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Abstract

We study RL in the tabular MDP setting where the agent receives additional obser-
vations per step in the form of transitions samples. Such additional observations
can be provided in many tasks by auxiliary sensors or by leveraging prior knowl-
edge about the environment (e.g., when certain actions yield similar outcome).
We formalize this setting using a feedback graph over state-action pairs and show
that model-based algorithms can incorporate additional observations for more
sample-efficient learning. We give a regret bound that predominantly depends on
the size of the maximum acyclic subgraph of the feedback graph, in contrast with
a polynomial dependency on the number of states and actions in the absence of
side observations. Finally, we highlight fundamental challenges for leveraging a
small dominating set of the feedback graph, as compared to the well-studied bandit
setting, and propose a new algorithm that can use such a dominating set to learn a
near-optimal policy faster.

1 Introduction

For many real-world applications, the sample complexity of RL is still prohibitively high, making
it vital to simplify the learning task by incorporating domain knowledge. An effective approach to
do so is through imitation learning [1] but there are many applications where even an expert may
not know how to provide demonstrations of near-optimal policies (e.g. in drug discovery or tutoring
systems). In such applications, an expert may still be able to provide insights into the structure of the
task, for example, that certain actions yield similar behavior in certain states. These insights could, in
principle, be baked into a model or value-function class, but RL with complex function classes is still
very challenging, both in theory and practice [2, 3, 4, 5].

A more convenient approach to incorporate structure from domain knowledge is to directly provide
additional observations to the RL algorithm. In that case, an online RL algorithm not only gets to see
the outcome (reward and next state) of executing the current action in the current state, but also an
outcome of executing other actions, possibly even in other states. While there is often a trivial way to
include such observations of hypothetical transitions in existing methods, little is theoretically known
about the benefits of doing so. This raises the question:

How do additional observations of hypothetical transitions affect the sample-
efficiency of online RL algorithms, and how to best incorporate such observations?

To study this question in full generality, we assume that the additional observations come from some
(black-box) oracle that provides the algorithm with a set of transition samples, in addition to the
current reward and next state (rh, sh+1) from the environment (Figure 1 left). To study how helpful
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Figure 1: Left: RL loop with additional observations from the (black-box) oracle; Right: grid world
example; Through additional sensors, the robot in state D also sees nearby states (yellow) and when
taking the action up, the oracle provides the actual transition (solid arrow) as well as hypothetical
transitions (dashed arrow) from nearby states. This is formalized by a feedback graph G over state-
action pairs shown on the right (snippet). Since (D,up) has an edge to (C, up) and (H,up) in the
feedback graph, the agent receives a (hypothetical) transition for both.

the oracle is, we formalize which observations it provides by a feedback graph [6] over state-action
pairs: an edge in the feedback graph from state-action pair (s, a) to state-action pair (s̄, ā) indicates
that, when the agent takes action a at state s, the oracle additionally provides a reward and next-state
sample (r̄′, s̄′) that the agent would have seen, had it taken action ā in state s̄. Thus, at each time
step, the agents gets to see the outcome of executing the current (s, a) as well as an outcome for each
state-action pair that has an edge from (s, a) in the feedback graph.

To illustrate this setting, consider a robot moving in a grid world (Figure 1, right). Through auxiliary
sensors, it can sense positions in its line of sight. When the robot takes an action to move in a certain
direction, it can also predict what would have happened for the same action in other positions in
the line of sight. The oracle formalizes this prediction ability and provides the RL algorithm with
observations of (hypothetical) movements for that action in the nearby states. Here, the feedback
graph connects state-action pairs with matching actions and states in the line of sight.

Our definition of feedback graphs also captures the common practice of image augmentation, that has
been empirically demonstrated to improve performance [7, 8, 9]. In this case, the states are images
and for any state-action pair (s, a), the feedback graph contains an edge to all (s̄, a) such that s̄ is
a random transformation of s. Another real-world motivating example is recommender systems,
where, the goal – to maximize the long-term satisfaction of each user, by choosing which items to
recommend given the user history – is a natural setting for RL. Here, RL with feedback graphs can
improve the generalization across users, which is still a major challenge for RL [10]. There exist other
techniques, such as collaborative filtering, that can predict that certain users would react similarly to
certain recommendations, but they have other drawbacks. Incorporating these techniques into the
oracle can leverage the complementary strengths of these methods and RL.

We present an extensive study of RL in the tabular MDP setting with feedback graphs defining the
availability of additional observations. Our main contributions, summarized in Table 1, are:

• We prove that, by incorporating the additional observations into the model estimation step, existing
model-based RL algorithms [11, 12] can achieve regret and sample-complexity bounds that scale
with the mas-number µ of the feedback graph – as opposed to potentially much larger number of
states and actions SA (Section 3). This result cannot be readily derived by application of standard
bandit analyses and required a series of novel results on real-valued self-normalizing sequences
over graph vertices (Appendix E).

• We give a lower bound on the regret (Appendix B) that scales with the independence number α of
the feedback graph. For undirected feedback graphs, the equality µ = α holds. This suggests that
the regret guarantee of our algorithm cannot be improved further for such feedback graphs.

• We also prove a lower sample complexity bound, which shows that (1) an improvement to
scale with the domination number γ may be possible and (2) we cannot completely remove the
dependence on the independence number α in the lower order terms. The latter is in stark contrast
to the bandit setting [e.g. 6, 13, 14, 15, 16], where the sample complexity can scale with γ only.
Thus, leveraging a small domination set of the feedback graph is fundamentally harder in the MDP
setting, since the agent first has to learn how to reach the state-action pairs in the dominating set.

2



Worst-Case Regret Sample Complexity
without
feedback

graph

ORLC [17] Õ(
√
SAH2T + SAŜH2) Õ

(
SAH2

ε2 + SAŜH2

ε

)
Lower bounds [18, 19] Ω̃(

√
SAH2T ) Ω̃

(
SAH2

ε2

)
with

feedback
graph

ORLC [Thm. 1, Cor. 1] Õ(
√
µH2T + µŜH2) Õ

(
µH2

ε2 + µŜH2

ε

)
Algorithm 3 [Thm. 3] at least O(γ1/3T 2/3) Õ

(
γH3

p0ε2
+ γŜH2

p0ε
+ µŜH2

p0

)
Lower bounds [Thm. 4, 5] Ω̃(

√
αH2T ) Ω̃

(
γH2

p0ε2
+ α

p0
∧ αH2

ε2

)
Table 1: Comparison of our main results. The symbols µ, α and γ denote the mas-, independence
and domination number of the feedback graph respectively, with γ ≤ α ≤ µ ≤ SA. The symbol T
denotes the total number of episodes, ε denotes the optimality gap of the returned policy, H denotes
the episode length and p0 is a parameter for how easy the dominating set can be reached.

• We present an algorithm that overcomes the above challenges for the MDP setting and achieves a
sample complexity bound that scales with the more favorable domination number γ in the leading
1
ε2 term (Section 5). A key insight for obtaining this result is a new formulation of multi-task RL
as an extended MDP (Section 4).

2 Problem setup
2.1 Episodic RL in tabular MDP

The agent interacts with an MDP in episodes indexed by k. Each episode is a sequence (s1, a1, r1, . . . ,
sH , aH , rH) of H states sh ∈ S, actions ah ∈ A and scalar rewards rh ∈ [0, 1]. The initial state s1

can be chosen arbitrarily, possibly adversarially. Actions are taken as prescribed by the agent’s policy
πk which are deterministic and time-dependent mappings from states to actions, i.e., ah = πk(sh, h)
for all time steps h ∈ [H] := {1, 2, . . . H}. The successor states and rewards are sampled from
the MDP as sh+1 ∼ P (sh, ah) and rh ∼ PR(sh, ah). We denote by X = S × A the space of all
state-action pairs (s, a) that the agent can encounter, i.e., visit s and take a. For a pair x ∈ X , we
denote by s(x) and a(x) its state and action respectively. We restrict ourselves to tabular MDPs with
finite X . The agent knows the horizon H and the set X , but does not have access to P and PR.

The Q-value of a policy is defined as the reward to go, given the current state and action when
the agent follows π afterwards Qπh(s, a) := E[

∑H
t=h rt | ah = a, sh = s, ah+1:H ∼ π], and the

state-values of π are V πh (s) := Qπh(s, πh(s)). The expected return of a policy in episode k is simply
the value V π1 (sk,1) of the initial state sk,1. Any policy that achieves optimal reward to go, i.e.,
π(s, h) ∈ argmaxaQ

π
h(s, a) is called optimal. We use the superscript ? to denote any optimal

policy and its related quantities. The sample-efficiency of an algorithm can either be measured by its
sample-complexity or its regret. The regret R(T ) =

∑T
k=1(V ?1 (sk,1)− V πk1 (sk,1)) is the cumulative

difference of achieved and optimal return after T episodes. Sample complexity N(ε) is the number of
episodes after which the algorithm can identify an ε-optimal policy π (with V π1 (s1) ≥ V ?1 (s1)− ε).

2.2 Feedback graphs

In a typical RL setting, when the agent (learner) takes an action ah at state sh at time h, it receives a
sample of the reward rh and the next-state sh+1 observed after taking a step in the MDP. However, in
our setting, besides the transition ((sh, ah), rh, sh+1), an oracle provides the agent with additional
observations, about transitions at other states and actions. We denote the set of observations provided
to the agent at time step h by Oh (see Figure 1, left). While being an interesting research direction,
the goal of our work in this paper is not to study the design or implementation of these oracles (that
provide Oh) but rather how RL algorithms can benefit from the additional observations. To that
end, we formalize the additional observations available to the agent by a directed graph G = (X , E)
over state-action pairs called a feedback graph, where the vertex set X comprises of all feasible
state-action pairs in the MDP. An edge x G→ x̄ in G (short for (x, x̄) ∈ E), from a state-action pair
x to another state-action pair x̄, indicates that when the agent takes action a(x) at state s(x), along
with a transition for that step, it also observes a sample of the reward and the next-state (r′, s′) it
would have observed if the agent had been at state s(x̄) and had executed action a(x̄). Thus, the set
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(a) SA = 8,
µ = α = γ = 2

(b) SA = µ = 4,
α = γ = 1

(c) SA = µ = 6,
α = 5,
γ = 1

(d) SA = 6,
µ = 5,

α = 3, γ = 2

Figure 2: Examples of feedback graphs with different vertex number SA, mas-number µ, indepen-
dence number α and domination number γ.

of observations Oh received by the agent at time step h is

Oh(G) := {(xh, rh, sh+1)} ∪ {(x̄, r′, s′) | xh G→ x̄} ,

where xh := (sh, ah), and the observations (x̄, r̄, s̄) are sampled independently with s′ ∼ P (x) and
r′ ∼ PR(x), given all previous observations. 1

We emphasize that even though the agent receives additional observations Oh(G) at each time step,
the next state is still sh+1, as determined by the original transition. Further, for the ease of analysis,
throughout the paper, we will assume that self-loops (edges of the form x G→ x in G) are implicit and
will therefore not include them in edge set E .

Important graph properties. The analysis of regret and sample-complexity in this setting uses the
following graph-theoretic properties [13], each capturing a notion of connectivity of the graph:

• Mas-number (µ): A set of vertices V ⊆ X forms an acyclic subgraph of G if the subgraph
G̃(V, {(v, w) ⊆ V × V : v G→ w}), induced by restricting G to V , does not contain a cycle. The
size of the maximum acyclic subgraph denotes the mas-number µ of G.

• Independence number (α): A set of vertices V ⊆ X is an independent set if there is no edge
between any two nodes of V , i.e. for all v, w ∈ V, v 6G→ w. The size of the largest independent set
is called the independence number α of G.

• Domination number (γ): A set of vertices V ⊂ X forms a dominating set if there is an edge
from a vertex in V to any vertex in G, i.e. for all x ∈ X , there exists a v ∈ V such that v G→ x.
The size of the smallest dominating set is called the domination number γ.

In the context of feedback graphs, mas- and independence number can be interpreted as a worst-case
notion of connectivity measuring how many different vertices any algorithm can visit before observing
any vertex twice. In contrast, the domination number is a best-case notion answering the question of
how many vertices an algorithm that takes the graph structure into account has to visit in order to
receive an observation from every vertex. For any graph, we have γ ≤ α ≤ µ ≤ |X|, where each
inequality can be Θ(|X |) apart. Independence- and mas-number coincide, α = µ, for undirected
graphs where for every edge there is an edge pointing backward. See Figure 2 for examples of
feedback graphs and their graph properties and Appendix A.2 for a more extensive discussion. Here,
we only give three relevant examples where feedback graph properties can be much smaller than SA:

a) State aggregation ([20]) can be considered a special case where the feedback graph consists of
disjoint cliques, each consisting of the state-action pairs whose state belongs to a an aggregated
state. Here µ = α = γ = AB where B is the number of aggregated states and A = |A|.

b) Reinforcement learning with multiple tasks is discussed in Section 4.
c) Four-rooms environment. For a concrete example of how small graph properties can be in practice,

we consider a version of the classic four-room environment [21] where the agent receives side
observations for (s, a)-pairs with s in its field of view and a matching the current action. Here,
|X | = SA = 376, µ ≤ 146, α = 44 and γ = 16 (more details in Appendix A.2).

1Note that simultaneous observations can be dependent. This allows the oracle to generate side observations
from the current, possibly noisy, transition without the need for a new sample with independent noise.
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Algorithm 1: Optimistic model-based RL
1 D1← Initialize model statistics // r̂, r̂2, P̂ , n

2 for episode k = 1, 2, 3, . . . do
3 πk, Ṽk,1,∼Vk,1 ← OptimistPlan(Dk)
4 Observe initial state sk,1
5 Dk+1 ←SampleEpisode(πk, sk,1, Dk)

Algorithm 2: SampleEpisode(π, s1, D)

1 for h = 1, . . . ,H do
2 Take action ah = π(sh, h) and

transition to sh+1 with reward rh;
3 Receive observations Oh(G);
4 for transition (x, r, s′) ∈ Oh(G) do
5 D ← UpdateModel(D,x, r, s′);

return :D

3 Mas-number based regret bounds

As a first contribution, we show the benefits of a feedback graph in achieving more favorable learning
guarantees for optimistic model-based algorithms. Algorithms in this family, such as UCBVI [22],
ORLC [12] or (STRONG-)EULER [11, 23], maintain an estimate D of the MDP model and alternate
between (1) computing a policy πk by optimistic planning with D and (2) updating D using the
observations from executing πk for one episode (see Algorithm 1). Model-based algorithms can
naturally incorporate side observations by updating the model estimate D with all observations
Oh(G) provided by the oracle as stipulated by the feedback graph. As highlighted in lines 3–4 of
Algorithm 2, the SampleEpisode subroutine calls UpdateModel at each time step for all transition
observations in Oh(G) as opposed to only the performed transition ((sh, ah), rh, sh+1).

Different model-based algorithms deviate in their implementation of UpdateModel and
OptimistPlan. For concreteness, we will analyze a version of the EULER or ORLC algorithm
[12, 11] with UpdateModel and OptimistPlan provided in Algorithms 4 and 5 in Appendix C.1.
We expect our results to directly extend to other model-based RL algorithms, such as UCBVI [22].
Here, the model estimate D consists of first and second moments of the immediate reward i.e. r̂(x)

and r̂2(x) respectively, transition frequencies P̂ (x) and the number of observations n(x) for each
state-action pair x ∈ X . OptimistPlan is a version of value iteration with reward bonuses. It returns
an upper-confidence bound Ṽk,1 on the optimal value function V ?1 as well as a lower-confidence
bound ∼Vk,1 on the value function of the returned policy V πk1 , and can be can be viewed as an extension
of the UCB policy from the bandit to the MDP setting. We prove the following regret bound:
Theorem 1 (Regret bound). For any tabular episodic MDP with episode length H , state-action
space X ⊆ S × A and directed feedback graph G, the regret of Algorithm 1 with subroutines in
Alg. 2, 5 and 4 and 5 is with probability at least 1− δ for all number of episodes T

R(T ) = Õ
(√

µH2T + µŜH2
)
, (1)

where µ is the size of the maximum acyclic subgraph of G and algorithm parameter Ŝ ≤ S is a
bound on the number of possible successor states of each x ∈ X .
Remark 2 (IPOC and sample-complexity bound). Equation (1) also bounds the cumulative size∑T
k=1(Ṽk,1(sk,1) − ∼Vk,1(sk,1)) of policy certificates [12] which implies that the algorithm also

satisfies a sample-complexity bound N(ε) = Õ
(
µH2

ε2 + ŜMH2

ε

)
.

Theorem 1 replaces a factor of SA in the best known regret bounds for RL, without side observations
[12, 11], with the mas-number µ (see also Table 1). This is a substantial improvement, since, in
many feedback graphs SA may be very large while µ is a constant. The only remaining polynomial
dependency on Ŝ ≤ S is in the lower-order term, and is standard for model-based RL algorithms.
Even in the tabular MDP setting without the feedback graph, removing this term without incurring
a significant penalty in H is an interesting open problem. On the lower bound side, we show
in Appendix B that the worst-case regret of any algorithm is Ω̃(

√
αH2T ), where α denotes the

independence number of G. While µ and α can differ for general graphs, they are equal for
undirected feedback graphs. In that case, the regret bound in Theorem 1 is optimal up to lower-order
terms and log-factors. We will show in the following sections that the sample-complexity, however,
can be improved further to depend on the domination number γ, instead of α or µ as above.

Technical challenges and proof technique. See Appendix C.7 for a brief discussion of how our
analysis differs from existing ones. In essence, at the core of UCB analyses with feedback graphs
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in bandits [24] is a discrete pigeon-hole argument on the vertices of the graph. Applying such an
argument in the MDP setting yields an undesirable regret term of Ω(

√
H3T ), due to an additional

concentration argument to account for the stochasticity in the visitation of various state-action pairs by
the corresponding policies. We avoid this concentration argument by generalizing the bandit analysis
and developing a series of novel technical results on self-normalizing sequences of weight-functions
on vertices of a graph. These might be of independent interest (see Appendix E).

4 Example: Multi-task RL

In Section 5, we show that the sample complexity of RL can be improved further when the feedback
graph has a small dominating set. As a preparation for that discussion, we first show here that
feedback graphs can be used to efficiently learn in certain multi-task RL problems. This may be of
independent interest. The specific setting we consider is:

There are m tasks that share the same underlying transition dynamics P . Each task admits different
reward distributions, denoted by P (i)

R for the i-th task, where i ∈ [m]. We assume that the initial state
is fixed and that reward distributions of all but one task are known to the agent.2 The goal is to learn a
policy that, given the task identity i, performs ε-optimally. This is equivalent to learning an ε-optimal
policy for each task.

The naive approach is to use m instances of any PAC-RL algorithm to learn each task separately.
With Algorithm 1 for example, this would require in total

Õ
(m(1 + εŜ)µH2

ε2

)
episodes. If the number of tasks m is large, this can be significantly more costly than learning a single
task. We will now show that this dependency on m can be removed with the help of feedback graphs.

Extended MDP. We can learn the m tasks jointly by running Algorithm 1 in an extended MDP M̄.
In this extended MDP, the state is augmented with a task index, that is, S̄ = S × [m]. In states with
index i, the rewards are drawn from P

(i)
R and the dynamics according to P with successor states

having the same task i. Formally, the dynamics P̄ and expected rewards r̄ of the extended MDP are

P̄ ((s′, j)|(s, i), a) = 1{i = j}P (s′|s, a), and, r̄((s, i), a) = ri(s, a)

for all s ∈ S, a ∈ A, i, j ∈ [m] where ri(s, a) = E
r∼P (i)

R (s,a)
[r] are the expected rewards of task i.

Essentially, the extended MDP consists of m disjoint copies of the original MDP, each with the
rewards of the respective task.

The key for learning all tasks jointly is to define the feedback graph Ḡ of the extended MDP so that it
connects all copies of state-action pairs that are connected in the feedback graph G of the original
MDP. That is, for all s, s′ ∈ S , a, a′ ∈ A, i, j ∈ [m], ((s, i), a) Ḡ→ ((s′, j), a′) ⇔ (s, a) G→ (s′, a′).
Note that we can simulate an episode of M̄ by running the same policy in the original MDP because
we assumed that the immediate rewards of all but one task are known. Therefore, to run Algorithm 1 in
the extended MDP, it is only left to determine the task index ik of each episode k. To ensure learning
all tasks equally fast and not wasting resources on a single task, we choose the task for which the
value confidence bounds are farthest apart, i.e., ik ∈ argmaxi∈[m] Ṽk,1((sk,1, i))− ∼Vk,1((sk,1, i)).
This choice implies that if this difference is at most ε for the chosen task, then the same holds for all
other tasks. Thus, when the algorithm encounters Ṽk,1((sk,1, ik))− ∼Vk,1((sk,1, ik)) ≤ ε, the current
policy is ε-optimal for all tasks as Ṽk,1 ≤ V πk1 ≤ V ?1 ≤ Ṽk,1. By Remark 2 above, this happens for
Algorithm 1 in

Õ
( (1 + εŜ)µH2

ε2

)
episodes. Note that we used the mas-number µ and maximum number of successor states Ŝ of
the original MDP, as these quantities are identical in the extended MDP. By learning tasks jointly
through feedback graphs, the total number of episodes needed to learn a good policy for all tasks

2Note that this assumption holds in most auxiliary task learning settings and does not trivialize the problem
(e.g. see Section 5).
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Algorithm 3: RL using given dominating set XD and parameters δ ∈ (0, 1] and Ŝ ≤ S
1 Initialize model statistics D and active task set I ← {1, . . . , γ};

/* First phase: find policy to reach each vertex in given dominating set */

2 while I 6= ∅ do
3 π, Ṽh,∼Vh ← OptimistPlan(D) ; // Alg. 5, with probability parameter δ/2

4 j ← argmaxi∈I Ṽ1((s1, i))− ∼V1((s1, i));
5 for i ∈ I do
6 if Ṽ1((s1, i)) ≤ 2∼V1((s1, i)) then
7 π(i)((s, 0), h)← π((s, i), h) for all s ∈ S and h ∈ [H] ; // map policy to task 0

8 I ← I \ {i}, p̂(i) ← ∼V1((s1, i))

9 D ← SampleEpisode(π, (s1, j), D) ; // Alg. 2, apply to extended MDP M̄

/* Second phase: play learned policies to uniformly sample from dominating set */

10 while Ṽ1((s1, 0))− ∼V1((s1, 0)) > ε do
11 j ← (j mod γ) + 1 ; // Choose policy in circular order

12 D ←SampleEpisode(π(j), (s1, 0), D) ; // Alg. 2, apply to extended MDP M̄

13 π, Ṽh,∼Vh ← OptimistPlan(D) ; // Alg. 5, with probability parameter δ/2

14 π̂(s, h)← π((s, 0), h) for all s ∈ S and h ∈ [H]; // map policy back to original MDP

return :π̂

does not grow (polynomially) with the number of tasks and we save a factor of m compared to the
naive approach without feedback graphs. This might seem to be too good to be true but it is possible
because the rewards of all but one task are known and the dynamics is identical across tasks. While
one could derive and analyze a specialized algorithm without feedback graphs for this setting, this
would likely be much more tedious.

5 Domination number based sample-complexity bounds

Algorithm 1 uses additional observations efficiently, despite being agnostic to the feedback graph
structure. Yet, sometimes, an alternative approach can be further beneficial. In some problems,
there are state-action pairs which are highly informative, that is, they have a large out-degree in
the feedback graph. Consider for example a ladder in the middle of a maze. Going to this ladder
and climbing it may be time-consuming (low reward) but it reveals the entire structure of the maze,
thereby making a subsequent escaping much easier. In this case the domination number γ � α ≤ µ
is much smaller than other feedback graph properties. Explicitly exploiting such state-action pairs
may not be advantageous to improve over the regret (as such pairs could have low reward giving worst
case regret Ω(T 2/3)), but may be useful when the goal is to eventually learn a good policy without
caring about the performance during the learning process. We therefore study the sample-complexity
of RL in the MDP setting given a small dominating set XD = {X1, . . . , Xγ} of the feedback graph.
We discuss in Appendix F.1 how to extend Algorithm 3 when the dominating set is not known.

We propose a simple algorithm that aims to explore the MDP by uniformly visiting state-action pairs
in the dominating set. This works because the dominating set admits outgoing edges to every vertex,
that is ∀x ∈ X ,∃x′ ∈ XD : x′ G→ x. However, compared to the bandit setting [13] with immediate
access to all vertices, there are additional challenges for such an approach in the MDP setting:

1. Unknown policy for visiting the dominating set: While we assume to know the identity
of the state-action pairs in a dominating set, we do not know how to reach those pairs.

2. Low probability of visiting the dominating set: Some or all state-action pairs in the
dominating set might be hard to reach under any policy.

The lower bound in Theorem 5 in Appendix B shows that these challenges are fundamental. To
address them, Algorithm 3 proceeds in two phases. In the first phase (lines 2–9), we learn policies
π(i) that visit each element Xi ∈ XD in the dominating set with probability at least p(i)

2 . Here,
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p(i) = maxπ E[
∑H
h=1 1{(sh, ah) = X(i)} | π] is the highest expected number of visits to Xi per

episode possible. The first phase leverages the construction for multi-task learning from Section 4.
We define an extended MDP for a set of tasks 0, 1, . . . , γ. Task 0 is to maximize the original reward
and tasks 1, . . . , γ aim to maximize the number of visits to each element of the dominating set. To
this end, we define the rewards for each task of the extended MDP as

r̄((s, 0), a) = r(s, a) r̄((s, k), a) = 1{(s, a) = Xk}, ∀k ∈ [γ], s ∈ S, a ∈ A.

The only difference with Section 4 is that we use a subset of the tasks and stop playing a task once we
have identified a good policy for it. The stopping condition in Line 6 ensures that policy π(i) visits
Xi in expectation at least p̂(i) ≥ p(i)

2 times. In the second phase (lines 10–14), each policy π(i) is
played until there are enough samples per state-action pair to identify an ε-optimal policy.
Theorem 3 (Sample complexity of Algorithm 3). For any tabular episodic MDP with state-actions
X , horizon H , feedback graph with mas-number µ and given dominating set XD with |XD| = γ and
accuracy ε > 0, Algorithm 3 returns with probability at least 1− δ an ε-optimal policy after

Õ
(γH3

p0ε2
+
γŜH3

p0ε
+
µŜH2

p0

)
(2)

episodes. Here, p0 = mini∈[γ] p
(i) is possible expected number of visits to the node in the dominating

set that is hardest to reach.

The last term µŜH2

p0
is spent in the first phase on learning how to reach the dominating set. If

the algorithm did not use the extended MDP for multi-task learning as sketched in Section 4, the
sample-complexity for the first phase would be γµŜH

2

p0
(since we then would pay an additional linear

factor in the number of state-action pairs we want to learn to reach).

The first two terms in (2) come from visiting the dominating set uniformly in the second phase.
Comparing that to the sample-complexity of Algorithm 1 in Table 1, µ is replaced by γH

p0
in

poly(ε−1) terms. This can yield substantial savings when there is a small and easily accessible
dominating set, e.g., when γ � µp0

H and ε� p0. There is a gap between the bound above and the
sample-complexity lower bound in Table 1 (see also Theorem 5 in Appendix B) , but one can show
that a slightly specialized version of the algorithm reduces this gap to a single factor of H in the class
of MDPs of the lower bound (by using that p0 ≤ 1, Ŝ = 2 in this class, see Appendix F for details).

Technical challenges and proof technique. By building on the analysis of Algorithm 1 and the
arguments sketched in Section 4, we first show an intermediate sample complexity bound of Õ

(
γH3

p0ε2
+

γŜH3

p0ε
+ µH2

p2
0

+ µŜH2

p0

)
. To remove the undesirable p−2

0 term, we adapt the analysis of EULER [11]

from regret to sample-complexity which gives that µH2p−2
0 can be replaced by µHv?p−2

0 where v?
is the average optimal return in the first phase. While one can easily bound v? ≤ maxi pi, this does
not cancel a factor of p0 = mini pi in the denominator. Dealing with this max vs. min mismatch
is the main technical challenge in our proof and requires a novel induction argument over subset of
tasks or episodes (see Appendix F).

6 Related work

To the best of our knowledge, we are the first to study RL with feedback graphs in the MDP setting.
In the bandit setting, many works on feedback graphs exist, going back to Mannor and Shamir [6].
For stochastic bandits, Caron et al. [25] provided the first regret bound for UCB in terms of clique
covering number which was later improved to mas-number [24].3 Both are gap-dependent bounds as
is common in bandits. Recently, the first gap-dependent bounds in the MDP setting were proved for
a version of EULER [23, 11]. To keep the analysis simple, we here provided problem-independent
bounds. A slight generalization of our technique could yield similar problem-dependent bounds.

Mas-number is the best dependency known for UCB algorithms, but action elimination and exponen-
tial weights algorithms can achieve regret bound of

√
αT in the bandit setting [26, 13]. Buccapatnam

3They assume undirected feedback graphs and state their results in terms of independence number.
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et al. [27] even achieved regret scaling with γ by using a dominating set . Unfortunately, all these
techniques rely on immediate access to each feedback graph vertex which is unavailable in an MDP.

Albeit designed for different purposes, Algorithm 3 is similar to a concurrently developed algorithm
[28] for exploration in absence of rewards. But there is a key technical difference: Algorithm 3
learns how to reach each element of the dominating set jointly, while the approach by Jin et al. [28]
learns how to reach each state pair separately. Following Section 4, we expect that, by applying our
technique to their setting, one could improve the state space dependency of their sample complexity
bound from Õ(S2/ε2 + S4/ε) to Õ(S2/ε2 + S3/ε).

A common assumption in RL is access to a generative model that allows an algorithm to request
reward and the next-state from any state-action pair [29], e.g. for sample-based planning. Our
feedback graph setting is much weaker, since, in order to receive a sample transition for a state-action
pair x, the agent needs to learn to either reach x or an incoming neighbor of x in the feedback graph.
One can interpret additional observations through a feedback graph as an explicit way of generalizing
from one state-action pair to others while using an unstructured representation of the model and
value functions. This is complementary to many existing approaches that generalize by introducing
structure into the model representation (for example in factored Markov decision processes) or the
value function and policy representation [2, 30]

7 Conclusion

We studied the effect of additional observations, stipulated by a feedback graph, on the regret and
sample-complexity of episodic RL in tabular MDP setting. Our results show that, when the feedback
graph is undirected, optimistic model-based algorithms that just incorporate all available observations
into their model update step achieve the minimax-optimal regret bound. We also proved with a new
algorithm that exploiting the feedback graph structure by visiting highly informative state-action
pairs (dominating set) is possible but fundamentally more difficult in the MDP setting, as compared
to the well-studied bandit setting. Our work paves the way for a more extensive study of this setting.
Promising directions include a regret analysis for feedback graphs in combination with function
approximation motivated by impressive empirical successes [7, 8, 9]. Another question of interest is
an analysis of model-free methods [31] with graph feedback which likely requires a very different
analysis, as existing proofs hinge on observations arriving in trajectories.

Broader Impact

This work is of theoretical nature and the presented insights are unlikely to have a direct impact on
society at large. That said, it might guide future research with such impact.
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A Discussion of Feedback Graphs

A.1 Examples for Applications with Feedback Graphs

We here provide a list of additional applications where the feedback graph model could be use-
ful. These examples are motivation for Markov decision processes with feedback graphs and not
necessarily for the specific tabular setting of Algorithm 1 or 3.

• Recommender systems: The goal of recommender systems – to maximize the long-term
satisfaction of each user, by choosing which items to recommend given the user history –
is a natural setting for RL. Here, RL with feedback graphs can improve the generalization
across users, which is still a major challenge for RL [10]. There exist other techniques, such
as collaborative filtering, that can predict that certain users would react similarly to certain
recommendations, but they have other drawbacks. Incorporating these techniques into the
oracle that provides side observations can leverage the complementary strengths of these
methods and RL.

• Image augmentation: Image augmentation is a common practice, that has been empirically
demonstrated to improve performance [7, 8, 9]. In this case, the states are images and for
any state-action pair (s, a), the feedback graph contains an edge to all (s̄, a) such that s̄ is a
random transformation of s.

• Personalized tutoring systems: The goal of personalized tutoring systems is to help students
learn a given topic as quickly as possible by optimizing the sequence of explanations and
practice problems presented to each student. Here, actions can be the problems to select
from and states include descriptors of the specific student. There is a large array of expert
knowledge, e.g. from education science, about which groups of students react similarly
certain problems. Incorporating this knowledge as side observations and formalizing this
setting through a feedback graph over students and problems is a natural fit.

• Autonomous driving: In autonomous driving the goal is to steer a car based on sensory
inputs such as a camera view of the street ahead. Similar to image augmentation, an RL
algorithm could be provided with additional observations by perturbing the camera view or
changing the appearance of certain objects, e.g. to better account for rare appearances. A
feedback graph would capture such a data augmentation scheme.

• Robotics: For a concrete example, consider a robot arm grasping different objects and
putting them in different bins. In this task, the specific shape of the object is only relevant
when the robot hand is close to the object but has not grasped it yet. In all other states, the
agent can receive additional observations by filling in different object shapes in the state
description of the actual transition. In this case, all such state-action pairs that are identical
up to the object shape are connected in the feedback graph.

A.2 Comparison of Graph Properties

In this section, we provide an extended discussion of the relevant graph properties that govern learning
efficiency of RL with feedback graphs. For convenience, we repeat the definitions of the properties
from Section 2.2.

• Mas-number µ: A set of vertices V ⊆ X form an acyclic subgraph if the subgraph
(V, {(v, w) ⊆ V × V : v G→ w}) of G restricted to V is loop-free. We call the size of the
maximum acyclic subgraph the mas-number µ of G.

• Independence number α: A set of vertices V ⊆ X is an independent set if there is no edge
between any two nodes of that set: ∀v, w ∈ V : v 6G→ w. The size of the largest independent
set is called the independence number α of G.

• Domination number γ: A set of vertices V ⊆ X form a dominating set if there is an edge
from a vertex in V to any vertex in G: ∀x ∈ X ∃v ∈ V : v G→ x. The size of the smallest
dominating set is called the domination number γ.

• Clique covering number C: A set of vertices V ⊆ X is a clique if there it is a fully-
connected subgraph, i.e., for any x, y ∈ V : x G→ y. A set of such cliques {V1, . . .Vn} is
called a clique cover if every node is included in at least one of the cliques, i.e.,X =

⋃n
i=1 Vi.

The size of the smallest clique cover is called the clique covering number C.
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In addition to the properties appearing our bounds, we here include the clique covering number C
which has been used earlier analyses of UCB algorithms in bandits [25]. One can show that in any
graph, the following relation holds

|X | ≥ C ≥ µ ≥ α ≥ γ.

For example, C ≥ µ follows from the fact that no two vertices that form a clique can be part of an
acyclic subgraph and thus no acyclic subgraph can be larger than any clique cover. An important class
of feedback graphs are symmetric feedback graphs where for each edge x G→ y, there is a back edge
y G→ x. In fact, many analyses in the bandit settings assume undirected feedback graphs which is
equivalent to symmetric directed graphs. For symmetric feedback graphs, the independence number
and mas-number match, i.e., alpha = µ. This is true because acyclic subgraphs of symmetric graphs
cannot contain any edges, otherwise the back edge would immediately create a loop. Thus any acyclic
subgraph is also an independent set and µ ≥ α.

Examples: We now discuss the value of the graph properties in feedback graphs by example (see
Figure 3). The graph in Figure 3a consists of two disconnected cliques and thus the clique covering
number and the domination number is 2. While the total number of nodes can be much larger –
8 in this example – all graph properties equal the number of cliques in such a graph. In practice,
feedback graphs that consists of disconnected cliques occur for example in state abstractions where
all (s, a) pairs with matching action and where the state belongs to the same abstract state form a
clique. They are examples for a simple structure that can be easily exploited by RL with feedback
graphs to substantially reduce the regret.

In the feedback graph in Figure 3b, the vertices are ordered and every vertex is connected to every
vertex to the left. This graph is acyclic and hence µ coincides with the number of vertices but the
independence number is 1 as the graph is a clique if we ignore the direction of edges (and thus
each independence set can only contain a single node). A concrete example where feedback graphs
can exhibit such structure is in tutoring systems where the actions represent the number of practice
problems to present to a student in a certain lesson. The oracle can fill in the outcomes (how well the
performed on each problem) for all actions that are would have given fewer problems than the chosen
action.

Figure 3c shows a star-shaped feedback graph. Here, the center vertex reveals information about
all other vertices and thus is a dominating set with size γ = 1. At the same time, the largest
independence set are the tips of the star which is much larger. This is an example where approaches
such as Algorithm 3 that leverage a dominating set can learn a good policy with much fewer samples
as compared to others that only rely independence sets.

The examples in Figure 3a–3c exhibit structured graphs, but it is important to realize that our results
do not rely a specific structure. They can work with any feedback graph and we expect that feedback
graphs in practice are not necessarily structured. Figure 3d shows a generic graph where all relevant
graph properties are distinct which highlights that even in seemingly unstructured graphs, it is
important which graph property governs the learning speed of RL algorithms.

Values of graph properties in four-room environment. To showcase how the graph properties
can differ in naturally occurring feedback graphs, we computed their values for a version of the
classic four room environment [21] with additional observations. In this version, the oracle provides
the agent in each time step with observations for state-action pairs s, a where s in its line of sight
and the action matches the agent’s current action. The line of sight is defined as all unobstructed
states within a rectangle of size 7 in front of the agent (motivated by the observation model in the
gym-minigrid suite [32]).

The feedback graph of this example has |X | = SA = 376 vertices but the graph properties are
significantly smaller: µ ≤ 146, α = 44 and γ = 16.

We determined the value of each graph property by formulating it as the optimal solution to an integer
program. Since the exact integer program for mas-number µ contains |X |3 ≈ 53M constraints (for
each possible cycle of size 3) which is computationally challenging, we used a relaxation that only
contains 30% of the constraints. This allows us to give the upper-bound stated above instead of the
exact value.
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(a) SA = 8,
µ = α = γ = 2

(b) SA = µ = 4,
α = γ = 1

(c) SA = µ = 6,
α = 5,
γ = 1

(d) SA = 6,
µ = 5,

α = 3, γ = 2

Figure 3: Examples of feedback graphs with different vertex numbers SA, mas-number µ, indepen-
dence number α and domination number γ.

B Regret and Sample-Complexity Lower Bounds

RL in MDPs with feedback graphs is statistically easier due to side observations compared to RL
without feedback graphs. Thus, existing lower bounds are not applicable. We now present a new
lower-bound that shows that for any given feedback graph, the worst-case expected regret of any
learning algorithm has to scale with the size of the largest independent set of at least half of the
feedback graph.

Theorem 4. Let A,N,H, T ∈ N and G1, G2 be two graphs with NA and (N + 1)A (disjoint)
nodes each. If H ≥ 2 + 2 logAN , then there exists a class of episodic MDPs with 2N + 1 states,
A actions, horizon H and feedback graph G1 ∪ G2 := (V (G1) ∪ V (G2), E(G1) ∪ E(G2)) such
that the worst-case expected regret of any algorithm after T episodes is at least 1

46

√
αH2T when

T ≥ α3/
√

2 and α ≥ 2 is the independence number of G1.

This regret lower bound shows that, up to a scaling of rewards of order H , the statistical difficulty is
comparable to the bandit case where the regret lower-bound is

√
αT [6].

The situation is different when we consider lower bounds in terms of domination number. Theorem 5
below proves that there is a fundamental difference between the two settings:

Theorem 5. Let γ ∈ N and p0 ∈ (0, 1] and H,S,A ∈ N with H ≥ 2 logA(S/4). There exists
a family of MDPs with horizon H and a feedback graph with a dominating set of size γ and
independence set of size α = Θ(SA). The dominating set can be reached uniformly with probability
p0. Any algorithm that returns an ε-optimal policy in this family with probability at least 1− δ has to
collect the following expected number of episodes in the worst case

Ω

(
αH2

ε2
ln

1

δ
∧
(
γH2

p0ε2
ln

1

δ
+
α

p0

))
.

This lower bound depends on the probability p0 with which the dominating set can be reached and
has a dependency α

p0
≈ SA

p0
on the number of states and actions. In bandits, one can easily avoid the

linear dependency on number of arms by uniformly playing all actions in the given dominating set
Θ̃(ε−2) times.

We illustrate where the difficulty in MDPs comes from in Figure 5. States are arranged in a tree so
that each state at the leafs can be reached by one action sequence. The lower half of state-action pairs
at the leafs (red) transition to good or bad terminal states with similar probability. This mimics a
bandit with Θ(SA) arms. There are no side observations available except in state-action pairs of the
dominating set (shaded area). Each of them can be reached by a specific action sequence but only
with probability p0, otherwise the agent ends up in the bad state.

To identify which arm is optimal in the lower bandit, the agent needs to observe Ω(H2/ε2) samples
for each arm. It can either directly play all Θ(SA) arms or learn about them by visiting the dominating
set uniformly. To visit the dominating set once takes 1/p0 attempts on average if the agent plays the
right action sequence. However, the agent does not know which state-action at the leaf of the tree
(blue states) can lead to the dominating set and therefore has to try each of the Θ(SA) options on
average 1/p0 times to identify it.

15



good

bad

Dominating 
Set

r =1

r = 0

p0

p ≈ ½

Figure 4: Difficult class of MDPs with a feedback graph and small dominating set. State-action pairs
in the red states (bottom) mimic a bandit with Θ(SA) arms. An agent can observe them directly or by
visiting fewer nodes in the dominating set (shaded region). This dominating set is only reachable with
small probability p0 and the agent first has to learn which blue state (top) accesses the dominating set.
Omitted transitions point to the bad state.

good

bad

r =1

r = 0

p ≈ ½

Figure 5: Lower bound construction depicted for A = 2 actions: This family of MDPs is equivalent
to a Bernoulli bandit with NA arms where rewards are scaled by H̄ = bH − 1− logANc.

B.1 Proof for Lower Regret Bound with Independence Number

Proof of Theorem 4. We first specify a family of MDPs that are hard to learn with feedback graphs,
then show that learning in hard instances of MABs with α arms can be reduced to learning in this
family of MDPs and finally use this reduction to lower bound the regret of any agent.

Family of hard MDPsM: Without loss of generality, we assume thatN = Ak for some k ∈ N.We
consider a familyM of α MDPs which are illustrated in Figure 5. Each MDP inM has N red states
(and N + 1 white states) that form the leaves of a deterministic tree with fan-out A. This means that
each red state is deterministically reachable by a sequence of actions of length dlogANe. From each
red state, the agent transitions to a good absorbing state with certain probability and with remaining
probability to a bad absorbing state. All rewards are 0 except in the good absorbing state where the
agent accumulates reward of 1 until the end of the episode (for a total of H̄ := H − 1− dlogANe
time steps).

Let nowG1 andG2 be the feedback graphs for the red and white state-actions respectively. Further let
N be an independent set of G1. Each MDP Mi ∈M is indexed by an optimal pair i = (s?, a?) ∈ N
of a red state-action pair. When the agent takes a? in s? it transitions to the good state with probability
δ + ε. For all other pairs in N , it transitions to the good state with probability δ. All remaining pairs
of red states and actions have probability 0 of reaching the good state. The values of δ, ε > 0 will be
specified below.

Reduction of learning in MAB setting to RL in the MDP settingM: We now use a reductive
argument similar to Mannor and Shamir [6, Theorem 4] to show learning in MABs with α actions
cannot me much harder than learning inM.
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Let B be any MDP algorithm and denote by RB,Mi
(T ) its expected regret after T episodes when

applied to problem instance Mi ∈M. We can use B to construct a multi-armed bandit algorithm B′
for a family of MABsM′ indexed by N . Each MAB M ′i ∈ M′ has |N | arms, all of which have
Bernoulli(δ) rewards except i which has Bernoulli(δ + ε) rewards. To run B′ on M ′i ∈M′, we apply
B to Mi ∈M. Whenever B chooses to execute an episode that visits a j ∈ N , B′ picks arm j in M ′i
and passes on the observed reward as an indicator of whether the good state was reached. When B
chooses to execute an episode that passes through a vertex x of G1 that is not in the independent set
N , then B′ pulls all children {y ∈ N : x→G1 y} that are in the independent set in an arbitrary order.
The observed rewards are again used to construct the observed feedback for B by interpreting them
as indicators for whether the good state was reached.

Lower bound on regret: We denote by T ′ the (random) number of pulls B′ takes until B has
executed T episodes and by U the expected number of times B plays episodes that do not visit the
independent set. The regret of B′ after T ′ pulls can then be written as

RB′,M ′i (T
′) ≤ RB,Mi(T )

H̄
+ εαU − δU,

where the first termRB,Mi(T )/H̄ is the regret accumulated from pulls where B visits the independent
set and the second term from the pulls where B did not visit the independent set. Each such episode
incurs δ regret for B and up to αε regret for B′. We rearrange this inequality as

RB,Mi
(T ) ≥H̄(RB′,M ′i (T

′)− εαU + δU)

1
≥H̄(RB′,M ′i (T )− εαU + δU)

2
≥H̄RB′,M ′i (T ) + H̄T [δ − εα]−, (3)

where 1 follows from monotonicity of regret and 2 from considering the best case U ∈ [0, T ] for
algorithm B. The worst-case regret of B′ in theM′ has been analyzed by Osband and Van Roy [19].
We build on their result and use their Lemma 3 and Proposition 1 to lower bound the regret for B′ as
follows

max
i
RB′,M ′i (T ) ≥ εT

(
1− 1

α
− ε
√

T

2δα

)

=
1

4

√
α

2T
T

(
1− 1

α
− 1

4

√
α

2T

√
4T

2α

)

=

√
αT

32

(
3

4
− 1

α

)
,

where we set δ = 1
4 and ε = 1

4

√
α

2T (which satisfy ε ≤ 1 − 2δ required by Proposition 1 for
T ≥ α/8). Plugging this result back into (3) gives a worst-case regret bound for B of

max
i
RB,Mi

(T ) ≥
√
αT

32

(
3

4
− 1

α

)
+ H̄T [δ − εα]− ≥ H̄

√
αT

32

(
3

4
− 1

α

)
≥ H

32

√
αT

2
,

where we first dropped the second term because δ ≥ εα for T ≥ α3/8 and then used the assumptions
α ≥ 2 and H ≥ 2 + 2 logAN .

B.2 Proof for Lower Sample Complexity Bound with Domination Number

Proof of Theorem 5. Let Z = S
8 and Z̄ = ZA which we assume to be integer without loss of

generality. The family of MDPs consists of Z̄ × Z̄ MDPs, indexed by (i, j) ∈ [Z̄]2. All MDPs have
the same structure:

MDP Family: We order 4Z states in a deterministic tree so any of the 2Z leaf nodes can be reached
by a specific action sequence. See Figure 4 for an example with two actions. We split the state-action
pairs at the leafs in two sets B1 = {x1, . . . xZ̄} and B2 = {z1, . . . zZ̄}, each of size Z̄. Playing xi
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transitions to the good absorbing state with some probability g and otherwise to the bad absorbing
state b. The reward is 0 in all states and actions, except in the good state g, where agent receives a
reward of 1. The transition probabilities from xi depend on the specific MDP. Consider MDP (j, k),
then

P (g|x1) =
1

2
+

ε

2H
, and, P (g|xi) =

1

2
+

ε

H
1{i = k}.

Hence, the first index of the MDP indicates which xi is optimal. Since the agent will stay in the good
state for at least H/2 time steps (by the assumption that H ≥ 2 logA(S/4) by assumption), the agent
needs to identify which xi to play in order to identify an ε

4 -optimal policy. All pairs zi transition to
the bad state deterministically, except for pair zj in MDPs (i, j). This pair transitions with probability
p0 to another tree of states (of size at most 2Z) which has γ state-action pairs at the leafs, denoted by
D = {d1, . . . , dγ}. All pairs in this set transition to the bad state deterministically.

The feedback graph is sparse. There are no edges, except each node di has exactly Z̄
γ edges (which

we assume to be integer for simplicity) to pairs in B1. No nodes di and dj point to the same node.
Hence, D forms a dominating set of the feedback graph.

Sample Complexity: The construction of B1 is equivalent to the multi-armed bandit instances
in Theorem 1 by Mannor and Tsitsiklis [33]. Consider any algorithm and let oi be the number of
observations an algorithm has received for xi when it terminates. By applying Theorem 1 by Mannor
and Tsitsiklis [33], we know that if the algorithm indeed outputs an ε

4 -optimal policy with probability
at least 1− δ in any instance of the family, it has to collect in instances (1, j) at least the following
number of samples in expectation

E(1,j)[oi] ≥
c1H

2

ε2
ln
c2
δ

(4)

for some absolute constants c1 and c2. Let v(x) be the number of times the algorithm actually visited
a state-action pair x. Then oi = v(xi) + v(dj) for j with dj →G xi because the algorithm can only
observe a sample for xi if it actually visits it or the node in the dominating set. Applying this identity
to (4) yields

E(1,k)[v(dj)] ≥
c1H

2

ε2
ln
c2
δ
− E(1,k)[v(xi)]

for all dj and xi with dj → xi. Summing over i ∈ Z̄ and using the fact that each dj is counted Z̄/γ
times, we get

Z̄

γ

γ∑
j=1

E(1,k)[v(dj)] ≥
c1Z̄H

2

ε2
ln
c2
δ
−

Z̄∑
i=1

E(1,k)[v(xi)].

After renormalizing, we get,

γ∑
j=1

E(1,k)[v(dj)] ≥
c1γH

2

ε2
ln
c2
δ
− γ

Z̄

Z̄∑
i=1

E(1,k)[v(xi)].

Next, observe that either the algorithm needs to visit nodes in B1 at least c1Z̄H
2

2ε2 ln c2
δ times in

expectation or nodes in the dominating set D at least c1γH
2

2ε2 ln c2
δ times in expectation. The former

case gives an expected number of episodes of Ω
(
SAH2

ε2 ln 1
δ

)
which is the second term in the

lower-bound to show.

It remains the case where
∑γ
j=1 E(1,k)[v(dj)] ≥ c1γH

2

2ε2 ln c2
δ . The algorithm can only reach the

dominating set through zk and it can visit only one node in the dominating set per episode. Further,
when the algorithm visits zk, it only reaches the dominating set with probability p0. Hence,

E(1,k)[v(zk)] = p0

γ∑
j=1

E(1,k)[v(dj)] ≥
c1γH

2

2p0ε2
ln
c2
δ
,
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but the algorithm may also visit other pairs zi for i 6= k as well. To see this, consider the expected
number of visits to all zis before the algorithm visits the dominating set for the first time. By Lemma 6,
this is at least Z̄

4p0
in the worst case over k. This shows that

max
k∈[Z̄]

Z̄∑
i=1

E(1,k)[v(zi)] ≥
c1γH

2

2p0ε2
ln
c2
δ
− 1 +

Z̄

4p0
= Ω

(
γH2

p0ε2
ln
c2
δ

+
SA

p0

)
.

Lemma 6. Consider k biased coins, where all but one coin have probability 0 of showing heads.
Only one coin has probability p of showing head. The identity i of this coin is unknown. The expected
number of coin tosses N until the first head is for any strategy

E[N ] ≥ k

4p

in the worst case over i.

Proof. Let N be the number of coin tosses when the first head occurs and let Alg be a strategy. The
quantity of interest is

inf
Alg

max
i∈[k]

Et(i)[ER(Alg)[N ]],

where R(Alg) denotes the internal randomness of the strategy and t(i) the random outcomes of coin
tosses. We first simplify this expression to

inf
Alg

max
i∈[k]

Et(i)[ER(Alg)[N ]] ≥ inf
Alg

1

k

k∑
i=1

Et(i)[ER(Alg)[N ]] = inf
Alg

ER(Alg)

[
1

k

k∑
i=1

Et(i)[N ]

]

= inf
Alg

ER(Alg)

[
1

k

k∑
i=1

∞∑
m=0

Pt(i)[N > m]

]

= inf
Alg

ER(Alg)

[ ∞∑
m=0

1

k

k∑
i=1

Pt(i)[N > m]

]
, (5)

and derive an explicit expression for 1
k

∑k
i=1 Pt(i)[N > m]. Since the strategy and its randomness is

fixed, it is reduced to a deterministic sequence of coin choices. That is, for a given number of total
tosses N , a deterministic strategy is the number of tosses of each coin n1, . . . , nk with

∑k
i=1 ni = N .

Consider any such strategy and let a n1, . . . , nk with
∑k
i=1 ni = m be the coins selected up to m. If

N > m, then the first ni tosses of coin i must be tail. Hence, using the geometric distribution, we
can explicitly write the probability of this event as

1

k

k∑
i=1

Pt(i)[N > m] ≥ 1

k

k∑
i=1

(1− p)ni ≥ inf
n1:k :

∑k
i=1 ni=m

1

k

k∑
i=1

(1− p)ni .

The second inequality just considers the worst-case. The expression on the RHS is a convex program
over the simplex with a symmetric objective. The optimum can therefore only be attained at an
arbitrary corner of the simplex or the center. The value at the center is (1− p)m/k and by Young’s
inequality, we have

(1− p)m/k ≤ ((1− p)m/k)k

k
+

1k/k−1

k/(k − 1)
=

(1− p)m

k
+
k − 1

k
,

where the RHS is the value of the program at a corner. Hence 1
k

∑k
i=1 Pt(i)[N > m] ≥ (1− p)m/k

holds and plugging this back into (5) gives

inf
Alg

max
i∈[k]

Et(i)[ER(Alg)[N ]] ≥
∞∑
m=0

(1− p)m/k =
1

1− (1− p)1/k
≥ k

4p
,

where the last inequality follows from basic algebra and holds for p < 0.5. For p ≥ 0.5, the worst
case is k

4p ≤
k
2 anyway because that is the expected number of trials until one can identify a coin

with p = 1.
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C Additional Details on Model-Based RL with Feedback Graphs

Here, we provide additional details and extensions to Algorithm 1 in Section 3.

C.1 Optimistic Planning and Model Update Subroutines

Algorithm 4 shows the model update subroutine called in Algorithm 2 for each observation while
sampling an episode. As briefly alluded to in Section 3, the model statistics D consist of

• Observation count n(x) ∈ N
• Average immediate reward r̂(x) ∈ [0, 1]

• Average squared reward r̂2(x) ∈ [0, 1]

• Transition frequencies P̂ (x)) ∈ [0, 1]S

for each state-action pair x ∈ X . Each are initialized as n(x)← 0, r̂(x)← 0, r̂2(x)← 0, P̂ (x)←
[1, 0, . . . , 0] at the beginning of Algorithm 1 and 3.

Algorithm 5 presents the optimistic planning subroutine called by Algorithms 1 and 3. In this
procedure, the maximum value is set as V max

h = H − h + 1 for each time step h and notation
P̂ (x)f = Es′∼P (x)[f(x)] denotes the expectation with respect to the next state distribution of any
function f : S → R on states.

The OptimistPlan procedure computes an optimistic estimate Q̃ of the optimal Q-function Q? by
dynamic programming. The policy π is chosen greedily with respect to this upper confidence bound
Q̃. In addition, a pessimistic estimate

∼
Q of the Q-function of this policy Qπ is computed (lower

confidence bound) analogously to Q̃. The two estimates only differ in the sign of the reward bonus
ψh. Up to the specific form of the reward bonus ψh(x), this procedure is identical to the policy
computation in ORLC [12] and EULER [11].4

Algorithm 4: Model Update Routine
1 function UpdateModel (D,x, r, s′):
2 (n, r̂, r̂2, P̂ )← D;

3
n(x)← n(x) + 1, P̂ (x)← n(x)−1

n(x) P̂ (x) + 1
n(x)es′ ,

r̂(x)← n(x)−1
n(x) r̂(x) + 1

n(x)r, r̂2(x)← n(x)−1
n(x) r̂2(x) + 1

n(x)r
2,

4 where es′ ∈ {0, 1}S has 1 on the s′-th position;
return :(n, r̂, r̂2, P̂ )

C.2 Runtime Analysis

Just as in learning without graph feedback, the runtime of Algorithm 1 is O(SŜAH) per episode
where Ŝ is a bound on the maximum transition probability support (S in the worst case). The only
difference to RL without side observations is that there are additional updates to the empirical model.
However, sampling an episode and updating the empirical model requires O(HSA) computation
as there are H time steps and each can provide at most |X | ≤ SA side observations. This is still
dominated by the runtime of optimistic planning O(SŜAH). If the feedback graph is known ahead
of time, one might be able to reduce the runtime, e.g., by maintaining only one model estimate for
state-action pairs that form a clique in the feedback graph with no incoming edges. Then is suffices
to only compute statistics of a single vertex per clique.

4Note however that the lower confidence bound in EULER is only supposed to satisfy
∼
Q ≤ Q? while we here

follow the ORLC approach and its analysis and require
∼
Q to be a lower confidence bound on the Q-value of the

computed policy Qπ .
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Algorithm 5: Optimistic Planning Routine
1 function OptimistPlan (D):
2 (n, r̂, r̂2, P̂ )← D;
3 Set ṼH+1(s)← 0; ∼VH+1(s)← 0 ∀s ∈ S;
4 for h = H to 1 and s ∈ S do // optimistic planning with upper and lower confidence bounds

5 for a ∈ A do
6 x← (s, a);

/* Compute reward bonus */

7 η ←
√
r̂2(x)− r̂(x)2 +

√
P̂ (x)(Ṽ 2

h+1)− (P̂ (x)Ṽh+1)2 ; // Reward and next state variance

8 ψh(x)← O
(

1
H P̂ (x)[Ṽh+1 − ∼Vh+1] +

√
η

n(x) ln |X |H lnn(x)
δ + ŜH2

n(x) ln |X |H lnn(x)
δ

)
;

/* Bellman backup of upper and lower confidence bounds */

9 Q̃h(x)← 0 ∨ (r̂(x) + P̂ (x)Ṽh+1 + ψh(x)) ∧ V max
h ; // UCB ofQ?h

10
∼
Qh(x)← 0 ∨ (r̂(x) + P̂ (x)∼Vh+1 − ψh(x)) ∧ V max

h ; // LCB ofQπh ≥ 0

11 end
/* Compute greedy policy of UCB */

12 π(s, h)← argmaxa Q̃h(s, a);
13 Ṽh(s)← Q̃h(s, π(h)); ∼Vh(s)←

∼
Qh(s, π(h));

14 end
return :π, Ṽh,∼Vh

C.3 Sample Complexity

Since Algorithm 1 is a minor modification of ORLC, it follows the IPOC framework [12] for
accountable reinforcement learning.5 As a result, we can build on the results for algorithms with cu-
mulative IPOC bounds [17, Proposition 2] and show that our algorithm satisfies a sample-complexity
guarantee:
Corollary 1 (PAC-style Bound). For any episodic MDP with state-actions X , horizon H and
feedback graph G, with probability at least 1 − δ for all ε > 0 jointly, Algorithm 1 can output a
certificate with Ṽk′,1(sk′,1)− ∼Vk′,1(sk′,1) for some episode k′ within the first

k′ = O
(MH2

ε2
ln2 H|X |

εδ
+
MŜH2

ε
ln3 H|X |

εδ

)
episodes. If the initial state is fixed, such a certificate identifies an ε-optimal policy.

The proof of this corollary is available in Section D.6

C.4 Generalization to Stochastic Feedback Graphs

As presented in Section 2.2, we assumed so far that the feedback graph G is fixed and identical in all
episodes. We can generalize our results and consider stochastic feedback graphs where the existence
of an edge in the feedback graph in each episode is drawn independently (from other episodes and
edges). This means the oracle provides a side observation for another state-action pair only with a
certain probability. We formalize this as the feedback graph Gk in episode k to be an independent
sample from a fixed distribution where the probability an each edge is denoted as

q(x, x′) := P(x
Gk→ x′).

This model generalizes the well-studied Erdős–Rényi model [e.g. 27] because different edges can
have different probabilities. This can be used as a proxy for the strength of the user’s prior. One could

5To formally satisfy an IPOC guarantee, the algorithm has to output the policy and with a certificate before
each episode. We omitted outputting of policy πk and certificate [∼Vk,1(sk,1), Ṽk,1(sk,1)] after receiving the
initial state sk,1 in the listing of Algorithm 1 for brevity, but this can be added if readily.
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for example choose the probability of states being connected to decreases with their distance. This
would encode a belief that nearby states behave similarly.

Algorithm 1 can be directly applied to stochastic feedback graphs and as our analysis will show the
bound in Theorem 1 still holds as long as the mas-number µ is replaced by

µ̄ = inf
ε∈(0,1]

µ(G≥ε)

ε

where G≥ν is the feedback graph that only contains an edge if its probability is at least ν, i.e.,

x
G≥ν→ x′ if and only if q(x, x′) ≥ ν for all x, x′ ∈ X . The quantity µ̄ generalizes the mas-number of

deterministic feedback graphs where q is binary and thus µ = µ̄.

C.5 Generalization to Side Observations with Biases

While there are often additional observations available, they might not always have the same quality
as the observation of the current transition [34]. For example in environments where we know the
dynamics and rewards change smoothly (e.g. are Lipschitz-continuous), we can infer additional
observations from the current transition but have error that increases with the distance to the current
transition. We thus also consider the case where each feedback graph sample (x, r, s′, ε′) also comes
with a bias ε′ ∈ R and the distributions P̃R, P̃ of this sample satisfy

|Er∼P̃R [r]− Er∼PR(x)[r]| ≤ ε′ and ‖P̃ − P (x)‖1 ≤ ε′.
To allow biases in side observations, we adjust the bonuses in Line 8 of Algorithm 1 to

ψh(x) + Õ

(√
Hε̂(x)

n(x)
ln
|X |H lnn(x)

δ
+Hε̂(x)

)
for each state-action pair x where ε̂(x) is the average bound on bias in all observations of this x so
far. We defer the presentation of the full algorithm with these changes to the next section but first
state the main result for learning with biased side observations here. The following theorem shows
that the algorithm’s performance degrades smoothly with the maximum encountered bias εmax:
Theorem 7 (Regret bound with biases). In the same setting as Theorem 1 but where samples can
have a bias of at most εmax , the cumulative certificate size and regret are bounded with probability
at least 1− δ for all T by

O

(√
µH2T ln

H|X |T
δ

+ µŜH2 ln3 H|X |T
δ

+
√
µH3Tεmax ln

|X |HT
δ

+H2Tεmax

)
.

If T is known, the algorithm can be modified to ignore all observations with bias larger than T−1/2

and still achieve order
√
T regret by effectively setting εmax = O(T 1/2) (at the cost of increase in µ).

C.6 Generalized Algorithm and Main Regret Theorem

We now introduce a slightly generalized version of Algorithm 1 that will be the basis for our theoretical
analysis and all results for Algorithm 1 follow as special cases. This algorithm, given in Algorithm 6
contains numerical values for all quantities – as opposed to O-notation – and differs from Algorithm 1
in the following aspects:

1. Allowing Biases: While Algorithm 1 assumes that the observations provided by the
feedback graph are unbiased, Algorithm 6 allows biased observations where the bias (for
every sample) is bounded by some ε′ ≥ 0 (see Section C.5). For the unbiased case, one can
set ε′ or the average bias ε̂ as 0 throughout.

2. Value Bounds: While the OptimistPlan subroutine of Algorithm 1 in Algorithm 5 only
uses the trivial upper-bound V max

h = H − h+ 1 to clip the value estimates, Algorithm 6
uses upper-bounds Qmax

h (x) and V max
h+1 (x) that can depend on the given state-action pair x.

This is useful in situations where one has prior knowledge on the optimal value for particular
states and can a smaller value bound than the worst case bound of H − h+ 1. This is the
case in Algorithm 3, where we apply an instance of Algorithm 6 to the extended MDP with
different reward functions per task.
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We show that Algorithm 6 enjoys the IPOC bound (see Dann et al. [12]) in the theorem below. This
is the main theorem and other statements follow as a special case. The proof can be found in the next
section.
Theorem 8 (Main Regret / IPOC Theorem). For any tabular episodic MDP with episode length H ,
state-action space X ⊆ S × A and directed, possibly stochastic, feedback graph G, Algorithm 6
satisfies with probability at least 1− δ a cumulative IPOC bound for all number of episodes T of

O


√√√√µ̄H

T∑
k=1

V πk1 (sk,1) ln
|X |HT
δ

+ µ̄ŜQmaxH ln3 |X |HT
δ

+
√
µ̄H3Tεmax ln

|X |HT
δ

+H2Tεmax

 ,

where M̄ = infν
µ(G≥ν)

ν and µ(G≥ν) is the mas-number of a feedback graph that only contains
edges that have probability at least ν. Parameter Ŝ ≤ S denotes a bound on the number of possible
successor states of each x ∈ X . Further, Qmax ≤ H is a bound on all value bounds used in the
algorithm for state-action pairs that have visitation probability under any policy πk for all k ∈ [T ],
i.e., Qmax satisfies

Qmax ≥ max
k∈[T ],h∈[H]

max
x : wk,h(x)>0

Qmax
h (x), and,

Qmax ≥ max
k∈[T ],h∈[H]

max
x : wk,h(x)>0

V max
h+1 (x).

The bound in this theorem is an upper-bound on the cumulative size of certificates
∑T
k=1 Ṽ1(sk,1)−

∼V1(sk,1) and on the regret R(T ).

C.7 Overview of Analysis

We now briefly discuss how the analysis of Theorem 1 differs from existing ones, with the full
proof deferred to Section D. Assuming that the value functions estimated in OptimistPlan are valid
confidence bounds, that is, ∼Vk,h ≤ V πh ≤ V ?h ≤ Ṽk,h for all k ∈ [T ] and h ∈ [H], we bound regret
as their differences

R(T ) ≤
T∑
k=1

[
Ṽk,1(sk,1)−∼Vk,1(sk,1)

]
.

T∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)

[
H ∧

[
σk,h(x)√
nk(x)

+
ŜH2

nk(x)

]]
, (6)

where . and & ignore constants and log-terms and where ∧ denotes the minimum operator. The
second step is a bound on the value estimate differences derived through a standard recursive
argument. Here, wk,h(x) = P

(
(sk,h, ak,h) = x | πk, sk,1

)
is the probability that policy πk visits

x in episode k at time h. In essence, each such expected visit incurs regret H or a term that
decreases with the number of observations nk(x) for x so far. In the expression above, σ2

k,h(x) =

Varr∼PR(x)(r) + Vars′∼P (x)(V
πk
h+1(s′)) is the variance of immediate rewards and the policy value

with respect to one transition.

In the bandit case, one would now apply a concentration argument to turnwk,h(x) into actual visitation
indicators but this would yield a loose regret bound of Ω(

√
H3T ) here. Hence, techniques in the

analysis of UCB in bandits with graph feedback [24] based on discrete pigeon-hole arguments cannot
be applied here without incurring suboptimal regret in H . Instead, we apply a probabilistic argument
to the number of observations nk(x). We show that, with high probability, nk(x) is not much smaller
than the total visitation probability so far of all nodes x′ ∈ NG(x) := {x} ∪ {x′ ∈ X : x′ G→ x} that
yield observations for x:

nk(x) &
k∑
i=1

∑
x′∈NG(x)

wi(x
′), with wi(x) =

H∑
h=1

wi,h(x).

This only holds when
∑k
i=1

∑
x′∈NG(x) wi(x

′) & H . Hence, we split the sum over X in (6)

in Uk =
{
x ∈ X :

∑k
i=1

∑
x′∈NG(x) wi(x

′) & H
}

and complement U ck . Ignoring fast decaying
1/nk(x) terms, this yields

(6) .
T∑
k=1

∑
x∈Uck

wk(x)H +
∑
x∈Uk

H∑
h=1

wk,h(x)
σk,h(x)√
nk(x)


23



Algorithm 6: Optimistic model-based RL algorithm for biased side observations
input :failure tolerance δ ∈ (0, 1], state-action space X , episode length H
input :known bound on maximum transition support Ŝ ≤ ‖P (x)‖0 ≤ S
input :known bounds on value V max

h+1 (x) ≤ H and Qmax
h (x) ≤ H with

V max
h+1 (x) ≥ maxs′:P (s′|x)>0 V

?
h+1(s′) and Qmax

h (x) ≥ Q?h(x)

1 φ(n) := 1 ∧
√

0.52
n

(
1.4 ln ln(e ∨ 2n) + ln 5.2×|X|(4Ŝ+5H+7)

δ

)
= Θ

(√
ln lnn
n

)
;

2 Initialize n1(x)← 0, ε̂1(x)← 0, r̂1(x)← 0 r̂2
1(x)← 0, P̂1(x)← e1 ∈ {0, 1}S for all

x ∈ X ;
/* Main loop */

3 for episode k = 1, 2, 3, . . . do
4 πk, Ṽk,h,∼Vk,h ← OptimistPlan(nk, r̂k, r̂2

k, P̂k, ε̂k);
5 Receive initial state sk,1;
6 nk+1, r̂k+1, r̂2

k+1, P̂k+1, ε̂k+1 ←SampleEpisode(πk, sk,1, nk, r̂k, r̂2
k, P̂k, ε̂k);

7 end
/* Optimistic planning subroutine with biases */

8 function OptimistPlan (n, r̂, r̂2, P̂ , ε̂):
9 ṼH+1(s) = 0; ∼VH+1(s) = 0 ∀s ∈ S, k ∈ N;

10 for h = H to 1 and s ∈ S do
11 for a ∈ A do
12 x← (s, a);

13 η ←
√
r̂2(x)− r̂(x)2 + 2

√
ε̂(x)H + σP̂ (x)(Ṽh+1);

14 ψh(x)←
4ηφ(n(x)) + 53ŜHV max

h+1 (x)φ(n(x))2 + 1
H P̂ (x)(Ṽh+1−∼Vh+1) + (H + 1)ε̂(x);

15 Q̃h(x)← 0 ∨ (r̂(x) + P̂ (x)Ṽh+1 + ψh(x)) ∧Qmax
h (x); // UCB ofQ?h ≤ V

max
h ≤ H

16
∼
Qh(x)← 0 ∨ (r̂(x) + P̂ (x)∼Vh+1 − ψh(x)) ∧Qmax

h (x); // LCB ofQπh ≥ 0

17 end
18 π(s, h)← argmaxa Q̃h(s, a), Ṽh(s)← Q̃h(s, π(h)), ∼Vh(s)←

∼
Qh(s, π(h));

19 end
return :π, Ṽh,∼Vh

/* Sampling subroutine with biases */

20 function SampleEpisode (π, n, r̂, r̂2, P̂ , ε̂):
21 for h = 1, . . . H do
22 Take action ah = π(sh, h) and transition to sh+1 with reward rh;
23 Receive transition observations Oh(G);
24 for transition (x, r, s′, ε′) ∈ Oh(G) do
25 n(x)← n(x) + 1;

26
r̂(x)← n(x)−1

n(x) r̂(x) + 1
n(x)r, r̂2(x)← n(x)−1

n(x) r̂2(x) + 1
n(x)r

2,

ε̂(x)← n(x)−1
n(x) ε̂(x) + 1

n(x)ε
′, P̂ (x)← n(x)−1

n(x) P̂ (x) + 1
n(x)es′ ,

27 where es′ ∈ {0, 1}S has 1 on the s′-th position;
28 end

return :(n, r̂, r̂2, P̂ , ε̂)
29 end
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.
T∑
k=1

∑
x∈Uck

wk(x)

︸ ︷︷ ︸
(A)

H +

√√√√ T∑
k=1

∑
x∈X

H∑
h=1

wk,h(x)σ2
k,h(x)

︸ ︷︷ ︸
(B)

·

√√√√ T∑
k=1

∑
x∈Uk

wk(x)∑k
i=1

∑
x′∈NG(x) wi(x

′)︸ ︷︷ ︸
(C)

,

where the second step uses the Cauchy-Schwarz inequality. The law of total variance for MDPs
[29] implies that (B) . H

√
T . It then remains to bound (A) and (C), which is the main technical

innovation in our proof. Observe that both (A) and (C) are sequences of functions that map each
node x to a real value wk(x). While (A) is a thresholded sequence that effectively stops once a node
has accumulated enough weight from the in-neighbors, (C) is a self-normalized sequence. We derive
the following two novel results to control each term. We believe these could be of general interest.

Lemma 9 (Bound on self-normalizing real-valued graph sequences). Let G = (X , E) be a directed
graph with the finite vertex set X and mas-number µ, and let (wk)k∈[T ] be a sequence of weights
wk : X → R+ such that for all k,

∑
x∈X wk(x) ≤ wmax. Then, for any wmin > 0,

T∑
k=1

∑
x∈X

1{wk(x) ≥ wmin}wk(x)∑k
i=1

∑
x′∈NG(x) wi(x

′)
≤ 2µ ln

(
eT · wmax

wmin

)
,

where NG(x) = {x} ∪ {y ∈ X | y G→ x} denotes all vertices with an edge to x in G and x itself.

Lemma 10. Let G = (X , E) be a directed graph with vertex set X and let wk be a sequence of
weights wk : X → R+. Then, for any threshold C ≥ 0,

∑
x∈X

∞∑
k=1

wk(x) · 1
{ k∑
i=1

∑
x′∈NG(x)

wi(x
′) ≤ C

}
≤ µC

where NG(x) is defined as in Lemma 9.

We apply Lemma 9 and Lemma 10 to get the bounds (A) . µH and (C) .
√
µ respectively.

Plugging these bounds back in (6) yields the desired regret bound. Note that Lemmas 9 and 10
operate on a sequence of node weights as opposed to one set of node weights as in the analyses
of exponential weights algorithms [13]. The proof of Lemma 9 uses a potential function and a
pigeon-hole argument. The proof for Lemma 10 relies on a series of careful reduction steps, first
to integer sequences and then to certain binary sequences and finally a pigeon-hole argument. (full
proofs are deferred to Appendix E).

C.8 On Mas-Number Dependency of Optimistic Algorithms

Our main regret bound in Theorem 8 depends on the mas-number µ which can be larger than the
independence number α in the statistical lower-bound in Theorem 4 when the feedback graph is
directed. Whether this mismatch is due to the analysis or a limitation of the algorithm itself is an
open question. We can however see through a brief argument that a non-randomized algorithm such
as ORLC or EULER cannot avoid a dependency on µ in the constant term:

Consider a multi-armed bandit instance with S = 1 states (but multiple actions) and horizon H = 1.
The feedback graph over actions is the ordered graph in Figure 3 (b). Without breaking ties in a
randomized way in the optimistic planning routine, an optimistic algorithm may try actions from
right to left and thus only receive additional observations of actions that it has already visited. Thus,
the algorithm needs µ = A rounds in order to receive at least one observation for each action.
This indicates that such algorithms have to suffer an additive µ-dependency in their regret unless
tie-breaking is randomized.

D Analysis of Model-Based RL with Feedback Graphs

Before presenting the proof of the main Theorem 8 stated in the previous section, we show that
Theorem 1 and Theorem 7 indeed follow from Theorem 8:

25



Proof of Theorem 1.

Proof. We will reduce from the bound in Theorem 8. We start by setting the bias in Theorem 1
to zero by plugging in εmax = 0. Next, we set the worst-case value Qmax = H . Next, we set the
thresholded mas-number of the stochastic graph µ̄ to the mas-number µ of deterministic graphs (by
setting ν = 1 in the definition of µ̄). Finally, we upper-bound the initial values for all played policies
by the maximum value of H rewards, i.e.,

T∑
k=1

V πk1 (sk,1) ≤ TH.

Plugging all of the above in the statement of Theorem 8, we get that Algorithm 1 satisfies the IPOC
bound of

O
(√

µH2T ln
|X |HT
δ

+ ŜµH2 ln3 |X |HT
δ

)
.

Proof of Theorem 7.

Proof. The proof follows similar to the proof of Theorem 1 (above), while setting εmax 6= 0.
Following Theorem 8, this yields additional regret / cumulative certificate size of at most

O
(√

µ̄H3Tεmax ln
|X |HT
δ

+H2Tεmax

)
.

Proof of the main theorem. The proof of our main result, Theorem 8, is provided in parts in the
following subsections:

• Section D.1 considers the event in which the algorithm performs well. The technical lemmas
therein guarantee that this event holds with high probability.

• Section D.2 quantifies the amount of cumulative bias in the model estimates and other
relevant quantities.

• Section D.3 proves technical lemmas that establish that OptimistPlan always returns valid
confidence bounds for the value functions.

• Section D.4 bounds how far apart can the confidence bounds provided by OptimistPlan
can be for each state-action pair.

• Section E contains general results on self-normalized sequences on nodes of graphs that
only depend on the structure of the feedback graph.

• Section D.5 connects all the results from the previous sections into the proof of Theorem 8.

D.1 High-Probability Arguments

In the following, we establish concentration arguments for empirical MDP models computed from
data collected by interacting with the corresponding MDP (with the feedback graph).

We first define additional notation. To keep the definitions uncluttered, we will use the unbiased
versions of the empirical model estimates and bound the effect of unbiasing in Section D.2 below.
The unbiased model estimates are defined as

r̄k(x) = r̂k(x)− 1

nk(x)

nk(x)∑
i=1

ε̄i(x),

P̄k(s′|x) = P̂k(s′|x)− 1

nk(x)

nk(x)∑
i=1

ε̄i(x, s
′) (7)

26



where ε̄i(x) is the bias of the ith reward observation ri for x and ε̄i(x, s′) is the bias of the ith transition
observation of s′ for x. Recall that ε̄i(x) and ε̄i(x, s′) are unknown to the algorithm, which, however,
receives an upper bound ε′i on |ε̄i(x)| and

∑
s′∈S |ε̄i(x, s′)| for each observation i. Additionally, for

any probability parameter δ′ ∈ (0, 1), define the function

φ(n) := 1 ∧
√

0.52

n

(
1.4 ln ln(e ∨ 2n) + ln

5.2

δ′

)
= Θ

(√ ln lnn

n

)
. (8)

We now define several events for which we can ensure that our algorithms exhibit good behavior
with.

Events regarding immediate rewards.
The first two event ER and ERE are the concentration of (unbiased) empirical estimates r̄k(x) of the
immediate rewards around the population mean r(x) using a Hoeffding and empirical Bernstein
bound respectively, i.e.,

ER = {∀ k ∈ N, x ∈ X : |r̄k(x)− r(x)| ≤ φ(nk(x))} ,

ERE =

{
∀k ∈ N, x ∈ X : |r̄k(x)− r(x)| ≤

√
8Vark(r|x)φ(nk(x)) + 7.49φ(nk(x))2

}
,

where the unbiased empirical variance is defined as Vark(r|x) =
1

nk(x)

∑nk(x)
i=1 (ri − ε̄i(x)− r̄k(x))

2. The next event ensures that the unbiased empirical
variance estimates concentrate around the true variance Var(r|x)

EVar =

{
∀k ∈ N, x ∈ X :

√
Vark(r|x) ≤

√
Var(r|x) +

√
2 ln(π2n2/6δ′)

n

}
.

Events regarding state transitions. The next two events concern the concentration of empirical
transition estimates. We consider the unbiased estimate of the probability to encounter state s′ after
state-action pair x as defined in Equation (7). As per Bernstein bounds, they concentrate around the
true transition probability P (s′|x) as

EP =

{
∀ k ∈ N, s′ ∈ S, x ∈ X : |P̄k(s′|x)− P (s′|x)| ≤

√
4P (s′|x)φ(nk(x)) + 1.56φ(nk(x))2

}
,

EPE =

{
∀ k ∈ N, s′ ∈ S, x ∈ X : |P̄k(s′|x)− P (s′|x)| ≤

√
4P̄k(s′|x)φ(nk(x)) + 4.66φ(nk(x))2

}
,

where the first event uses the true transition probabilities to upper-bound the variance and the second
event uses the empirical version. Both events above treat the probability of transitioning to each
successor state s′ ∈ S individually which can be loose in certain cases. We therefore also consider
the concentration in total variation in the following event

EL1 =
{
∀ k ∈ N, x ∈ X : ‖P̄k(x)− P (x)‖1 ≤ 2

√
Ŝφ(nk(x))

}
,

where P̄k(x) = (P̄k(s′|x))s′∈S ∈ RS is the vector of transition probabilities. The event EL1 has

the typical
√
Ŝ dependency in the RHS of an `1 concentration bound. In the analysis, we will

often compare the expected the empirical estimate of the expected optimal value of successor state
P̄k(x)V ?h+1 =

∑
s′∈S P̄k(s′|x)V ?h+1(s′) to its population mean P (x)V ?h+1 and we would like to

avoid the
√
Ŝ factor. To this end, the next two events concern this difference explicitly

EV =
{
∀k ∈ N, h ∈ [H], x ∈ X : |(P̄k(x)− P (x))V ?h+1| ≤ rng(V ?h+1)φ(nk(x))

}
EVE =

{
∀k ∈ N, h ∈ [H], x ∈ X :
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|(P̄k(x)− P (x))V ?h+1| ≤ 2
√
P̄k(x)[(V ?h+1 − P (x)V ?h+1)2]φ(nk(x))

+ 4.66 rng(V ?h+1)φ(nk(x))2

}
where rng(V ?h+1) = maxs′∈S V

?
h+1(s′)−mins′∈S V

?
h+1(s′) is the range of possible successor values.

The first event EV uses a Hoeffding bound and the second event EVE uses empirical Bernstein bound.

Events regarding observation counts. All events definitions above include the number of observa-
tions nk(x) to each state-action pair x ∈ X before episode k. This is a random variable itself which de-
pends on how likely it was in each episode i < k to observe this state-action pair. The last events states
that the actual number of observations cannot be much smaller than the total observation probabilities
of all episodes so far. We denote by wi(x) =

∑
h∈[H] P(si,h = s(x), ai,h = a(x) | si,1,H1:i−1) the

expected number of visits to each state-action pair x = (s(x), a(x)) ∈ X ⊆ S ×A in the ith episode
given all previous episodesH1:i−1 and the initial state si,1. The event is defined as

EN =

{
∀ k ∈ N, x ∈ X : nk(x) ≥ 1

2

∑
i<k

∑
x̄∈X

q(x̄, x)wi(x̄)−H ln
1

δ′

}
.

The following lemma shows that each of the events above is indeed a high-probability event and that
their intersection has high probability at least 1− δ for a suitable choice of the δ′ in the definition of
φ above.

Lemma 11. Consider the data generated by sampling with a feedback graph from an MDP with
arbitrary, possibly history-dependent policies. Then, for any δ′ > 0, the probability of each of the
events, defined above, is bounded as

(i) P(ERE ∪ ER) ≥ 1− 4|X |δ′,

(ii) P(ERE ∪ ER) ≥ 1− 4|X |δ′,

(iii) P(EVar) ≥ 1− |X |δ′,

(iv) P(EP) ≥ 1− 2Ŝ|X |δ′,

(v) P(EPE) ≥ 1− 2Ŝ|X |δ′,

(vi) P(EL1) ≥ 1− 2|X |δ′,

(vii) P
(
EV
)
≥ 1− 2|X |Hδ′,

(viii) P(EVE) ≥ 1− 2|X |Hδ′,

(ix) P(EN) ≤ |X |Hδ′.

Further, define the event E as E := ER ∩ ERE ∩ EVar ∩ EP ∩ EPE ∩ EL1 ∩ EV ∩ EVE ∩ EN. Then,
the event E occurs with probability at least 1− δ, i.e.

P(E) ≥ 1− δ,

where δ = δ′|X |(7 + 4Ŝ + 5H).

Proof. We bound the probability of occurrence of the events ER,EP ,EPE,EL1 ,EV and EVE using
similar techniques as in the works of Dann et al. [12], Zanette and Brunskill [11] (see for example
Lemma 6 in Dann et al. [12]). However, in our setting, we work with a slightly different σ-algebra to
account for the feedback graph, and explicitly leverage the bound on the number of possible successor
states Ŝ. We detail this deviation from the previous works for events ER and ERE in Lemma 12
(below), and the rest follow analogously.

Further, we bound the probability of occurrence of the event EN in Lemma 14. The proof significantly
deviates from the prior work, as in our case, the number of observations for any state-action pair is
different from the number of visits of the agent to that pair due to the feedback graph. Finally, the
bound for the probability of occurrence of EVar is given in Lemma 13.

Taking a union bound for all the above failure probabilities, and setting δ′ = δ

|X |(7+4Ŝ+5H)
, we get a

bound on the probability of occurrence of the event P(E).
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Lemma 12. Let the data be generated by sampling with a feedback graph from an MDP with
arbitrary, possibly history-dependent policies. Then, the event ER ∩ ERE occurs with probability
at-least 1− 4|X |δ′, or

P(ER ∩ ERE) ≥ 1− 4|X |δ′.

Proof. Let Fj be the natural σ-field induced by everything (all observations and visitations) up to
the time when the algorithm has played a total of j actions and has seen which state-action pairs will
be observed but not the actual observations yet. More formally, let k = d jH e and h = j mod H be
the episode and the time index when the algorithm plays the jth action. Then everything in episodes
1 . . . k−1 isFj-measurable as well as everything up to sk,h, ak,h and Ōk,h(G) (which x are observed
at k, h) but not Ok,h(G) (the actual observations) or sk,h+1.

We will use a filtration with respect to the stopping times of when a specific state-action pair is
observed. To that end, consider a fixed x ∈ X . Define

τi = inf

{
(k − 1)H + h :

k−1∑
j=1

H∑
h′=1

1{x ∈ Ōj,h′(G)}+

h∑
h′=1

1{x ∈ Ōk,h′(G)} ≥ i

}
to be the index j of Fj where x was observed for the ith time. Note that, for all i, τi are stopping
times with respect to (Fj)∞j=1. Hence, Fxi = Fτi = {A ∈ F∞ : A ∩ {τi ≤ t} ∈ Ft ∀ t ≥ 0} is a
σ-field. Intuitively, it captures all information available at time τi [35, Sec. 3.3]. Since τi ≤ τi+1, the
sequence (Fτi)∞i=1 is a filtration as well.

Consider a fixed x ∈ X and number of observations n. Define Xi = 1{τi <∞}(ri − ε̄i(x)− r(x))
where ri is the ith observation with bias ε̄i(x) of x. By construction (Xi)

∞
i=1 is adapted to the filtration

(Fxi )∞i=1. Further, recall that r(x) = E[r|(s, a) = x]− ε̄i is the immediate expected reward in x and
hence, we one can show that (Xi)

∞
i=1 is a martingale with respect to this filtration. It takes values in

the range [−r, 1− r]. We now use a Hoeffding bound and empirical Bernstein bound on
∑n
i=1Xi to

show that the probability of ER and ERE is sufficiently large. We use the tools provided by Howard
et al. [36] for both concentration bounds. The martingale

∑n
i=1Xi satisfies Assumption 1 in Howard

et al. [36] with Vn = n/4 and any sub-Gaussian boundary (see Hoeffding I entry in Table 2 therein).
The same is true for −

∑n
i=1Xi. Using the sub-Gaussian boundary in Corollary 22 in Dann et al.

[12], we get that ∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≤ 1.44

√
n

4n2

(
1.4 ln ln(e ∨ n/2) + ln

5.2

δ′

)
≤ φ(n)

holds for all n ∈ N with probability at least 1− 2δ′. It therefore also holds for all random n including
the number of observations of x after k − 1 episodes. Hence, the condition in ER holds for all
k for a fixed x with probability at least 1 − 2δ′. An additional union bound over x ∈ X gives
P(ER) ≥ 1− 2|X |δ′.
We can proceed analogously for ERE, except that we use the uniform empirical Bernstein bound from
Theorem 4 in Howard et al. [36] with the sub-exponential uniform boundary in Corollary 22 in Dann
et al. [12] which yields∣∣∣∣∣ 1n

n∑
i=1

Xi

∣∣∣∣∣ ≤ 1.44

√
Vn
n2

(
1.4 ln ln(e ∨ 2Vn) + ln

5.2

δ′

)
+

2.42

n

(
1.4 ln ln(e ∨ 2Vn) + ln

5.2

δ′

)
(9)

with probability at least 1−2δ′ for all n ∈ N. Here, Vn =
∑n
i=1X

2
i ≤ n. Using the definition of φ(n)

in Equation (8), we can upper-bound the right hand side in the above equation with 2
√
Vn/nφ(n) +

4.66φ(n)2. We next bound Vn in the above by the de-biased variance estimate

Vn =

n∑
i=1

X2
i =

n∑
i=1

(ri − ε̄i(x)− r(x))2 =

n∑
i=1

(ri − ε̄i(x)− r(x))2

≤ 2

n∑
i=1

(ri − ε̄i(x)− r̄τn(x))2 + 2n(r(x)− r̄τn(x))2
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Applying the definition of event ER, we know that |r(x) − r̄τn(x)| ≤ φ(n) and thus Vn/n ≤
2Varτn(r|x) + 2φ(n)2. Plugging this back into (9) yields

|r̄τn(x)− r(x)| =

∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≤ 2

√
2Var(r) + 2φ(n)2φ(n) + 4.66φ(n)2

≤
√

8Var(r)φ(n) + 7.49φ(n)2

This is the condition of ERE which holds for all n and as such k as long as ER also holds. With a
union bound over X , this yields

P(ERE ∪ ER) ≥ 1− 4|X |δ′.

Lemma 13. Let the data be generated by sampling with a feedback graph from an MDP with
arbitrary (and possibly history-dependent) policies. Then, the event EVar occurs with probability at
least 1− |X |δ′, i.e.,

P(EVar) ≥ 1− |X |δ′.

Proof. Consider first a fix x ∈ X and let K be the total number of observations for x during the
entire run of the algorithm. We denote the observations by ri. Define now Xi = ri − ε̄i(x) for
i ∈ [K] and Xi ∼ PR(x) independently. Then by construction Xi is a sequence of i.i.d. random
variables in [0, 1]. We now apply Theorem 10, Equation 4 by Maurer and Pontil [37] which yields
that for any n √

n

n− 1
V̂ar(Xn) ≤ Var(X) +

√
2 ln(n2π2/6δ′)

n− 1

holds with probability at least 1 − 6δ′

π2n2 , where Var(X) is the variance of Xi and V̂ar(Xn) =
1
n

∑n
i=1(Xi − X̄n)2 with X̄n = 1

n

∑n
i=1Xi is the empirical variance of the first n samples. By

applying a union bound over n ∈ N, and multiplying by
√
n/(n− 1) we get that√

V̂ar(Xn) ≤
√
n− 1

n
Var(X) +

√
2 ln(n2π2/6δ)

n
≤ Var(X) +

√
2 ln(n2π2/6δ)

n

holds for all n ∈ N with probability at least 1 − 6δ′

π2

∑∞
n=1

1
n2 ≥ 1 − δ′. We now note that

Var(X) = Var(r|x) and for each episode k, there is some n so that Vark(r|x) = V̂ar(Xn). Hence,
with another union bound over x ∈ X , the statement follows.

Lemma 14. Let the data be generated by sampling with a feedback graph from an MDP with
arbitrarily (possibly adversarially) chosen initial states. Then, the event EN occurs with probability
at-least 1−H|X |δ′, or

P(EN) ≥ 1−H|X |δ′.

Proof. Consider a fixed x ∈ X and h ∈ [H]. We define Fk to be the sigma-field induced by the first
k − 1 episodes and sk,1. Let Xk,h = 1{x ∈ Ōk,h(G)} be the indicator whether x was observed
in episode k at time h. The probability that this indicator is true given Fk is simply the probability
wk,h(x) = P(sk,h = s(x), ak,h = a(x) | sk,1,H1:k−1) of visiting each x̄ ∈ X at time h and the
probability q(x̄, x) that x̄ has an edge to x in the feedback graph in the episode

P(Xk,h = 1 |Fk) =
∑
x̄∈Xh

q(x̄, x)wk(x̄).

We now apply Lemma F.4 by Dann et al. [38] with W = ln 1
δ′ and obtain that

k∑
i=1

Xi,h ≥
1

2

k∑
i=1

∑
x̄∈Xh

q(x̄, x)wi(x̄)− ln
1

δ′

for all k ∈ N with probability at least 1− δ′. We now take a union-bound over h ∈ [H] and x ∈ X
get that P(EN) ≥ 1− |X |Hδ′ after summing over h ∈ [H] because the total number of observations
after k − 1 episodes for each x is simply nk(x) =

∑k−1
i=1

∑
h∈[H]Xk,h.
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D.2 Bounds on the Difference of Biased Estimates and Unbiased Estimates

We now derive several helpful inequalities that bound the difference of biased and unbiased estimates.

|r̄k(x)− r̂k(x)| = 1

nk(x)

nk(x)∑
i=1

ε̄i(x) ≤ ε̂k(x)

‖P̄k(x)− P̂k(x)‖1 =2 max
B⊆S
|P̄k(B|x)− P̂k(B|x)| = 2

∣∣∣∣∣∣
∑
s′∈B

1

nk(x)

nk(x)∑
i=1

ε̄i(x, s
′)

∣∣∣∣∣∣
≤ 2

nk(x)

nk(x)∑
i=1

∣∣∣∣∣∑
s′∈B

ε̄i(x, s
′)

∣∣∣∣∣ ≤ ε̂k(x).

The final inequality follows from the fact that
∑
s′∈B ε̄i(x, s

′) ≤ 1
2‖P (x) − P ′i (x)‖1 ≤ ε′i

2 where
P ′i (x) denotes the true distribution of the ith transition observation of x and ε′i denotes the bias
parameter for this observation. From this total variation bound, we can derive a convenient bound on
the one-step variance of any “value”-function f : S → [0, fmax] over the states. In the following, we
will use the notation

σ2
P (f) := Es′∼P [f(s′)2]− Es′∼P [f(s′)]2.

Using this notation, we bound the difference of the one-step variance of the biased and unbiased state
distributions as

|σ2
P̄k(x)(f)− σ2

P̂k(x)
(f)| = |P̄k(x)f2 − (P̄k(x)f)2 − P̂k(x)f2 + (P̂k(x)f)2|

= |(P̄k(x)− P̂k(x))f2 + (P̄k(x)− P̂k(x))f(P̄k(x) + P̂k(x))f |
≤ f2

max‖P̄k(x)− P̂k(x)‖1 + 2f2
max‖P̄k(x)− P̂k(x)‖1 ≤ 3f2

maxε̂k(x).

(10)

We also derive the following bounds on quantities related to the variance of immediate rewards.
In the following, we consider any number of episodes k and x ∈ X . To keep notation short, we
omit subscript k and argument x below. That is, r = r(x) is the expected reward, n = nk(x)
is the number of observations, which we denote by r1, . . . , rn each. Further ε̄i = ε̄i(x) is the
bias of the ith reward sample for this x and εi ≥ ε̄i the accompanying upper-bound provided to
the algorithm. We denote by V̂ar(r) = 1

n

∑n
i=1(ri − r̂)2 the empirical variance estimate and by

Var(r) = Vark(r|x) = 1
n

∑n
i=1(ri − ε̄i − r̄)2. Thus,

Var(r) =
1

n

n∑
i=1

(ri − ε̄i − r̄)2 ≤ 2

n

n∑
i=1

(ri − r̂)2 +
2

n

n∑
i=1

(r̂ − ε̄i − r̄)2

= 2V̂ar(r) +
2

n

n∑
i=1

(( 1

n

n∑
j=1

ε̄j

)
− ε̄i

)2

≤ 2V̂ar(r) +
2

n

n∑
i=1

ε̄2i ≤ 2V̂ar(r) +
2

n

n∑
i=1

ε2i ≤ 2V̂ar(r) + 2ε̂,

(11)

where the last inequality follows from the definition of ε̂ and using the fact that ε̄i ≤ 1. The right
hand side of the above chain of inequalities is empirically computable and, subsequently, used to
derive the reward bonus terms.

Analogously, we can derive a reverse of this bound that upper bounds the computable variance
estimate V̂ar(r) by the unbiased variance estimate Var(r). This is given as

V̂ar(r) =
1

n

n∑
i=1

(ri − r̂)2 ≤ 2

n

n∑
i=1

(ri − ε̄i − r̄)2 +
2

n

n∑
i=1

(ε̄i − r̂ + r̄)2
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≤ 2

n

n∑
i=1

(ri − ε̄i − r̄)2 +
2

n

n∑
i=1

ε2i

=2Var(r) +
2

n

n∑
i=1

ε2i . ≤ 2Var(r) + 2ε̂. (12)

D.3 Correctness of Optimistic Planning

In this section, we provide the main technical results to guarantee that in event E (defined in
Lemma 11), the output of OptimistPlan are upper and lower confidence bounds on the value
functions.

Lemma 15 (Correctness of Optimistic Planning). Let π, Ṽ ,∼V be the policy and the value function
bounds returned by OptimistPlan with inputs n, r̂, r̂2, P̂ , ε̂ after any number of episodes k. Then,
in event E (defined in Lemma 11), the following hold.

1. The policy π is greedy with respect to Ṽ and satisfies for all h ∈ [H]

∼Vh ≤ V
π
h ≤ V ?h ≤ Ṽh.

2. The same chain of inequalities also holds for the Q-estimates used in OptimistPlan, i.e.,

∼
Qh ≤ Qπh ≤ Q?h ≤ Q̃h.

Proof. We show the statement by induction over h from H + 1 to 1. For h = H + 1, the statement
holds for the value functions ∼VH+1, ṼH+1 by definition. We now assume it holds for h + 1. Due
to the specific values of ψh in OptimistPlan, we can apply Lemmas 16 and 17 and get that

∼
Qh ≤ Qπh ≤ Q?h ≤ Q̃h. Taking the maximum over actions, gives that ∼Vh ≤ V πh ≤ V ?h ≤ Ṽh. Hence,

the claim follows. The claim that the policy is greedy with respect to Ṽ follows from the definition
π(s, h) ∈ argmaxa Q̃h(s.a).

Lemma 16 (Lower bounds admissible). Let π, Ṽ ,∼V be the policy and the value function bounds
returned by OptimistPlan with inputs n, r̂, r̂2, P̂ , ε̂ after any number of episodes k. Consider
h ∈ [H] and x ∈ X and assume that Ṽh+1 ≥ V ?h+1 ≥ V πh+1 ≥ ∼Vh+1 and that the confidence bound
width is at least

ψh(x) ≥ 4
(√

V̂ar(r|x) + σP̂ (x)(Ṽh+1) + 2
√
ε̂(x)H

)
φ(n(x)) + 53ŜHV max

h+1 (x)φ(n(x))2

+
1

H
P̂ (x)(Ṽh+1 − ∼Vh+1) + (H + 1)ε̂(x).

Then, in event E (defined in Lemma 11), the lower confidence bound at time h is admissible, i.e.,

Qπh(x) ≥
∼
Qh(x).

Proof. When
∼
Qh(x) = 0, the statement holds trivially. Otherwise, we can decompose the difference

of the lower bound and the value function of the current policy as

Qπh(x)−
∼
Qh(x) ≥ r(x)− r̄(x) + (P (x)− P̄ (x))V ?h+1︸ ︷︷ ︸

(A)

+ (P (x)− P̄ (x))(V πh+1 − V ?h+1)︸ ︷︷ ︸
(B)

+ P̄ (x)(V πh+1 − ∼Vh+1) + r̄(x)− r̂(x) + (P̄ (x)− P̂ (x))∼Vh+1︸ ︷︷ ︸
(C)

+ ˜ψh(x).

(13)

Note that P̄ (x)(V πh+1 − ∼Vh+1) ≥ 0 by assumption. We bound the terms (A), (B) and (C) separately
as follows.

32



• Bound on (A). Given that the event E occurs, the events ERE and EVE also hold (see
definition of E in Lemma 11). Thus,

|r(x)− r̄(x) + (P (x)− P̄ (x))V ?h+1|

≤
(√

8Var(r|x) + 2
√
P̄ (x)[(V ?h+1 − P (x)V ?h+1)2]

)
φ(n(x))

+ (4.66V max
h+1 (x) + 7.49)φ(n(x))2

(i)

≤
(√

8Var(r|x) +
√

12σP̄ (x)(Ṽh+1)

)
φ(n(x))

+ (24H
√
ŜV max

h+1 (x) + 8.13V max
h+1 (x) + 7.49)φ(n(x))2

+
1

2H
P̄ (x)(Ṽh+1 − ∼Vh+1)

(ii)

≤
(√

16V̂ar(r|x) + 2ε̂(x) +

√
36H2ε̂(x) + 12σ2

P̂ (x)
(Ṽh+1)

)
φ(n(x))

+ (24H
√
ŜV max

h+1 (x) + 8.13V max
h+1 (x) + 7.49)φ(n(x))2

+
1

2H
P̂ (x)(Ṽh+1 − ∼Vh+1) +

ε̄(x)

2

≤
(

4

√
V̂ar(r|x) +

√
12σP̂ (x)(Ṽh+1)

)
φ(n(x))

+ (24H
√
ŜV max

h+1 (x) + 8.13V max
h+1 (x) + 7.49)φ(n(x))2

+
1

2H
P̂ (x)(Ṽh+1 − ∼Vh+1) +

ε̄(x)

2
+ (6H +

√
2)
√
ε̂(x)φ(n(x))

(14)

where the inequality (i) is given by Lemma 10 in Dann et al. [12] and, the inequality (ii)
follows from equations (10) and (11).

• Bound on (B). An application of Lemma 17 in Dann et al. [12] implies that

|(P (x)− P̄ (x))(V πh+1 − V ?h+1)|

≤ (8H + 4.66)ŜV max
h+1 (x)φ(n(x))2 +

1

2H
P̄ (x)(V ?h+1 − V πh+1)

≤ (8H + 4.66)ŜV max
h+1 (x)φ(n(x))2 +

1

2H
P̂ (x)(Ṽh+1 − ∼Vh+1) +

ε̄(x)

2

where the last inequality uses the assumption that Ṽh+1 ≥ V ?h+1 ≥ V πh+1 ≥ ∼Vh+1.

• Bound on (C). Note that

|r̄(x)− r̂(x) + (P̄ (x)− P̂ (x))∼Vh+1| ≤ ε̄(x) + (H − 1)ε̄(x) = Hε̄(x).

Plugging the above bounds back in (13), we get

Qπh(x)−
∼
Qh(x) ≥ − 1

H
P̂ (x)(Ṽh+1 − ∼Vh+1)− 4

(√
V̂ar(r|x) + σP̂ (x)(Ṽh+1)

)
φ(n(x))

− 53ŜHV max
h+1 (x)φ(n(x))2 − (H + 1)ε̂(x)− 8H

√
ε̂(x)φ(n(x)) + ψh(x)

which is non-negative by our choice of ψh(x).

Lemma 17 (Upper bounds admissible). Let π, Ṽ ,∼V be the policy and the value function bounds
returned by OptimistPlan with inputs n, r̂, r̂2, P̂ , ε̂ after any number of episodes k. Consider
h ∈ [H] and x ∈ X and assume that Ṽh+1 ≥ V ?h+1 ≥ V πh+1 ≥ ∼Vh+1 and that the confidence bound
width is at least

ψh(x) ≥ 4
(

V̂ar(r|x) + 2H
√
ε̄(x) + σP̂ (x)(Ṽh+1)

)
φ(n(x)) + 40

√
ŜHV max

h+1 (x)φ(n(x))2
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+
1

2H
P̂ (x)(Ṽh+1 − ∼Vh+1) + (H + 1/2)ε̂(x).

Then, in event E (defined in Lemma 11), the upper confidence bound at time h is admissible, i.e.,

Q?h(x) ≤ Q̃h(x).

Proof. When Q̃h(x) = Qmax
h (x), the statement holds trivially. Otherwise, we can decompose the

difference of the upper bound and the optimal Q-function as

Q̃h(x)−Q?h(x) ≥ r̄(x)− r(x) + (P̄ (x)− P (x))V ?h+1︸ ︷︷ ︸
(A)

+P̂ (x)(Ṽh+1 − V ?h+1)

+ r̂(x)− r̄(x) + (P̂ (x)− P̄ (x))V ?h+1︸ ︷︷ ︸
(C)

+ψh(x).

Note that by assumption P̂ (x)(Ṽh+1 − V ?h+1) ≥ 0. The term, (A) is bound using Equation (14) in
Lemma 15 and the bias terms (C) is bound as

|r̄(x)− r̂(x) + (P̄ (x)− P̂ (x))V ?h+1| ≤ ε̄(x) + (H − 1)ε̄(x) = Hε̄(x).

Thus,

Q̃h(x)−Q?h(x) ≥ − 4
(

V̂ar(r|x) + 2H
√
ε̄(x) + σP̂ (x)(Ṽh+1)

)
φ(n(x))− 40

√
ŜHV max

h+1 (x)φ(n(x))2

− 1

2H
P̂ (x)(Ṽh+1 − ∼Vh+1)− ε̄(x)

2
−Hε̄(x) + ψh(x) = ψh(x)− ψ̃h(x),

which is non-negative by our choice for ψh.

D.4 Tightness of Optimistic Planning

Lemma 18 (Tightness of Optimistic Planning). Let π, Ṽ and ∼V be the output of OptimistPlan
with inputs n, r̂, r̂2, P̂ and ε̂ after any number of episodes k. In event E (defined in Lemma 11), we
have for all s ∈ S, h ∈ [H],

Ṽh(s)− ∼Vh(s) ≤
∑
x∈X

H∑
t=h

(
1 +

3

H

)2t

wt(x)
[
Qmax
t (x) ∧ (γt(x)φ(n(x)) + βt(x)φ(n(x))2 + αε̂(x))

]
where γt(x) = 8

(√
2Var(r|x) + 7

√
ε̂(x)H + 2σP (x)(V

π
t+1)

)
, βt(x) = 416ŜHV max

t+1 (x), α =

3H + 4, and the weights wt(x) = P((st, at) = x | sh = s, ah:H ∼ π) are the probability of visiting
each state-action pair at time t under policy π.

Proof. We start by considering the difference of Q-estimates for h at a state-action pair x ∈ X

Q̃h(x)−
∼
Qh(x) ≤ 2ψh(x) + P̂ (x)(Ṽh+1 − ∼Vh+1)

=

(
1 +

2

H

)
P̂ (x)(Ṽh+1 − ∼Vh+1) + 106ŜHV max

h+1 (x)φ(n(x))2 + (2H + 2)ε̂(x)

+ 8

(√
V̂ar(r|x) + 2

√
ε̂(x)H + σP̂ (x)(Ṽh+1)

)
φ(n(x))

≤
(

1 +
2

H

)
P̄ (x)(Ṽh+1 − ∼Vh+1) + 106ŜHV max

h+1 (x)φ(n(x))2 + (3H + 4)ε̂(x)

+ 8

(√
2Var(r|x) + 7

√
ε̂(x)H + σP̄ (x)(Ṽh+1)

)
φ(n(x)),
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where, the equality is given by the definition of ψh and the inequality follows by using Equations (10)
and (12) to remove the biases. Next, using Lemma 11 from Dann et al. [12] to convert the value
variance to the variance with respect to the value function of π, we get,

Q̃h(x)−
∼
Qh(x) ≤

(
1 +

3

H

)
P̄ (x)(Ṽh+1 − ∼Vh+1) + 410ŜHV max

h+1 (x)φ(n(x))2 + (3H + 4)ε̂(x)

+ 8

(√
2Var(r|x) + 7

√
ε̂(x)H + 2σP (x)(V

π
h+1)

)
φ(n(x))

≤
(

1 +
3

H

)2

P (x)(Ṽh+1 − ∼Vh+1) + 416ŜHV max
h+1 (x)φ(n(x))2 + (3H + 4)ε̂(x)

+ 8

(√
2Var(r|x) + 7

√
ε̂(x)H + 2σP (x)(V

π
h+1)

)
φ(n(x)), (15)

where the second inequality follows by using Lemma 17 from Dann et al. [12] to substiute
P̄ (x)(Ṽh+1 − ∼Vh+1) by P (x)(Ṽh+1 − ∼Vh+1). Next, recalling that

Ṽh(s)− ∼Vh(s) = Q̃h(s, π(s, h))−
∼
Qh(s, π(s, h)),

and rolling the recursion in equation (15) from s to h, we get,

Ṽh(s)− ∼Vh(s) ≤
∑
x∈X

H∑
t=h

(
1 +

3

H

)2t

wt(x)[Qmax
t (x) ∧ (γt(x)φ(n(x)) + βt(x)φ(n(x))2 + αε̂(x)],

where, γt(x) = 8

(√
2Var(r|x) + 7

√
ε̂(x)H + 2σP (x)(V

π
t+1)

)
, βt(x) = 416ŜHV max

t+1 (x) and

α = 3H + 4. The final statement follows by observing that (1 + 3/H)2t ≤ exp(6).

D.5 Proof of the Theorem 8

In this section, we provide the proof of the desired IPOC bound for Algorithm 6.

Proof. Throughout the proof, we consider only outcomes in event E (defined in Lemma 11) which
occurs with probability at least 1 − δ. Lemma 15 implies that the outputs πk, Ṽk,h and ∼Vk,h from
calls to OptimistPlan during the execution of Algorithm 6 satisfy

∼Vk,h ≤ V
πk
h ≤ V ?h ≤ Ṽk,h

and hence, all the certificates provided by Algorithm 6 are admissible confidence bounds. Further,
Lemma 18 shows that the difference between the two value functions returned by OptimistPlan is
bounded as

Ṽk,1(sk,1)− ∼Vk,1(sk,1) ≤ exp(6)
∑
x∈X

H∑
h=1

wk,h(x)
[
Qmax
h (x) ∧

(
βh(x)φ(nk(x))2

+ γk,h(x)φ(nk(x)) + αε̂k(x)
)]
, (16)

where, wk,h(x) = P((sk,h, ak,h = x | πk, sk,1) denotes the probability of the agent visiting x
in episode k at time h given the policy πk and the initial state sk,1, and α = 3H + 4, βh(x) =

416ŜHV max
h+1 (x) and γk,h(x) = 8

(√
2Vark(r|x) + 7

√
ε̂(x)H + 2σP (x)(V

πk
h+1)

)
.

We define some additional notation, which will come in handy to control Equation (16) above. Let
wk(x) :=

∑H
h=1 wk,h(x) denote the (total) expected visits of x in the kth episode. Next, for some

wmin > 0, to be fixed later, define the following subsets of the state action pairs:
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(i) Lk: Set of all state-actions pairs x that have low expected visitation in the kth episode, i.e.

Lk := {x ∈ X : wk(x) < wmin}.

(ii) Uk: Set of all state-action pairs that had low observation probability in the past, and therefore
have not been observed often enough, i.e.

Uk :=

{
x ∈ X \ Lk :

∑
i<k

∑
x̄∈X

q(x̄, x)wi(x̄) < 4H ln
1

δ′

}
.

(iii) Wk: Set of the remaining state-action pairs that have sufficient past probability, i.e.

Wk :=

{
x ∈ X \ Lk :

∑
i<k

∑
x̄∈X

q(x̄, x)wi(x̄) ≥ 4H ln
1

δ′

}
.

Additionally, let Qmax denote an upper bound on the value-bounds used in the algorithm for all
relevant x at all times in the first T episodes, i.e.,

Qmax ≥ max
k∈[T ],h∈[H]

max
x : wk,h(x)>0

Qmax
h (x) and,

Qmax ≥ max
k∈[T ],h∈[H]

max
x : wk,h(x)>0

V max
h+1 (x).

Next, we bound Equation (16) (above) by controlling the right hand side separately for each of the
above classes. For Lk and Uk, we will use the upper bound Qmax and for the set Wk, we will use the
bound βh(x)φ(nk(x))2 + γk,h(x)φ(nk(x))) + αε̂k(x)). Thus,

T∑
k=1

Ṽk,1(sk,1)− ∼Vk,1(sk,1) ≤ exp(6)

(
T∑
k=1

∑
x∈Lk

wk(x)Qmax

︸ ︷︷ ︸
(A)

+

T∑
k=1

∑
x∈Uk

wk(x)Qmax

︸ ︷︷ ︸
(B)

+

T∑
k=1

∑
x∈Wk

H∑
h=1

wk,h(x)(βh(x)φ(nk(x))2 + γk,h(x)φ(nk(x)) + αε̂k(x))︸ ︷︷ ︸
(C)

)
.

(17)

We bound the terms (A), (B) and (C) separately as follows:

1. Bound on (A). Since, for any x ∈ Lk, wk(x) < wmin (by definition), we have

Qmax
T∑
k=1

∑
x∈Lk

wk(x) ≤ QmaxT |X |wmin.

2. Bound on (B). By the definition of the set Uk,

T∑
k=1

∑
x∈Uk

wk(x)Qmax

= Qmax
T∑
k=1

∑
x∈X

wk(x)1

{∑
i<k

∑
x̄∈X

q(x̄, x)wi(x̄) < 4H ln
1

δ′

}
. (18)

Observe that, for any constant ν ∈ (0, 1], to be fixed later,∑
i<k

∑
x̄∈X

q(x̄, x)wi(x̄) ≥
∑
i<k

∑
x̄∈X

q(x̄, x)wi(x̄)1{q(x̄, x) ≥ ν}
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≥
∑
i<k

∑
x̄∈N−≥ν(x)

wi(x̄)ν, (19)

where, N−≥ν(x) denotes the of incoming neighbors of x (and x itself) in the truncated
feedback graph G≥ν . Plugging the above in Equation (18), we get,

T∑
k=1

∑
x∈Uk

wk(x)Qmax ≤ Qmax
T∑
k=1

∑
x

wk(x)1


∑
i<k

∑
x̄∈N−≥ν(x)

wi(x̄) <
4H

ν
ln

1

δ′

 .

Next, using a pigeon hole argument from Lemma 23 in the above expression, we get,

T∑
k=1

∑
x∈Uk

wk(x)Qmax ≤ 4HQmaxµ(G≥ν)

ν

(
1 + ln

1

δ′

)
.

Since the above holds for any ν ∈ (0, 1], taking the the infimum over ν, we get

T∑
k=1

∑
x∈Uk

wk(x)Qmax ≤ 4HQmaxµ̄

(
1 + ln

1

δ′

)
,

where, µ̄ := infν
µ(G≥ν)

ν .

3. Bound on (C). Setting β = 410ŜQmaxH , we get,

(C) ≤ β
T∑
k=1

∑
x∈Wk

wk(x)φ(nk(x))2 +

T∑
k=1

∑
x∈Wk

H∑
h=1

wk,h(x)γk,h(x)φ(nk(x))

+ α

T∑
k=1

∑
x∈Wk

wk(x)ε̂k(x)

1
. β

√
ln(HT )

T∑
k=1

∑
x∈Wk

wk(x)φ(nk(x))2

+

T∑
k=1

∑
x∈Wk

H∑
h=1

wk,h(x)γ̃k,h(x)φ(nk(x)) + εmaxH
2T

2
. β

√
ln(HT )

T∑
k=1

∑
x∈Wk

wk(x)φ(nk(x))2

︸ ︷︷ ︸
(D)

+

√√√√√√√
T∑
k=1

∑
x∈Wk

H∑
h=1

wk,h(x)γ̃k,h(x)2

︸ ︷︷ ︸
(E)

√√√√√√√
T∑
k=1

∑
x∈Wk

wk(x)φ(nk(x))2

︸ ︷︷ ︸
(D)

+ εmaxH
2T.

(20)

Where, we use the symbol . to denote ≤ up to multiplicative constants, and the inequal-
ity (1) follows by bounded ε̂k(x) by the largest occurring bias εmax and using the defi-
nition of event EVar from Lemma 13 to replace γk,h(x) by γ̃k,h(x) = 8

√
2 Vark(r|x) +

56
√
ε̂(x)H+16σP (x)(V

πk
h+1) while paying for an additional term of order

√
ln(n2/δ′)/n ≤√

ln(HT )φ(n). Since this additional term is multiplied by an additional φ(n), it only ap-
pears in the first term of (20). The inequality (2) is given by the Cauchy-Schwarz inequality.

We bound the terms (D) and (E) separately in the following.
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(a) Bound on (D). The term (A) essentially has the form
∑T
k=1

∑
x∈Wk

wk(x) ln lnnk(x)
nk(x) .

To make our life easier, we first replace the ln lnnk(x) dependency by a constant.
Specifically, we upper-bound φ(nk(x))2 by a slightly simpler expression J

nk(x) where

J = 0.75 ln 5.2 ln(2HT )
δ′ ≥ 0.52×1.4 ln 5.2 ln(e∨2nk(x))

δ′ ≥ 0.52(1.4 ln ln(e∨2nk(x))+
ln(5.2/δ′)) which replaces the dependency on the number of observations nk(x) in
the log term by the total number of time steps HT ≥ Hk ≥ nk(x). This gives

(A) ≤ J
T∑
k=1

1{x ∈Wk}
wk(x)

nk(x)
. (21)

By the definition ofWk, we know that for all x ∈Wk the following chain of inequalities
holds ∑

i<k

∑
x̄∈X

q(x̄, x)wi(x̄) ≥ 4H ln
1

δ′
≥ 8H ≥ 8

∑
x̄∈X

q(x̄, x)wk(x̄).

The second inequality is true because of the definition of δ′ gives 1
δ′ = |X |(4Ŝ+5H+7)

δ
which is lower bounded by 13 ≥ exp(2) because δ ≤ 1 and |X | ≥ 2. Leveraging this
chain of inequalities in combination with the definition of event EN, we can obtain a
lower bound on nk(x) for x ∈Wk as

nk(x) ≥1

2

∑
i<k

∑
x̄∈X

q(x̄, x)wi(x̄)−H ln
1

δ′
≥ 1

4

∑
i<k

∑
x̄∈X

q(x̄, x)wi(x̄)

≥2

9

∑
i≤k

∑
x̄∈X

q(x̄, x)wi(x̄)

≥2ν

9

∑
i<k

∑
x̄∈N−≥ν(x)

wi(x̄)

where the last inequality follows from (19). Plugging this back into (21) and applying
Lemma 22 gives

(A) ≤ 9J

2ν

T∑
k=1

∑
x∈Wk

wk(x)∑
i<k

∑
x̄∈N−≥ν(x) wi(x̄)

≤ 18eJ

ν
mas(G≥ν) ln

(
eHT

wmin

)
.

Since this holds for any ν, we get

(A) ≤ 18eJµ̄ ln

(
eHT

wmin

)
.

(b) Bound on (E). Using the law of total variance for value functions in MDPs (see
Lemma 4 in Dann and Brunskill [18] or see Azar et al. [29], Lattimore and Hutter [39]
for the discounted setting), we get,

T∑
k=1

∑
x∈X

H∑
h=1

wk,h(x)γ̃k,h(x)2

.
T∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)(Var(r|x) +H2ε(x) + σ2
P (x)(V

πk
h+1))

≤
T∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)(Var(r|x) + σ2
P (x)(V

πk
h+1)) + εmaxH

3T

≤
T∑
k=1

(∑
x∈X

wk(x)r(x) + Var

(
H∑
h=1

rh

∣∣∣∣ a1:H ∼ πk, sk,1

))
+ εmaxH

3T
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≤
T∑
k=1

(H + 1)E

(
H∑
h=1

rh

∣∣∣∣ a1:H ∼ πk, sk,1

)
+ εmaxH

3T

≤(H + 1)

T∑
k=1

V πk1 (sk,1) + TH3εmax,

where, the above inequalities use the fact that for any random variable X ≤ Xmax a.s.,
we have Var(X) ≤ E[X2] ≤ E[X]Xmax.

Plugging the above developed bounds for the terms (A), (B) and (C) in (17), we get,
T∑
k=1

Ṽk,1(sk,1)− ∼Vk,1(sk,1) . |X |QmaxTwmin + µ̄QmaxH

(
1 + ln

1

δ′

)
+ β

√
ln(HT )Jµ̄ ln

(
eHT

wmin

)

+

√√√√J

(
H

T∑
k=1

V πk1 (sk,1) +H3εmaxT

)
µ̄ ln

(
eHT

wmin

)
+H2Tεmax.

Setting wmin = 1
Qmax|X |T gives

T∑
k=1

Ṽk,1(sk,1)− ∼Vk,1(sk,1) = O


√√√√µ̄H

T∑
k=1

V πk1 (sk,1) ln
|X |HT
δ

+ µ̄ŜQmaxH ln3 |X |HT
δ


+O

(√
µ̄H3Tεmax ln

|X |HT
δ

+H2Tεmax

)
.

D.6 Sample Complexity Bound for Algorithm 1 and Algorithm 6

For convenience, we here restate the sample-complexity bound of Algorithm 1 from Section C.3.
Corollary 1 (PAC-style Bound). For any episodic MDP with state-actions X , horizon H and
feedback graph G, with probability at least 1 − δ for all ε > 0 jointly, Algorithm 1 can output a
certificate with Ṽk′,1(sk′,1)− ∼Vk′,1(sk′,1) for some episode k′ within the first

k′ = O
(MH2

ε2
ln2 H|X |

εδ
+
MŜH2

ε
ln3 H|X |

εδ

)
episodes. If the initial state is fixed, such a certificate identifies an ε-optimal policy.

Proof. This Corollary is a special case of Proposition 19 below. We simply set γ = 1 and the
quantities V̄ (T̄ ) = H andQmax = H to their worst-case values. Note also that µ = µ̄ in deterministic
feedback graphs. Then T̄ in Proposition 19 evaluates to

T̄ = O

(
µH2

ε2
ln2 |X |H

εδ
+
µŜH2

ε
ln3 |X |H

εδ

)
which is the desired sample-complexity.

Proposition 19 (Sample-Complexity of Algorithm 6). Consider any tabular episodic MDP with
state-action pairs X , episode length H and stochastic independent directed feedback graph G that
provides unbiased observations (εmax = 0). Then, with probability at least 1− δ, for all ε > 0 and
γ ∈ N jointly, Algorithm 6 outputs γ certificates that are smaller than ε after at most

T̄ = O

(
µ̄V (T̄ )H

ε2
ln2 |X |H

εδ
+
µ̄ŜHQmax

ε
ln3 |X |H

εδ
+ γ

)
episodes where V̄ (T ) ≥ 1

T

∑T
k=1 V

πk
1 (sk,1) ≤ 1

T

∑T
k=1 V

?
1 (sk,1) ≤ H is a bound on the average

expected return achieved by the algorithm during those episodes and can be set to H .

39



Proof. Let εk = Ṽk,1(sk,1) − ∼Vk,1(sk,1) be the size of the certificate output by Algorithm 6 in
episode k. By Theorem 8, the cumulative size after T episodes is with high probability 1− δ bounded
by

T∑
k=1

εk ≤O
(√

µ̄HV̄ (T )T ln
|X |HT
δ

+ µ̄ŜQmaxH ln3 |X |HT
δ

)
.

Here, V̄ (T ) ≥ 1
T

∑T
k=1 V

πk
1 (sk,1) is any non-increasing bound that holds in the high-probability

event on the average initial values of all policies played. We can always set V̄ (T ) = H = O(1) but
there may be smaller values appropriate if we have further knowledge of the MDP (such as the value
of the optimal policy).

If the algorithm has not returned γ certificates of size at most ε yet, then
∑T
k=1 εk > (T − γ)ε.

Combining this with the upper bound above gives

ε <

√
T

T − γ

√
cµ̄HV̄ (T ) ln

|X |HT
δ

+
cµ̄ŜQmaxH

T − γ
ln3 |X |HT

δ

for some absolute constant c. Since the expression on the RHS is monotonically decreasing, it is
sufficient to find a T̄ such that

√
T̄

T̄ − γ

√
cµ̄HV̄ (T̄ ) ln

|X |HT̄
δ

≤ ε

2
and

cµ̄ŜQmaxH

T̄ − γ
ln3 |X |HT̄

δ
≤ ε

2
.

to guarantee that the algorithm has returned γ certificates of size at most γ after T̄ episodes. Consider
the first condition for T̄ that satisfies

2γ ∨ c̄ µ̄V (T̄ )H

ε2
ln2 c̄|X |H

εδ
≤ T̄ ≤

[
c̄|X |H
εδ

]5

(22)

for some constant c̄ large enough (c̄ ≥ 3456c sufficies). A slightly tedious computation gives
√
T̄

T̄ − γ

√
cµ̄HV̄ (T̄ ) ln

|X |HT̄
δ

≤ 2

√
cµ̄HV̄ (T̄ )

T̄
ln2 |X |HT̄

δ

≤

√√√√ ε2

4 · 62

ln2 |X |HT̄
δ

ln2 c̄|X |H
εδ

=
ε

2
·

ln |X |Hδ + ln T̄

ln |X |Hδ + ln c̄6|X |5H5

ε6δ5

and by the upper-bound condition in (22), the RHS cannot exceed ε
2 . Consider now the second

condition for T̄ that satisfies

2γ ∨ c̄ µ̄ŜHO
max

ε
ln3 c̄|X |H

εδ
≤ T̄ ≤

[
c̄|X |H
εδ

]5

(23)

which yields

cµ̄ŜQmaxH

T̄ − γ
ln3 |X |HT̄

δ
≤ 2cµ̄ŜQmaxH

T̄
ln3 |X |HT̄

δ

≤ ε

2
·

ln3 |X |HT̄
δ

4 · 63 ln3 c̄|X |H
εδ

=
ε

2
·

[
ln |X |Hδ + ln T̄

ln |X |Hδ + ln c̄6|X |5H5

ε6δ5

]3

.

Hence, we have shown that if T̄ satisfies the conditions in (22) and (23), then the algorithm must
have produced at least γ certificates of size at most ε within T̄ episodes. By realizing that we can pick

T̄ = 2γ + c̄
µ̄V (T̄ )H

ε2
ln2 c̄|X |H

εδ
+ c̄

µ̄ŜHOmax

ε
ln3 c̄|X |H

εδ
≤
[
c̄|X |H
εδ

]5

,

as long as γ is not significantly larger than the following quantities, the statement to show follows.
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E Technical Lemmas on Sequences on Vertices of a Graph

In this section, we present several technical results that form the foundation for our performance
bounds in terms of feedback graph properties. We begin with bounds on self-normalizing sequences
on vertices. Lemma 20 provides a bound for vertex-values sequences, which we then generalize
to integer-valued vector sequences in Lemma 21 and to real-values vector sequences in Lemma 22.
Finally, Lemma 23 gives a bound on a cumulative thresholded process defined over vertices. These
results may be of interest beyond the analysis of our specific algorithms and are therefore provided
separately.
Lemma 20 (Bound on self-normalizing vertex sequences). Let G = (X , E) be a directed graph and
x ∈ X T be a vector of length T taking values in X . Then

T∑
k=1

1∑
i∈[k]

∑
x′∈NG(xk) 1{xi = x′}

≤ µ(G) ln(eT ), (24)

where NG(x) = {x} ∪ {x′ ∈ X : (x′, x) ∈ E} are all incoming neighbors of x and x itself.

Proof. The proof of this lemma essentially follows the layering argument by Lykouris et al. [24]. It
works by re-ordering the sum over T in groups based on the graph structure. Consider any mapping `
of indices to groups that satisfies `(k) = min{l ∈ [T ] : ∀i < k, `(i) = l ⇒ xi /∈ NG(xk)} which
can be constructed inductively. It assigns each index to the smallest group that does not already
contain an earlier incoming neighbor. This assignment has two convenient properties:

• There can be at most µ(G) indices be assigned to a group because otherwise the subgraph of
the associated vertices contains a cycle. If there were a cycle then there would be an index
in that cycle that is the child of an earlier index. This violates the definition of `.

• For all occurrences it holds that
∑
i≤k 1{xi ∈ NG(xk} ≥ `(k). This is true because in

all layers l < `(k) there must be at least one earlier index that is a parent. Otherwise `(k)
would be l instead.

We now leverage both properties to bound the left hand side of Equation (24) as

(LHS of 24) =

T∑
l=1

T∑
k=1

1{`(k) = l}∑k
i=1 1{xi ∈ NG(xk}

≤
T∑
l=1

T∑
k=1

1{`(k) = l}
l

≤
T∑
l=1

µ(G)

l
≤ µ(G) ln(eT ),

where the last inequality comes from a bound on the harmonic number
∑T
i=1 1/i ≤ ln(T ) + 1 =

ln(eT ). This grouping argument bears resemblance with the argument by Lykouris et al. [24].

Lemma 21 (Bound on self-normalizing integer-valued sequences). Let G = (X , E) be a directed
graph defined on a finite vertex set X with a maximum acyclic subgraph of size µ(G) and let
(wk)k∈[T ] be a sequence of bounded integer weight functions wk : X → {0} ∪ [W ]. The following
quantity is bounded from above as

T∑
k=1

∑
x∈X

wk(x)∑k
i=1

∑
x′∈NG(x) wi(x

′)
≤ µ(G) ln

(
e
∑
x

T∑
k=1

wk(x)

)
where NG(x) = {x} ∪ {y ∈ X : (y, x) ∈ E} is the set of all neighbors pointing to x (and x itself)
in G.

Proof. We will first reduce this statement to the case where all weights are binary by extending the
length of the sequence by a factor of at most W . For each index k and value m ∈ [W ] define the
weights w̄W (k−1)+m(x) = 1{wk(x) ≥ m}. Each original index k corresponds now to a block of W
indices of which the first wk(x) are set to 1. Then we rewrite the quantity of interest in terms of these
binary weights as

(LHS of 21) =

T∑
k=1

W∑
m=1

∑
x∈X

w̄(k−1)W+m(x)∑k
i=1

∑
x′∈NG(x)

∑W
m=1 w̄(i−1)W+m(x′)
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≤
WT∑
k=1

∑
x∈X

w̄k(x)∑k
i=1

∑
x′∈NG(x) w̄i(x

′)
. (25)

The inequality holds because we have only changed the indexing but both sides are identical except
that the right-hand side potentially contains up to W fewer terms in the denominator per x ∈ X .

Let now O be the set of all occurrences of w̄k(x) > 0 and with slight abuse of notation denote by
k(o) and x(o) the index and vertice of the occurrence. Note that the total number of occurrences
is bounded |O| = T̄ :=

∑
x

∑T
k=1 wk(x) ≤ |X |WT . Further, consider any total order of this set

that satisfies o ≤ o′ implies k(o) ≤ k(o′) for any o, o′ ∈ O (i.e., order respects index order but
occurrences at the same index can be put in any order). We then rewrite (25) in terms of occurrences

(25) ≤
∑
o∈O

1∑
o′≤o 1{x(o′) ∈ NG(x(o))}

. (26)

The inequality holds because the denominator on the right-hand side includes all occurrences of
all incoming neighbors at previous indices (but might not count occurrences of neighbors at the
current index). Let X ∈ X T̄ be the vertex-valued sequence of these ordered occurrences, that is,
X = [x(o1), . . . , x(oT̄ )] for o1 < · · · < oT̄ and apply Lemma 20. This gives the desired bound

(26) ≤ µ(G) ln(eT̄ ) = µ(G) ln

(
e
∑
x

T∑
k=1

wk(x)

)
.

Lemma 22 (Bound on self-normalizing real-valued sequences, Restatement of Lemma 9). Let
G = (X , E) be a directed graph defined on a finite vertex set X with a maximum acyclic subgraph of
size µ(G) and let (wk)k∈[T ] be a sequence of non-negative weight functions wk : X → R+ which
satisfy for all k that

∑
x∈X wk(x) ≤ wmax. For any wmin > 0, the following quantity is bounded

from above as
T∑
k=1

∑
x∈X

1{wk(x) ≥ wmin}wk(x)∑k
i=1

∑
x′∈NG(x) wi(x

′)
≤ 2µ(G) ln

(
eTwmax

wmin

)
where NG(x) = {x} ∪ {y ∈ X : (y, x) ∈ E} is the set of all neighbors pointing to x (and x itself)
in G.

Proof. Without loss of generality, we can assume that all weights take values in {0} ∪ [wmin, wmax]
and ignore the indicator in the numerator. This is because

T∑
k=1

∑
x∈X

1{wk(x) ≥ wmin}wk(x)∑k
i=1

∑
x′∈NG(x) wi(x

′)
≤

T∑
k=1

∑
x∈X

1{wk(x) ≥ wmin}wk(x)∑k
i=1

∑
x′∈NG(x) 1{wi(x′) ≥ wmin}wi(x′)

.

We define a new set of integer-values weights ŵk(x) =
⌊
wk(x)
wmin

⌋
. These new weights have several

convenient properties. First, ŵk(x) are integers bounded by wmax

wmin
. Second, their total sum is

nicely bounded as
∑T
k=1

∑
x∈X ŵk(x) ≤ Twmax

wmin
. Third, from the assumption that wk(x) ∈ {0} ∪

[wmin, wmax], it follows that ŵk(x) ∈ {0} ∪
[
1, wmax

wmin

]
. This implies that

wk(x)

2wmin
≤ ŵk(x) ≤ wk(x)

wmin

as the flooring has the largest relative effect when wk(x)
wmin

↗ 2. Rearranging terms, we get
wminŵk(x) ≤ wk(x) ≤ 2wminŵk(x). We now use this relationship to exchange the original
weights with the discretized weights and only pay a factor of 2. Specifically,

T∑
k=1

∑
x∈X

wk(x)∑k
i=1

∑
x′∈NG(x) wi(x

′)
≤

T∑
k=1

∑
x∈X

2wminŵk(x)∑k
i=1

∑
x′∈NG(x) wminŵi(x′)

≤ 2µ(G) ln

(
eTwmax

wmin

)
.

The final inequality is an application of Lemma 21.
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Lemma 23 (Restatement of Lemma 10). Let G = (X , E) be a graph with finite vertex set X and let
wk be a sequence of weights wk : X → R+. For any threshold C ≥ 0,∑

x∈X

∞∑
k=1

wk(x)1
{ k∑
i=1

∑
x′∈NG(x)

wi(x
′) ≤ C

}
≤ µ(G)C

where NG(x) = {x} ∪ {y ∈ X : (y, x) ∈ E} is the set of x and all in-neighbors in G.

Proof. We proceed with an inductive argument that modifies the weight function sequence. To that
end, we define w(0)

k = wk for all k as the first element in this sequence (over sequences of weight
functions). We then give the value of interest with respect to (w

(t)
k )k∈N an explicit name

F (t) =
∑
x∈X

∞∑
k=1

w
(t)
k (x)1

{∑
i≤k

∑
x′∈NG(x)

w
(t)
i (x′) ≤ C

}
.

Let y(t)(x) =
∑∞
k=1 1

{∑
i≤k
∑
x′∈NG(x) w

(t)
i (x′) ≤ C

}
be the largest index for each x that can

have positive weight in the sum. Note that y(t)(x) can be infinity. Let ŷ(t) = maxx∈X y
(t) be the

largest index and x(t) ∈ argmaxx y
(t)(x) a vertex that hits the threshold last (if at all). We now

effectively remove it and its parents from the graph by setting their weights to 0. Specifically, define

w
(t+1)
k (x) = w

(t)
k (x)1{x /∈ NG(x(t))}1{k ≤ ŷ(t)} for all k ∈ N

as the weight function of the next inductive step. First note that all weights after ŷ(t) can be set to 0
without affecting F (t) because of how we picked ŷ(t). Second, by the condition in the first indicator,
x /∈ NG(x(t)) the total sum of zeroed weights before ŷ(t) is

ŷ(t)∑
i=1

∑
x′∈NG(x(t))

wi(x
′)

which can be at most C because ŷ(t) was picked as exactly the index where this bound holds. Hence,
F (t+1) can decrease at most by C + wmax, i.e., F (t+1) ≥ F (t) − C. We now claim that all weights
are 0 after at most µ(G) steps. This is true because in each step we zero out the weights of at least
one vertex that must have at least one positive weight as well as all its parents. We can do this at most
the size of the largest acyclic subgraph. Hence F (µ(G)) = 0 and therefore

F (0) ≤ F (1) + C ≤ · · · ≤ F (µ(G)) +

µ(G)∑
t=1

C = µ(G)C

which completes the proof.

Corollary 2. Let G = (X , E) be a graph defined on a finite vertex set X and let wk be a sequence of
non-negative bounded weight functions wk : X → [0, wmax]. For any threshold C ≥ 0, the following
bound holds ∑

x∈X

∞∑
k=1

wk(x)1
{∑
i<k

∑
x′∈NG(x)

wi(x
′) ≤ C

}
≤ µ(G)(C + wmax)

where NG(x) = {x} ∪ {y ∈ X : (y, x) ∈ E} is the set of x and all its parents in G

Proof. We match the index ranges in front of and within the indicator by increasing the threshold C
by the maximum value wmax that the weight can take when the indicator condition is met for the last
time

(LHS of 2) ≤
∑
x∈X

∞∑
k=1

wk(x)1
{∑
i≤k

∑
x′∈NG(x)

wi(x
′) ≤ C + wmax

}
.

We can now apply Lemma 23.
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F Details and Analysis of Domination Set Algorithm

F.1 Extension to Unknown Dominating Sets

Since we pay only a logarithmic price for the number of tasks attempted to be learned in the first
phase, we can modify the algorithm to attempt to learn policies to reach all S states (and thus all X )
and stop as soon as a small dominating set is found.

Assume that we know the domination number (or an upper-bound to it) γ but do not know the identity
of a dominating set of this size. In this case, we modify Algorithm 3 to

• initialize the active set to I = X to all state-action pairs;

• maintain a partial model of the feedback graph G̃ by initializing it to the empty graph (X ,∅)
over state-action pairs and, at every time step, adding all side observations as edges if not
already present;

• check after every elimination of a vertex from the active set whether G̃ has a dominating set
of size at most γ that only consists of vertices X \ I. If that is the case, we XD to this set
and move on to the second phase of the algorithm.

We can analyze this version of the algorithm in the same fashion as the case where XD is known in
advance. As long as there is a dominating set of size γ where each vertex of this set is reachable by
some policy at least p0 times per episode in expectation, the algorithm has moves on to the second
phase after at most Õ

(
µS̃H2

p0

)
episodes. The total sample-complexity price for not knowing the

dominating set at most a logarithmic log |X | factor.

Further, if no good bound on the dominating number γ is known, one can still test if the set of inactive
vertices X \I contains a dominating set and move on to the second phase if that is the case. However,
the algorithm may then settle for a larger but easier reachable dominating set (which would be found
earlier) compared to the smallest dominating set that may be harder to reach.

F.2 Proof of Sample-Complexity Bound with Domination Number

In this section, we will prove the main sample-complexity bound for Algorithm 3 in Theorem 3. We
will do this in two steps:

1. We show an intermediate, looser bound with an additional additive µH2

p20
term stated in

Theorem 24 in Section F.3.

2. We prove the final bound in Theorem 3 based on the intermediate bound in Section F.4.

F.3 Proof of Intermediate Sample-Complexity Bound

Theorem 24 (Sample-Complexity of Algorithm 3, Loose Bound). For any tabular episodic MDP
with state-actions X , horizon H , feedback graph with mas-number µ and given dominating set XD
with |XD| = γ and accuracy parameter ε > 0, Algorithm 3 returns with probability at least 1− δ an
ε-optimal policy after

O
((γH3

p0ε2
+
γŜH3

p0ε
+
µŜH2

p0
+
µH2

p2
0

)
ln3 |X |H

εδ

)
episodes. Here, p0 = mini∈[γ] p

(i) is the expected number of visits to the vertex in the dominating set
that is hardest to reach.

Proof. Algorithm 3 can be considered an instance of Algorithm 1 executed on the extended MDP
with two differences:

• We choose δ/2 as failure probability parameter in OptimistPlan. The remaining δ
2 will be

used later.
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• We choose the initial states per episode adaptively. This does not impact any of the analysis
of Algorithm 1 as it allows potentially adversarially chosen initial states.

• In the second phase, we do not collect samples with the policy proposed by the
OptimistPlan routine but with previous policies.

We therefore can consider the same eventE as in the analysis of Algorithm 1 which still has probability
at least 1 − δ

2 by Lemmas 11. In this event, by Lemma 15 it holds that ∼Vh ≤ V πh ≤ V ?h ≤ Ṽh for

∼Vh, Ṽh, π returned by all executions of OptimistPlan. As a result, the correctness of the algorithm
follows immediately as π̂ is guaranteed to be ε-optimal in the considered event. It remains to bound
the number of episodes collected by the algorithm before returning.

While the regret bound of Algorithm 1 in Theorem 1 does not apply to the second phase, it still holds
in the first phase. We can therefore use it directly to bound the number of episodes collected in the
first phase.

Length of first phase: We first claim that the first phase must end when the algorithm encounters
a certificate for the chosen task that has size at most p02 . This is true from the stopping condition
in Line 6. The algorithm removes i from I as soon as Ṽ1((s1, i)) ≤ 2∼V1((s1, i)). This implies that
when the stopping condition is met

∼V1((s1, i)) ≥
Ṽ1((s1, i))

2
≥ V ?1 ((s1, i))

2
=
p(i)

2
, (27)

where the second inequality follows from the fact that Ṽ1 ≥ V ?1 in event E. That means that policy
π(i) visits node Xi indeed at least p̂(i) ≥ p(i)

2 times per episode in expectation.

When the stopping condition is not met, then Ṽ1((s1, i)) > 2∼V1((s1, i)) and hence Ṽ1((s1, i)) −
∼V1((s1, i)) > ∼V1((s1, i)). Note also that Ṽ1((s1, i))− ∼V1((s1, i)) ≥ V ?1 ((s1, i))− ∼V1((s1, i)) at all
times in event E. Combining both lower bounds gives

Ṽ1((s1, i))− ∼V1((s1, i)) ≥ (V ?1 ((s1, i))− ∼V1((s1, i))) ∨ ∼V1((s1, i))

≥ V ?1 ((s1, i))

2
=
p(i)

2
. (28)

Assume the algorithm encounters a certificate that satisfies

Ṽ1((s1, i))− ∼V1((s1, i)) ≤
p0

4
,

where i is the task which is about to be executed. By the task choice of the algorithm, this implies for
any j ∈ I

Ṽ1((s1, j))− ∼V1((s1, j)) ≤ Ṽ1((s1, i))− ∼V1((s1, i)) ≤
p0

4
<
p(j)

2
,

where the last inequality follows the definition of p0. As a result, by contradiction with (28), all
remaining tasks would be removed from I. Hence, the first phase ends when or before the algorithm
has produced a certificate for the chosen task of size p0

4 . By Proposition 19, this can take at most

O
(µH2

p2
0

ln2 |X |H
p0δ

+
µŜH2

p0
ln3 |X |H

p0δ

)
episodes. Note that even though the algorithm operates in the extended MDP, the size of the maximum
acyclic subgraph µ is identical to that of the original feedback graph since all copies of a state-action
pair form a clique in the extended feedback graph Ḡ. Further note that even though the number of
states S̄ in the extended MDP is larger than in the original MDP by a factor of (γ + 1), this factor
does not appear in the lower-order term as the number of possible successor states (which can have
positive transition probability) are still bounded by Ŝ in each state-action pair of the extended MDP.
It only enters the logarithmic term due to the increased state-action space.
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Length of second phase: We now determine a minimum number of samples per state-action pair
that ensures that the algorithm terminates. By Lemma 18, the difference Ṽ1((s1, 0))− ∼V1((s1, 0))
can be bounded for the case where εmax = 0 by

exp(6)
∑
x∈X

H∑
h=1

wπ,h(x)(H ∧ (βφ(n(x))2 + γh(x)φ(n(x))))

with β = 416ŜH2 and γh(x) = 16σP (x)(V
π
h+1) + 16 (where we use Qmax = H and 1 as an

upper-bound to Var(r|x)). The weights wπ,h(x) = Eπ [1{(sh, ah) = x}] are the probability of π
visiting each state-action pair at a certain time step h. This can be upper-bounded by

exp(6)
(
β
∑
x∈X

wπ(x)φ(n(x))2 +
∑
x∈X

H∑
h=1

γh(x)wπ,h(x)φ(n(x))
)

≤ exp(6)
(
β
∑
x∈X

wπ(x)φ(n(x))2 +

√√√√∑
x∈X

H∑
h=1

γ2
h(x)wπ,h(x)

√∑
x∈X

wπ(x)φ(n(x))2
)
,

(29)

where we used the shorthand notation wπ(x) =
∑H
h=1 wπ,h(x) and applied Cauchy-Schwarz in the

second step. Assume now that we had at least n̄ ∈ N samples per state-action pair. Then (29) is again
upper-bounded by

exp(6)βHφ(n̄)2 + exp(6)
√
Hφ(n̄)

√√√√∑
x∈X

H∑
h=1

γ2
h(x)wπ,h(x). (30)

For the remaining term under the square-root, we use the law of total variance for value functions in
MDPs [22, 18] and bound∑

x

H∑
h=1

wπ,h(x)γh(x)2 ≤ 2× 162
∑
x

H∑
h=1

wπ,h(x) + 2× 162
∑
x

H∑
h=1

wπ,h(x)σ2
P (x)(V

π
h+1)

≤ 2× 162(H +H2) ≤ 45H2.

Plugging this back into (30) gives

416 exp(6)ŜH3φ(n̄)2 + 45/2 exp(6)H3/2φ(n̄) ≤ cŜH3 ln ln n̄

n̄
ln
|X |H
δ

+

√
cH3 ln ln n̄

n̄
ln
|X |H
δ

for some absolute constant c where we bounded φ(n̄)2 . ln ln n̄
n̄ ln |X |Hδ . Then there is an absolute

constant c̄ so that this expression is smaller than ε for

n̄ =
c̄H3

ε2
ln2 |X |H

εδ
+
c̄ŜH3

ε
ln2 |X |H

εδ
.

Hence, the algorithm must stop after collecting n̄ samples for each state-action pair. By the property
of the dominating set, it is sufficient to collected n̄ samples for each element of the dominating set.
Analogously to event EN in Lemma 11, we can show that with probability at least 1− δ/2, for all k
and i, the number of visits to any element of the dominating set Xi are lower-bounded by the total
visitation probability so far as

v(Xi) ≥
1

2

∑
j≤k

wj(Xi)−H ln
2γ

δ
, (31)

where k is the total number of episodes collected so far and wj(Xi) is the expected number of visits
to Xi of the policy played in the jth episode of the algorithm. Further, the stopping condition in the
first phase was designed so that π(i) visits Xi at least p̂(i) ≥ p(i)

2 times per episode in expectation
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(see Equation (27)). This follows from the definition of the reward in the extended MDP and the fact
that certificates are valid upper and lower confidence bounds on the value function, that is

p̂(i) = ∼V1((s1, i)) ≥
Ṽ1((s1, i))

2
≥ V ?1 ((s1, i))

2
=
p(i)

2
.

Hence, if π(i) is executed for mi episodes in the second phase, the total observation probability for
Xi is at least mip

(i)

2 . Plugging this back in (31) gives

v(Xi) ≥
1

4
mip

(i) −H ln
2γ

δ
.

Hence, to ensure that the algorithm has visited each vertex of the dominating set sufficiently often,
i.e., mini∈[γ] v(Xi) ≥ n̄, it is sufficient to play

mi = O
( H3

p(i)ε2
ln2 |X |H

εδ
+
ŜH3

p(i)ε
ln2 |X |H

εδ

)
episodes with each policy π(i) in the second phase. Hence, we get a bound on the total number of
episodes in the second phase by summing over γ, which completes the proof.

F.4 Proof of Tighter Sample Complexity Bound Avoiding 1/p2
0

The sample complexity proof of Algorithm 3 in Theorem 24 follows with relative ease from the
guarantees of Algorithm 1. It does however have a Õ

(
µH2

p20

)
dependency which is absent in the

lower-bound in Theorem 5. We now show how to remove this additive Õ
(
µH2

p20

)
term and prove the

main result for Algorithm 3 which we restate here:
Theorem 3 (Sample complexity of Algorithm 3). For any tabular episodic MDP with state-actions
X , horizon H , feedback graph with mas-number µ and given dominating set XD with |XD| = γ and
accuracy ε > 0, Algorithm 3 returns with probability at least 1− δ an ε-optimal policy after

Õ
(γH3

p0ε2
+
γŜH3

p0ε
+
µŜH2

p0

)
(2)

episodes. Here, p0 = mini∈[γ] p
(i) is possible expected number of visits to the node in the dominating

set that is hardest to reach.

Before presenting the formal proof, we sketch the main argument. The proof of the intermediate
result in Theorem 24 relies on Corollary 1 for Algorithm 1 to bound the length of the first episode.
Yet, Proposition 19 shows that the dominant term of the sample-complexity of Algorithm 1 only
scales with 1

ε2µH
1
T

∑T
k=1 V

?
1 (sk,1) for some T instead of the looser µH

2

ε2 in Corollary 1. We can
upper-bound each summand V ?1 (sk,1) by the optimal value of the task of the episode, e.g., p(i) for task
i. If all vertices in the dominating set are equally easy to reach, that is, p(1) = p(2) = . . . = p(γ) = p0,
this yields V ?1 (sk,1) = p0 and ε ≈ p0. In this case, this term in the sample-complexity evaluates to

µHp0

p2
0

≈ µH

p0
,

and gets absorbed into the last term µŜH2

p0
of the sample-complexity in Theorem 3. However, there is

a technical challenge when p(i)s vary significantly across tasks i, i.e., some vertices in the dominating
set can be reached easily while others can only be reached with low probability. A straightforward
bound only yields

µH maxi∈[γ] p
(i)

p2
0

,

which can be much larger when maxi p
(i) � mini p

(i) = p0. To avoid this issue, we will apply a
careful argument that avoids a linear factor of the number of policies learned γ (which a separate
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analysis of every task would give us, see Section 4) while at the same time still only having a 1/p0

dependency instead of the 1/p2
0.

The key is an inductive argument that bounds the number of episodes for the j vertices of the
dominating set that are the easiest to reach for any j ∈ [γ]. Thus, assume without loss of generality
that vertices are ordered with decreasing reachability, i.e., p(1) ≥ p(2) ≥ · · · ≥ p(γ). We will show
that the algorithm plays tasks 1, . . . , j in at most

O
(
j +

µŜH2

p(j)
ln3 |X |H

δp0

)
(32)

episodes. For j = γ, this gives the total length of the first phase and yields the desired reduction in
sample complexity for Theorem 3. Assuming that this bound holds for 1 to j − 1, we consider the
subset of episodes Kj in which the algorithm plays tasks [j] and show the average optimal value in
these episodes is not much larger than p(j)

1

|Kj |
∑
k∈Kj

V ?1 (sk,1) . p(j) ln
ep(1)

p(j)
.

This insight is the key to prove (32) for j.

Full proof:

Proof of Theorem 3. The proof of Theorem 24 can be directly applied here. It yields that with
probability at least 1− δ, Algorithm 3 returns an ε-optimal policy and event E from Lemma 11 holds.
We further know that the algorithm collects at most T1 and T2 episodes in the first and second phase
respectively, where

T1 = O
((µH2

p2
0

+
µŜH2

p0

)
ln3 |X |H

εδ

)
, and, T2 = O

(γŜH3

p0ε
ln2 |X |H

εδ

)
.

It is left to provide a tighter bound for the length of the first phase. As mentioned above, assume
without loss of generality that the nodes of the dominating set are ordered with decreasing reachability,
i.e., p(1) ≥ p(2) ≥ · · · ≥ p(γ). For any j ∈ [γ], let Kj ⊆ [T1] be the set of episodes where the
algorithm played task 1, . . . , j. To reason how large this set can be, we need slightly refined versions
of the IPOC bound of Algorithm 6 in Theorem 8 and the corresponding sample-complexity result in
Proposition 19. We state them below as Lemmas 25 and 26. They allow us to reason over arbitrary
subset of episodes instead of consecutive episodes. Their proof is virtually identical to those of
Theorem 8 and Proposition 19.

As we know from the proof of Theorem 24, the algorithm cannot play task i anymore once it has
encountered a certificate Ṽ1((s1, i)) − ∼V1((s1, i)) ≤ p(i)

4 . Hence, it can only encounter at most j

episodes in Kj where the certificate was at most p
(j)

4 . Thus by Lemma 26 below

|Kj | ≤ O
(
j + 1 + µH

∑
k∈Kj V

πk
1 (sk,1)

|Kj | · (p(j))2
ln2 |X |HT1

δ
+
µŜH2

p(j)
ln3 |X |HT1

δ

)
. (33)

Since j ≤ γ and we can assume that the provided dominating set is of sufficient quality, i.e.,
γ ≤ µŜH2

p(j)
ln3 |X |HT1

δ , the j + 1 term is dominated by the later terms in this bound. We now claim
that

|Kj | = O
(µŜH2

p(j)
ln3 |X |H

p0δ

)
(34)

which we will show inductively. Assume that (34) holds for all 1, . . . j − 1 and consider the sum of
policy values in Kj from (33)

∑
k∈Kj

V πk1 (sk,1) ≤
∑
k∈Kj

V ?1 (sk,1) =

j∑
i=1

∑
k∈Kj\Kj−1

p(i) =

j∑
i=1

p(i)(|Ki| − |Ki−1|)
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where we define K0 = ∅ for convenience. Consider C = cµŜH2 ln3 |X |H
p0δ

with a large enough
numerical constant c so that induction assumption implies |Ki| ≤ C/p(i) for i = 1, . . . , j − 1.
Assume further that |Kj | ≥ C/p(j). Then with 1/p(0) := 0

1

|Kj |
∑
k∈Kj

V πk1 (sk,1) ≤ p(j)

j∑
i=1

p(i)
( 1

p(i)
− 1

p(i−1)

)
.

Define now wi = 1
p(i)
− 1

p(i−1) , which allows us to write p(i) = 1∑i
l=1 wl

because
∑i
l=1 wl =

1
p(i)
− 1

p(0)
= 1

p(i)
. Writing the expression above in terms of wi yields

1

|Kj |
∑
k∈Kj

V πk1 (sk,1) ≤ p(j)

j∑
i=1

wi∑i
l=1 wl

(i)
= p(j)

(
1 + ln

( j∑
i=1

wi

)
− lnw1

)
= p(j)

(
1 + ln

1

p(j)
− ln

1

p(1)

)
= p(j) ln

ep(1)

p(j)
≤ p(j) ln

eH

p0
,

where (i) follows from the fundamental theorem of calculus (see e.g. Lemma E.5 by Dann et al.
[38]). We just showed that if |Kj | ≥ C/p(j), the average policy value 1

|Kj |
∑
k∈Kj V

πk
1 (sk,1) cannot

be much larger than 1/p(j). Plugging this back into (33) gives that

|Kj | = O
(µHp(j)

(p(j))2
ln
eH

p0
ln2 |X |HT1

δ
+
µŜH2

p(j)
ln3 |X |HT1

δ

)
= O

(µŜH2

p(j)
ln3 |X |H

p0δ

)
,

where the equality follows since ln(T1) . ln |X |Hp0δ
. We have just shown that (34) also holds for j

which completes the inductive argument. Evaluating (34) for j = γ shows that the length of the first
phase is indeed O

(
µŜH2

p0
ln3 |X |H

p0δ

)
which completes the proof.

Lemma 25. For any tabular episodic MDP with episode length H , state-action space X and a
directed feedback graph G, the total size of certificates of Algorithm 1 on any (possibly random) set
of episodes indices K as is bounded in event E (defined in Lemma 11) as∑

k∈K

Ṽk,1(sk,1)− ∼Vk,1(sk,1) =O
(√

µH
∑
k∈K

V πk1 (sk,1) ln
|X |HT
δ

+ µŜH2 ln3 |X |HT
δ

)
,

where T = max{k : k ∈ K} is the largest episode index in K.

Proof. The proof of this lemma is in complete analogy to the proof of Theorem 8, except that we
take the sum

∑
k∈K instead of

∑T
k=1. In the decomposition in Equation (20), we replace in term (D)

the sum over K with [T ] and proceed normally (which yields the lnT terms). But in term (E) we
keep the sum over K which yields the

∑
k∈K V

πk
1 (sk,1) term in the bound above.

Lemma 26. Consider any tabular episodic MDP with state-action space X , episode length H and
directed feedback graph G with mas-number µ. For any ε > 0, m ∈ N and (possibly random) subset
of episodes K ⊆ [T ] with

|K| = O
(
m+

µH 1
|K|
∑
k∈K V

πk
1 (sk,1)

ε2
ln2 |X |HT

δ
+
µŜH2

ε
ln3 |X |HT

δ

)
.

Algorithm 6 produces in event E (defined in Lemma 11 at least m certificates with size Ṽk,1(sk,1)−
∼Vk,1(sk,1) ≤ ε with k ∈ K.

Proof. The proof of this lemma is in complete analogy to the proof of Proposition 19, except that
we take the sum

∑
k∈K instead of

∑T
k=1 when we consider the cumulative certificate size and apply

Lemma 25 instead of Theorem 8.
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F.5 Comparison to Lower Bound

In general MDPs where we do not have a good idea about how reachable the dominating set is and
whether the MDP has sparse transitions, the sample-complexity of Algorithm 3 is

Õ
(µSH2

p0
+
γH3

p0ε2
+
γSH3

p0ε

)
,

while the lower bound is

Ω̃
(αH2

ε2
∧
(
α

p0
+
γH2

p0ε2

))
.

When ε is small enough and the dominating set is of good quality, i.e., γ < α, the second term
dominates the first in the lower bound. We see that the 1/p0 dependency in our sample-complexity
upper bound is tight up to log factors. Nonetheless, there is a gap of H2 and SH between our upper-
and lower-bound even when the feedback graph is symmetric (where µ = α). It should be noted that
the explicit S dependency in the 1/ε-term is typical for model-based algorithms and it is still an open
problem whether it can be removed without increase in H for model-based algorithms in MDPs with
dense transitions.

However, the lower bound in Theorem 5 relies on a class of MDPs that in fact have sparse transitions.
If we know that the true MDP belongs to this class, then we can run Algorithm 3 with the planning
routine of Algorithm 6 that supports state-action-dependent upper-bounds and set

Qmax
h (x) = 1, V max

h+1 (x) = 1 for x in tasks {1, . . . , γ} and Ŝ = 2,

because each dominating node can only be reached once per episode and each state-action pair
can only transition to one of two states. With these modifications, one can show that Algorithm 3
terminates within

Õ
(µH
p0

+
γH3

p0ε2

)
episodes matches the lower-bound up to one factor of H and log-terms in symmetric feedback graphs
for small enough ε.
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