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Abstract

Nonconvex sparse models have received significant attention in high-dimensional
machine learning. In this paper, we study a new model consisting of a general
convex or nonconvex objectives and a variety of continuous nonconvex sparsity-
inducing constraints. For this constrained model, we propose a novel proximal
point algorithm that solves a sequence of convex subproblems with gradually
relaxed constraint levels. Each subproblem, having a proximal point objective and
a convex surrogate constraint, can be efficiently solved based on a fast routine for
projection onto the surrogate constraint. We establish the asymptotic convergence
of the proposed algorithm to the Karush-Kuhn-Tucker (KKT) solutions. We
also establish new convergence complexities to achieve an approximate KKT
solution when the objective can be smooth/nonsmooth, deterministic/stochastic
and convex/nonconvex with complexity that is on a par with gradient descent
for unconstrained optimization problems in respective cases. To the best of
our knowledge, this is the first study of the first-order methods with complexity
guarantee for nonconvex sparse-constrained problems. We perform numerical
experiments to demonstrate the effectiveness of our new model and efficiency of
the proposed algorithm for large scale problems.

1 Introduction

Recent years have witnessed a great deal of work on the sparse optimization arising from machine
learning, statistics and signal processing. A fundamental challenge in this area lies in finding the best
set of size k out of a total of d (k ă d) features to form a parsimonious fit to the data:

min ψpxq, subject to ‖x‖0 ď k, x P Rd. (1)

However, due to the discontinuity of ‖¨‖0 norm2, the above problem is intractable when there is no
other assumptions. To bypass this difficulty, a popular approach is to replace the `0-norm by the
`1-norm, giving rise to an `1-constrained or `1-regularized problem. A notable example is the Lasso

˚Work done when author was at Georgia Tech
2Note that }¨}0 is not a norm in mathematical sense. Indeed, }x}0 “ }tx}0 for any nonzero t.
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([31]) approach for linear regression and its regularized variant

min ‖b´Ax‖2
2, subject to ‖x‖1 ď τ, x P Rd; (2)

min ‖b´Ax‖2
2 ` λ‖x‖1. (3)

Due to the Lagrange duality theory, problem (2) and (3) are equivalent in the sense that there is a
one-to-one mapping between the parameters τ and λ. A substantial amount of literature already
exists for understanding the statistical properties of `1 models ([41, 32, 7, 39, 19]) as well as for the
development efficient algorithms when such models are employed ([11, 1, 22, 34, 19]).

In spite of their success, `1 models suffer from the issue of biased estimation of large coefficients
[12] and empirical merits of using nonconvex approximations were shown in [26]. Due to these
observations, a large body of recent research looked at replacing the `1-penalty in (3) by a nonconvex
function gpxq to obtain sharper approximation of the `0-norm:

min ψpxq ` βgpxq, (4)

where , throughout the paper, gpxq is a nonsmooth nonconvex function of the form

gpxq “ λ }x}1 ´ hpxq.

Here hpxq is a convex and continuously differentiable function, giving gpxq a DC form. This class of
constraints already covers many important nonconvex sparsity inducing functions in the literature
(see Table 2).

Despite the favorable statistical properties ([12, 38, 8, 40]), nonconvex models have posed a great
challenge for optimization algorithms and has been increasingly an important issue ([36, 16, 17, 29]).
While most of these works studied the regularized version, it is often favorable to consider the
following constrained form:

min ψpxq, subject to gpxq ď η, x P Rd, (5)

since sparsity of solutions is imperative in many applications of statistical learning and constrained
form in (5) explicitly imposes such a requirement. In contrast, (4) imposes sparsity implicitly using
penalty parameter β. However, unlike the convex problems, large values of β do not necessarily
imply small value of the nonconvex penalty gpxq.

Therefore, it is natural to ask whether we can provide an efficient algorithm for problem (5). The
continuous nonconvex relaxation (5) of the `0-norm in (1), albeit a straightforward one, was not
studied in the literature. We suspect that to be the case due to the difficulty in handling nonconvex
constraints algorithmically. There are two theoretical challenges: First, since the regularized form (4)
and the constrained form (5) are not equivalent due to the nonconvexity of gpxq, we cannot bypass (5)
by solving problem (4) instead. Second, the nonconvex function gpxq can be nonsmooth especially
for the sparsity applications, presenting a substantial challenge for classic nonlinear programming
methods, e.g., augmented Lagrangian methods and penalty methods (see [2]) which assumes that
functions are continuously differentiable.

Our contributions In this paper, we study the newly proposed nonconvex constrained model (5). In
particular, we present a novel level-constrained proximal point (LCPP) method for problem (5) where
the objective ψ can be either deterministic/stochastic, smooth/nonsmooth and convex/nonconvex and
the constraint tgpxq ď ηu models a variety of sparsity inducing nonconvex constraints proposed in
the literature. The key idea is to translate problem (5) into a sequence of convex subproblems where
ψpxq is convexified using a proximal point quadratic term and gpxq is majorized by a convex function
rgpxqrě gpxqs. Note that trgpxq ď ηu is a convex subset of the nonconvex set tgpxq ď ηu.

We show that starting from a strict feasible point3, LCPP traces a feasible solution path with respect
to the set tgpxq ď ηu. We also show that LCPP generates convex subproblems for which bounds on
the optimal Lagrange multiplier (or the optimal dual) can be provided under a mild and a well-known
constraint qualification. This bound on the dual and the proximal point update in the objective allows
us to prove asymptotic convergence to the KKT points of the problem (5).

While deriving the complexity, we consider the inexact LCPP method that solves convex subproblems
approximately. We show that the constraint, rgpxq ď η, has an efficient projection algorithm.

3Origin is always strictly feasible for sparsity inducing constraints and can be chosen as a starting point.
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Table 1: Iteration complexities of LCPP for problem (5) when the objective can be either convex or
nonconvex, smooth or nonsmooth and deterministic or stochastic

Convex (5) Nonconvex (5)
Cases Smooth Nonsmooth Smooth Nonsmooth

Deterministic Op1{εq Op1{ε2q Op1{εq Op1{ε2q

Stochastic Op1{ε2q Op1{ε2q Op1{ε2q Op1{ε2q

Hence, each convex subproblem can be solved by projection-based first-order methods. This
allows us to be feasible even when the solution reaches arbitrarily close to the boundary of the
set tgpxq ď ηu which entails that the bound on the dual mentioned earlier works in the inexact case
too. Moreover, efficient projection-based first-order method for solving the subproblem helps us
get an accelerated convergence complexity of Op 1

ε qrOp
1
ε2 qs gradient [stochastic gradient] in order

to obtain an ε-KKT point. In particular, refer to Table 1. We see that in the case where objective
is smooth and deterministic, we obtain convergence rate of Op1{εq whereas for nonsmooth and/or
stochastic objective we obtain convergence rate of Op1{ε2q. This complexity is nearly the same as
that of the gradient [stochastic gradient] descent for the regularized problem (4) of the respective
type. Remarkably, this convergence rate is better than black-box nonconvex function constrained
optimization methods proposed in the literature recently ([5, 21]). See related work section for more
detailed discussion. Note that the convergence of gradient descent does not ensure a bound on the
infeasibility of the constraint g, whereas the KKT criterion requires feasibility on top of stationarity.
Moreover, such a bound cannot be ensured theoretically due to the absence of duality. Hence, our
algorithm provides additional guarantees without paying much in the complexity.

We perform numerical experiments to measure the efficiency of our LCPP method and the
effectiveness of the new constrained model (5). First, we show that our algorithm has competitive
running time performance against open-source solvers, e.g., DCCP [27]. Second, we also compare
the effectiveness of our constrained model with respect to the existing convex and nonconvex
regularization models in the literature. Our numerical experiments show promising results compared
to `1-regularization model 3 and has competitive performance with respect to recently developed
algorithm for nonconvex regularization model 4 (see [16]). Given that this is the first study in the
development of algorithms for the constrained model, we believe empirical study of even more
efficient algorithms solving problem (5) may be of independent interest and can be pursued in the
future.

Related work There is a growing interest in using convex majorization for solving nonconvex
optimization with nonconvex function constraints. Typical frameworks include difference-of-convex
(DC) programming ([30]), majorization-minimization ([28]) to name a few. Considering the
substantial literature, we emphasize the most relevant work to our current paper. Scutari et al.
[26] proposed general approaches to majorize nonconvex constrained problems and include (5) as
a special case. They require exact solutions of the subproblems and prove asymptotic convergence
which is prohibitive for large-scale optimization. Shen et al. [27] proposed a disciplined convex-
concave programming (DCCP) framework for a class of DC programs in which (5) is a special case.
Their work is empirical and does not provide specific convergence results.

The more recent works [5, 21] considered a more general problems where gpxq “ rhpxq ´ hpxq for
some general convex function rh. They propose a type of proximal point method in which large
enough quadratic proximal term is added into both objective and constraint in order to obtain a
convex subproblem. This convex function constrained subproblem can be solved by oracles whose
output solution might have small infeasibility. Moreover these oracles have weaker convergence rates
due to generality of function rh over `1. Complexity results proposed in these works, when applied
to problem (5), entail Op1{ε3{2q iterations for obtaining an ε-KKT point under a strong feasibility
constraint qualification. In similar setting, we show faster convergence result of Op1{εq. This due to
the fact that our oracle for solving the subproblem is more efficient than those used in their paper. We
can obtain such an oracle due to two reasons: i) convex surrogate constraint rg in LCPP majorizes the
constraint differently than adding the proximal quadratic term, ii) presence of `1 in the form of gpxq
allows for developing an efficient projection mechanism onto the chosen form of rg. Moreover, our
convergence results hold under a well-known constraint qualification which is weaker compared to
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Figure 1: Graphs for various constraints along with `1. For `pp0 ă p ă 1q, we have ε “ 0.1 .

strong feasibility since our oracle outputs a feasible solution whereas they can get a solution which is
slightly infeasible.

There is also a large body of work on directly optimizing the `0 constraint problem [3, 4, 13, 37, 42].
While [3] can be quite good for small dimension d “ 1000s, it remains unclear how to scale up for
larger datasets. Other methods are part of the hard-thresholding algorithms, requiring additional
assumptions such as Restricted Isometry Property. These research areas, though interesting, are not
related to the continuous optimization setting where large-scale problems can be solved relatively
easily. Henceforth, we only focus on the continuous approximations of `0-norm.

Structure of the paper Section 2 presents the problem setup and preliminaries. Section
3 introduces LCPP method and shows the asymptotic convergence, convergence rates and the
boundedness of the optimal dual. Section 4 presents numerical results. Finally, Section 5 draws
conclusion.

2 Problem setup

Our main goal is to solve problem (5). We make Assumption 2.1 throughout the paper.

Assumption 2.1. 1. ψpxq is a continuous and possibly nonsmooth nonconvex function satisfying:

ψpxq ě ψpyq `
@

ψ1pyq, x´ y
D

´
µ
2 }x´ y}

2
. (6)

2. gpxq is a nonsmooth nonconvex function of the form gpxq “ λ}x}1 ´ hpxq, where hpxq is convex
and continuously differentiable.

Table 2: Examples of constraint function gpxq “ λ‖x‖1 ´ hpxq.

Function gpxq Parameter λ Function hpxq

MCP[38] λ hλ,θpxq “

#

x2

2θ if |x| ď θλ,

λ |x| ´ θλ2

2 if |x| ą θλ.

SCAD[12] λ hλ,θpxq “

$

’

&

’

%

0 if |x| ď λ,
x2
´2λ|x|`λ2

2pθ´1q if λ ă |x| ď θλ,

λ|x| ´ 1
2 pθ ` 1qλ2 if |x| ą θλ.

Exp[6] λ hλpxq “ e´λ|x| ´ 1` λ|x|.
Log[33] θ

logp1`θq hθpxq “
θ

logp1`θq |x|´
logp1`θ|x|q

logp1`θq .

`pp0 ă p ă 1q[14] ε1{θ´1

θ hε,θpxq “
ε1{θ´1

θ |x|´ p|x|` εq1{θ.
`ppp ă 0q[24] ´pθ hθpxq “ ´pθ|x|´ 1` p1` θ|x|qp.

Notations We use ‖¨‖ to denote standard Euclidean norm whereas `1-norm is denoted as ‖¨‖1.
The Lagrangian function for problem (5) is defined as Lpx, yq “ ψpxq ` ypgpxq ´ ηq where
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y ě 0. For nonconvex nonsmooth function gpxq in the form of (2), we denote its subdifferential4 by
Bgpxq “ Bpλ‖x‖1q ´∇hpxq. For this definition of subdifferential, we consider the following KKT
condition:

The KKT condition For Problem (5), we say that x is the (stochastic) pε, δq- KKT solution if
there exists x̄ and ȳ ě 0 such that gpx̄q ď η, E }x´ x̄}2 ď δ

E |ȳ rgpx̄q ´ ηs| ď ε

E rdist pBxLpx̄, ȳq, 0qs2 ď ε
(7)

Moreover, for ε “ δ “ 0, we have that x̄ is the KKT solution or satisfied KKT condition. If δ “ Opεq,
we refer to this solution as an ε-KKT solution in order to be brief.
It should be mentioned that local or global optimality does not generally imply the KKT condition.
However, KKT condition is shown to be necessary for optimality when Mangasarian-Fromovitz
constraint qualification (MFCQ) holds [5]. Below, we make MFCQ assumption precise:

Assumption 2.2 (MFCQ [5]). Whenever the constraint is active: gpx̄q “ η, there exists a direction
z such that maxvPBgpx̄q v

T z ă 0.

For differentiable g, MFCQ requires existence of z such that zT∇gpsxq ă 0, reducing to the classical
form of MFCQ [2]. Below, we summarize necessary optimality condition under MFCQ.

Proposition 2.3 (Necessary condition [5]). Let x̄ be a local optimal solution of problem (5). If x̄
satisfies Assumption 2.2, then there exists ȳ ě 0 such that (7) holds with ε “ δ “ 0.

3 A novel proximal point algorithm

Algorithm 1 Level constrained proximal point (LCPP) method
1: Input: x0 “ x̂, γ ą 0, η0 ă η
2: for k “ 1 to K do
3: Set ηk “ ηk´1 ` δk;
4: gkpxq :“ λ }x}1 ´ hpx

k´1q ´∇hpxk´1qT px´ xk´1q;
5: Return feasible solution xk of the problem

minψkpxq “ ψpxq ` γ
2 }x´ x

k´1}2, subject to gkpxq ď ηk (8)
6: end for

LCPP method solves a sequence of convex subproblems (8). In particular, note that gkpxq majorizes
gpxq: gkpxq ě gpxq, gkpx

k´1q “ gpxk´1q. implying that tgkpxq ď ηku is a convex subset of the
original problem. It can also be observed that adding a proximal term in the objective yields ψk
strongly convex for large enough γ ą 0. In the current form, Algorithm 1 requires a feasible solution
of (8) and requirement of sequence tηku is left unspecified. We first make the following assumptions.

Assumption 3.1 (Strict feasibility). There exist sequence tηkukě0 satisfying:
1. η0 ă η and a point x̂ of such that gpx̂q ă η0.
2. The sequence tηku is monotonically increasing and converges to η: limkÑ8 ηk “ η.

In light of Assumption 3.1, starting from a strictly feasible point x0, Algorithm 1 solves subproblems
(8) with gradually relaxed constraint levels. This allows us to assert that each subproblem is strictly
feasible5. Indeed, we have gkpxkq ď ηk ñ gk`1px

kq “ gpxkq ď gkpx
kq ď ηk ă ηk`1. This

implies the existence of KKT solution for each subproblem. A formal statement can be found in the
appendix. Moreover, all the proofs of our technical results can be found in the appendix and we just
make statements in the main article henceforth.

Asymptotic convergence of LCPP method and boundedness of the optimal dual

4Various subdifferentials exist in the literature for nonconvex optimization problem. Here, we use
subdifferential Definition 3.1 in Boob et al. [5] for nonconvex nonsmooth function g.

5For specific examples of g, we show that origin is always the most feasible (and strictly feasible) solution of
each subproblem and hence, does not require the predefined level-routine of LCPP to assert strict feasibility of
subproblem. However, in order to keep generality of discussion, we perform the analysis under the level-setting.
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Our next goal is to establish asymptotic convergence of Algorithm 1 to the KKT points. To this
end, we require a uniform boundedness assumption on the Lagrange multipliers. First, we prove
asymptotic convergence under this assumption then we justify it under MFCQ. Before stating the
convergence results, we make the following boundedness assumption.
Assumption 3.2 (Boundedness of dual variables). There exists B ą 0 such that supk ȳ

k ă B a.s.

For the deterministic case, we remove the measurablity part in the above assumption and assert that
supk ȳ

k ă B. The following asymptotic convergence theorem is in order.
Theorem 3.3 (Convergence to KKT). Let πk denotes the randomness of x1, x2, ..., xk´1. Assume
that there exists a ρ P r0, γ ´ µs and a summable nonnegative sequence ζk such that

Erψkpxkq ´ ψkpx̄kq|πks ď ρ
2‖x̄

k ´ xk´1‖2 ` ζk. (9)

Then, under Assumption 3.1 and 3.2 for any limit point rx of the proposed algorithm, there exists a
dual variable ry such that prx, ryq satisfies KKT condition, almost surely.
This theorem shows that any limit point of Algorithm 1 converges to a KKT point. However, it makes
the assumption that dual is bounded. Since the optimal dual depends on the convex subproblems (8)
which are generated dynamically in the algorithm, it is important to justify Assumption 3.2. To this
end, we show that Assumption 3.2 is satisfied under a well-known constraint qualification.
Theorem 3.4 (Boundedness condition). Suppose Assumption (3.1) and relation (9) are satisfied and
all limit points of Algorithm 1 exists a.s., and satisfy the MFCQ condition. Then, syk is bounded a.s.
This theorem shows the existence of dual under the MFCQ assumption for all limit points of Algorithm
1. MFCQ is a mild constraint qualification frequently used in the existing literature [2]. In certain
cases, we also provide explicit bounds on the dual variables using the fact that origin is most feasible
solution to the subproblem. These bounds quantify how “closely" the MFCQ assumption is violated
and provides explicitly the effect on the magnitude of the optimal dual. Additional results and
discussion in this regard are deferred to the Appendix B. For the purpose of this article, we assume
that the dual variables remain bounded henceforth.

Complexity of LCPP method

Our goal here is to analyze the complexity of the proposed algorithm. Apart from the negative
lower curvature guarantee (6) of the objective function, we impose that h has Lipschitz continuous
gradients, }∇hpxq ´∇hpyq} ď Lh }x´ y} . This is satisfied by all functions in Table 2. Now we
discuss a general convergence result of LCPP method for original nonconvex problem (5).
Theorem 3.5. Suppose Assumption 3.1 and 3.2 hold such that δk “ η´η0

kpk`1q for all k ě 1. Let xk

satisfy (9) where ρ P r0, γ ´ µq and tζku is a summable nonnegative sequence. Moreover, xk is a
feasible solution of the k-th subproblem, i.e.,

gkpx
kq ď ηk. (10)

If k̂ is chosen uniformly at random from
X

K`1
2

\

to K then there exists a pair psxk̂, sypkq satisfying

ErdistpBxLpx̄k̂, ȳk̂q, 0q2s ď 16pγ2
`B2L2

hq

Kpγ´µ´ρq

`

γ´µ`ρ
2pγ´µq∆

0 ` Z
˘

,

Erȳk̂|gpx̄k̂q ´ η|s ď 2BLh
Kpγ´µ´ρq

`

γ´µ`ρ
γ´µ ∆0 ` 2Z

˘

`
2Bpη´η0q

K ,

Er‖xk̂ ´ x̄k̂‖2s ď
4ρpγ´µ`ρq

Kpγ´µq2pγ´µ´ρq∆
0 ` 8Z

Kpγ´µ´ρq ,

where, ∆0 :“ ψpx0q ´ ψpx˚q, Z :“
řK
k“1ζk and expectation is taken over the randomness of pk and

solutions xk, k “ 1, . . . ,K.

Note that Theorem 3.5 assumes that subproblem (8) can be solved according to the framework of (9)
and (10). When the subproblem solver is deterministic then we ignore the expectation in (9). It is
easy to see from the above theorem that for xk̂ to be an ε-KKT point, we must have K “ Op1{εq
and ζk must be small enough such that Z is bounded above by a constant. The complexity analysis of
different cases now boils down to understanding the number of iterations of the subproblem solver
needed in order to satisfy these requirements on ρ and tζku (or Z).

In the rest of this section, we provide a unified complexity result for solving subproblem (8) in
Algorithm 1 such that criteria in (9) and (10) are satisfied for various settings of the objective ψpxq.
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Unified method for solving subproblem (8) Here we provide a unified complexity analysis for
solving subproblem (8). In particular, consider the form of the objective ψpxq “ EξrΨpx, ξqs, where
ξ is the random input of Ψpx, ξq and ψpxq satisfies the following property:

ψpxq ´ ψpyq ´
@

ψ1pyq, x´ y
D

ď L
2 }x´ y}

2
`M }x´ y} .

Note that, when M “ 0, function ψ is Lipschitz smooth whereas when L “ 0, it is nonsmooth. Due
to the possible stochastic nature of Ψ, negative lower curvature in (6) and the combined smoothness
and nonsmoothness property above, we have that ψ can be either smooth or nonsmooth, deterministic
or stochastic and convex (µ “ 0) or nonconvex (µ ą 0). We also assume bounded second moment
stochastic oracle for ψ1 when ψ is a stochastic function: For any x, we have an oracle whose output,
Ψ1px, ξq, satisfies EξrΨ1px, ξqs “ ψ1pxq and Er‖Ψ1px, ξq ´ ψ1pxq‖2s ď σ2.

For such a function, we consider an accelerated stochastic approximation algorithm (AC-SA) proposed
in [15] for solving the subproblem (8) which can be reformulated as minx ψkpxq ` Itgkpxqďηkupxq,
where I is the indicator set function. AC-SA algorithm can be applied when γ ě µ. In particular,
ψkpxq :“ ψpxq` γ

2

›

›x´ xk´1
›

›

2
is pγ´µq-strongly convex and pL`γq-Lipschitz smooth. Moreover,

AC-SA requires computation of a single prox operation of the following form in each iteration:

argmin
x

wTx` }x´ sx}
2
` Itgkpxqďηkupxq, (11)

for any w, sx P Rd. We show an efficient method for solving this problem at the end of in this section.
For now, we look at convergence properties of the AC-SA:
Proposition 3.6. [15] Let xk be the output of AC-SA algorithm after running Tk iterations for the
subproblem (8). Then gkpxkq ď ηk and Erψkpxkq ´ ψkpsxkqs ď 2pL`γq

T 2
k

›

›xk´1 ´ sxk
›

›

2
`

8pM2
`σ2

q

pγ´µqTk

Note that convergence result in Proposition 3.6 closely follows the requirement in (9). In particular,
we should ensure that Tk is big enough such that ρ2 ď

2pL`γq
T 2
k

and ζk “
8pM2

`σ2
q

pγ´µqTk
sum to a constant.

Consequently, we have the following corollary:
Corollary 3.7. Let ψ be nonconvex such that it satisfies (6) with µ ą 0. Set γ “ 3µ and run AC-SA
for Tk “ maxt2

`

L
µ ` 3

˘1{2
,KpM ` σqu iterations where K is total iterations of Algorithm 1. Then,

we obtain that xk̂ is an pε1, ε2q-KKT point of (5), where k̂ is chosen according to Theorem 3.5 and

ε1 “
`

3∆0

2K `
8pM`σq
µK

˘

max
 8p9µ2

`B2L2
hq

µ , 2BLh
µ u `

2Bpη´η0q
K , ε2 “

3∆0

µK `
32pM`σq
µ2K

Note that Corollary 3.7 gives a unified complexity for obtaining KKT point of (5) in various settings
of nonconvex objective pµ ą 0q. First, in order to get an ε-KKT point, K must be of Op1{εq. If the
problem is deterministic and smooth then M “ σ “ 0. In this case, Tk “ 2pLµ ` 3q1{2 is a constant.

Hence, the total iteration count is
řK
k“1Tk “ OpKq, implying that total iteration complexity for

obtaining an ε-KKT point is of Op1{εq. For nonsmooth or stochastic cases, M or σ is positive.
Hence, Tk “ OpKpM ` σqq implying the total iteration complexity

řK
k“1Tk “ OpK2q, which is of

Op1{ε2q. Similar result for the convex case is shown in the appendix.

Efficient projection We conclude this section by formally stating the theorem which provides an
efficient oracle for solving the projection problem (11). Since gkpxq “ λ‖x‖1 ` xv, xy, the linear
form along with `1 ball breaks the symmetry around origin which is used in existing results on
(weighted) `1-ball projection [10, 18]. Our method involves a careful analysis of Lagrangian duality
equations to convert the problem into finding the root of a piecewise linear function. Then a line
search method can be employed to find the solution in Opd log dq time. The formal statement is as
follows:
Theorem 3.8. There exists an algorithm that runs in Opd log dq-time and solves the following
problem exactly:

min
xPRd

1
2 }x´ v}

2 subject to }x}1 ` xu, xy ď τ. (12)

In conclusion, note that (11) and (12) are equivalent where v in (12) can be replaced by sx` 1
2w of

(11) to get the equivalence of the objective functions of the two problems.
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4 Experiments

The goal of this section is to illustrate the empirical performance of LCPP. For simplicity, we will
consider the following learning problem:

min
x

ψpxq “ 1
n

řn
i“1Lipxq, s.t. gpxq ď η,

where Lipxq denotes the loss function. Specifically, we consider logistic loss Lipxq “ logp1 `
expp´bia

T
i xqq for classification and squared loss Lipxq “ pbi ´ aTi xq

2 for regression. Here pai, biq
is the training sample, and gpxq is the MCP penalty (see Table 2). Details of the testing datasets are
summarized in Table 3. As we have stated, LCPP can be equipped with projected first order methods
for fast iteration. We compare the efficiency of (spectral) gradient descent [16], Nesterov accelerated
gradient and stochastic gradient [35] for solving LCPP subproblem. We find that spectral gradient
outperforms the other methods in the logistic regression model and hence use it in LCPP for the
remaining experiment for the sake of simplicity. Due to the space limit, we leave the discussion
of this part in appendix. The rest of the section will compare the optimization efficiency of LCPP
with the state-of-the-art nonlinear programming solver, and compare the proposed sparse constrained
models solved by LCPP with standard convex and nonconvex sparse regularized models.

Table 3: Dataset description. R for regression and C for classification. mnist is formulated as a
binary problem to classify digit 5 from the other digits. real-sim is randomly partitioned into 70%
training data and 30% testing data.

Datasets Training size Testing size Dimensionality Nonzeros Types

real-sim 50347 21962 20958 0.25% C

rcv1.binary 20242 677399 47236 0.16% C

mnist 60000 10000 784 19.12% C

gisette 6000 1000 5000 99.10% C

E2006-tfidf 16087 3308 150360 0.83% R

YearPredictionMSD 463,715 51,630 90 100% R

Our first experiment is to compare LCPP with existing optimization library for their optimization
efficiency. To the best of our knowledge, DCCP ([27]) is the only open-source package available
for the proposed nonconvex constrained problem. While the work [27] has made its code available
online, we found that their code had unresolved errors in parsing MCP functions. Therefore, we
replicate their setup in our own implementation. DCCP converts the initial problem into a sequence
of relatively easier convex problems amenable to CVX ([9]), a convex optimization interface that
runs on top of popular optimization libraries. We choose DCCP with MOSEK as the backend as it
consistently outperforms DCCP with the default open-source solver SCS.
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Figure 2: Objective value vs. running time (in seconds). Left to right: mnist (η “ 0.1d), real-sim
(η “ 0.001d), rcv1.binary (η “ 0.05d) and gisette (η “ 0.05d). d stands for the feature
dimension.

Comparison is conducted on the classification problem. To fix the parameters, we choose γ “ 10´5

for gisette dataset and γ “ 10´4 for the other datasets. For each LCPP subproblem we run gradient
descent at most 10 iterations and break when the criterion }xk ´ xk´1}{}xk} ď ε is met. We set
the number of outer loops as 1000 to run LCPP sufficiently long. We set λ “ 2, θ “ 0.25 in the
MCP function. Figure 2 plots the convergence performance of LCPP and DCCP, confirming that
LCPP is more advantageous over DCCP. Specifically, LCPP outperforms DCCP, sometimes reaching
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near-optimality even before DCCP finishes the first iteration. This observation can be explained by
the fact that LCPP leverages the strengthen of first order methods, for which we can derive efficient
projection subroutine. In contrast, DCCP is not scalable to large dataset due to the inefficiency in
dealing with large scale linear system arising from the interior point subproblems.

Our next experiment is to compare the performance of nonconvex sparse constrained models, which
is then optimized by LCPP, against regularized learning models in the following form:

min
x

ψpxq “ 1
n

řn
i“1Lipxq ` αgpxq.

As described above, gpxq is the sparsity-inducing penalty function and Lipxq is a loss function on the
data. We consider both convex and nonconvex penalties, namely Lasso-type penalty gpxq “ }x}1
and MCP penalty (see Table 2). We solve the Lasso penalty problem by linear models provided by
Sklearn [23] and solve the MCP regularized problem by the popular solver GIST [16]. For simplicity,
both GIST and LCPP set λ “ 2 and θ “ 5 in MCP function, and set the maximum iteration number
as 2000 for all the algorithms. Then we use a grid of values α for GIST and LASSO, and η for LCPP
accordingly, to obtain the testing error under various sparsity levels. In Figure 3 we report the 0-1
error for classification and mean squared error for regression. We can clearly see the advantage of our
proposed models over Lasso-type estimators. We observe that nonconvex models LCPP and GIST
both perform more robustly than Lasso across a wide range of sparsity levels. Lasso models tend to
overfit with increasing number of selected features while LCPP appears to be less affected by the
feature selection.
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Figure 3: Testing error vs number of nonzeros. First two columns show classification performance
in clockwise order: mnist, real-sim, rcv1.binary and gisette. The third column shows
regression test on YearPredictionMSD (top) and E2006 (bottom).

5 Conclusion

We present a novel proximal point algorithm (LCPP) for nonconvex optimization with a nonconvex
sparsity-inducing constraint. We prove the asymptotic convergence of the proposed algorithm to
KKT solutions under mild conditions. For practical use, we develop an efficient procedure for
projection onto the subproblem constraint set, thereby adapting projected first order methods to
LCPP for large-scale optimization and establish an Op1{εqpOp1{ε2qq complexity for deterministic
(stochastic) optimization. Finally, we perform numerical experiments to demonstrate the efficiency of
our proposed algorithm for large scale sparse learning.
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Broader Impact

This paper presents a new model for sparse optimization and performs an algorithmic study for the
proposed model. A rigorous statistical study of this model is still missing. We believe this was due to
the tacit assumption that constrained optimization was more challenging compared to regularized
optimization. This work takes the first step in showing that efficient algorithms can be developed
for the constrained model as well. Contributions made in this paper has the potential to inspire
new research from statistical, algorithmic as well as experimental point of view in the wider sparse
optimization area.
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A Auxiliary results

A.1 Existence of KKT points

Proposition A.1. Under Assumption 3.1, let x0 “ x̂. Then, for any k ě 1, we have xk´1 is strictly
feasible for the k-th subproblem. Moreover, there exists x̄k, ȳk ě 0 such that gk

`

x̄k
˘

ď ηk and:

Bψpx̄kq ` γ
`

x̄k ´ xk´1
˘

` ȳk
`

Bgkpx̄
kq
˘

Q 0

ȳk
`

gk
`

x̄k
˘

´ ηk
˘

“ 0
(13)

Proof. Since x0 satisfies gpx0q ď η0 ă η1 so we have that first subproblem is well defined. We
prove the result by induction. First of all, suppose xk´1 is strictly feasible for k-th subproblem:
gkpx

k´1q ă ηk. Then we note that this problem is also valid and a feasible xk exists. Hence,
algorithm is well-defined. Now, note that

gk`1px
kq “ gpxkq ď gkpx

kq ď ηk ă ηk`1.

where first inequality follows due to majorization, second inequality follows due to feasibility of xk
for k-the subproblem and third strict inequality follows due to strictly increasing nature of sequence
tηku.
Since k-th subproblem has xk´1 as strictly feasible point satisfying Slater condition so we obtain
existence of x̄k and ȳk ě 0 satisfying the KKT condition (13).

A.2 Proof of Theorem 3.3

In order to prove this theorem, we first state the following intermediate result.

Proposition A.2. Let πk denotes the randomness of x1, x2, ..., xk´1. Assume that there exists a
ρ P r0, γ ´ µs and a summable nonnegative sequence ζk (ζk ě 0,

ř8

k“1ζk ă 8) such that

E
“

ψkpx
kq ´ ψkpx̄

kq|πk
‰

ď
ρ
2

›

›x̄k ´ xk´1
›

›

2
` ζk (14)

Then, under Assumption 3.1, we have
1. The sequence Erψpxkqs is bounded;
2. limkÑ8 ψpx

kq exists a.s.;
3. limkÑ8

›

›xk´1 ´ x̄k
›

› “ 0 a.s.;
4. If the whole algorithm is deterministic then ψpxkq is bounded. Moreover, if ζk “ 0, then the
sequence ψpxkq is monotonically decreasing and convergent.

Proof. Due to the strong convexity of ψkpxq, we have

ψkpx̄
kq ď ψkpxq ´

γ´µ
2

›

›x̄k ´ x
›

›

2
, (15)

for all x satisfying gkpxq ď ηk. Taking x “ xk´1 and using feasibility of xk´1 (gkpxk´1q ď ηkq we
have

ψpxk´1q ě ψpx̄kq ` γ
2

›

›x̄k ´ xk´1
›

›

2
`

γ´µ
2

›

›xk´1 ´ x̄k
›

›

2

Together with (9) we have

ζk ` ψpx
k´1q ě E

“

ψpxkq ` γ
2

›

›xk ´ xk´1
›

›

2
|πk

‰

`
γ´µ´ρ

2

›

›xk´1 ´ x̄k
›

›

2
.

(16)

Since tζku is summable, taking the expectation of πk and summing up all over all k, we have
Erψpxkqs ď ψpx0q `

řk
s“1ζk ă 8. Moreover, Applying Supermartingale Theorem E.1 to

(16), we have limkÑ8 ψpx
kq exists and

ř8

k“1

›

›xk´1 ´ x̄k
›

›

2
ă 8 a.s. Hence we conclude

limkÑ8

›

›xk´1 ´ x̄k
›

› “ 0 a.s. Part 4) can be readily deduced from (16).
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Now we are ready to prove Theorem 3.3.

For simplicity, we assume the whole sequence generated by Algorithm 1 converges to rx. Due to
Proposition A.1, there exists a KKT point px̄k, ȳk). The optimality condition yields

ψpxq `
γ

2

›

›x´ xk´1
›

›

2
` ȳkgkpxq ě ψpx̄kq `

γ

2

›

›x̄k ´ xk´1
›

›

2
` ȳkgkpx̄

kq, @x (17)

Since ȳk is bounded, there exists a convergent subsequence tiku that limkÑ8 ȳ
ik “ ry for some

ry ě 0. Let us take k Ñ 8 in (17). In view of Proposition A.2, Part 3, we have limkÑ8 x̄
ik “

limkÑ8 x
ik´1 “ rx almost surely. Then limkÑ8 hpx

ik´1q “ hprxq and limkÑ8∇hpxik´1q “

∇hprxq a.s. due to the continuity of hpxq and ∇hpxq, respectively. Then we have

ψpxq `
γ

2
}x´ rx}

2
` ry rλ }x}1 ´ hprxq ´ x∇hprxq, x´ rxys ě ψprxq ` rygprxq, a.s.

implying that rx minimizes the loss function ψpxq `
γ
2 }x´ rx}

2
`

ry rλ }x}1 ´ hprxq ´ x∇hprxq, x´ rxys. Due to the first order optimality condition, we conclude
0 P Bψprxq ` ryBgprxq, a.s.

Moreover, using the complementary slackness, we have 0 “ ȳik
`

gik
`

x̄ik
˘

´ ηik
˘

. Taking the limit
of k Ñ 8 and noticing that limkÑ8 ηik “ η, we have 0 “ ry pg prxq ´ ηq a.s . As a result, we
conclude that prx, ryq is a KKT point of problem (5), a.s.

A.3 Proof of Theorem 3.4

From KKT condition of (13), x̄k is the optimal solution of the problem minxPRd ψkpxq `
ȳk pgkpxq ´ ηkq . Therefore, for any x P Rd, we have

ψkpxq ` ȳ
kgkpxq ě ψkpx̄

kq ` ȳkgkpx̄
kq (18)

We prove that tȳku is bounded a.s. by contradiction. If
 

ȳk
(

has unbounded subsequence with
positive probability, then conditioned under that event, there exists a subsequence tiku such that
ȳik Ñ 8. Let us divide both sides of (18) by ȳk and expand gk by its definition. After placing
k “ ik, we have for all x

1
ȳik

ψikpxq ` λ }x}1 ´∇hpxik´1qTx

ě 1
ȳik

ψikpx̄
ikq ` λ

›

›x̄ik
›

›

1
´∇hpxik´1qT x̄ik .

(19)

Let rx be any limiting point a.s. of the sequence
 

xik´1
(

. By the statement of the theorem, we know
that it exists and satisfies MFCQ assumption. Passing to some subsequence if necessary, we have
limkÑ8 x

ik´1 “ rx a.s. Using Proposition A.2 Part 3, we have limkÑ8 x̄
ik “ rx a.s. Moreover, using

Proposition A.2 Part 2, we have limkÑ8 ψpsx
ikq exists a.s. This implies limkÑ8

1
syik
ψikpsx

ikq “ 0
a.s.
Taking k Ñ 8, since ψikpxq is bounded a.s. (due to existence of rx a.s.), we have
limkÑ8

1
ȳik

ψikpxq “ 0. From Lipschitz continuity of l1 norm and ∇hpxq, we have
limkÑ8 λ

›

›x̄ik
›

›

1
“ λ }rx}1 a.s., and limkÑ8∇hpxik´1q “ ∇hprxq a.s., respectively. It then follows

from (19) that for all x, we have λ }x}1 ´ x∇hprxq, xy ě λ }rx}1 ´ x∇hprxq, rxy . In other words, we
have

0 P Bλ }rx}1 ´∇hprxq “ Bgprxq, a.s. (20)
Moreover, due to complementary slackness and ȳik ą 0, the equality gikpx̄

ikq “ ηik holds. Hence,
in the limit, we have the constraint gprxq “ η active a.s. Under MFCQ, there exists z such that
maxvPBgprxq z

T v ă 0. However, from (20) we have 0 “ zT0 since 0 P Bgprxq, leading to a
contradiction to the event that tsyku contained unbounded sequence with positive probability. Hence,
sy is bounded a.s.

B Explicit and specialized bounds on the dual

Here, we discuss some of the results for explicit bounds on the dual. In particular, we focus on the
SCAD and MCP case. Similar results can be extended for Exp and `p, p ă 0 case since these function
follows two key properties (as we will see later in the proofs):

14



1. |∇hpxq| ď λ for all x for each of these functions.
2. They remain bounded below a constant. See Figure 1.

We exploit these two structural properties of these sparse constraints to obtain specialized and explicit
bounds on the optimal dual of problem 5. The following lemma is in order.
Lemma B.1. Let h : RÑ R be the the convex function which satisfies |∇hpxq| ď λ for all x P R.
Then the minimum value of sgpx; sxq : RÑ R defined as sgpx; sxq :“ λ|x|´ hpsxq ´ x∇hpsxq, x´ sxy is
achieved at 0 for all sx P R.

Proof. Note that sg is a convex function for any sx P R. So by first order optimality condition, if px is
the minimizer of sg then 0 P Bsgppx; sxq. This implies

λB|px|´∇hpsxq Q 0.

Note that px “ 0 satisfies this condition since in that case λB|px| “ r´λ, λs. And due to assumption
on h, we have ∇hpsxq P r´λ, λs. Hence px “ 0 is always the minimizer.

Now note that hλ,θ functions defined for our examples, such as SCAD or MCP. satisfy the assumption
of bounded gradients in Lemma B.1. Now we use this simple result to show that 0 is the most feasible
solution for each of the subproblem (8) generated in Algorithm 1 and hence we can give an explicit
bound for the optimal dual value for each subproblem.
Lemma B.2. Suppose all assumptions in Lemma B.1 are satisfied. Then we have for any k ě 1,

syk ď ψkp0q´ψkpsx
k
q

ηk´gpxk´1q`
řd

i“1
pλ´|∇hpxk´1

i q|q|xk´1
i |

. (21)

Proof. Note that gkpxq “
řd
i“1sgpxi;x

k´1
i q where sg is defined in Lemma B.1. Since assumptions

of Lemma B.1 hold, so we have that each individual sg is minimized at xi “ 0. Hence gkp0q is the
minimum value of gk. In view of Proposition A.1, we have that xk´1 is strictly feasible solution with
respect to constraint gkpxq ď ηk implying gkpxk´1q ´ ηk ă 0. Hence, we have

ηk ´ gkp0q

“ ηk ´
“

λ }0}1 ´
řd
i“1thpx

k´1
i q `∇hpxk´1

i qp0´ xk´1
i qu

‰

“ ηk `
řd
i“1hpx

k´1
i q ´

řd
i“1∇hpx

k´1
i qxk´1

i

“ ηk ´ gpx
k´1q ` rgpxk´1q ` hpxk´1qs ´

řd
i“1∇hpx

k´1
i qxk´1

i

ě ηk ´ gpx
k´1q ` λ

›

›xk´1
›

›

1
´
řd
i“1|∇hpx

k´1
i q||xk´1

i |

“ ηk ´ gpx
k´1q `

řd
i“1pλ´ |∇hpxk´1

i q|q|xk´1
i |

ą 0.

Here, last strict inequality follows due to the fact that λ ě |∇hpxk´1
i q| and ηk ą gpxk´1q. Then, we

have, optimal dual syk satisfies for all x:

ψkpsx
kq ď ψkpxq ` sykpgkpxq ´ ηkq

ñ ψkpsx
kq ď ψkp0q ` sykpgkp0q ´ ηkq

ñ syk ď ψkp0q´ψkpsx
k
q

ηk´gkp0q

ď
ψkp0q´ψkpsx

k
q

ηk´gpxk´1q`
řd

i“1
pλ´|∇hpxk´1

i q|q|xk´1
i |

,

where third inequality follows due to the fact that ηk ´ gkp0q ą 0 Hence, we conclude the proof.

Note that the bound in (21) depends on xk´1 which can not be controlled, especially in the stochastic
cases. In order to show a bound on syk irrespective of xk´1, we must lower bound the denominator in
(21) for all possible values of xk´1. To accomplish this goal, we show the following two theorems in
which we lower bound the term

řd
i“1pλ´ |∇hpxk´1

i q|q|xk´1
i |. Each of these theorem is a specialized

result for SCAD and MCP function, respectively.
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Figure 4: Plot of zpγq for SCAD function where λ “ 1, θ “ 5. z : r0, 3s Ñ Rě0 where
zp0q “ zp3q “ 0 otherwise z is strictly positive.

Theorem B.3. Let g be the SCAD function and x P Rd such that gpxq “ α. Also, let γ “
α ´ β λ

2
pθ`1q
2 where β is the largest nonnegative integer such that γ ě 0. Then,

řd
i“1pλ ´

|∇hpxiq|q|xi| ě zpγq where z : r0, λ
2
pθ`1q
2 s Ñ Rě0 is the function defined as

zpγq :“

#

γ if 0 ď γ ď λ2

γ
λ

b

2
θ´1

b

λ2
pθ`1q
2 ´ γ if λ2 ă γ ď λ2

pθ`1q
2

.

Theorem B.4. Let g be the MCP function and x P Rd be such that gpxq “ α. Also let γ “ α´β λ
2θ
2

where β is the largest nonnegative integer such that γ ě 0. Then
řd
i“1pλ´ |∇hpxiq|q|xi| ě zpγq

where z : r0, λ
2θ
2 s Ñ Rě0 is the function defined as zpγq :“ γ

b

1´ 2γ
θλ2 .

Note that Theorem B.3 states that lower bound zpγq “ 0 when γ “ 0 or λ
2
pθ`1q
2 . In essence, when

α is exact integral multiple of λ
2
pθ`1q
2 then lower bound turn out to be zero. However, for all other

values of α, the corresponding zpγq is strictly positive. This can be seen from the graph of zpγq
below. Similar claims can be made with respect to MCP in Theorem B.4.

Now we are ready to show a bound on syk irrespective of xk´1. We give a specific routine to choose
the values of ηk such that we can obtain a provable bound on the denominator in (21) hence obtaining
an upper bound on the syk for all k irrespective of xk´1.

Proposition B.5. Let g be the SCAD function and η “ β λ
2
pθ`1q
2 ` rη where β be the largest

nonnegative integer such that rη ě 0. Then, for properly selected η0, we have that ηk ´ gpxk´1q `
řd
i“1pλ´ |∇hpxk´1

i q|q|xk´1
i | ě mintλ2, zprηq2 u.

We note that very similar proposition for MCP can be proved based on Theorem B.4. We skip that
discussion in order to avoid repetition.

Connection to MFCQ In this section, we show the connection of MFCQ assumption in Theorem
3.4 with the bound in Theorem B.3.

Note that for the boundary points of the set gpxq ď η1 where η1 “
λ2
pθ`1q
2 then the lower bound

zpη1q “ 0. In fact, carefully following the proof of Theorem B.3, we can identify that the lower
bound is tight for x’s such that one of the coordinate xi satisfy |xi| ě λθ and all other coordinates
are 0. In this case, we see that such points do not satisfy MFCQ. At such points, we don’t have any
strictly feasible directions required by MFCQ assumption. This can be easily visualized in the Figure
5 part (a) below. Note that λθ “ 5 and for any |x| ě 5, the feasible region is merely the axis and
hence there is no strict feasible direction. This implies MFCQ indeed fails at these points.

For gpxq “ η2 ă η1 the lower bound zpη2q is nonzero and same holds for gpxq “ η3 ą η1. Indeed,
we see that for such cases, the points not satisfying MFCQ in case of η1 vanish. This can be observed
in Figure 5 part (b) and part (c). For the case of η2 in part (b), these points become infeasible and for
the case of η3 in part (c), they are no longer boundary points.
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Looking back at MFCQ from the result of Theorem B.3, we can see that how close η is to λ2
pθ`1q
2

shows how ‘close’ the problem is for violating MFCQ. Moreover, the lower bound zp¨q on the
denominator of (21) shows how quickly the dual will explode as the problem setting gets closer to
violating MFCQ.

(a) η1 “ 3 (b) η2 “ 2.8 (c) η3 “ 3.2

Figure 5: All figures are plotted for λ “ 1 and θ “ 5. Then η1 “
λ2
pθ`1q
2 “ 3. In fig (a), we see

that for |x| ě 5, the MFCQ assumption is violated since only x-axis is feasible. Similar observation
holds for y-axis as well. However, in fig(b) and fig(c) such claims are no longer valid.

We complete this discussion by showing the proof of Theorem B.3 and Theorem B.4. We also note
that similar theorems can be proved for `p, p ă 0 and Exp function in Table 2.

B.1 Proof of Theorem B.3

First, we show a lower bound for one-dimensional function and then extend it to higher dimensions.
Suppose u P R be such that gpuq “ α. Note that since g is SCAD function so α must lie in the set
r0, λ

2
pθ`1q
2 s. Key to our analysis is the lower bound on pλ´ |∇hpuq|q|u| as a function of α. Note

that since
gpuq “ αñ λ|u| ě αñ |u| ě α

λ . (22)
Also note that for all |u| ď λ, we have gpuq “ λ|u| and ∇hpuq “ 0 which implies ∇hpuq “ 0 for
all gpuq “ α ď λ2. Hence, using this relation along with (22), we obtain

pλ´ |∇hpuq|q|u| “ λ|u| ě α if 0 ď α ď λ2. (23)

We note that |∇hpuq| “ λ for all u ě λθ and gpuq “ α “ λ2
pθ`1q
2 for all u ě λθ. Hence,

pλ´ |∇hpuq|q|u| “ 0 if α “ λ2
pθ`1q
2 . (24)

Now we design a lower bound when α P pλ2, λ
2
pθ`1q
2 q. For such values of α, we have

gpuq “λ|u|´ p|u|´λq2
2pθ´1q “ α

ñu2 ´ 2λθ|u|` λ2 ` 2αpθ ´ 1q “ 0

ñ|u| “ λθ ´

b

2pθ ´ 1q
“λ2

pθ`1q
2 ´ α

‰

ñ|∇hpuq| “ |u|´λ
θ´1 “ λ´

b

2
θ´1

b

λ2
pθ`1q
2 ´ α

ñλ´ |∇hpuq| “
b

2
θ´1

b

λ2
pθ`1q
2 ´ α.

Then, above relation along with (22), we have pλ ´ |∇hpuq|q|u| ě
b

2
θ´1

α
λ

b

λ2
pθ`1q
2 ´ α for all

α P pλ2, λ
2
pθ`1q
2 q. Using this relation along with (23), (24) and noting the definition of function zp¨q,

we obtain a lower bound pλ´ |∇hpuq|q|u| ě zpαq where α “ gpuq.

Now note that for general high-dimensional x P Rd, we have gpxq “
řd
i“1gpxiq “ α. Then

α P r0, dλ
2
pθ`1q
2 s. Since each individual gpxiq ě 0, we can think of α as a budget such that sum of
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gpxiq must equal α. In order to minimize the lower bound on pλ´ |∇hpxiq|q|xi|, we should exhaust
the largest budget from

řd
i“1gpxiq “ α while maintaining the lowest possible value of the lower

bound on pλ´ |∇hpxiq|q|xi|. This clearly holds by setting |xi| such that gpxiq “
λ2
pθ`1q
2 . This can

be clearly observed in the figure below.

Figure 6: Plot of function zpαq on y-axis and α on x-axis for λ “ 1, θ “ 5. The largest possible
value gpuq is λ2

pθ`1q
2 “ 3 is achieved for u ě λθ “ 5 and lower bound zp3q “ 0. Hence, setting

u ě λθ maximizes the gpuq and minimizes zpαq “ zpgpuqq.

Hence, if α P
”

β λ
2
pθ`1q
2 , pβ ` 1qλ

2
pθ`1q
2

¯

for some nonnegative integer β, then we should set β

coordinates of x satisfying |xi| ě λθ in order to exhaust the maximum possible budget, λ
2
pθ`1q
2 ,

from α and still keep the value of the lower bound on pλ ´ |∇hpuq|q|u| as 0. Hence, noting the
definition of γ, the problem reduces to

ř

igpxiq “ γ where summation is taken over remaining

coordinates of x and γ P
“

0, λ
2
pθ`1q
2

˘

.

Lets recall from the analysis in 1-D case that if gpxiq “ αi then pλ ´ |∇hpxiq|q|xi| ě zpαiq
so we obtain the lower bound

ř

izpαiq while αi’s satisfy the relation
ř

iαi “ γ. Moreover, z :

r0, λ
2
pθ`1q
2 s Ñ Rě0 is a concave function with zp0q “ 0. Then we show that z is a subadditive

function. Using Jensen’s inequality, for all t P r0, 1s, we have zptx`p1´ tqyq ě tzpxq`p1´ tqzpyq.
Using y “ 0 and the fact that zp0q “ 0, we have zptxq ě tzpxq for any t P r0, 1s. Now using this
relation along with t “ x

x`y P r0, 1s (for x, y ě 0) we have

zpxq “ zptpx` yqq ě tzpx` yq.

zpyq “ zpp1´ tqpx` yqq ě p1´ tqzpx` yq.

Adding the two relations, we obtain zpxq ` zpyq ě zpx ` yq. Hence, z is a subadditive function.
Since

ř

iαi “ γ then the we have
ř

izpαiq ě zp
ř

iαiq “ zpγq. This bound is indeed achieved when
we set one of αi “ γ and rest to 0. Hence, we conclude the proof.

B.2 Proof of Theorem B.4

As before, we proceed by assuming 1-D case, i.e., u P R and gpuq “ α and then extend it to general
d-dimensional setting. Then, α P r0, λ

2θ
2 s. Then, we write function pλ´ |∇hpuq|q|u| in term of α.

Note that

gpuq “ λ|u|´ u2

2θ “ α

ñ |u| “ θλ
`

1´
b

1´ 2α
θλ2

˘

ñ |∇hpuq| “ |u|
θ “ λ

`

1´
b

1´ 2α
θλ2

˘

ñ λ´ |∇hpuq| “ λ
b

1´ 2α
θλ2

Moreover, we also have (22). Then, noting the definition of zp¨q, we obtain that pλ´ |∇hpuq|q|u| ě
zpαq.
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For high dimensional x P Rd, we use similar arguments as in the proof of theorem B.3. In particular,
we set β coordinates x satisfying |xi| ě λθ which exhausts the maximum possible budget λ

2θ
2 from

α and still keeps the value of the lower bound on pλ ´ |∇hpxiq|q|xi| as 0. Finally, we reduce the
problem to

ř

igpxiq “
ř

iαi “ γ and lower bound is
ř

izpαiq. As in the previous case, z is concave
function on nonnegative domain with zp0q “ 0 hence it must be subadditive. So we obtain that
ř

izpαiq ě zp
ř

iαiq “ zpγq. Hence, we conclude the proof.

B.3 Proof of Proposition B.5

We note that η “ β λ
2
pθ`1q
2 ` rη, where β is the largest nonnegative integer such that rη ě 0. Clearly

rη P
“

0, λ
2
pθ`1q
2

˘

. Now, we divide our analysis in two cases:

Case 1: Suppose rη ď λ2. Then we define η0 for Algorithm 1 as η0 “ β λ
2
pθ`1q
2 `

rη
2 .

Now, if gpxk´1q ď β λ
2
pθ`1q
2 then we have that ηk´1 ´ gpx

k´1q ě η0 ´ gpx
k´1q ě

rη
2 . In this case,

we obtain that denominator of (21) is at least rη
2 .

In other case, suppose that gpxk´1q ą β λ
2
pθ`1q
2 . We also note that gpxk´1q ď gk´1px

k´1q ď

ηk´1 ď η. Hence, we obtain gpxk´1q ď η “ β λ
2
pθ`1q
2 ` rη. This implies rgpxk´1q :“ gpxk´1q ´

β λ
2
pθ`1q
2 P r0, λ2s. Then, using Theorem B.3, we obtain that

řd
i“1pλ ´ |∇hpxk´1

i q|q|xk´1
i | ě

zprgpxk´1qq “ rgpxk´1q. Using this relation, we obtain that ηk´1 ´ gpxk´1q `
řd
i“1pλ ´

|∇hpxk´1
i q|q|xk´1

i | ě ηk´1 ´ gpx
k´1q ` rgpxk´1q “ ηk´1 ´ β

λ2
pθ`1q
2 “ rηk´1 ě

rη
2 .

So, when rη ď λ2, we obtain that the denominator in (21) is at least ηk ´ ηk´1 `
zprηq

2 “ δk `
zprηq

2 ě
zprηq

2 .

Case 2: Now, we look at the second case where rη ą λ2. In this case, we define η0 “ β λ
2
pθ`1q
2 `

mintλ2, zprηqu. Then, we again note that gpxk´1q ď β λ
2
pθ`1q
2 implies ηk´1 ´ gpx

k´1q ě rηk´1 ě

rη0.
In other case, we assume that gpxk´1q P rβ λ

2
pθ`1q
2 , β λ

2
pθ`1q
2 ` λ2s, then again using Theorem B.3,

we obtain
řd
i“1pλ´ |∇hpxk´1

i q|q|xk´1
i | ě zprgpxk´1qq “ rgpxk´1q. This implies ηk´1´gpx

k´1q`
řd
i“1pλ´ |∇hpxk´1

i q|q|xk´1
i | ě ηk´1 ´ β

λ2
pθ`1q
2 “ rηk´1 ě rη0.

Finally, gpxk´1q ą β λ
2
pθ`1q
2 ` λ2 then rgpxk´1q P pλ2, rηq then due to concavity of z, we obtain that

zprgpxk´1qq ě mintλ2, zprηqu “ rη0.

Hence, combining the bounds in both cases, we obtain that denominator in (21) is always bounded
below by mintλ2, zpηq2 u.

C Proof of Theorem 3.5

As in the previous case, we show an important recursive property of iterates. We first state the
theorem again:
Theorem C.1. Suppose Assumption 3.1, 3.2 hold such that δk “ η´η0

kpk`1q for all k ě 1. Let πk denote
the randomness of x1, . . . , xk´1. Suppose for k-th subproblem (8), the solution xk satisfies

Erψkpxkq ´ ψkpx̄kq|πks ď ρ
2

›

›xk´1 ´ x̄k
›

›

2
` ζk,

gkpx
kq ď ηk

where ρ lies in the interval r0, γ ´ µs and tζku is a sequence of nonnegative numbers. If k̂ is chosen
uniformly randomly from

X

K`1
2

\

to K then corresponding to xk̂, there exists pair psxk̂, syk̂q satisfying

Ek̂
“

dist
`

BxLpx̄k̂, ȳk̂q, 0
˘2‰

ď
8pγ2

`B2L2
hq

Kpγ´µ´ρq

`

γ´µ`ρ
γ´µ ∆0 ` 2Z1

˘

,

Ek̂
“

ȳk̂
ˇ

ˇgpx̄k̂q ´ η
ˇ

ˇ

‰

ď
2BLh

Kpγ´µ´ρq

`

γ´µ`ρ
γ´µ ∆0 ` 2Z1

˘

`
2Bpη´η0q

K ,

Ek̂
›

›

›
xk̂ ´ x̄k̂

›

›

›

2

ď
4ρpγ´µ`ρq

Kpγ´µq2pγ´µ´ρq∆
0 ` 8Z1

Kpγ´µ´ρq ,
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where, ∆0 :“ ψpx0q ´ ψpx˚q and Z1 :“
řK
k“1ζk.

We first prove the following important relationship on the sum of squares of distances of the iterates.
Proposition C.2. Let requirements of Theorem 3.5 hold. Then for any s ě 2, we have

Er
řK
k“s

›

›xk´1 ´ x̄k
›

›

2
|πs´1s ď

2pAs`Zsq
γ´µ´ρ , (25)

Er
řK
k“s

›

›xk ´ x̄k
›

›

2
|πs´1s ď

2ρAs
pγ´µqpγ´µ´ρq `

2Zs
γ´µ´ρ (26)

where As “ γ´µ`ρ
γ´µ

“

ψpxs´2q ´ ψpx˚q
‰

and Zs “
řK
k“s´1ζk.

Proof. Note that since for all k ě 1 we have feasibility of xk for k-th subproblem (due to (10)), then in
view of Proposition A.1, we have that xk´1 is strictly feasible for the k-th subproblem. Consequently,
using strong convexity ofψk and optimality of sxk, we have γ´µ

2

›

›xk´1 ´ sxk
›

›

2
ď ψkpx

k´1q´ψkpsx
kq.

Therefore, taking expectation conditioned on πk´1 ob both sides of the above relation, we obtain
γ´µ

2 Er
›

›xk´1 ´ x̄k
›

›

2
|πk´1s ď Erψkpxk´1q ´ ψkpx̄

kq|πk´1s

ď Erψk´1px
k´1q ´ ψkpx̄

kq|πk´1s

ď ψk´1px̄
k´1q ´ Erψkpx̄kq|πk´1s `

ρ
2

›

›xk´2 ´ x̄k´1
›

›

2
` ζk´1

where second inequality follows from ψkpx
k´1q “ ψpxk´1q ď ψk´1px

k´1q and third inequality
follows from (9). Placing the definition of ψkp¨q in above relation, we have

2γ´µ
2 Er

›

›xk´1 ´ x̄k
›

›

2
|πk´1s ď ψpx̄k´1q ´ Erψpx̄kq|πk´1s `

γ`ρ
2

›

›xk´2 ´ x̄k´1
›

›

2
` ζk´1.

Summing up over k “ s, s` 1, . . . ,K and taking expectation conditioned on πs´1, we have
2γ´µ

2

řK
k“sE

“
›

›xk´1 ´ x̄k
›

›

2
|ψs´1

‰

ď ψpx̄s´1q ´ Eψpx̄Kq

`
γ`ρ

2

řK
k“sE

“
›

›xk´2 ´ x̄k´1
›

›

2
|πs´1

‰

`
řK
k“sζk´1.

It then follows that
γ´µ´ρ

2 E
“
řK
k“s

›

›xk´1 ´ x̄k
›

›

2
|πs´1

‰

ď ψpx̄s´1q ´ Eψpx̄Kq ` γ`ρ
2

›

›xs´2 ´ x̄s´1
›

›

2
`
řK
k“sζk´1

ď ψs´1px̄
s´1q ´ Eψpx̄Kq

`
ρ

γ´µ

“

ψs´1px
s´2q ´ ψs´1px̄

s´1q
‰

`
řK
k“sζk´1

ď ψpxs´2q ´ Eψpx̄Kq

`
ρ

γ´µ

“

ψpxs´2q ´ ψs´1px̄
s´1q

‰

`
řK
k“sζk´1

ď
γ´µ`ρ
γ´µ

“

ψpxs´2q ´ ψpx˚q
‰

`
řK
k“sζk´1,

where the third and the last inequality follow from the property

ψpxk´1q “ ψkpx
k´1q ě ψkpx̄

kq ě ψpx̄kq ě ψpx˚q.

Note that solution xk is feasible for the k-th subproblem and hence, in view of Proposition A.1, we
have that gpsxkq ď gkpsx

kq ď ηk ă η and hence sxk is feasible solution for the main problem implying
ψpsxkq ě ψpx˚q in the above relation. Then (25) immediately follows.

Now we prove that (26) holds. Note that

E
”

›

›xk ´ x̄k
›

›

2
|πk

ı

ď 2
γ´µE

“

ψkpx
kq ´ ψkpx̄

kq|πk
‰

ď 2
γ´µ

”

ρ
2

›

›xk´1 ´ x̄k
›

›

2
` ζk

ı

,

where the first inequality follows due to the strong convexity ψk as well as the optimality of sxk and
the second inequality follows due to (9). Now summing the above relation from k “ s to K and
taking expectation conditioned on ψs´1, we obtain

E
”

řK
k“s

›

›xk ´ x̄k
›

›

2
|πs´1

ı

ď
ρ

γ´µE
”

řK
k“s

›

›xk´1 ´ x̄k
›

›

2
|πs´1

ı

` 2
γ´µ

řK
k“sζk

ď
2ρAs

pγ´µqpγ´µ´ρq `
2Zs

γ´µ´ρ ,

where the last inequality follows from (25) and the definition of Zs. Hence, we conclude the
proof.
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Now we present the unified convergence of proximal point as stated in Theorem 3.5.

Proof of Theorem 3.5. Due to the KKT condition for the subproblem (8), we have

0 P Bψpx̄kq ` γ
`

x̄k ´ xk´1
˘

` ȳk
`

B
›

›x̄k
›

›

1
´∇hpxk´1q

˘

0 “ ȳk
`

λ
›

›x̄k
›

›

1
´ hpxk´1q ´

@

∇hpxk´1q, x̄k ´ xk´1
D

´ ηk
˘ (27)

Using triangle inequality along with first relation in the above equation, we have
dist

`

BxLpx̄k, ȳkq, 0
˘

ď γ
›

›x̄k ´ xk´1
›

›` ȳk
›

›∇hpxk´1q ´∇hpx̄kq
›

›. Therefore, noting the bound
on syk from Assumption 3.2, we have

dist
`

BxLpx̄k, ȳkq, 0
˘2
ď 2γ2

›

›x̄k ´ xk´1
›

›

2
` 2B2

›

›∇hpxk´1q ´ hpx̄kq
›

›

2

ď 2
`

γ2 `B2L2
h

˘
›

›x̄k ´ xk´1
›

›

2
,

where the second inequality uses Lipschitz smoothness of hpxq. Summing the above relation from
k “ s, . . . ,K and the taking expectation conditioned on πs´1 on both sides, we obtain

E
”

řK
k“s dist

`

BxLpx̄k, ȳkq, 0
˘2
|πs´1

ı

ď 2pγ2 `B2L2
hqE

”

řK
k“s

›

›xk´1 ´ x̄k
›

›

2
|πs´1

ı

ď
4pγ2

`B2L2
hq

γ´µ´ρ pAs ` Zsq, (28)

For the complementary slackness part of the KKT condition, first notice that ηk “ η0 `
řk
t“1δt “

η0 `
řk
t“1

η´η0
tpt`1q “

k
k`1η `

1
k`1η0. Therefore,

řK
k“s pη ´ ηkq “

řK
k“s

η´η0
k`1 ď

K`1´s
s`1 pη ´ η0q.

To prove the error of complementary slackness condition, observe that

ȳk
ˇ

ˇλ
›

›x̄k
›

›

1
´ hpx̄kq ´ η

ˇ

ˇ ď ȳk
ˇ

ˇλ
›

›x̄k
›

›

1
´ hpxk´1q ´

@

∇hpxk´1q, x̄k ´ xk´1
D

´ ηk
ˇ

ˇ

` ȳk
ˇ

ˇhpxk´1q `
@

∇hpxk´1q, x̄k ´ xk´1
D

´ hpx̄kq
ˇ

ˇ` ȳk pη ´ ηkq

ď
BLh

2

›

›x̄k ´ xk´1
›

›

2
`B pη ´ ηkq ,

where second inequality follows due to second relation in (27) and bound on syk from Assumption
3.2. Summing the above relation from k “ s, . . . ,K and taking expectation conditioned on πs´1 on
both sides, we obtain

E
”

řK
k“sȳ

k
ˇ

ˇgpx̄kq ´ η
ˇ

ˇ |πs´1

ı

ď
řK
k“sE

”

BLh
2

›

›x̄k ´ xk´1
›

›

2
`B pη ´ ηkq |πs´1

ı

ď
BLh

2 E
”

řK
k“s

›

›x̄k ´ xk´1
›

›

2
|ψs´1

ı

`B
řK
k“s pη ´ ηkq

ď
BLh
γ´µ´ρ pAs ` Zsq `

pK`1´sqBpη´η0q
s`1 . (29)

Now note that As “ γ´µ`ρ
γ´µ rψpxs´2q ´ ψpx˚qs is a random variable due to randomness of xs´2.

Now we bound expectation of ψpxs´2q. In view of (9), we have

Erψkpxkq|πks ď ψkpsx
kq `

ρ
2

›

›xk´1 ´ sxk
›

›

2
` ζk

ď ψkpx
k´1q ´

γ´µ´ρ
2

›

›xk´1 ´ sxk
›

›` ζk

Since, γ ´ µ´ ρ ě 0 and noting that ψkpxk´1q “ ψpxk´1q, ψkpxkq ě ψpxkq, we have

Erψpxkq|πks ď ψpxk´1q ` ζk.

Taking expectation on both sides of the above relation and then summing from k “ 1 to s´ 2, we get

Erψpxs´2qs ď ψpx0q `
řs´2
k“1ζk.

Using the above relation, we obtain

ErAss ď γ´µ`ρ
γ´µ ∆0 ` 2

řs´2
k“1ζk, (30)
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where ∆0 “ ψpx0q ´ ψpx˚q. Note that here we used the fact γ´µ`ργ´µ ď 2. Now taking expectation
on both sides of (28) and using bound on ErAss in (30), we obtain

E
”

řK
k“s dist

`

BxLpx̄k, ȳkq, 0
˘2
|πs´1

ı

ď
4pγ2

`B2L2
hq

γ´µ´ρ

`

γ´µ`ρ
γ´µ ∆0 ` 2

řs´2
k“1ζk `

řK
k“s´1ζk

˘

ď
4pγ2

`B2L2
hq

γ´µ´ρ

`

γ´µ`ρ
γ´µ ∆0 ` 2Z1

˘

.

Similarly, taking expectation on both sides of (29) and using (30), we obtain

E
”

řK
k“sȳ

k
ˇ

ˇgpx̄kq ´ η
ˇ

ˇ |πs´1

ı

ď
BLh
γ´µ´ρ

`

γ´µ`ρ
γ´µ ∆0 ` 2Z1

˘

` K`1´s
s`1 Bpη ´ η0q.

Taking expectation on both sides of (26) and using (30), we obtain

Er
řK
k“s

›

›xk ´ x̄k
›

›

2
s ď

2ρ
pγ´µqpγ´µ´ρq

`

γ´µ`ρ
γ´µ ∆0 ` 2

řs´2
k“1ζk

˘

` 2Zs
γ´µ´ρ

ď
2ρpγ´µ`ρq

pγ´µq2pγ´µ´ρq∆
0 ` 4Z1

γ´µ´ρ .

Finally, setting s “
X

K`1
2

\

, we have K
2 ď s ď K`1

2 . Therefore, we have

Ek̂

„

dist
´

BxLpx̄k̂, ȳk̂q, 0
¯2


ď
8pγ2

`B2L2
hq

Kpγ´µ´ρq

`

γ´µ`ρ
γ´µ ∆0 ` 2Z1

˘

,

Ek̂
”

ȳk̂
ˇ

ˇ

ˇ
gpx̄k̂q ´ η

ˇ

ˇ

ˇ

ı

ď
2BLh

Kpγ´µ´ρq

`

γ´µ`ρ
γ´µ ∆0 ` 2Z1

˘

`
2Bpη´η0q

K ,

and

Ek̂
›

›

›
xk̂ ´ x̄k̂

›

›

›

2

ď
4ρpγ´µ`ρq

Kpγ´µq2pγ´µ´ρq∆
0 ` 8Z1

Kpγ´µ´ρq .

Hence, we conclude the proof.

C.1 Proof of Corollary 3.7

Since Tk ě 2
b

L
µ ` 3, we have that 2pL`γq

T 2
k

“
2pL`3µq
T 2
k

ď
µ
2 “

ρ
2 . Moreover, we see that

ρ “ µ ď γ ´ µ “ 2µ. Finally, since Tk ě KpM ` σq so we have ζk ď 4
µK implying that

Z1 “
řK
k“1ζk ď

4
µ . Then, applying Theorem 3.5, we obtain that xk̂ is an pε1, ε2q-KKT solution of

the problem (5).

C.2 Convergence for the (stochastic) convex case

We have the following Corollary of Theorem 3.5 for the case in which objective ψ is convex, i.e.
µ “ 0.

Corollary C.3. Let ψ be convex function such that it satisfies (6) with µ “ 0. Set γ “ βL where

β P r0, 1q be a small constant and run AC-SA for Tk “ maxt2
b

2p1`βq
β ,KpM ` σqu iterations

where K is the total number of iterations of Algorithm 1. Then, xk̂ is an pε1, ε2q-KKT point of the
problem (5) where

ε1 “
`

3∆0

2K `
16pM`σq
βKL

˘

maxt
16pβ2L2

`B2L2
hq

βL , 4BLh
βL u `

2Bpη´η0q
K ,

ε2 “
3∆0

2βLK `
128pM`σq
βL2K .

Proof. Since Tk ě 2
b

2p1`βq
β , we have 2pL`γq

T 2
k

“
2p1`βqL
T 2
k

ď
βL
4 “

ρ
2 . Moreover, note that

ρ “ βL
2 ď γ “ βL. Finally, since Tk ě KpM ` σq so we have ζk “

8pM2
`σ2

q

γTk
ď

8pM`σq
βLK . Hence,

Z1 “
řK
k“1ζk ď

8pM`σq
βL . Then, applying Theorem 3.5, we obtain that xk̂ is an pε1, ε2q-KKT

solution of problem (5).
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Finite-sum problem A special case of objective takes the finite-sum form fpxq “ 1
n

řn
i“1

rfipxq
thereby leading to the following subproblem

min
x

rψpxq “ 1
n

řn
i“1

rfipxq ` rωpxq

It is known that finite-sum problem can be efficiently solved by using variance reduction or
randomized incremental gradient method [35, 20]. The complexity of LCPP on finite-sum problem
can be further improved if we apply variance reduction technique for solving the subproblem. We
comment on the complexity result in brief. In the finite-sum setting, the Nesterov’s accelerated

gradient-based LCPP requires Tk “ rOpn
b

L`2µ
µ q and Tk “ rOpnβ´1{2q number of stochastic

gradient computations to solve each LCPP subproblem. Even though this number is a constant in
terms of dependence on K, number of terms (n) in the finite sum can be large. In comparison to
these standard methods, the complexity of SVRG (stochastic variance reduced gradient) based LCPP
method can be improved to Tk “ rOpn` L`µ

µ q for the case when ψ is nonconvex satisfying (6) with

µ ą 0, and to Tk “ rOpn` β´1q for convex problem where µ “ 0.

D Proof for the projection algorithm for problem (11)

We formulate the update as the following problem

min
xPRd

1
2 }x´ v}

2 s.t. }x}1 ` xu, xy ď τ. (31)

Since the objective is strongly convex, problem (31) has a unique global optimal solution. Moreover,
the problem is strictly feasible because of the strict feasibility guarantee (A.1) in the context of
problem (8). Therefore, KKT condition guarantees that there exists y ě 0 such that

0 P x´ v ` yu` yB }x}1 , (32)
0 “ y pxu, xy ` }x}1 ´ τq . (33)

The algorithm proceeds as follows. First, we check whether v is feasible, if it is the case, then x “ v
is the optimal solution. Otherwise, the constraint in (31) is active. Next, we explore the optimality
condition (32). Given the optimal Lagrangian multiplier y ě 0, for the i-th coordinate of the optimal
x, one of the following three situations will occur:

1. xi ą 0 and xi “ vi ´ pui ` 1qy.
2. xi ă 0 and xi “ vi ´ pui ´ 1qy.
3. xi “ 0 and pui ´ 1qy ď vi ď pui ` 1qy.

For simplicity, let us denote ras` “ maxta, 0u and ra, bs` “ maxta, b, 0u. Based on the discussion
above, we can express x as a piecewise linear function of y.

xipyq “ rvi ´ pui ` 1qys` ´ rpui ´ 1qy ´ vis` .

Let us denote `pyq “ xu, xpyqy ` }xpyq}1. We can deduce that

`pyq “
řd
i“1uixipyq `

řd
i“1 maxtxipyq,´xipyqu

“
řd
i“1ui rvi ´ pui ` 1qys` ´

řd
i“1ui rpui ´ 1qy ´ vis`

` 2
řd
i“1rvi ´ pui ` 1qy, pui ´ 1qy ´ vis`

´
řd
i“1 rvi ´ pui ` 1qys` ´

řd
i“1 rpui ´ 1qy ´ vis`

“
řd
i“1pui ´ 1q rvi ´ pui ` 1qys`

´
řd
i“1pui ` 1q rpui ´ 1qy ´ vis`

` 2
řd
i“1rvi ´ pui ` 1qy, pui ´ 1qy ´ vis`

Above, the second equality uses the identity: maxtp ´ q, q ´ pu “ 2 maxtp, qu ´ p ´ q for any
p, q P R. It can be readily seen that `pyq is a piecewise linear function with at most 3d breaking
points. We can sort these points in Opd log dq and then apply a line-search to find the root of `p¨q “ τ
in Opdq time.
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E Supermartingale convergence theorem

In below, we state a version of supermartingale convergence theorem developed by [25].
Theorem E.1. Let pΩ, F, P q be a probability space and F0 Ď F1 Ď ... Ď Fk Ď be some sub-σ-
algebra of F . Let bk, ck be nonnegative Fk-measurable random variables such that

E rbk`1 | Fks ď bk ` ξk ´ ck,

where tξku0ďkă8 is a non-negative and summable:
ř8

k“0ξk ă `8. Then we have

lim
kÑ8

bk exists, and
ř8

k“1ck ă `8, a.s.
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F Additional experiments

This section describes additional experiments for investigating the empirical performance of LCPP.
We run all the algorithms on a cluster node with Intel Xeon Gold 2.6G CPU and 128G RAM.

Solving the subproblems

We compare the performance of different instances of LCPP for which the subproblems are solved by
a variety of convex algorithms. Specifically, we consider LCPP-SVRG, LCPP-SGD, LCPP-NAG and
LCPP-BB in which the subproblems are solved by proximal stochastic variance reduced gradient
descent (SVRG [35]), proximal stochastic gradient descent (SGD), Nesterov’s accelerated gradient
(NAG[22]) and spectral gradient (Barzilai-Borwein stepsize) respectively. We adopt the spectral
gradient descent with non-monotone line search from [16] due to its superior performance in the
reported experiments.
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Figure 7: Objective value vs. number of effective passes over the dataset. Green, orange, blue and red
curves represent NAG, SGD, SVRG and BB. We set η “ αd. First row: gisette (α “ 0.05, 0.10,
left to right); second row: rcv1.binary, (α “ 0.10, 0.20), third row: real-sim (α “ 0.10, 0.20).

Figure 7 shows the objective vs. number of effective passes over the datasets. Here, each effective pass
evaluates one full gradient. We find that stochastic algorithms (LCPP-SGD, LCPP-SVRG) converge
more rapidly than deterministic algorithms (LCPP-NAG, LCPP-BB) in the earlier stage, but they do
not obtain higher accuracy in the long run. In all the tested datasets, we can observe that LCPP-BB
outperforms the other three methods. Moreover, we remark that stochastic gradient algorithms need
to compute projections more frequently than deterministic algorithms. While our linesearch routine
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can efficiently perform projection, it is still more expensive than computing stochastic gradient,
particularly, for the sparse data. Hence the overall running time of SGD algorithms is much worse
than that of LCBB-BB. For the above reasons, we choose LCPP-BB as our default choice in the main
experiment section.

Classification performance

We conduct an additional experiment to compare the empirical performance of all the tested algorithms
in sparse logistic regression. We perform grid search based on five-fold cross-validation to find the best
hyper-parameters. Then we retrain each model with the chosen hyper-parameter on the whole training
dataset and report the classification performance on the testing data. Each experiment is repeated
five times. Hyper-parameters: 1) GIST: α “ 1, nλ P t10, 1, 0.1u where n is the size of training
data, θ P t100, 10, 5, 1, 0.1, 0.01, 0.001u, 2) LCPP: λ “ 2, θ P t100, 10, 5, 1, 0.1, 0.01, 0.001u,
η “ 10´kd where k P t´3,´2.5,´2,´1.5,´1u, 3) Lasso: we set C “ C010s where s “ 1` 2

3k,
k “ 0, 1, 2, ..., 9, and C0 is chosen by the l1_min_c function in Sklearn. Table 4 summarizes the
testing performance (mean and standard deviation) of each compared method. We can observe from
this table that LCPP achieves the best performance on three out of the four datasets.

Table 4: Classification error (%) of different methods for sparse logistic regression

Datasets GIST LCPP LASSO

gisette 2.32˘ 0.04 1.64˘ 0.14 1.84˘ 0.05

mnist 2.57˘ 0.01 2.52˘ 0.02 2.56˘ 0.00

rcv1.binary 6.39˘ 0.03 4.90˘ 0.14 4.52˘ 0.01

realsim 3.50˘ 0.04 3.03˘ 0.00 3.10˘ 0.00
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