacobian perturbation lemma.

Lemma D.5 (Jacobian perturbation for the first layer). If φ is a smooth activation as in Assumption 3.2,
then with high probability over the training dataX , we have∥∥∥J1(W ,v)− J1(W̃ ,v)

∥∥∥ .

√
n

md

∥∥∥W − W̃
∥∥∥
F
, ∀W , W̃ ∈ Rm×d. (26)

If φ is a piece-wise linear activation as in Assumption 3.2, then with high probability over the random
initializationW (0) and the training dataX , we have

‖J1(W ,v)− J1(W (0),v)‖ .
√
n

d

(
‖W −W (0)‖1/3

m1/6
+

(
log n

m

)1/4
)
, ∀W ∈ Rm×d.

(27)

Proof. Throughout the proof we will be conditioned on X and on the high-probability events in
Claim 3.1.

By the definition of J1(W ,v) in (15), we have

(J1(W ,v)− J1(W̃ ,v))(J1(W ,v)− J1(W̃ ,v))>

=
1

md

(
φ′
(
XW>/

√
d
)
− φ′

(
XW̃>/

√
d
))(

φ′
(
XW>/

√
d
)
− φ′

(
XW̃>/

√
d
))>

� (XX>).

(28)
Then if φ is a smooth activation, we have with high probability,∥∥∥J1(W ,v)− J1(W̃ ,v)

∥∥∥2

≤ 1

md

∥∥∥φ′ (XW>/
√
d
)
− φ′

(
XW̃>/

√
d
)∥∥∥2

·max
i∈[n]
‖xi‖2 ((28) and Lemma B.3)

.
1

md

∥∥∥φ′ (XW>/
√
d
)
− φ′

(
XW̃>/

√
d
)∥∥∥2

F
· d (Claim 3.1)

.
1

md

∥∥∥XW>/
√
d−XW̃>/

√
d
∥∥∥2

F
· d (φ′′ is bounded)

=
1

md

∥∥∥X(W − W̃)>
∥∥∥2

F

≤ 1

md
‖X‖2

∥∥∥W − W̃
∥∥∥2

F

.
n

md

∥∥∥W − W̃
∥∥∥2

F
. (Claim 3.1)

This proves (26).

24

Next we consider the case where φ is a piece-wise linear activation. From (28) and Lemma B.3 we
have

‖J1(W ,v)− J1(W (0),v)‖2 ≤ 1

md

∥∥XX>∥∥ ·max
i∈[n]

∥∥∥φ′(Wxi/
√
d)− φ′(W (0)xi/

√
d)
∥∥∥2

.
n

md
·max
i∈[n]

∥∥∥φ′(Wxi/
√
d)− φ′(W (0)xi/

√
d)
∥∥∥2

.

(29)
For each i ∈ [n], let

Mi = {r ∈ [m] : sign(w>r xi) 6= sign(wr(0)>xi)}
Since φ′ is a step function that only depends on the sign of the input, we have∥∥∥φ′(Wxi/

√
d)− φ′(W (0)xi/

√
d)
∥∥∥2

. |Mi| , ∀i ∈ [n]. (30)

Therefore we need to bound |Mi|, i.e. how many coordinates inWxi andW (0)xi differ in sign for
each i ∈ [n].

Let λ > 0 be a parameter whose value will be determined later. For each i ∈ [n], define

Ni := {r ∈ [m] : |wr(0)>xi| ≤ λ ‖xi‖}.
We have

|Ni| =
m∑
r=1

1{|wr(0)>xi|≤λ‖xi‖} = 2

m/2∑
r=1

1{|wr(0)>xi|≤λ‖xi‖},

where the second equality is due to the symmetric initialization (3). Since wr(0)>xi
‖xi‖ ∼ N (0, 1),

we have E
[
1{|wr(0)>xi|≤λ‖xi‖}

]
= Pr[|g| ≤ λ] ≤ 2λ√

2π
. Also note that w1(0), . . . ,wm/2(0) are

independent. Then by Hoeffding’s inequality we know that with probability at least 1− δ,

|Ni| ≤
√

2

π
λm+O

(√
m log

1

δ

)
.

Taking a union bound over all i ∈ [n], we know that with high probability,

|Ni| . λm+
√
m log n, ∀i ∈ [n]. (31)

By definition, if r ∈Mi but r /∈ Ni, we must have
∣∣w>r xi −wr(0)>xi

∣∣ ≥ ∣∣wr(0)>xi
∣∣ > λ ‖xi‖.

This leads to

‖(W −W (0))xi‖2 =

m∑
r=1

∣∣(wr −wr(0))>xi
∣∣2 ≥ ∑

r∈Mi\Ni

∣∣(wr −wr(0))>xi
∣∣2

≥
∑

r∈Mi\Ni

λ2 ‖xi‖2 &
∑

r∈Mi\Ni

λ2d = λ2d |Mi \Ni|

Thus we have

|Mi \Ni| .
‖(W −W (0))xi‖2

λ2d
≤ ‖W −W (0)‖2 ‖xi‖2

λ2d
.
‖W −W (0)‖2

λ2
, ∀i ∈ [n].

(32)

Combining (31) and (32) we obtain

|Mi| . λm+
√
m log n+

‖W −W (0)‖2

λ2
, ∀i ∈ [n].

Letting λ =
(
‖W−W (0)‖2

m

)1/3

, we get

|Mi| . m2/3 ‖W −W (0)‖2/3 +
√
m log n, ∀i ∈ [n]. (33)

25

Finally, we combine (29), (30) and (33) to obtain

‖J1(W ,v)− J1(W (0),v)‖2 .
n

md

(
m2/3 ‖W −W (0)‖2/3 +

√
m log n

)
=
n

d

(
‖W −W (0)‖2/3

m1/3
+

√
log n

m

)
.

This proves (27).

The next lemma verifies Assumption C.1 for the case of training the first layer.
Lemma D.6. Let R =

√
d log d. With high probability over the random initializationW (0) and the

training dataX , for allW , W̃ ∈ Rm×d such that ‖W −W (0)‖F ≤ R and
∥∥∥W̃ −W (0)

∥∥∥
F
≤ R,

we have ∥∥∥J1(W ,v)J1(W̃ ,v)> −Θlin1
∥∥∥ .

n

d1+α
7
.

Proof. This proof is conditioned on all the high-probability events we have shown.

Now considerW , W̃ ∈ Rm×d such that ‖W −W (0)‖F ≤ R and
∥∥∥W̃ −W (0)

∥∥∥
F
≤ R. If φ is a

smooth activation, from Lemma D.5 we have

‖J1(W ,v)− J1(W (0),v)‖ .
√

n

md
‖W −W (0)‖F ≤

√
n

md
·
√
d log d .

√
n log d

d1+α
�
√

n

d1+α
2
,

where we have used m & d1+α. If φ is a piece-wise linear activation, from Lemma D.5 we have

‖J1(W ,v)− J1(W (0),v)‖ .
√
n

d

(
‖W −W (0)‖1/3

m1/6
+

(
log n

m

)1/4
)

≤
√
n

d

(
(d log d)1/6

m1/6
+

(
log n

m

)1/4
)

.

√
n

d
· (d log d)1/6

d1/6+α/6

�
√
n

d
1
2 +α

7

.

Hence we always have ‖J1(W ,v)− J1(W (0),v)‖ ≤
√
n

d
1
2
+α

7
. Similarly, we have∥∥∥J1(W̃ ,v)− J1(W (0),v)

∥∥∥ ≤ √
n

d
1
2
+α

7
.

Note that from Proposition D.2 and Claim 3.1 we know∥∥J1(W (0),v)J1(W (0),v)>
∥∥ .

∥∥Θlin1
∥∥+

n

d1+α
.
n

d
+

n

d1+α
.
n

d
,

which implies ‖J1(W (0),v)‖ .
√

n
d . It follows that ‖J1(W ,v)‖ .

√
n
d +

√
n

d
1
2
+α

7
.
√

n
d and∥∥∥J1(W̃ ,v)

∥∥∥ .
√

n
d . Then we have∥∥∥J1(W ,v)J1(W̃ ,v)> − J1(W (0),v)J1(W (0),v)>

∥∥∥
≤ ‖J1(W ,v)‖ ·

∥∥∥J1(W̃ ,v)− J1(W (0),v)
∥∥∥+ ‖J1(W (0),v)‖ · ‖J1(W ,v)− J1(W (0),v)‖

.

√
n

d
·
√
n

d
1
2 +α

7

+

√
n

d
·
√
n

d
1
2 +α

7

.
n

d1+α
7
.

Combining the above inequality with Proposition D.2, we obtain∥∥∥J1(W ,v)J1(W̃ ,v)> −Θlin1
∥∥∥ .

n

d1+α
7

+
n

d1+α
.

n

d1+α
7
,

completing the proof.

26

Finally, we can instantiate Theorem C.2 to conclude the proof of (7):

Proposition D.7. There exists a universal constant c > 0 such that with high probability, for all
0 ≤ t ≤ T = c · d log d

η1
simultaneously, we have:

• 1
n

∑n
i=1(f1

t (xi)− f lin1
t (xi))

2 ≤ d−α4 ;

• ‖W (t)−W (0)‖F ≤
√
d log d, ‖β(t)‖ ≤

√
d log d.

Proof. Let R =
√
d log d and ε = C n

d1+
α
7

for a sufficiently large universal constant C > 0.
From Lemma D.6 we know that Assumption C.1 is satisfied with parameters ε and R. (Note that
ε � n

d .
∥∥Θlin1

∥∥.) Also we have R2ε � n, and η1 � d . n
‖Θlin1‖ . Therefore, we can apply

Theorem C.2 and obtain for all 0 ≤ t ≤ T :√√√√ n∑
i=1

(f1
t (xi)− f lin1

t (xi))2 .
η1tε√
n

.
d log d · n

d1+
α
7√

n
=

√
n log d

d
α
7

�
√
n

d
α
8
,

which implies

1

n

n∑
i=1

(f1
t (xi)− f lin1

t (xi))
2 ≤ d−α4 .

Furthermore, Theorem C.2 also tells us ‖W (t)−W (0)‖F ≤
√
d log d and ‖β(t)‖ ≤

√
d log d.

D.3.3 Agreement on Distribution

Now we prove the second part of Theorem 3.2, (8), which guarantees the agreement between f1
t and

f lin1
t on the entire distribution D. As usual, we will be conditioned on all the high-probability events

unless otherwise noted.

Given the initialization (W (0),v) (recall that v = v(0) is always fixed), we define an auxiliary
model faux1(x;W) which is the first-order Taylor approximation of the neural network f(x;W ,v)
aroundW (0):

faux1(x;W) := f(x;W (0),v) + 〈W −W (0),∇W f(x;W (0),v)〉
= 〈W −W (0),∇W f(x;W (0),v)〉
= 〈vec (W −W (0)) ,ρ1(x)〉,

where ρ1(x) := ∇W f(x;W (0),v). Above we have used f(x;W (0),v) = 0 according to the
symmetric initialization (3). We also denote faux1

t (x) := faux1(x;W (t)) for all t.

For all models, we write their predictions on all training datapoints concisely as
f1
t (X), f lin1

t (X), faux1
t (X) ∈ Rn. From Proposition D.7 we know that f1

t and f lin1
t make similar

predictions onX (for all t ≤ T simultaneously):∥∥f1
t (X)− f lin1

t (X)
∥∥ ≤ √n

d
α
8
. (34)

We can also related the predictions of f1
t and faux1

t by the fundamental theorem for line integrals:

f1
t (X) = f1

t (X)− f1
0 (X) = J1(W (0)→W (t),v) · vec (W (t)−W (0)) ,

faux1
t (X) = faux1

t (X)− faux1
0 (X) = J1(W (0),v) · vec (W (t)−W (0)) ,

(35)

where J1(W (0) → W (t),v) :=
∫ 1

0
J1(W (0) + x(W (t) − W (0)),v)dx. Since

‖W (t)−W (0)‖F ≤
√
d log d according to Proposition D.7, we can use Lemma D.5 in the same

way as in the proof of Lemma D.6 and obtain

‖J1(W (0)→W (t),v)− J1(W (0),v)‖ ≤
√
n

d
1
2 +α

7

.

27

Then it follows from (35) that∥∥f1
t (X)− faux1

t (X)
∥∥ = ‖(J1(W (0)→W (t),v)− J1(W (0),v)) · vec (W (t)−W (0))‖

≤
√
n

d
1
2 +α

7

·
√
d log d

≤
√
n

d
α
8
.

(36)
Combining (34) and (36) we know∥∥faux1

t (X)− f lin1
t (X)

∥∥ .

√
n

d
α
8
.

This implies

1

n

n∑
i=1

min
{(
faux1
t (xi)− f lin1

t (xi)
)2
, 1
}
≤ 1

n

n∑
i=1

(
faux1
t (xi)− f lin1

t (xi)
)2

. d−
α
4 .

Next we will translate these guarantees on the training data to the distribution D using Rademacher

complexity. Note that the model faux1
t (x)− f lin1

t (x) is by definition linear in the feature
[
ρ1(x)
ψ1(x)

]
,

and it belongs to the following function class (for all t ≤ T):

F :=

{
x 7→ a>

[
ρ1(x)
ψ1(x)

]
: ‖a‖ ≤ 2

√
d log d

}
.

This is because we have ‖vec (W (t)−W (0))‖ ≤
√
d log d and ‖β(t)‖ ≤

√
d log d for all t ≤ T .

Using the well-known bound on the empirical Rademacher complexity of a linear function class with
bounded `2 norm (see e.g. Bartlett and Mendelson [2002]), we can bound the empirical Rademacher
complexity of the function class F :

R̂X(F) :=
1

n
E
ε1,...,εn

i.i.d.∼Unif({±1})

[
sup
h∈F

n∑
i=1

εih(xi)

]

.

√
d log d

n

√√√√ n∑
i=1

(
‖ρ1(xi)‖2 + ‖ψ1(xi)‖2

)
=

√
d log d

n

√
Tr[Θ1(W (0),v)] + Tr[Θlin1].

(37)

Since φ′ is bounded and ‖xi‖
2

d = O(1) (∀i ∈ [n]), we can bound

Tr[Θ1(W (0),v)] =

n∑
i=1

1

m

m∑
r=1

φ′
(
wr(0)>xi/

√
d
)2

· ‖xi‖
2

d
. n,

and

Tr[Θlin1] =

n∑
i=1

(
ζ2 ‖xi‖

2

d
+
ν2

d

)
. n.

Therefore we have

R̂X(F) .

√
d log d

n

√
n =

√
d log d

n
.

Now using the standard generalization bound via Rademacher complexity (see e.g. Mohri et al.
[2012]), and noticing that the function z 7→ min{z2, 1} is 2-Lipschitz and bounded in [0, 1], we have
with high probability, for all t ≤ T simultaneously,

Ex∼D
[
min

{(
faux1
t (x)− f lin1

t (x)
)2
, 1
}]

28

≤ 1

n

n∑
i=1

min
{(
faux1
t (xi)− f lin1

t (xi)
)2
, 1
}

+O

(√
d log d

n

)
+O

(
1√
n

)

. d−
α
4 +

√
d log d

d1+α
(n & d1+α)

. d−
α
4 . (38)

Therefore we have shown that faux1
t and f lin1

t are close on the distribution D for all t ≤ T . To
complete the proof, we need to show that f1

t and faux1
t are close on D. For this, we take an

imaginary set of test datapoints x̃1, . . . , x̃n
i.i.d.∼ D, which are independent of the training samples.

Let X̃ ∈ Rn×d be the corresponding test data matrix. Since the test data are from the same
distribution D, the concentration properties in Claim 3.1 still hold, and the Jacobian perturbation
bounds in Lemma D.5 hold as well. Hence we can apply the exact same arguments in (36) and obtain
with high probability for all t ≤ T ,∥∥∥f1

t (X̃)− faux1
t (X̃)

∥∥∥ ≤ √n
d
α
8
,

which implies

1

n

n∑
i=1

min
{

(f1
t (x̃i)− faux1

t (x̃i))
2, 1
}
≤ d−α4 .

Now notice that f1
t and faux1

t are independent of X̃ . Thus, by Hoeffding inequality, for each t, with
probability at least 1− δ we have

Ex∼D
[
min

{
(f1
t (x)− faux1

t (x))2, 1
}]

≤ 1

n

n∑
i=1

min
{

(f1
t (x̃i)− faux1

t (x̃i))
2, 1
}

+O

√ log 1
δ

n


. d−

α
4 +

√
log 1

δ

n
.

Then letting δ = 1
100T and taking a union bound over t ≤ T , we obtain that with high probability, for

all t ≤ T simultaneously,

Ex∼D
[
min

{
(f1
t (x)− faux1

t (x))2, 1
}]

. d−
α
4 +

√
log T

n
. (39)

Therefore we have proved that f1
t and faux1

t are close on D. Finally, combining (38) and (39), we
know that with high probability, for all t ≤ T ,

Ex∼D
[
min

{
(f1
t (x)− f lin1

t (x))2, 1
}]

. d−
α
4 +

√
log T

n
.

Here we have used min{(a + b)2, 1} ≤ 2(min{a2, 1} + min{b2, 1}) (∀a, b ∈ R). Therefore we
have finished the proof of (8). The proof of Theorem 3.2 is done.

D.4 Proof of Corollary 3.3 (Training the First Layer, Well-Conditioned Data)

Proof of Corollary 3.3. We continue to adopt the notation in Appendix D.3.3 to use f1
t (X),

f lin1
t (X), etc. to represent the predictions of a model on all n training datapoints. Given The-

orem 3.2, it suffices to prove that f lin1
T and f lin1

∗ are close in the following sense:

1

n

n∑
i=1

(
f lin1
T (xi)− f lin1

∗ (xi)
)2

. d−Ω(α), (40)

Ex∼D
[
min{(f lin1

T (x)− f lin1
∗ (x))2, 1}

]
. d−Ω(α). (41)

29

According to the linear dynamics (6), we have the following relation (see Claim C.1):

f lin1
T (X)− y =

(
I − 1

nη1Θ
lin1
)T

(−y),

f lin1
∗ (X)− y = lim

t→∞

(
I − 1

nη1Θ
lin1
)t

(−y) =:
(
I − 1

nη1Θ
lin1
)∞

(−y).

From the well-conditioned data assumption, it is easy to see that Θlin1’s non-zero eigenvalues are all
Ω(nd) with high probability. As a consequence, in all the non-zero eigen-directions of Θlin1, the corre-

sponding eigenvalues of
(
I − 1

nη1Θ
lin1
)T

are at most
(
1− 1

nη1 · Ω(nd)
)T ≤ exp

(
−Ω

(
η1T
d

))
=

exp (−Ω(log d)) = d−Ω(1). This implies∥∥f lin1
T (X)− f lin1

∗ (X)
∥∥ ≤ ∥∥∥(I − 1

nη1Θ
lin1
)T − (I − 1

nη1Θ
lin1
)∞∥∥∥ · ‖y‖ . d−Ω(1)

√
n,

which completes the proof of (40).

To prove (41), we further apply the standard Rademacher complexity argument (similar to Ap-
pendix D.3.3). For this we just need to bound the `2 norm of the parameters, ‖β(T)‖ and ‖β∗‖.
From Proposition D.7, we already have ‖β(T)‖ ≤

√
d log d. Regarding β∗, we can directly write

down its expression
β∗ = (Ψ>1 Ψ1)†Ψ>1 y.

Here Ψ1 is the feature matrix defined in (19), and † stands for the Moore–Penrose pseudo-inverse.
Recall that Θlin1 = Ψ1Ψ

>
1 . Notice that every non-zero singular value of (Ψ>1 Ψ1)†Ψ>1 is the inverse

of a non-zero singular value of Ψ1, and that every non-zero singular value of Ψ1 is Ω(
√

n
d). This

implies
∥∥(Ψ>1 Ψ1)†Ψ>1

∥∥ .
√

d
n . Hence we have

‖β∗‖ .
√

d
n

√
n =
√
d.

Therefore we can apply the standard Rademacher complexity argument and conclude the proof
of (41).

D.5 Proof of Theorem 3.5 (Training the Second Layer)

Since the first layer is kept fixed in this case, we letW = W (0) for notational convenience. Similar
to the proof of Theorem 3.2 in Appendix D.3, we still divide the proof into 3 parts: analyzing the
NTK at initialization (which is also the NTK throughout training in this case), proving the agreement
on training data, and proving the agreement on the distribution.

It is easy to see from the definition of Θlin2 in (20) and Claim 3.1 that if ϑ0 6= 0, then
∥∥Θlin2

∥∥ = O(n)

with high probability, and if ϑ0 = 0, then
∥∥Θlin2

∥∥ = O(n logn
d) with high probability. As we will

see in the proof, this is why we distinguish these two cases in Theorem 3.5.

D.5.1 The NTK at Initialization

Proposition D.8. With high probability over the random initializationW and the training dataX ,
we have ∥∥Θ2(W)−Θlin2

∥∥ .
n

d1+α
3
.

To prove Proposition D.8, we will prove Θ2(W) is close to its expectation Θ∗2 (defined in (18)), and
then prove Θ∗2 is close to Θlin2. We do these steps in the next two propositions.
Proposition D.9. With high probability over the training dataX , we have∥∥Θ∗2 −Θlin2

∥∥ .
n

d1+α
.

Proof. We will be conditioned on the high probability events stated in Claim 3.1.

By the definition of Θ∗2, we know

[Θ∗2]i,j = Ew∼N (0,I)

[
φ(w>xi/

√
d)φ(w>xj/

√
d)>

]
, i, j ∈ [n].

30

We define

Γ(a, b, c) := E(z1,z2)∼N (0,Λ)[φ(z1)φ(z2)], where Λ =

(
a2 c
c b2

)
, a ≥ 0, b ≥ 0, |c| ≤ ab.

Then we can write

[Θ∗2]i,j = Γ

(
‖xi‖√
d
,
‖xj‖√
d
,
x>i xj
d

)
.

Denote ei := ‖xi‖√
d
− 1 and si,j :=

x>i xj
d . Below we consider the diagonal and off-diagonal entries

of Θ∗2 separately.

For i 6= j, we do a Taylor expansion of Γ around (1, 1, 0):

[Θ∗2]i,j

= Γ(1, 1, 0) +∇Γ(1, 1, 0)>

[
ei
ej
si,j

]
+

1

2
[ei, ej , si,j] · ∇2Γ(1, 1, 0) ·

[
ei
ej
si,j

]
+O(|ei|3 + |ej |3 + |si,j |3)

=ϑ2
0 + ϑ0ϑ1(ei + ej) + ζ2si,j + ϑ0ϑ2(e2

i + e2
j) + ϑ2

1eiej +
1

2
ϑ2

1s
2
i,j + γsi,j(ei + ej)± Õ

(
1

d3/2

)
= (ϑ0 + ϑ1ei + ϑ2e

2
i)(ϑ0 + ϑ1ej + ϑ2e

2
j)− ϑ1ϑ2(eie

2
j + e2

i ej)− ϑ2
2e

2
i e

2
j + ζ2si,j +

1

2
ϑ2

1s
2
i,j

+ γsi,j(ei + ej)± Õ
(

1

d3/2

)
= [q]i [q]j ± Õ

(
1

d3/2

)
± Õ

(
1

d2

)
+ ζ2si,j +

1

2
ϑ2

1s
2
i,j + γsi,j(ei + ej)± Õ

(
1

d3/2

)
= [q]i [q]j + ζ2si,j +

1

2
ϑ2

1s
2
i,j + γsi,j(ei + ej)± Õ

(
1

d3/2

)
.

Here ζ, ϑ0, ϑ1, ϑ2 are defined in (9), and γ is the (1, 3)-th entry in the Hessian ∇2Γ(1, 1, 0) whose
specific value is not important to us. Recall that [q]i = ϑ0 + ϑ1ei + ϑ2e

2
i .

On the other hand, by the definition (20) we have[
Θlin2

]
i,j

= ζ2si,j +
ν2

2d
+ [q]i [q]j .

It follows that[
Θ∗2 −Θlin2

]
i,j

=
1

2
ϑ2

1s
2
i,j −

ν2

2d
+ γsi,j(ei + ej)± Õ

(
1

d3/2

)
=

1

2
ϑ2

1

(
s2
i,j −

Tr[Σ2]

d2

)
+ γsi,j(ei + ej)± Õ

(
1

d3/2

)
.

Here we have used the definition of ν in (5). In the proof of Proposition D.4, we have proved that all
the error terms above contribute to at most Õ(n

d1.25) in spectral norm. Using the analysis there we get∥∥(Θ∗2 −Θlin2)off

∥∥ = Õ
(n

d1.25

)
.

Regarding the diagonal entries, it is easy to see that all the diagonal entries in Θ∗2 and Θlin2 are O(1),
which implies ∥∥(Θ∗2 −Θlin2)diag

∥∥ = O(1).

Therefore we have ∥∥Θ∗2 −Θlin2
∥∥ = Õ

(n

d1.25

)
+O(1) = O

(n

d1+α

)
,

since n & d1+α (0 < α < 1
4).

31

Proposition D.10. With high probability over the random initializationW and the training dataX ,
we have

‖Θ2(W)−Θ∗2‖ .
n

d1+α
3
.

Proof. For convenience we denote Θ2 = Θ2(W) in the proof. We will be conditioned on X
and on Claim 3.1, and only consider the randomness in W . From Proposition D.9 we know that

‖Θ∗2‖ =

{
Õ(n/d), if ϑ0 = E[φ(g)] = 0

O(n), otherwise
.

Define Θ
(r)
2 := φ(Xwr/

√
d)φ(Xwr/

√
d)> for each r ∈ [m]. We have Θ2 = 1

m

∑m
r=1 Θ

(r)
2 .

According to the initialization scheme (3), we know that Θ
(1)
2 ,Θ

(2)
2 , . . . ,Θ

(m/2)
2 are independent,

Θ
(m/2+1)
2 ,Θ

(m/2+2)
2 , . . . ,Θ

(m)
2 are independent, and E[Θ

(r)
2] = Θ∗2 for all r ∈ [m].

Since the matrices Θ
(r)
2 are possibly unbounded, we will use a variant of the matrix Bernstein inequal-

ity for unbounded matrices, which can be found as Proposition 4.1 in Klochkov and Zhivotovskiy
[2020]. There are two main steps in order to use this inequality: (i) showing that

∥∥∥Θ(r)
2 −Θ∗2

∥∥∥ is a
sub-exponential random variable for each r and bounding its sub-exponential norm; (ii) bounding the
variance

∥∥∥∑m/2
r=1 E[(Θ

(r)
2 −Θ∗2)2]

∥∥∥. For the first step, we have∥∥∥Θ(r)
2 −Θ∗2

∥∥∥ ≤ ∥∥∥Θ(r)
2

∥∥∥+ ‖Θ∗2‖

=
∥∥∥φ(Xwr/

√
d)
∥∥∥2

+O(n)

. ‖φ(0n)‖2 +
∥∥∥Xwr/√d∥∥∥2

+ n (φ is Lipschitz)

. n+
‖X‖2 ‖wr‖2

d

. n+
n

d
‖wr‖2 .

Since ‖wr‖2 is a χ2 random variable with d degrees of freedom, it has sub-exponential norm O(d),
which implies that the random variable

∥∥∥Θ(r)
2 −Θ∗2

∥∥∥ has sub-exponential norm O(n).

Next we bound the variance. Let B > 0 be a threshold to be determined. We have:∥∥∥E[(Θ
(r)
2 −Θ∗2)2]

∥∥∥
=
∥∥∥E[(Θ

(r)
2)2]− (Θ∗2)2

∥∥∥
≤
∥∥∥E[(Θ

(r)
2)2]

∥∥∥+ ‖Θ∗2‖
2

=

∥∥∥∥Ew∼N (0,I)

[∥∥∥φ(Xw/
√
d)
∥∥∥2

φ(Xw/
√
d)φ(Xw/

√
d)>

]∥∥∥∥+ ‖Θ∗2‖
2

≤
∥∥∥∥Ew∼N (0,I)

[
1{‖φ(Xw/

√
d)‖≤B}

∥∥∥φ(Xw/
√
d)
∥∥∥2

φ(Xw/
√
d)φ(Xw/

√
d)>

]∥∥∥∥
+

∥∥∥∥Ew∼N (0,I)

[
1{‖φ(Xw/

√
d)‖>B}

∥∥∥φ(Xw/
√
d)
∥∥∥2

φ(Xw/
√
d)φ(Xw/

√
d)>

]∥∥∥∥+ ‖Θ∗2‖
2

≤B2
∥∥∥Ew∼N (0,I)

[
φ(Xw/

√
d)φ(Xw/

√
d)>

]∥∥∥
+ Ew∼N (0,I)

[
1{‖φ(Xw/

√
d)‖>B}

∥∥∥φ(Xw/
√
d)
∥∥∥4
]

+ ‖Θ∗2‖
2

=B2 ‖Θ∗2‖+ Ew∼N (0,I)

[
1{‖φ(Xw/

√
d)‖>B}

∥∥∥φ(Xw/
√
d)
∥∥∥4
]

+ ‖Θ∗2‖
2

32

≤B2 ‖Θ∗2‖+ ‖Θ∗2‖
2

+

√
Ew∼N (0,I)

[
1{‖φ(Xw/

√
d)‖>B}

]
· Ew∼N (0,I)

[∥∥∥φ(Xw/
√
d)
∥∥∥8
]

(Cauchy-Schwarz inequality)

=B2 ‖Θ∗2‖+ ‖Θ∗2‖
2

+

√
Pr

w∼N (0,I)

[∥∥∥φ(Xw/
√
d)
∥∥∥ > B

]
· Ew∼N (0,I)

[∥∥∥φ(Xw/
√
d)
∥∥∥8
]
.

Note that
∣∣∣∥∥∥φ(Xw/

√
d)
∥∥∥− ∥∥∥φ(Xw′/

√
d)
∥∥∥∣∣∣ . ∥∥∥Xw/√d−Xw′/√d∥∥∥ ≤ ‖X‖√

d
‖w −w′‖ .√

n
d ‖w −w

′‖ for allw,w′ ∈ Rd. Then by the standard Lipschitz concentration bound for Gaussian
variables (see e.g. Wainwright [2019]) we know that for any s > 0:

Pr
w∼N (0,I)

[∥∥∥φ(Xw/
√
d)
∥∥∥ > M + s

]
≤ e−Ω

(
s2

n/d

)
,

where M := Ew∼N (0,I)

[∥∥∥φ(Xw/
√
d)
∥∥∥] which can be bounded as

M2 ≤ Ew∼N (0,I)

[∥∥∥φ(Xw/
√
d)
∥∥∥2
]

. Ew∼N (0,I)

[
‖φ(0n)‖2 +

∥∥∥Xw/√d∥∥∥2
]

. n+
n

d
Ew∼N (0,I)

[
‖w‖2

]
. n.

Thus, letting s2

n/d = C log n for a sufficiently large universal constant C > 0, we know that with
probability at least 1− n−10 over w ∼ N (0, I),∥∥∥φ(Xw/

√
d)
∥∥∥ ≤M + s .

√
n+

√
n

d
log n .

√
n.

Hence we pick the thresholdB = C ′
√
n which is the upper bound above, where C ′ > 0 is a universal

constant.

We can also bound

Ew∼N (0,I)

[∥∥∥φ(Xw/
√
d)
∥∥∥8
]

=Ew∼N (0,I)

(n∑
i=1

φ(x>i w/
√
d)2

)4


.Ew∼N (0,I)

(n∑
i=1

(
φ(0)2 + (x>i w/

√
d)2
))4


(φ is Lipschitz & Cauchy-Schwartz inequality)

.Ew∼N (0,I)

(n+

n∑
i=1

(x>i w/
√
d)2

)4
 (|φ(0)| = O(1))

.n4 + Ew∼N (0,I)

(n∑
i=1

(x>i w/
√
d)2

)4
 (Jensen’s inequality)

=n4 + n4Ew∼N (0,I)

(1

n

n∑
i=1

(x>i w/
√
d)2

)4


≤n4 + n4Ew∼N (0,I)

[
1

n

n∑
i=1

(x>i w/
√
d)8

]
(Jensen’s inequality)

33

=n4 + n3
n∑
i=1

Ex∼N (0,‖xi‖2/d)[x
8]

.n4. (‖xi‖2 /d = O(1))

Combining all the above, we get∥∥∥E[(Θ
(r)
2 −Θ∗2)2]

∥∥∥
≤B2 ‖Θ∗2‖+ ‖Θ∗2‖

2
+

√
Pr

w∼N (0,I)

[∥∥∥φ(Xw/
√
d)
∥∥∥ > B

]
· Ew∼N (0,I)

[∥∥∥φ(Xw/
√
d)
∥∥∥8
]

.n ‖Θ∗2‖+ ‖Θ∗2‖
2

+
√
n−10 · n4

=n ‖Θ∗2‖+ ‖Θ∗2‖
2

+ n−3.

We will discuss two cases separately.

Case 1: ϑ0 6= 0. Recall that in this case Theorem 3.5 assumes m & d2+α.

Since ‖Θ∗2‖ = O(n), we have
∥∥∥E[(Θ

(r)
2 −Θ∗2)2]

∥∥∥ . n2 which implies∥∥∥∥∥∥
m/2∑
r=1

E[(Θ
(r)
2 −Θ∗2)2]

∥∥∥∥∥∥ . mn2.

Applying Proposition 4.1 in Klochkov and Zhivotovskiy [2020], we know that for any u �
max{n logm,n

√
m} = n

√
m,

Pr

∥∥∥∥∥∥
m/2∑
r=1

(Θ
(r)
2 −Θ∗2)

∥∥∥∥∥∥ > u

 . n · exp

(
−Ω

(
min

{
u2

mn2
,

u

n logm

}))
.

Let u = m · n

d1+
α
3

. We can verify u� n
√
m since m & d2+α. Then we have

Pr

∥∥∥∥∥∥
m/2∑
r=1

(Θ
(r)
2 −Θ∗2)

∥∥∥∥∥∥ > m · n

d1+α
3

 . n · exp

(
−Ω

(
min

{
m

d2+ 2α
3

,
m

d1+α
3 logm

}))
� 1.

Similarly, for the second half of the neurons we also have
∥∥∥∑m

r=m/2+1(Θ
(r)
2 −Θ∗2)

∥∥∥ ≤ m · n

d1+
α
3

with high probability. Therefore we have with high probability,

‖Θ2 −Θ∗2‖ .
n

d1+α
3
.

Case 2: ϑ0 = 0. Recall that in this case Theorem 3.5 assumes m & d1+α.

Since ‖Θ∗2‖ = Õ(n/d), we have
∥∥∥E[(Θ

(r)
2 −Θ∗2)2]

∥∥∥ . n ·Õ(n/d)+Õ((n/d)2)+n−3 = Õ(n2/d)

which implies ∥∥∥∥∥∥
m/2∑
r=1

E[(Θ
(r)
2 −Θ∗2)2]

∥∥∥∥∥∥ ≤ Õ(mn2/d) .
mn2

d1− α
10
.

Applying Proposition 4.1 in Klochkov and Zhivotovskiy [2020], we know that for any u �
max{n logm,n

√
m/d1− α

10 } = n
√
m/d1− α

10 ,

Pr

∥∥∥∥∥∥
m/2∑
r=1

(Θ
(r)
2 −Θ∗2)

∥∥∥∥∥∥ > u

 . n · exp

(
−Ω

(
min

{
u2

mn2/d1− α
10
,

u

n logm

}))
.

34

Let u = m · n

d1+
α
3

. We can verify u� n
√
m/d1− α

10 since m & d1+α. Then we have

Pr

∥∥∥∥∥∥
m/2∑
r=1

(Θ
(r)
2 −Θ∗2)

∥∥∥∥∥∥ > m · n

d1+α
3

 . n · exp

(
−Ω

(
min

{
m

d1+0.77α
,

m

d1+α
3 logm

}))
� 1.

Similarly, for the second half of the neurons we also have
∥∥∥∑m

r=m/2+1(Θ
(r)
2 −Θ∗2)

∥∥∥ ≤ m · n

d1+
α
3

with high probability. Therefore we have with high probability,

‖Θ2 −Θ∗2‖ .
n

d1+α
3
.

The proof is completed.

Combining Propositions D.9 and D.10 directly gives Proposition D.8.

D.5.2 Agreement on Training Data

To prove the agreement between f2
t and f lin2

t on training data for all t ≤ T = c · d log d
η2

, we still
apply Theorem C.2. This case is much easier than training the first layer (Appendix D.3.2), since
the Jacobian for the second layer does not change during training, and thus Proposition D.8 already
verifies Assumption C.1. Therefore we can directly instantiate Theorem C.2 with ε = C n

d1+
α
3

(for
a sufficiently large constant C) and R =

√
d log d, which gives (notice that the choice of η2 in

Theorem 3.5 also satisfies the condition in Theorem C.2)√√√√ n∑
i=1

(f2
t (xi)− f lin2

t (xi))2 .
η2tε√
n

.
d log d · n

d1+
α
3√

n
=

√
n log d

d
α
3

�
√
n

d
α
4
,

i.e.,

1

n

n∑
i=1

(f2
t (xi)− f lin2

t (xi))
2 ≤ d−α2 .

This proves the first part in Theorem 3.5.

Note that Theorem C.2 also tells us ‖v(t)− v(0)‖ ≤
√
d log d and ‖γ(t)‖ ≤

√
d log d, which will

be useful for proving the guarantee on the distribution D.

D.5.3 Agreement on Distribution

Now we prove the second part in Theorem 3.5, which is the agreement between f2
t and f lin2

t on
the distribution D. The proof is similar to the case of training the first layer (Appendix D.3.3), but
our case here is again simpler. In particular, we do not need to define an auxiliary model anymore
because f(x;W ,v) is already linear in the parameters v. Now that f2

t − f lin2
t is a linear model

(in some feature space) with bounded parameters, we can bound the Rademacher complexity of the
linear function class it belongs to, similar to Appendix D.3.3. Similar to (37), we can bound the
Rademacher complexity by

√
d log d

n

√
Tr[Θ2(W)] + Tr[Θlin2].

Next we bound the above two traces. First, we have

[Θ2(W)]i,i =
1

m

m∑
r=1

φ(x>i wr/
√
d)2 .

1

m

m∑
r=1

(
φ(0)2 + (x>i wr/

√
d)2
)

= 1 +
1

dm

m∑
r=1

(x>i wr)
2 . 1 +

1

dm
(dm+ log n) . 1

35

with high probability for all i ∈ [n] together. Here we have used the standard tail bound for χ2

random variables and a union bound over i ∈ [n]. Hence we have Tr[Θ2(W)] . n. For the second
trace, we have

Tr[Θlin2] =

n∑
i=1

(
ζ2 ‖xi‖

2

d
+
ν2

2d
+ [q]

2
i

)
. n

with high probability. Therefore we can bound the Rademacher complexity by
√

d log d
n . Then we

can conclude the agreement guarantee on the distribution D, i.e., for all t ≤ T simultaneously,

Ex∼D
[
min

{(
f2
t (x)− f lin2

t (x)
)2
, 1
}]

≤ 1

n

n∑
i=1

min
{(
f2
t (xi)− f lin2

t (xi)
)2
, 1
}

+O

(√
d log d

n

)
+O

(
1√
n

)

. d−
α
2 +

√
d log d

d1+α
(n & d1+α)

. d−
α
2 .

This completes the proof of Theorem 3.5.

D.6 Proof of Theorem D.1 (Training Both Layers)

The proof for training both layers follows the same ideas in the proofs for training the first layer
only and the second layer only. In fact, most technical components needed in the proof were already
developed in the previous proofs. The only new component is a Jacobian perturbation bound for the
case of training both layers, Lemma D.12 (analog of Lemma D.5 for training the first layer).

As before, we proceed in three steps.

D.6.1 The NTK at Initialization

Proposition D.11. With high probability over the random initialization (W (0),v(0)) and the train-
ing dataX , we have ∥∥Θ(W (0),v(0))−Θlin

∥∥ .
n

d1+α
3
.

Proof. This is a direct corollary of Propositions D.2 and D.8, given that Θ(W (0),v(0)) =
Θ1(W (0),v(0)) + Θ(W (0)) ((17)) and Θlin = Θlin1 + Θlin2 ((20)).

D.6.2 Agreement on Training Data

The proof for the agreement on training data is similar to the case of training the first layer only
(Appendix D.3.2). We will again apply Theorem C.2. For this we need a new Jacobian perturbation
lemma to replace Lemma D.5, since both layers are allowed to move now.
Lemma D.12 (Jacobian perturbation for both layers). If φ is a smooth activation as in Assumption 3.2,
then with high probability over the training dataX , we have

‖J1(W ,v)− J1(W (0),v(0))‖ .
√

n
md ‖W −W (0)‖F +

√
n
m ‖v − v(0)‖ , ∀W ,v. (42)

If φ is a piece-wise linear activation as in Assumption 3.2, then with high probability over the random
initializationW (0) and the training dataX , we have

‖J1(W ,v)− J1(W (0),v(0))‖ .
√

n
d

(
‖W−W (0)‖1/3

m1/6 +
(

logn
m

)1/4
)

+
√

n
md ‖v − v(0)‖ ,

∀W ,v.
(43)

Furthermore, with high probability over the training dataX , we have∥∥∥J2(W)− J2(W̃)
∥∥∥ .

√
n

md

∥∥∥W − W̃
∥∥∥
F
, ∀W , W̃ . (44)

36

Proof. We will be conditioned onX and on the high-probability events in Claim 3.1.

We first consider the first-layer Jacobian. By the definition of J1(W ,v) in (15), we have

(J1(W ,v)− J1(W (0),v(0)))(J1(W ,v)− J1(W (0),v(0)))>

=
1

md

((
φ′
(
XW>/

√
d
)

diag(v)− φ′
(
XW (0)>/

√
d
)

diag(v(0))
)

·
(
φ′
(
XW>/

√
d
)

diag(v)− φ′
(
XW (0)>/

√
d
)

diag(v(0))
)>)

� (XX>).

(45)

Then if φ is a smooth activation, we have with high probability,

‖J1(W ,v)− J1(W (0),v(0))‖2

≤ 1

md

∥∥∥φ′ (XW>/
√
d
)

diag(v)− φ′
(
XW (0)>/

√
d
)

diag(v(0))
∥∥∥2

·max
i∈[n]
‖xi‖2

((45) and Lemma B.3)

.
1

m

∥∥∥φ′ (XW>/
√
d
)

diag(v)− φ′
(
XW (0)>/

√
d
)

diag(v(0))
∥∥∥2

(Claim 3.1)

.
1

m

∥∥∥φ′ (XW>/
√
d
)

diag(v(0))− φ′
(
XW (0)>/

√
d
)

diag(v(0))
∥∥∥2

+
1

m

∥∥∥φ′ (XW>/
√
d
)

diag(v)− φ′
(
XW>/

√
d
)

diag(v(0))
∥∥∥2

≤ 1

m

∥∥∥φ′ (XW>/
√
d
)
− φ′

(
XW (0)>/

√
d
)∥∥∥2

F
· ‖diag(v(0))‖2

+
1

m

∥∥∥φ′ (XW>/
√
d
)

diag(v − v(0))
∥∥∥2

F

≤ n

md
‖W −W (0)‖2F +

1

m

∥∥∥φ′ (XW>/
√
d
)

diag(v − v(0))
∥∥∥2

F
(using the proof of Lemma D.5, and ‖diag(v(0))‖ = 1)

≤ n

md
‖W −W (0)‖2F +

n

m
‖v − v(0)‖2 . (φ′ is bounded)

This proves (42).

If φ is a piece-wise linear activation, then with high probability,

‖J1(W ,v)− J1(W (0),v(0))‖2

≤ 1

md

∥∥XX>∥∥ ·max
i∈[n]

∥∥∥diag(v)φ′(Wxi/
√
d)− diag(v(0))φ′(W (0)xi/

√
d)
∥∥∥2

((45) and Lemma B.3)

≤ n

md
·max
i∈[n]

∥∥∥diag(v)φ′(Wxi/
√
d)− diag(v(0))φ′(W (0)xi/

√
d)
∥∥∥2

(Claim 3.1)

.
n

md
·max
i∈[n]

∥∥∥diag(v(0))φ′(Wxi/
√
d)− diag(v(0))φ′(W (0)xi/

√
d)
∥∥∥2

+
n

md
·max
i∈[n]

∥∥∥diag(v)φ′(Wxi/
√
d)− diag(v(0))φ′(Wxi/

√
d)
∥∥∥2

≤ n

md
·max
i∈[n]

∥∥∥φ′(Wxi/
√
d)− φ′(W (0)xi/

√
d)
∥∥∥2

+
n

md
·max
i∈[n]

∥∥∥diag(v − v(0))φ′(Wxi/
√
d)
∥∥∥2

(‖diag(v(0))‖ = 1)

.
n

d

(
‖W −W (0)‖2/3

m1/3
+

√
log n

m

)
+

n

md
‖v − v(0)‖2 .

(using the proof of Lemma D.5, and φ′ is bounded)

This proves (43).

37

For the second-layer Jacobian, we have with high probability,∥∥∥J2(W)− J2(W̃)
∥∥∥ =

1√
m

∥∥∥φ(XW>/
√
d)− φ(XW̃>/

√
d)
∥∥∥

≤ 1√
m

∥∥∥X(W − W̃)>/
√
d
∥∥∥
F

(φ′ is bounded)

≤ ‖X‖√
md

∥∥∥W − W̃
∥∥∥
F

≤
√

n

md

∥∥∥W − W̃
∥∥∥
F
,

completing the proof of (44).

Based on Lemma D.12, we can now verify Assumption C.1 for the case of training both layers:

Lemma D.13. Let R =
√
d log d. With high probability over the random initialization and the

training data, for all (W ,v) and (W̃ , ṽ) such that ‖W −W (0)‖F ≤ R,
∥∥∥W̃ −W (0)

∥∥∥
F
≤ R,

‖v − v(0)‖ ≤ R and ‖ṽ − v(0)‖ ≤ R, we have∥∥∥J(W ,v)J(W̃ , ṽ)> −Θlin
∥∥∥ .

n

d1+α
3
.

Proof. This proof is conditioned on all the high-probability events we have shown.

Now consider (W ,v) and (W̃ , ṽ) which satisfy the conditions stated in the lemma.

If φ is a smooth activation, from Lemma D.12 we know

‖J1(W ,v)− J1(W (0),v(0))‖ .
√

n

md
‖W −W (0)‖F +

√
n

m
‖v − v(0)‖

≤
√

n

md
·
√
d log d+

√
n

m
·
√
d log d

.

√
nd log d

m

.

√
n log d

d1+α

�
√

n

d1+ 2α
3

,

where we have used m & d2+α. If φ is a piece-wise linear activation, from Lemma D.12 we have

‖J1(W ,v)− J1(W (0),v(0))‖ .
√
n

d

(
‖W −W (0)‖1/3

m1/6
+

(
log n

m

)1/4
)

+

√
n

md
‖v − v(0)‖

≤
√
n

d

(
(d log d)1/6

m1/6
+

(
log n

m

)1/4
)

+

√
n log d

m

.

√
n

d
· (d log d)1/6

d1/3+α/6
+

√
n log d

d2+α

�
√
n

d
2
3

.

Hence in either case have ‖J1(W ,v)− J1(W (0),v(0))‖ ≤
√
n

d
1
2
+α

3
. Similarly, we have∥∥∥J1(W̃ , ṽ)− J1(W (0),v(0))

∥∥∥ ≤ √
n

d
1
2
+α

3
.

38

Also, we know from Proposition D.2 that ‖J1(W (0),v(0))‖ .
√

n
d . It follows that ‖J1(W ,v)‖ .√

n
d and

∥∥∥J1(W̃ , ṽ)
∥∥∥ .

√
n
d . Then we have∥∥∥J1(W ,v)J1(W̃ , ṽ)> − J1(W (0),v(0))J1(W (0),v(0))>

∥∥∥
≤ ‖J1(W ,v)‖ ·

∥∥∥J1(W̃ , ṽ)− J1(W (0),v(0))
∥∥∥+ ‖J1(W (0),v(0))‖ · ‖J1(W ,v)− J1(W (0),v(0))‖

.

√
n

d
·
√
n

d
1
2 +α

3

+

√
n

d
·
√
n

d
1
2 +α

3

.
n

d1+α
3
.

Next we look at the second-layer Jacobian. From Lemma D.12 we know ‖J2(W)− J2(W (0))‖ .√
n
md ·

√
d log d .

√
n log d
d2+α �

√
n

d1+
α
3

. Similarly we have
∥∥∥J2(W̃)− J2(W (0))

∥∥∥ � √
n

d1+
α
3

.

Also, from Proposition D.8 we know ‖J2(W (0))‖ .
√
n, which implies ‖J2(W)‖ .

√
n and∥∥∥J2(W̃)

∥∥∥ .
√
n. It follows that∥∥∥J2(W)J2(W̃)> − J2(W (0))J2(W (0))>

∥∥∥
≤‖J2(W)‖ ·

∥∥∥J2(W̃)− J2(W (0))
∥∥∥+ ‖J2(W (0))‖ · ‖J2(W)− J2(W (0))‖

.
√
n ·
√
n

d1+α
3

+
√
n ·
√
n

d1+α
3

.
n

d1+α
3
.

Combining the above auguments for two layers, we obtain∥∥∥J(W ,v)J(W̃ , ṽ)> − J(W (0),v(0))J(W (0),v(0))>
∥∥∥

=
∥∥∥J1(W ,v)J1(W̃ , ṽ)> + J2(W)J2(W̃)>

− J1(W (0),v(0))J1(W (0),v(0))> − J2(W (0))J2(W (0))>
∥∥∥

≤
∥∥∥J1(W ,v)J1(W̃ , ṽ)> − J1(W (0),v(0))J1(W (0),v(0))>

∥∥∥
+
∥∥∥J2(W)J2(W̃)> − J2(W (0))J2(W (0))>

∥∥∥
.

n

d1+α
3

+
n

d1+α
3

.
n

d1+α
3
.

Combining the above inequality with Proposition D.11, the proof is finished.

Finally, we can apply Theorem C.2 with R =
√
d log d and ε = O(n

d1+
α
3

), and obtain that for all
t ≤ T : √√√√ n∑

i=1

(ft(xi)− f lin(xi))2 .
ηtε√
n
.
d log d · n

d1+
α
3√

n
=

√
n log d

d
α
3

�
√
n

d
α
4
,

i.e.,

1

n

n∑
i=1

(ft(xi)− f lin
t (xi))

2 ≤ d−α2 .

This proves the first part in Theorem D.1.

Note that Theorem C.2 also tells us ‖W (t)−W (0)‖ ≤
√
d log d, ‖v(t)− v(0)‖ ≤

√
d log d and

‖δ(t)‖ ≤
√
d log d, which will be useful for proving the guarantee on the distribution D.

39

D.6.3 Agreement on Distribution

The proof for the second part of Theorem D.1 is basically identical to the case of training the first
layer (Appendix D.3.3), so we will only sketch the differences here to avoid repetition.

Recall that in Appendix D.3.3 we define an auxiliary model which is the first-order approximation
of the network around initialization. Here since we are training both layers, we need to modify the
definition of the auxiliary model to incorporate deviation from initialization in both layers:

faux(x;W ,v) := 〈W −W (0),∇W f(x;W (0),v(0))〉+ 〈v − v(0),∇vf(x;W (0),v(0))〉.

Then we denote faux
t (x) := faux(x;W (t),v(t)).

There are two more minor changes to Appendix D.3.3:

1. When proving ft and faux
t are close on both training data and imaginary test data, we need to

bound a Jacobian perturbation. In Appendix D.3.3 this step is done using Lemma D.5. Now
we simply need to use Lemma D.12 instead and note that ‖W (t)−W (0)‖ ≤

√
d log d

and ‖v(t)− v(0)‖ ≤
√
d log d.

2. Instead of (37), the empirical Rademacher complexity of the function class that each
faux
t − f lin

t lies in will be
√
d log d

n

√
Tr[Θ(W (0),v(0))] + Tr[Θlin]

=

√
d log d

n

√
Tr[Θ1(W (0),v(0))] + Tr[Θ2(W (0))] + Tr[Θlin1] + Tr[Θlin2].

In Appendices D.3.3 and D.5.3, we have shown that the above 4 traces are all O(n) with
high probability. Hence we get the same Rademacher complexity bound as before.

Modulo these differences, the proof proceeds the same as Appendix D.3.3. Therefore we conclude
the proof of Theorem D.1.

D.7 Proof of Claim 3.1

Proof of Claim 3.1. According to Assumption 3.1, we have xi = Σ1/2x̄i where E[x̄i] = 0,
E[x̄ix̄

>
i] = I , and x̄i’s entries are independent and O(1)-subgaussian.

By Hanson-Wright inequality (specifically, Theorem 2.1 in Rudelson and Vershynin [2013]), we have
for any t ≥ 0,

Pr
[∣∣∣∥∥∥Σ1/2x̄i

∥∥∥− ‖Σ1/2‖F
∣∣∣ > t

]
≤ 2 exp

(
−Ω

(
t2∥∥Σ1/2
∥∥2

))
,

i.e.,

Pr
[∣∣∣‖xi‖ − √d∣∣∣ > t

]
≤ 2 exp

(
−Ω

(
t2
))
.

Let t = C
√

log n for a sufficiently large constant C > 0. Taking a union bound over all i ∈ [n],
we obtain that with high probability, ‖xi‖ =

√
d±O(

√
log n) for all i ∈ [n] simultaneously. This

proves the first property in Claim 3.1.

For i 6= j, we have 〈xi,xj〉 = x̄>i Σx̄j . Conditioned on x̄j , we know that x̄>i Σx̄j is zero-mean and
O(‖Σx̄j‖2)-subgaussian, which means for any t ≥ 0,

Pr
[∣∣x̄>i Σx̄j

∣∣ > t
∣∣∣ x̄j] ≤ 2 exp

(
− t2

‖Σx̄j‖2

)
.

Since we have shown that ‖Σx̄j‖2 . ‖xj‖2 .
√
d+
√

log n .
√
dwith probability at least 1−n−10,

we have

Pr
[∣∣x̄>i Σx̄j

∣∣ > t
]
≤ n−10 + 2 exp

(
−Ω

(
t2

d

))
.

40

Then we can take t = C
√
d log n and apply a union bound over i, j, which gives |〈xi,xj〉| .√

d log n for all i 6= j with high probability. This completes the proof of the second statement in
Claim 3.1.

Finally, for XX>, we can use standard covariance concentration (see, e.g., Lemma A.6 in Du
et al. [2020]) to obtain 0.9Σ � 1

nX
>X � 1.1Σ with high probability. This implies

∥∥XX>∥∥ =∥∥X>X∥∥ = Θ(n).

E Omitted Details in Section 4

Proof of Proposition 4.1. For an input x ∈ Rd and an index k ∈ [d], we let [x]k:k+q be the patch of

size q starting from index k, i.e., [x]k:k+q :=
[
[x]k , [x]k+1 , . . . , [x]k+q−1

]> ∈ Rq.

For two datapoints xi and xj (i, j ∈ [n]) and a location k ∈ [d], we define

ρi,j,k :=

〈
[xi]k:k+q , [xj]k:k+q

〉
q

which is a local correlation between xi and xj .

Now we calculate the infinite-width NTK matrix ΘCNN, which is also the expectation of a finite-width
NTK matrix with respect to the randomly initialized weights (W ,V). We divide the NTK matrix
into two components corresponding to two layers: ΘCNN = Θ

(1)
CNN + Θ

(2)
CNN, and consider the two

layers separately.

Step 1: the second-layer NTK. Since the CNN model (12) is linear in the second layer weights, it
is easy to derive the formula for the second-layer NTK:[

Θ
(2)
CNN

]
i,j

=
1

d
Ew∼N (0q,Iq)

[
φ(w ∗ xi/

√
q)>φ(w ∗ xj/

√
q)
]

=
1

d
Ew∼N (0q,Iq)

[
d∑
k=1

φ([w ∗ xi]k /
√
q)φ([w ∗ xj]k /

√
q)

]

=
1

d
Ew∼N (0q,Iq)

[
d∑
k=1

φ
(〈
w, [xi]k:k+q

〉
/
√
q
)
φ
(〈
w, [xj]k:k+q

〉
/
√
q
)]

=
1

d

d∑
k=1

P (ρi,j,k),

where

P (ρ) := E(z1,z2)∼N (0,Λ)[φ(z1)φ(z2)], where Λ =

(
1 ρ
ρ 1

)
, |ρ| ≤ 1.

Note that we have used the property
∥∥∥[xj]k:k+q

∥∥∥ =
∥∥∥[xj]k:k+q

∥∥∥ =
√
q since the data are from the

hypercube {±1}d.

For i 6= j, we can do a Taylor expansion of P around 0: P (ρ) = ζ2ρ±O(|ρ|3). Here since φ = erf
is an odd function, all the even-order terms in the expansion vanish. Therefore we have[

Θ
(2)
CNN

]
i,j

=
1

d

d∑
k=1

(ζ2ρi,j,k ±O(|ρi,j,k|3)) =
1

d
ζ2x>i xj ±

1

d

d∑
k=1

O(|ρi,j,k|3).

Next we bound the error term 1
d

∑d
k=1 |ρi,j,k|3 for all i 6= j. For each i, j, k (i 6= j), since

xi,xj
i.i.d.∼ Unif({±1}d), by Hoeffding’s inequality we know that with probability 1 − δ, we have

|ρi,j,k| .

√
log

1
δ

q . Taking a union bound, we know that with high probability, for all i, j, k (i 6= j)

41

we have |ρi,j,k| = Õ(q−1/2). Now we will be conditioned on this happening. Then we write

d∑
k=1

|ρi,j,k|3 =

q∑
k=1

|ρi,j,k|3 +

2q∑
k=q+1

|ρi,j,k|3 + · · · ,

i.e., we divide the sum into dd/qe groups each containing no more than q terms. By the definition of
ρi,j,k, it is easy to see that the groups are independent. Also, we have shown that the sum in each
group is at most q · Õ(q−3/2) = Õ(q−1/2). Therefore, using another Hoeffding’s inequality among
the groups, and applying a union bound over all i, j, we know that with high probability for all i, j
(i 6= j),

1

d

d∑
k=1

|ρi,j,k|3 ≤
1

d
Õ(q−1/2) · Õ(

√
d/q) = Õ

(
1

q
√
d

)
.

Therefore we have shown that with high probability, for all i 6= j,∣∣∣∣[Θ(2)
CNN − ζ

2XX>/d
]
i,j

∣∣∣∣ = Õ

(
1

q
√
d

)
.

This implies∥∥∥(Θ
(2)
CNN − ζ

2XX>/d
)

off

∥∥∥ ≤ ∥∥∥(Θ
(2)
CNN − ζ

2XX>/d
)

off

∥∥∥
F

= Õ

(
n

q
√
d

)
= Õ

(
n

d
1
2 +2α

√
d

)
= O

(n

d1+α

)
.

For the diagonal entries, we can easily see∥∥∥∥(Θ
(2)
CNN − ζ

2XX>/d
)

diag

∥∥∥∥ = O(1) = O
(n

d1+α

)
.

Combining the above two equations, we obtain∥∥∥Θ(2)
CNN − ζ

2XX>/d
∥∥∥ = O

(n

d1+α

)
.

Step 2: The first-layer NTK. We calculate the derivative of the output of the CNN with respect to
the first-layer weights as:

∇wrfCNN(x;W ,V) =
1√
md

d∑
k=1

[vr]k φ
′
(〈
wr, [x]k:k+q

〉
/
√
q
)

[x]k:k+q /
√
q.

Therefore, the entries in the first-layer NTK matrix are[
Θ

(2)
CNN

]
i,j

= EW ,V

[
m∑
r=1

〈∇wrfCNN(xi;W ,V),∇wrfCNN(xj ;W ,V)〉

]

= EW

[
1

md

m∑
r=1

d∑
k=1

φ′
(〈
wr, [xi]k:k+q

〉
/
√
q
)
φ′
(〈
wr, [xj]k:k+q

〉
/
√
q
)
ρi,j,k

]

= Ew∼N (0q,Iq)

[
1

d

d∑
k=1

φ′
(〈
w, [xi]k:k+q

〉
/
√
q
)
φ′
(〈
w, [xj]k:k+q

〉
/
√
q
)
ρi,j,k

]

=
1

d

d∑
k=1

Q(ρi,j,k) · ρi,j,k,

where

Q(ρ) := E(z1,z2)∼N (0,Λ)[φ
′(z1)φ′(z2)], where Λ =

(
1 ρ
ρ 1

)
, |ρ| ≤ 1.

42

For i 6= j, we can do a Taylor expansion of Q around 0: Q(ρ) = ζ2 ±O(ρ2). Here since φ′ = erf ′

is an even function, all the odd-order terms in the expansion vanish. Therefore we have[
Θ

(1)
CNN

]
i,j

=
1

d

d∑
k=1

(ζ2 ±O(ρ2
i,j,k))ρi,j,k =

1

d
ζ2x>i xj ±

1

d

d∑
k=1

O(|ρi,j,k|3).

Then, using the exact same analysis for the second-layer NTK, we know that with high probability,∥∥∥Θ(1)
CNN − ζ

2XX>/d
∥∥∥ = O

(n

d1+α

)
.

Finally, combining the results for two layers, we conclude the proof of Proposition 4.1.

43

	Introduction
	Preliminaries
	Two-Layer Neural Networks
	Training the First Layer
	Proof Sketch of Theorem 3.2

	Training the Second Layer
	Training Both Layers
	Empirical Verification

	Extensions to Multi-Layer and Convolutional Neural Networks
	Theoretical Observations
	Empirical Results

	Conclusion
	Experiment Setup and Additional Plots
	Additional Notation and Lemmas
	General Result on the Closeness between Two Dynamics
	Omitted Details in Section 3
	Guarantee for Training Both Layers
	Formulae of Jacobians and NTKs
	Proof of Theorem 3.2 (Training the First Layer)
	The NTK at Initialization
	Agreement on Training Data
	Agreement on Distribution

	Proof of Corollary 3.3 (Training the First Layer, Well-Conditioned Data)
	Proof of Theorem 3.5 (Training the Second Layer)
	The NTK at Initialization
	Agreement on Training Data
	Agreement on Distribution

	Proof of Theorem D.1 (Training Both Layers)
	The NTK at Initialization
	Agreement on Training Data
	Agreement on Distribution

	Proof of Claim 3.1

	Omitted Details in Section 4

