7 Proof of Theorem 1. (Global Convergence of SCF)

Consider the generalized NLEP A(P)V = B(P)VA, where V = [v4, ..., v,] and P is an orthonor-
mal basis of V. A(P), B(P) are symmetric matrix-valued function and B(P) is positive definite.
A = diag(A1,...,Ap), where Ay > --- > ), are the p largest eigenvalues of (A(P), B(P)) cor-
responding to eigenvectors vy, . .., v,. We emphasize that A(P), B(P) are invariant to orthogonal
transformation of P, i.e., A(P) = A(PQ), B(P) = B(PQ) for any orthogonal matrix @ € RP*P,

Definitions. Let X and ) be two p-dimensional subspaces of R™. Let the columns of X form
an orthonormal basis for X and the columns of Y form an orthonormal basis for ). We use
|| sin ©(X, V)| as in [35] to measure the distance between X and )/, where

O(X,Y) = diag(61(X,Y),...,0,(X,))).
Here, 9j(X ,V)’s denote the canonical angles between X and Y [p. 43][35], which is defined as

0 <0,;(X,Y) £ arccos o Sg forl <j <k,

where o;’s are the singular values of X7'Y". Similar to the Crawford number for symmetric definite
matrix pair (A, B) [Chapter 8.7] [40], we define the Crawford number for the generalized NLEP as

c® min min (27 (A(P) +iB(P))z).

PeQdxpr zeCe,||z||=1

Define C £ maxpcgaxs /||A(P)2 + B(P)2|. At the kth SCF iteration, one computes an
approximation to the eigenvector matrix Vj associated with the p largest eigenvalues of
(A(Pg—1), B(Px_1)), where Pj,_ is an orthonormal basis for Vj,_1, and then Vy, is used as the next
approximation to the solution. Let Ay, = A(Py), By, = B(Py), pi r, = arctan A\;(A(Py), B(Py)).

We study the convergence of SCF iteration under the following assumptions:

A1: For any P, P, € Q**P_ assume that there exist positive constants &,, &, such that

[A(P1) — A(Py)[| < &al[sin©(Py, Po)l|,  [|[B(P1) — B(Pa)|| < &l sin ©(Py, Py)|;

A2: Fork =1,2,- -, there exists an 7 > 0 such that

Pk = Hp+1k = 1)-
Theorem 1. (Global Convergence) Let s; = | sin©(Py,P1)||. Assume Al and A2, and

s1/E2+ & <c If
n > arcsin(pC'y/€2 + €2 /c®) + arctan(s11/€2 + &2 /c)

for some constant p > 1, then SCF converges linearly at the rate of %.

In order to show Theorem 1, we need the following three lemmas. The first lemma gives some
fundamental results for || sin © (X, Y")||, which can be verified via definition.

Lemma 1. Let [X, X.] and [Y, Y] be two orthogonal matrices with X, Y € R"*¥. Then
Isin©(X, V)|l = [ XY = | XTYe|| = | XXT - YYT].

The next lemma gives perturbation bound for the eigenvalues of definite matrix pair.

Lemma 2. [Theorem 8.7.3][40] Let A, B be symmetric, B be positive definite. Let the eigenval-
ues of (A, B) be A\y > -+ > A\, Let ¢(A, B) be the Crawford number of { A, B}:
c¢(A,B)= min [|z7(A+iB)x|

zeCn ||z =1
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Suppose E and F' are symmetric matrices that satisfy
e = [|B|* + | F|* < (A, B).

Then B + F is positive definite, and the eigenvalues Ay > ... A, of (A + E, B + F) satisfy

| arctan 5\1» — arctan )\;| < arctan ﬁ, Vl<i<n.

The following lemma gives perturbation bound for the eigenspace of definite matrix pair, which is
rewritten from [Theorem 2.1] [38].

Lemma 3. Let A, B, A, B be symmetric, B and B be positive definite. Let the eigenvalues of
(A,B) and (A, B) be tanp; > -+ > tanu,, tanfiy > --- > tan fi,, respectively, the corre-
sponding eigenvectors be vy, . .., vy, and V1, . .., Uy, respectively. Assume that there are o > 0 and
0 > 0 satisfying o + 6 < 1, and a real number -y such that

sin(y — ;)| < a, fori=1,...,p,
|sin(y — ;)| > a+9, forj=p+1,...,n

(or vice-versa). Let Vi = [vq,...,vp), Vi =[o,... ,Op|. Then
. ;)42 + B2 A— A2+ (B-B)?
o, 7 < M s DVIET B 1A A2+ (B - B2
c(A, B)c(A, B) 4
where
gy (a+ V1 —a? +ay/1— (a+6)2
pla,§;) & 10N+ S0 5 e+

with q(y) = /2 for v # 0 and q(0) = 1.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Denote A, = A(Pk), B, = B(Pk), E, = A, — Ar,_1, F, = B, — Bj,_1.
Without loss of generality, we assume that Ay is also positive definite. Otherwise, we let
Ay = Ay + tBy, for sufficiently large ¢, then Ay is positive definite and the sequence {V}} pro-
duced by SCF iteration remains unchanged. Let Ay, = diag(A1 &, ..., A\p.k), Vi = [V155 .-+, Up k),
where )\; j; is the ith largest eigenvalue of (A, By), v; x is the corresponding eigenvector. Also
denote sj, = || sin O(Py,Pr_1)| = |PxP} — Px_1P}_,|| as the distance between subspaces.

By assumption A1, we have

VAL = A1 + | B — Bia|]?
<\ &+ &G lsin Oy, Pyl = sk /62 + &

Now consider k& = 1. By assumption, s14/£2 + & < ¢, then we may apply Lemma 2, which gives

VA1 — Ao|]? + [|B1 — Bo|]?
C

|pi1 — pijo| < arctan

<arctan(siy/€2 + & /c), V1 < i <n.
It follows that
Hp,1 = fp+1,0 =Hp,1 = Mp+1,1 T+ Hp+1,1 — Mp+1,0
>n — arctan(sy /&2 + &2 /c)

> arcsin(pCy /€2 + €2 /c?) > 0, )
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where the last inequality uses the assumption

n > arcsin(pC'y/€2 + &2 /c®) + arctan(s11/€2 + &2 /c).

Now let
1,1 Tt Mp, . 11— Up, . 1,1+ Mp1
= 1.1 2Mp17 a:sm'u 1 2:“1717 a+§=sm('u 1 2#1) _Np+1,0)v
thenforall1 <¢ <pandp+ 1 < j <n, we have
sin(y — pi1)| < |sin B Hpl) (10a)
Y M, s
. . 1,1 T Mp,1
[sin(y = )] > [sin(FEZEEL — iy o)) = a+ 4, (10b)
a+d6<1, v > 0, (10c)
5 :Sin(w ~ lpiio) — sin w
=2cos H11 = Bpi1,0 sin Hp.1 — 'UP—H’O. (10d)
2 2
By calculations, we obtain
(a+0)vV1—a?+ay/1—(a+9)?
p(a,d;7) =
20+ 6
_ sin M1,1;Mp,1 COS(M’IJQFMP’I _ Nerl,O) + cos Hl,l;ﬂp,l Sin(lh@;rup,l _ ,Ufp+1,0)
sin H’l,lgﬂp,l +Sin(ﬂ1,1J2rMp,1 _ Np+1,0)
_ sin(p1,1 — fip+1.0)
sin H1,1;Hp,1 _‘_Sin(ul,rg;t;ﬂ _ Merl,O)
2sin H1,1—Hp+1,0 cos H1,1—Hp+1,0
_ 2 2
- 2sin H1,1—5p+1,0 cos Mp,l—étp+1,u
cos Nl,l_gp«{»l‘o
= Up,1— [ : (11)
cos Hp,1 $p+1,0
Using Lemma 3, we have
< p(a757’y)c . \/H(Al - A0)2 + (Bl - B0)2|| < P(Oéafsa’Y)C LV gg + Eg (12)
- c2 ) - c2 ) 51
Substituting (10d), (11) into (12), and using (9), we have
1
So < —S81. (13)
where
& sin(ip,1 — fip+1,0)
p= o | (14)

Ce+¢

For general k£ = 2, noticing the following holds
n > arcsin(pC'y/€2 + €2 /c*) + arctan(s1 /€2 + &2 /c)

> arcsin(pC\/€2 + €2 /c?) + arctan(s24 /€2 + €7 /c).

Similar to the proof for £k = 1, we can conclude s3 < %52. By induction, sg4+1 < %sk, thus

completing the proof.
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8 Proof of Theorem 2. (Local Convergence of SCF)

With relaxed assumptions, we can show local convergence if the initial subspace is close enough to
the true subspace Px:

A3: Let pf denote arctan A, (A(P*), B(P*)). There exists an 1 > 0 such that

Py = Hpgr = 1)

Theorem 2. (Local Convergence) Let 39 = | sin©(Py,P*)|. Assume Al and A3, and

So/E2+ & <cIf
n > arcsin(pC'y/€2 + &2 /c®) + arctan(304/ €2 + &2/ c)

for some constant p > 1, then SCF is locally convergent at P* at the rate of %.

Proof. By assumption A1, we have

VAo = A*[2 +[[Bo — B[] < (/€2 + & || sin ©(Po, P*)|| = 30/ €2 + &}

Applying Lemma 2, we have

V4o — A*[2 + [ Bo — B[]
c

ltp.0 — | <arctan
<arctan(804/&2 4+ &2/c), V1 <p <n.
By assumption A3 it follows that
[ip,0 = M1 = Hp,0 = Hy + Hy — fy g > 1) — arctan(3o4 /2 + & /c)
> arcsin(pCy/€2 + &2 /%) > 0. (15)
Following the same procedures as in the proof for Theorem 1, we arrive that
i ©(Pi-1. )] < s O(PL. P

2 . *
c Sln(ﬂp,o*l‘«p+1) 0

C\/E2+€2

where p =
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9 Proof of Corollary 1. (Convergence of WDA -eig)

Corollary 1. Suppose that the optimal transport matrix To¢ satisfies a Lipschitz-like condition:
17 (P1) — T (Po)|| < € || sin O (P, Py),

For a given p, let
n= min{.up,k - N;n+1,k}'

Denote §q =3, . 89| 20, ;(@f —a§ ) (2f —x§ T
If

ZC

n > arcsin(pC/€2 + €2 /c?) + arctan(s14/£2 + &2 /c)

for some constant p > 1, then wda-eig converges linearly at the rate %.

Proof. We first note that in WDA-eig, C;, and C,, are invariant to orthogonal transformation of P,
ie., Cp(P) = Cp(PQ), C(P) = C,,(PQ) for any orthogonal matrix ) € RP*P, since

Z Zt (x5 —a:/)(:cf—x?)T,

c,c’>c i,j

Cu( ZZt (zf — ¢ )(xf—z;)T,
C

and T (P) and T (P

) are invariant to orthogonal transformation of P:
T (PQ) £ argmin A(T, Myepq xerpg) + Y b log(ts)

TeUn;cn,, i
= argmin )\Zt”H (z§ — o5 )TPQH + Zt” log(t:;)
TeUn.n
mel g i
= argmin )\thH (z§ — x5 TP|| + Zt” log(t;;) = TC’C/(P).
TeUn.n
ehel ] i

By the assumption on T, C,, satisfies

ICo(P1) — CoPo)ll = || D D (5 () — 557 (Po)) (2§ — ) (2§ — 25)T))|

c,c/>c 1,j

<> maXIt“ Py) —tcc (P2) lew —a8)(zf — )T
c,c/>c

< Z I || sin © (P, P2) ||HZJZ —x (w§ — x5 )TH
c,c’>c

£ faH sin @(Pl,Pg)”

The last inequality holds since
ma {57 (Pr) — £ (P2)] < [T (Py) = T (Py) | < £°[|sin O(Py, Py)]|.
Similarly,

ICu(Py) — CulPl < 36"

(@f — 25) (2§ — 25)" ||| sin ©(Py, Po) || £ &|| sin O(Py, Py).
i3

For all iteration number k, ptp  — fip+1,% = 7. Since Al and A2 are satisfied, the result follows
directly from Theorem 1. O
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10 Sensitivity to Noisy Labels

For iterative subspace clustering, performing K-Means on the projected data may not render accurate
labels in the first few iterations, especially if we initialize with random subspace. We therefore
investigate how the subspace changes when we perturb the labels. The results in Table 3 illustrate
the sensitivity to noisy labels of FDA (same as WDA-eig with A = 0), WDA-eig (A = 1.0) and
local FDA (LFDA) [37] with the number of neighbors= 1. We use the simulated dataset introduced
in the Main Paper, Section 4.1 and add noisy labels to the data. The first column of Table 3 shows
the percentage of wrong labels added. The rest of the columns show the distance of the subspace
P obtained by FDA/WDA -eig/LFDA under the noisy labels to the original subspaces P* measured
by || sin ©(P,P*)||, where the original subspaces are approximated by the converged solution of
FDA/WDA-eig/LFDA under true labels. The results are averaged over 20 trials. We observe that
WDA is more robust to noisy labels than both FDA and local FDA.

Table 3: Sensitivity to Noisy Labels.

% wrong labels | FDA dist. to P*  WDA dist. to P*  LFDA dist. to P*

1% 0.21 0.01 0.04
5% 0.32 0.02 0.08
10% 0.59 0.05 0.11
20% 0.84 0.07 0.15
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