
Fast Adaptive Non-Monotone Submodular
Maximization Subject to a Knapsack Constraint

Supplementary Material

Georgios Amanatidis
University of Essex & University of Amsterdam

georgios.amanatidis@essex.ac.uk

Federico Fusco
Sapienza University of Rome
fuscof@diag.uniroma1.it

Philip Lazos
Sapienza University of Rome
lazos@diag.uniroma1.it

Stefano Leonardi
Sapienza University of Rome

leonardi@diag.uniroma1.it

Rebecca Reiffenhäuser
Sapienza University of Rome

rebeccar@diag.uniroma1.it

In this appendix, we include all the material missing from the main paper. For ease of reference, we
repeat all the statements as well as the pseudocode of ADAPTIVEGREEDY.

Further, for completeness, in Section D we show that the plain density greedy is a 3-approximation
algorithm in the monotone case but only a Θ(n)-approximation in the non-monotone case.

A Missing Material from Section 3

Proposition 1 (Nemhauser et al. [5]). Given a function v, defined on 2A for some setA, the following
are equivalent

(i) v(i |S) ≥ v(i |T ) for all S ⊆ T ⊆ A and i 6∈ T .

(ii) v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ A.

(iii) v(T ) ≤ v(S) +
∑
i∈T\S v(i |S)−

∑
i∈S\T v(i |S ∪ T \ {i}) for all S, T ⊆ A.

Moreover, we restate a key result which connects random sampling and submodular maximization.
The original version of the theorem was due to Feige et al. [2], although here we use a variant from
Buchbinder et al. [1].
Lemma 1 (Lemma 2.2. of Buchbinder et al. [1]). Let v : 2A → R+ be a submodular set function,
let X ⊆ A and let X(p) be a sampled subset, where each element of X appears with probability at
most p (not necessarily independent). Then:

E [v(X(p))] ≥ (1− p)v(∅).

As discussed in the main text, to facilitate our analysis, we state an equivalent algorithm, where the
sampling phase does not proceed the greedy phase but rather it happens as the algorithm greedily
considers each item. The two algorithms are equivalent in the sense that they have identical output
distributions.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



SAMPLEGREEDY(A, v, c, B)

1 i∗ ∈ arg maxk∈A v (k) /* best single item */
2 S = ∅ /* greedy solution */
3 F = {k ∈ A|v(k) > 0} /* initial set of feasible items */
4 R = B /* remaining knapsack capacity */
5 while F 6= ∅ do

6 Let i ∈ arg maxk∈F
v(k |S)

ck
7 Let ri ∼ Bernoulli(p) /* independent random bit */
8 if ri = 1 then
9 S = S ∪ {i}

10 R = R− ci
11 A = A \ {i}
12 F = {k ∈ A | v(k |S) > 0 and ck ≤ R}
13 return max{v(i∗), v(S)}

A.1 Proof of Theorem 1

Theorem 1. For p =
√

2− 1, SAMPLEGREEDY is a
(
3 + 2

√
2
)
-approximation algorithm.

Proof. For the analysis of the algorithm we are going to use the auxiliary set O, an extension of
the set S that respects the knapsack constraint and uses feasible items from an optimal solution. In
particular, let S∗ be an optimal solution and let s1, s2, . . . , sr be its elements in decreasing order
with respect to their cost, i.e., cs1 ≥ . . . ≥ csr . Then, O is a fuzzy set that is initially equal to S∗ and
during each iteration of the while loop it is updated as follows:

• If ri = 1, then O = O ∪ {i}. In case this addition violates the knapsack constraint, i.e.,
c(O) > B, then we repetitively remove items from O \ S in increasing order with respect
to their cost until the cost of O becomes exactly B. Note that this means that the last item
removed may be removed only partially. More precisely, if c(O) > B and c(O \{sj}) ≤ B,
where sj is the item of S∗ of maximum index in O \S, then we keep a

(
B− c(O) + cj

)
/cj

fraction of sj in O and stop its update for the current iteration.

• Else (i.e., if ri = 0), O = O \ {i}.

If an item j was considered (in line 6) in some iteration of the while loop, then let Sj and Oj denote
the sets S and O, respectively, at the beginning of that iteration. Moreover, let O′j denote O at the
end of that iteration. If j was never considered, then Sj and Oj (or O′j) denote the final versions of S
and O, respectively. In fact, in what follows we exclusively use S and O for their final versions.

It should be noted that, for all j ∈ A, Sj ⊆ Oj and also no item in Oj \ Sj has been considered in
any of the previous iterations of the while loop.

Before stating the next lemma, let us introduce some notation for the sake of readability. Note that,
by construction, O \ S is either empty or consists of a single fractional item ı̂. In case O \ S = ∅, by
ı̂ we denote the last item removed from O. For every j ∈ A, we define Qj = Oj \ (O′j ∪ S ∪ {ı̂ }).
Note that if j was never considered during the execution of the algorithm, then Qj = ∅.

Lemma 2. For every realization of the Bernoulli random variables, it holds that

v(S ∪ S∗) ≤ v(S) + v(̂ı ) +
∑
j∈A

c(Qj)
v(j |Sj)
cj

.

Proof of Lemma 2. Assume that the random bits r1, r2, . . . are fixed. Also, without loss of generality,
assume the items are numbered according to the order in which they are considered by SAMPLE-
GREEDY, with the ones not considered by the algorithm numbered arbitrarily (but after the ones
considered). That is, item j—if considered—is the item considered during the jth iteration.

2



Consider now any round j of the while loop of SAMPLEGREEDY. An item is removed from Oj in
two cases. First, it could be item j itself that was originally in S∗ but rj = 0 (and hence it will never
get back in Ok for any k > j). Second, it could be some other item that was in S∗ and is taken out to
make room for the new item j. In the latter case the only possibility for the removed item to return in
Ok for some k > j is to be selected by the algorithm and inserted in S. We can hence conclude that
Qj ∩Qk = ∅ for all j 6= k. In addition to that, it is clear that S ∪ S∗ = S ∪ {ı̂ } ∪

⋃
j Qj .

Therefore, if items 1, 2, . . . , ` where all the items ever considered, using submodularity and the fact
that Sj ⊆ S ⊆ S ∪

⋃`
r=j+1Qr, we have

v(S ∪ S∗)− v(S)− v(̂ı ) ≤ v((S ∪ S∗) \ {ı̂} )− v(S) =
∑̀
j=1

v

(
Qj
∣∣S ∪ ⋃̀

r=j+1

Qr

)

≤
∑̀
j=1

v (Qj |Sj) ≤
∑̀
j=1

∑
x∈Qj

v(x |Sj)
cx

· cx

≤
∑̀
j=1

∑
x∈Qj

v(j |Sj)
cj

· cx =
∑̀
j=1

v(j |Sj)
cj

·
∑
x∈Qj

cx

=
∑̀
j=1

v(j |Sj)
cj

· c(Qj) , (1)

where in a slight abuse of notation we consider cx to be the fractional (linear) cost if x ∈ Qj is a
fractional item. While the first three inequalities directly follow from the submodularity of v, for the
last inequality we need to combine the optimality of v(j |Sj)/cj at the step j was selected with the
fact that every single item x appearing in the sum

∑`
j=1

∑
x∈Qj

v(x |Sj) was feasible (as a whole
item) at that step. The latter is true because of the way we remove items from O. If x is removed, it
is removed before (any part of) ı̂ is removed. Thus, x is removed when the available budget is still at
least cı̂. Given that cx ≤ cı̂, we get that x is feasible until removed.

To conclude the proof of the Lemma it is sufficient to note that c(Qj) = 0 for all items that were not
considered.

While the previous Lemma holds for each realization of the random coin tosses in the algorithm, we
next consider inequalities holding in expectation over the randomness of the {ri}|A|i=1 in SAMPLE-
GREEDY. The indexing of the elements is hence to be considered deterministic and fixed in advance,
not as in the proof of Lemma 2.

Lemma 3. E

∑
j∈A

c(Qj)
v(j |Sj)
cj

 ≤ max{p, 1− p}
p

E [v(S)]

Proof of Lemma 3. For all i ∈ A, we define Gi to be the random gain because of i at the time i is
added to the solution (Gi = v(i |Si) if i is added and 0 otherwise)

Since v(S) =
∑
i∈AGi, by linearity, it suffices to show that the following inequalities hold in

expectation over the coin tosses:

c(Qi)
v(i |Si)
ci

≤ max{p, 1− p}
p

Gi, ∀i ∈ A. (2)

In order to achieve that, following [3], let Ei be any event specifying the random choices of the
algorithm up to the point i is considered (if i is never considered, Ei captures all the randomness). If
Ei is an event that implies i is not considered, then the Eq. (2) is trivially true, due to Gi = 0 and
Qi = ∅. We focus now on the case Ei implies that i is considered. Analyzing the algorithm, it is clear
that

E [c(Qi) | Ei] ≤
{

0 · P (ri = 1) + ci · P (ri = 0) = (1− p) · ci , if i ∈ Oi ,
ci · P (ri = 1) + 0 · P (ri = 0) = p · ci , otherwise.

(3)

3



In short, E [c(Qi) | Ei] ≤ max{p, 1− p} · ci. It is here that we use the fuzziness of O: without the
fractional items it would be hopeless to bound c(Qt) with ct.

At this point, we exploit the fact that Ei contains the information on Si, i.e., Si = Si(Ei) deterministi-
cally. Recall that Si is the solution set at the time item i is considered by the algorithm.

E [Gi | Ei] = P (i ∈ S | Ei) v(i |Si) = P (ri = 1) v(i |Si) = p · ci
v(i |Si)
ci

≥ p

max{p, 1− p}
E [c(Qi) | Ei]

v(i |Si)
ci

=
p

max{p, 1− p}
E
[
c(Qi)

v(i |Si)
ci

∣∣∣ Ei] .
We can hence conclude the proof by using the law of total probability over Ei and the monotonicity
of the conditional expectation:

E [Gi] = E [E [Gi | Ei]] ≥ E
[

p

max{p, 1− p}
E
[
c(Qi)

v(i |Si)
ci

∣∣∣ Ei]] =

=
p

max{p, 1− p}
E
[
c(Qi)

v(i |Si)
ci

]
.

Lemma 4. v(S∗) ≤ 1

1− p
E [v(S ∪ S∗)].

Proof of Lemma 4. Let S∗ be an optimal set for the constrained submodular maximization problem.
We define g : 2A → R+ as follows: g(B) = v(B ∪ S∗). It is a simple exercise to see that such
function is indeed submodular, moreover g(∅) = v(S∗). If we now apply Lemma 1 to g, observing
that the elements in the set S output by the algorithm are chosen with probability at most p, we
conclude that:

E [v(S ∪ S∗)] = E [g(S)] ≥ (1− p)g(∅) = (1− p)v(S∗).

Combining Lemmata 2, 3, and 4 we get

(1− p)v(S∗) ≤ E [v(S ∪ S∗)]

≤ E

v(S) + v(̂ı ) +
∑
j∈A

c(Qj)
v(j |Sj)
cj


≤ E [v(S)] + v(i∗) +

max{p, 1− p}
p

E [v(S)]

= max
{

2, 1
p

}
· E [v(S)] + v(i∗) . (4)

By substituting
√

2− 1 for p, this yields v(S∗) ≤ (3 + 2
√

2) max{E [v(S)] , v(i∗)}. This establishes
the claimed approximation factor.

A.2 Proof Sketches of Theorems 2 and 3

Theorem 2. The lazy version of SAMPLEGREEDY achieves an approximation factor of 3 + 2
√

2 + ε
using O(nε−1 log (n/ε)) value oracle calls.

Proof. For a given ε ∈ (0, 1) let ε′ = ε/6. We perform lazy evaluations using ε′. Assume that by
log we denote the binary logarithm.

4



It is straightforward to argue about the number of value oracle calls. Since the marginal value of
each element i has been updated at most log(n/ε′)

ε′ times, we have a total of at most n log(n/ε′)
ε′ =

O
(n log(n/ε)

ε

)
function evaluations.

The approximation ratio is also easy to show. There are two distinct sources of loss in approximation.
We first bound the total value of the discarded elements due to too many updates. This value appears
as the upper bound of an extra additive term in Eq. (1). Indeed, now besides

∑`
j=1 v

(
Qj
∣∣S ∪⋃`

r=j+1Qr

)
we need to account for the elements of O that were ignored because of too many

updates. Such elements, once they become “inactive” do not contribute to the cost of the current O
and are never pushed out as new elements come into S. The definition of the Qjs in the proof of
Theorem 1 should be adjusted accordingly. That is, if Wj are the elements of O that become inactive
because they were updated too many times during iteration j, we have

v((S ∪ S∗) \ ı̂ )− v(S) ≤
∑̀
j=1

v
(
Qj
∣∣Sj)+

∑̀
j=1

v
(
Wj

∣∣Sj) .
However, by noticing that for x ∈ (0, 1) it holds that x ≤ log(1 + x), we have∑̀

j=1

v
(
Wj

∣∣Sj) ≤ ∑
i∈

⋃
j Wj

(1 + ε′)−
log(n/ε′)

ε′ v(i)

≤
∑

i∈
⋃

j Wj

(1 + ε′)
− log(n/ε′)

log(1+ε′) max
k∈A

v(k)

≤
∑
i∈A

(1 + ε′)− log1+ε′ (n/ε
′)v(S∗)

=
∑
i∈A

ε

6n
v(S∗) =

ε

6
v(S∗) .

For the second source of loss in approximation, recall that the marginals only decrease due to
submodularity. So, we know that if some item j is considered during iteration j (following the
renaming of Lemma 2), then (1 + ε′)v(j |Sj)/cj ≥ arg maxk∈F v(k |Sj)/ck. The only difference
this makes (compared to the proof of Theorem 1) is that in the last inequality of Eq. (1) we have an
extra factor of 1 + ε′.

Combining the above, we get the following analog of Lemma 2:

v(S ∪ S∗) ≤ v(S) + v(̂ı ) +
ε

6
v(S∗) +

∑
j∈A

(
1 +

ε

6

)
c(Qj)

v(j |Sj)
cj

,

which carries over to Eq. (4), while Lemmata 3 and 4 are not affected at all. It is then a matter of simple
calculations to see that for p =

√
2−1, we still get v(S∗) ≤ (3+2

√
2+ε) max{E [v(S)] , v(i∗)}.

Theorem 3. If maxi∈A v(i) ≤ δ · OPT for δ ∈ (0, 1/2), then SAMPLEGREEDY with p = 1−δ
2 is a

(4 + εδ)-approximation algorithm, where εδ = 4δ(2−δ)
(1−δ)2 .

Proof. Starting from Eq. (4) and exploiting the large instance property, we get:

(1− p)v(S∗) ≤ max
{

2, 1
p

}
· E [v(S)] + v(i∗) ≤ max

{
2, 1

p

}
· E [v(S)] + δ · v(S∗).

Rearranging the terms and assuming p+ δ < 1, we have:

v(S∗) ≤
max

{
2, 1

p

}
1− p− δ

.

Optimizing for p ∈ (0, 1− δ) we get the desired statement.

5



B Missing Material from Section 4

Before proving that ADAPTIVEGREEDY works as promised, we need some observations.

Let us denote by S the output of a run of our algorithm, and S∗ the output of a run of the optimal
adaptive strategy. Fix a realization ω ∈ Ω. Now, Lemma 1 of [4] implies

E [v(S ∪ S∗, ω) |ω] ≥ (1− p) · v(S∗, ω).

Since ω (and therefore, S∗) is fixed, the only randomness is due to the coin flips in our algorithm. We
stress that the union between S and S∗ has to be intended in the following sense: run our algorithm,
and independently, also the optimal one, both for the same realization ω. The previous inequality is
true for any ω. So, by the law of total probability, we also have

E [v(S ∪ S∗)] ≥ (1− p) · E [v(S∗)] . (5)

For the next observation, assume our algorithm has picked (and therefore observed) exactly set S.
That is, we know only ω|S . We number all items a ∈ A with positive marginal with respect to S by
decreasing ratio v

(
a | (S, ω|S)

)
/ca, i.e.,

a1 = arg max
a∈A

{
v
(
a | (S, ω|S)

)
ca

}
, a2 = arg max

a∈A\{a1}

{
v
(
a | (S, ω|S)

)
ca

}
and so on. Note that this captures a notion of the best-looking items after already adding S.

For k = min{i ∈ N |
∑i
l=1 cl ≥ B}, we get, in analogy to Lemma 1 of Gotovos et al. [4],

k∑
i=1

v
(
ai | (S, ω|S)

)
≥ E

[∑
a∈S∗

v
(
a | (S, ω|S)

) ∣∣∣ω|S
]
≥ v

(
S∗ | (S, ω|S)

)
. (6)

For the sake of the future analysis the last element k is considered fractionally, so that
∑k
i=1 ci = B.

Note that it could be the case that k is not well defined, as there may not be enough elements with
positive marginal to fill the knapsack. If that is the case, just consider k to be the number of elements
with positive marginals.

The point of (6) is that, given (S, ω|S), the set of elements a1 . . . ak is deterministic, while S∗ is not,
because it corresponds to the set opened by the best adaptive policy. Moreover, in the middle term
notice that the conditioning influences the valuation, but not the policy, since we are assuming to run
it obliviously. This is fundamental for the analysis.

Since this holds for any set S, we can again generalize to the expectation over all possible runs of
the algorithm (fixing the coin flips or not, as they only influence S; the best adaptive policy or the
best-looking items a1, a2, . . . , ak are not affected). So, we get

E

[
k∑
i=1

v
(
ai | (S, ω|S)

)]
≥ E

[
v
(
S∗ | (S, ω|S)

)]
. (7)

We remark that k above is a random variable which depends on S. We use these observations to
prove the ratio of our algorithm.

B.1 Proof of Theorem 4

Theorem 4. For p0 = 1/3 and p = 1/6, ADAPTIVEGREEDY yields a 9-approximation of OPTΩ,
while its lazy version achieves a (9 + ε)-approximation using O(nε−1 log (n/ε)) value oracle calls.
Moreover, when maxi∈A v(i) ≤ δ·OPTΩ for δ ∈ (0, 1/2), then for p0 = 0 and p = (

√
3− 2δ−1)/2,

ADAPTIVEGREEDY yields a (4 + 2
√

3 + ε′δ)-approximation, where ε′δ ≈
6δ(2−δ)
(1−δ)2 .

Proof. For any run of the algorithm, i.e., a fixed set S, the corresponding partial realization ω|S and
the coin flips observed, define for convenience the set C as those items in {a1, . . . , ak} that have
been considered during the algorithm and then not added to S because of the coin flips. Define
U = {a1, . . . , ak} \ C. Additionally, define C ′ to be the set of all items that are considered, but not

6



ADAPTIVEGREEDY

1 Let r0 ∼ Bernoulli(p0)
2 if r0 = 1 then
3 i∗ ∈ arg maxk∈A v (k) /* best single item in expectation */
4 Observe ωi∗ and return v(i∗, ωi∗)

5 S = ∅, R = B /* greedy solution and remaining knapsack capacity */
6 F = {k ∈ A | v(k) > 0} /* initial set of candidate items */
7 while F 6= ∅ do
8 Let i ∈ arg maxk∈F

v(k | (S,ω|S))

ck
9 Let ri ∼ Bernoulli(p) /* independent random bit */

10 if ri = 1 then
11 Observe ωi : S = S ∪ {i}, R = R− ci
12 A = A \ {i}, F =

{
k ∈ A | v(k | (S, ω|S)) > 0 and ck ≤ R

}
13 return S, v(S, ω|S)

chosen during the run of our algorithm which have positive expected marginal contribution to S. I.e.,
C captures the items from the good-looking set after choosing S that we missed due to coin tosses,
and C ′ all items we missed for the same reason which should have had a positive contribution in
hindsight. Note that C ⊆ C ′

We can then split the left hand side term of (7) into two parts: the sum over C (upper bounded by the
sum over C ′), and the sum over U. Now we control separately these terms using linear combinations
of v(S) and v(i∗).

Lemma 5. E[v(S)] ≥ p · E
[∑

a∈C v
(
a | (S, ω|S)

)]
Proof. SinceC ⊆ C ′ andC ′ contains all considered elements with nonnegative expected contribution
to S, it is sufficient to show E[v(S)] ≥ p · E

[∑
a∈C′ v

(
a | (S, ω|S)

)]
.

We proceed as in Lemma 3. Let’s consider for each a ∈ A all the events Ea capturing the story of a
run of the algorithm up to the point element a is considered (all the history if it is never considered).

Let Ga be the marginal contribution of element a to the solution set S. If Ea corresponds to a story in
which element a is not considered, then it does not contribute - neither in the left, nor in the right
hand side of the inequality we are trying to prove. Else, let (Sa, ωa) be the partial solution when it is
indeed considered:

E[Ga | Ea] = p · v(a | (Sa, ωa)) ≥ p · E
[
v(a | (S, ω|S))

∣∣ Ea].
The statement follows from the law of total probability with respect to Ea, and state-wise submodu-
larity of v.

Lemma 6. E [v(S)] + v(i∗) ≥ E
[∑

a∈U v
(
a | (S, ω|S)

)]
.

Proof. Now let us turn towards the items U that were not considered by the algorithm. The intuition
behind the claim is that if they were not considered then they were not good enough, in expectation,
to compare with S. The proof, though, has to deal with some probabilistic subtleties.

Let’s start fixing a story of the algorithm, i.e., the coin tosses and (S, ωS), S = s1, s2, . . . , sT ,
numbered according to their insertion in S, i.e., si is the ith element to be added to S. For the sake
of simplicity let’s also renumber the elements in U as a1, . . . , al respecting the order given by the
marginals over costs.

There are two cases. If during the whole algorithm the elements in U have ratio
v(a | (Si,ω|Si

))
ca

smaller than that of the item which was instead considered, then one can easily argue, by adaptive
submodularity, that:

7



∑
a∈U

v
(
a | (S, ω|S)

)
≤

T∑
t=1

v(st | (St, ωt)) + v(u1 | (S, ω|S)) ≤

≤
T∑
t=1

v(st | (St, ωt)) + v(u1) ≤
T∑
t=1

v(st | (St, ωt)) + v(i∗).

being St = (s1, . . . , st−1) and ωt the restriction of ω|S to St. Note that the last element u1 is added
to account for the unspent budget by the solution: the first inequality holds because our solution fills
all the budget (up to at most one item) with densities which are better than all the v

(
a | (S, ω|S)

)
We claim that the above inequality holds also in the case in which there is an element in U whose
marginal over cost is greater than that of some in S. Such an element can exist because of the budget
constraint: during the algorithm it had better marginal over cost, but was discarded because there
was not enough room for it. We observe there can exist at most one such element, due to the budget
constraint and because its value is upper bounded by u1, so the above formula still holds.

Once we know that, by law of total probability, we have

E

[∑
a∈U

v
(
a | (S, ω|S)

)]
≤ E [v(S)] + v(i∗), (8)

concluding the proof.

Combining the two Lemmata we get:

(1 + 1
p )E [v(S)] + E [v(i∗)] ≥ E

[∑
a∈U

v
(
a | (S, ω|S)

)]
+ E

[∑
a∈C

v
(
a | (S, ω|S)

)]
=

= E

[ ∑
a∈U∪C

v
(
a | (S, ω|S)

)]
.

Equation (7) implies

(1 + 1
p )E [v(S)] + E [v(i∗)] ≥ E

[ ∑
a∈U∪C

v
(
a | (S, ω|S)

)]
≥ E

[
v
(
S∗ | (S, ω|S)

)]
.

Also, with some rewriting and Equation (5):

E
[
v
(
S∗ | (S, ω|S)

)]
= E

[
E
[
v(S∗ ∪ S, ω)− v(S, ω) |ω|S

]]
= E [v(S∗ ∪ S)]− E [v(S)]

≥ (1− p) · E[v(S∗)]− E [v(S)]

All together, denoting as OPT the E[v(S∗)], we get:

(2p+ 1)E[v(S)] + pE[v(i∗)] ≥ p(1− p) OPT (9)

Let’s call ALG the expected value of the solution output by the algorithm. Since the algorithm chooses
with a coin flip either the best expected single item or S, it holds

ALG = (1− p0)v(S) + p0v(i∗)

Picking p0 = p
3p+1 ,

ALG =
2p+ 1

3p+ 1
E[v(S)] +

p

3p+ 1
E[v(i∗)] ≥ p(1− p)

3p+ 1
OPT .

8



The right hand side is minimized for p = 1
3 , concluding the proof of the first part of the statement.

The lazy version of ADAPTIVEGREEDY is analogous to the non-adaptive setting, both for the
algorithm and the analysis, so we omit repeating the proof.

In order to prove the last part of the statement, we start from Eq. (9) and apply the large instance
property:

(1− p)E [v(S∗)] ≤
(

2 + 1
p

)
E [v(S)] + E [v(i∗)] ≤

(
2 + 1

p

)
E [v(S)] + δ · E [v(S∗)]

Rearranging terms and assuming p+ δ < 1 we have that:

E [v(S∗)] ≤

(
2 + 1

p

)
1− p− δ

· E [v(S)] .

Optimizing for p ∈ (0, 1− δ), we get the claimed result. Specifically, for p = (
√

3− 2δ − 1)/2 the
approximation factor is (4 + 2

√
3 + εδ), with

εδ = 2

(√
3− 2δ + 1

(1− δ)2
+

1

1− δ
−
√

3− 2

)
≈ 6δ(2− δ)

(1− δ)2
.

C Additional Details on Section 5

Before moving on to providing additional information for each specific experiment, we note that the
computational setup consisted of a 13-inch 2014 MacBook Pro with a 2,6 GHz Intel Core i5 processor
and 8GB of RAM. Moreover, all graphs contain error bars, indicating the standard deviation between
different runs of the experiments. This is usually insignificant due to the concentrating effect of the
large size of the instances, despite the randomly initialized weights and inherent randomness of the
algorithms used. Nevertheless, all results are obtained by running each experiment a number of times.
For all algorithms involved, we use lazy evaluations with ε = 0.01.

Video Recommendation: We expand on the exact definition of the similarity measure that is only
tersely described in the main text. Each movie i is associated with a tag vector ti ∈ [0, 1]1128,
where each coordinate contains a relevance score for that individual tag. These tag vectors are not
normalized and have no additional structure, other than each coordinate being restricted to [0, 1]. We
define the similarity wij between two movies i, j as:

wij =

√√√√1128∑
k=1

(
min{tik, t

j
k}
)2

.

In other words, it is the L2 norm of the coordinate-wise minimum of ti and tj . This metric was chosen
so that if both movies have a high value in some tag, this counts as a much stronger similarity than
one having a high value and the other a low one. For example, if we consider an inner product metric,
any movie with all tags set to 1 would be as similar as possible to all other movies, even though it
would include many tags that would be missing from the others. In particular, any movie would be
appear more similar to the all 1 movie than to itself! Choosing the minimum of both tags avoids this
issue. Another possibility would be to normalize each tag vector before taking the inner product, to
obtain the cosine similarity. Although this alleviates some of the issues, there is some information
loss as one movie could meaningfully have higher scores in all tags than another one; tags are not
mutually exclusive. Ultimately any sensible metric has advantages and disadvantages and the exact
choice has little bearing on our results. The similarity scores are then divided by their maximum as a
final normalization step.

The experiment was repeated 5 times. The budget is represented as a fraction of the total cost starting
at 1/100 and geometrically increasing to 1/10 in 10 steps. The total computation time was around 3
hours.

9



Influence-and-Exploit Marketing: For the YouTube graph, the experiment was repeated 5 times
for a budget starting at 1/100 of the total cost and geometrically increasing to 1/3 in 20 steps, leading
to a total computation time of 7 hours. For the Erdős–Rényi graph with n vertices and edge probability
5/
√
n it was repeated 10 times, for n starting at 50 and geometrically increasing to 2500 in 20 steps,

taking approximately 10 minutes.

Maximum Weighted Cut: The experiment was repeated 10 times for n starting at 10 and increas-
ing geometrically to 300 in 20 steps, requiring approximately 5 minutes.

D Approximation Ratio of Deterministic Density Greedy

Here we show the 3-approximation given by the deterministic density greedy to the monotone
problem and we provide a counterexample illustrating its poor performance in the non-monotone
case. The pseudocode is given below; the blue parts are only for the analysis. By S∗ we denote an
optimal solution.

Algorithm 3: DENSITYGREEDY

1 Input: set A, v monotone submodular function on 2A, budget B
2 S ← ∅, X ← A
3 O ← S∗ : fuzzy set; elements sorted by costs in decreasing order; initially equal to optimal solution
4 while X 6= ∅ do
5 let i ∈ arg maxx∈X

vS(x)
cx

6 if c(S) + c(i) ≥ B and i ∈ S∗ then
7 return arg max{v(S),maxi∈A v({i})}
8 if c(S) + c(i) ≤ B then
9 S ← S ∪ {i}

10 Add i to O (if i /∈ O already). Make room for it, if needed, by erasing elements in S∗ \ S
at the end of O

11 X ← X \ {i}

12 return arg max{v(S),maxi∈A v({i})}

Theorem 5. DENSITYGREEDY is a 3-approximation algorithm when the submodular objective is
monotone, but only a Θ(n)-approximation algorithm when it is non-monotone.

Proof. First assume v is monotone. Let j ∈ S, then we call Sj and Oj the sets at the beginning of
the while loop when j is considered, and O′j at the end of the same iteration. Moreover we call ı̂ the
element triggering the blue ‘return’.

Some properties:

1. Sj ⊆ Oj ∀j

2. O \ S consists of (a possibly fractional part of) ı̂ because the elements in O are sorted in
decreasing cost, if there is no more room for one, then it is the last.

3. For each item j ∈ S, we call Qj the fractional set that was erased from O to make room for
it, without the items that later were added to the solution and ı̂: Qj = Oj \ (O′j ∪ S ∪ {ı̂}).
Clearly c(Qj) ≤ cj .

4. Qj ∩Qi = ∅

5. S ∪ S∗ = S ∪ {ı̂} ∪
⋃
j∈S Qj and the union is disjoint.

Let ALG = max{v(S),maxi∈A v({i})}. Starting from the last point we have:

v(S∗) ≤ v(S ∪ S∗) ≤ v(S) + v(̂ı) +
∑
j∈S

v(Qj |S) ≤ v(S) + v(̂ı) +
∑
j∈S

v(Qj |Sj)

10



≤ v(S) + v(̂ı) +
∑
j∈S

∑
x∈Qj

v(x |Sj)
cx

cx ≤ v(S) + v(̂ı) +
∑
j∈S

v(j |Sj)
cj

c(Qj)

≤ v(S) + v(̂ı) +
∑
j∈S

v(j |Sj) ≤ 2v(S) + v(̂ı)

≤ 3 · ALG ,

completing the proof for the monotone case.

For the non-monotone case, it is straightforward to see that DENSITYGREEDY is at least a n-
approximation algorithm. Indeed, if S∗ = {i1, . . . , ir}, then

v(S∗) =

r∑
j=1

v(ij | {i1, . . . , ij−1}) ≤
r∑
j=1

v(ij) ≤ n ·max
i∈A

v(i) ≤ n · ALG ,

where the first inequality follows from submodularity.

Next we define a family of non-monotone instances such that the approximation guarantee of
DENSITYGREEDY cannot be better than n− 1. For any value of n ∈ N, the nth instance will have
n elements, i.e., An = {1, 2, . . . , n}, all with cost 1, and available budget Bn = n. The objective
function vn is defined as follows.

v(S) =

{
|S| , if S ⊆ {1, 2, . . . , n− 1}
1 + n−1 , otherwise

It is straightforward to check that vn is a normalized, non-negative submodular function. Moreover, it
is easy to see that for its greedy solution DENSITYGREEDY would start by adding element n and then
it would stop. Given that n = arg maxi∈An

vn(i), DENSITYGREEDY returns {n} for a total value of
1 + n−1 instead of the optimal n− 1 (achieved by S∗ = {1, 2, . . . , n− 1}). So, for any fixed ε > 0,
DENSITYGREEDY cannot guarantee at least a (n− 1− ε)−1 fraction of the optimal value.

References
[1] N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz. Submodular maximization with cardinality con-

straints. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2014, Portland, Oregon, USA, January 5-7, 2014, pages 1433–1452. SIAM, 2014.

[2] U. Feige, V. S. Mirrokni, and J. Vondrák. Maximizing non-monotone submodular functions. SIAM J.
Comput., 40(4):1133–1153, 2011.

[3] M. Feldman, C. Harshaw, and A. Karbasi. Greed is good: Near-optimal submodular maximization via
greedy optimization. In Proceedings of the 30th Conference on Learning Theory, COLT 2017, Amsterdam,
The Netherlands, 7-10 July 2017, volume 65 of Proceedings of Machine Learning Research, pages 758–784.
PMLR, 2017.

[4] A. Gotovos, A. Karbasi, and A. Krause. Non-monotone adaptive submodular maximization. In Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, pages 1996–2003. AAAI Press, 2015.

[5] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular
set functions - I. Math. Program., 14(1):265–294, 1978.

11


	Missing Material from Section 3
	Proof of Theorem 1
	Proof Sketches of Theorems 2 and 3

	Missing Material from Section 4
	Proof of Theorem 4

	Additional Details on Section 5
	Approximation Ratio of Deterministic Density Greedy

