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Abstract

Biological neural networks face a formidable task: performing reliable compu-
tations in the face of intrinsic stochasticity in individual neurons, imprecisely
specified synaptic connectivity, and nonnegligible delays in synaptic transmission.
A common approach to combatting such biological heterogeneity involves aver-
aging over large redundant networks of N neurons resulting in coding errors that
decrease classically as 1/

√
N . Recent work demonstrated a novel mechanism

whereby recurrent spiking networks could efficiently encode dynamic stimuli,
achieving a superclassical scaling in which coding errors decrease as 1/N . This
specific mechanism involved two key ideas: predictive coding, and a tight balance,
or cancellation between strong feedforward inputs and strong recurrent feedback.
However, the theoretical principles governing the efficacy of balanced predictive
coding and its robustness to noise, synaptic weight heterogeneity and communica-
tion delays remain poorly understood. To discover such principles, we introduce
an analytically tractable model of balanced predictive coding, in which the de-
gree of balance and the degree of weight disorder can be dissociated unlike in
previous balanced network models, and we develop a mean field theory of coding
accuracy. Overall, our work provides and solves a general theoretical framework
for dissecting the differential contributions neural noise, synaptic disorder, chaos,
synaptic delays, and balance to the fidelity of predictive neural codes, reveals the
fundamental role that balance plays in achieving superclassical scaling, and unifies
previously disparate models in theoretical neuroscience.

1 Introduction

The early days of computing generated intense interest in how reliable computations could emerge
from unreliable components, a question well articulated by von Neumann [1]. While the rise of
digital technology largely circumvented this issue by making individual physical components highly
reliable and fast, biological evolution, in the case of neural computation, had to directly face this
problem. Indeed neural cortical firing patterns exhibit high levels of Poisson like temporal irregularity
[2–4], external noisy inputs to a circuit can interfere with its operation, synaptic strengths are
imprecisely specified in learning and development [5], and synapses themselves can be slow [6],
resulting in non-negligible communication delays between neurons. Thus von Neumann’s question
still remains central in neuroscience [7]: how can neural circuits perform reliable computations
when their underlying components, connectivity and inputs can be slow and subject to unpredictable
fluctuations?

A conventional approach to this problem involves averaging over large redundant networks of N
neurons, resulting in coding and computation errors that decay as O(1/

√
N) as long as neural firing

patterns are weakly correlated, due to the law of large numbers. However, can one do better? Recent

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



work [8] has constructed a recurrent network of spiking neurons that achieves superclassical error
scaling, with the error decreasing as O(1/N). Two key ideas underlying this network are the notions
of predictive coding [9, 10] and balance [11]. In a sensory coding context, predictive coding refers
to scenarios in which a neural circuit computes a prediction x̂(t) of some dynamic sensory input
x(t). Then a representation of the prediction error x̂(t)− x(t) can be employed for diverse purposes,
including learning a causal model [12], cancellation of predictable sensory consequences of motor
actions [13], mismatch between auditory and visual speech perception [14], or simply communicating
surprises to downstream regions [15]. In [8] in particular, the prediction error was used to drive
the dynamics of the recurrent spiking network through extremely strong negative feedback, thereby
forcing the network prediction x̂(t) to track the sensory input x(t). Furthermore, the gain b of the
negative feedback was proportional to network sizeN , resulting in a very tight balance or cancellation
between strong feedforward drive due to the external input bx(t) and recurrent negative feedback
generated by the network prediction −bx̂(t).

A notion of balance has also played a prominent role in theoretical neuroscience in the context
of a very different question: what mechanisms can generate the strong heterogeneity of observed
biological firing patterns [2, 3] in the first place? [16, 17] demonstrated that disordered random
connectivity itself can generate fluctuations in firing activity due to high dimensional chaos in neural
circuits, without the need for additional injected noise. Moreover, recurrent networks in which each
neuron receives strong excitation and strong inhibition, self-organize into a highly heterogenous
balanced state [18, 19], where excitation and inhibition into each neuron is large and O(

√
N),

but their difference cancels to O(1) fluctuations which drive firing, a situation we term classical
balance, in contrast to the tight balance of [8]. Given the empirically observed prevalence of highly
heterogenous firing patterns in the brain, the dynamical operating regime of cortex, and in particular,
the degree of excitation-inhibition balance involved (tight, classical, or something looser), remains a
question of great interest [20, 21].

These two largely distinct strands of inquiry, namely exploiting tight balance to make predictive
coding highly efficient, versus exploiting classical balance to explain the origins of neural variability
itself, in the absence of any particular computations, raises several foundational questions. First, what
is the relation between the chaotic networks of classical balance and the predictive coding networks
of tight balance? What minimal degree of balance can generate superclassical scaling of error with
network size? Indeed can we elucidate the fundamental role of balance in achieving superclassical
scaling? Moreover, what is the efficacy of balanced predictive coding in the presence of noisy external
inputs, chaos induced by additional weight disorder, or delays due to slow synaptic communication?
While some of the latter issues have been explored numerically in predictive coding spiking networks
[22, 23], a theoretical analysis of the interplay between balance, weight disorder, noise, chaos and
delays in determining the fidelity of predictive coding has remained elusive due to the complexity
of the network models involved. This lack of understanding of how multiple facets of biological
variablity interact with each other in predictive coding represents a major gap in the theoretical
literature, given the prevalence of predictive coding in many areas of theoretical neuroscience [9, 10].

We aim to fill this gap by introducing and analyzing a theoretically tractable neural network model
of balanced predictive coding. Importantly, in our new model we can independently adjust the
amounts of: balance employed in predictive coding, weight disorder leading to chaos, strength of
noise, degree of delay, and the single neuron nonlinearity. In previous balanced network models for
generating heterogeneity, the degree of chaos inducing weight disorder and the degree of excitation-
inhibition balance were inextricably intertwined in the same random connectivity pattern [18]. Our
model in contrast exhibits an interplay between low rank structured connectivity implementing
balance, and high rank disordered connectivity inducing chaos, each with independently adjustable
strengths. In general, how computation emerges from an interplay between structured and random
connectivity has been a subject of recent interest in theoretical neuroscience [19, 24–26]. Here
we show how structure and randomness interact by obtaining analytic insights into the efficacy of
predictive coding, dissecting the individual contributions of balance, noise, weight disorder, chaos,
delays and nonlinearity, in a model were all ingredients can coexist and be independently adjusted.

2 Linearly decodable neural codes in noisy nonlinear recurrent networks

Consider a noisy, nonlinear recurrent neural network of N neurons with a dynamical firing rate vector
given by r(t) ∈ RN . We wish to encode a scalar dynamical variable x(t) within the firing rate vector
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r(t) such that it can be read out at any time t by a simple linear decoder x̂(t) = 1
NwT r(t) where w

is a fixed time-independent readout vector. The dynamical variable x(t) could be thought of either as
an input stimulus provided to the network, or as an efferent motor command generated internally by
the network as an autonomous dynamical system [27]. For simplicity, in the main paper we focus
on the case of stimulus encoding, and describe how our analysis can be generalized to autonomous
signal generation in the Supplementary Material (SM) in a manner similar to previous studies of
efficient coding of dynamical systems in spiking networks [8, 27, 28]. Also, while we focus on scalar
stimuli in the main paper, our theory can be easily generalized to multidimensional stimuli (see SM).

We assume the nonlinear dynamics of the firing rate vector r(t) obeys standard circuit equations [29]

ri(t) = φ(hi(t)), and τ ḣi(t) = −hi(t) +
∑
j

Jijrj(t− d) + Ii(x(t)) + σξi(t). (1)

Here hi(t) is the membrane potential of neuron i, φ is a neural nonlinearity that converts membrane
potentials hi to output firing rates ri, τ is the membrane time constant, Jij is the synaptic connectivity
from neuron j to i, d is a synaptic communication delay, Ii(x(t)) is the stimulus driven input current
to neuron i, and ξi(t) is zero mean i.i.d Gaussian white noise current input with cross-correlation
〈ξi(t)ξj(t′)〉 = δijδ(t − t′). Now the critical issue is, how do we choose the connectivity Jij and
the stimulus driven current Ii(x) so that the noisy nonlinear delay dynamics in (1) for ri(t) yields a
simple linearly decodable neural code with a network estimate x̂(t) = 1

N

∑
i wiri(t) closely tracking

the true stimulus x(t)? We generalize a proposal made in [8], that was proven to be optimal in the
case of spiking neural networks with no delays, noise or weight disorder, by choosing

Jij = gJij −
b

N
wiwj , and Ii(x(t)) = bwix(t). (2)

Here, wi are the components of the readout vector, which now appear both in the stimulus driven
current Ii and the connectivity Jij in a structured rank 1 manner. We also consider a random
contribution gJij to synaptic strengths, modelling imprecision in connectivity. We take the structured
connectivity to be random with wi chosen i.i.d from a distribution P(w) such that wi remains O(1)
for large N with the norm of the vector concentrating at wTw = N , while the random synaptic
strengths Jij are chosen to be i.i.d Gaussian variables with zero mean and variance 1

N . Thus while
the structured connectivity, which is O(1/N), is much weaker than the random connectivity, which
is O(1/

√
N), they each generate a comparable O(1) contribution to the input current to any neuron

(when b is O(1)). Thus in this model, as N →∞, the input current to each neuron originates from 4
distinct sources, with 3 independently adjustable control strengths: input currents due to disordered
connectivity (g), structured connectivity (−b), stimulus drive (+b), and noise (σ).

Interestingly, this model provides a simple and theoretically tractable instantiation of the principle of
predictive coding of the stimulus through balance (See Fig. 1A). One can see this by inserting the
connectivity in (2) into (1) and using the definition of the readout x̂(t) = 1

N

∑
j wjrj(t) to obtain

τ ḣi(t) = −hi(t) +
∑
j

gJijrj(t− d) + bwi [x(t)− x̂(t− d)] + σξi(t). (3)

Thus the structured part of the recurrent connectivity implicitly computes a prediction of the stimulus
x̂(t−d), which is then used to cancel the actual incoming stimulus x(t), and the resulting coding error
x(t)− x̂(t− d) drives membrane voltages hi in the readout direction wi. The coefficient b defines a
level balance between positive feedforward stimulus drive, and negative feedback from the prediction
computed by the structured connectivity. A key feature of our model is that, unlike in previous
balanced network models [18, 19, 30], the degree of balance b can be independently modulated
relative to the degree of synaptic disorder, which here is controlled instead by g. Moreover, through
different choices of scaling of b with N , we can seamlessly interpolate between previously distinct
regimes of balance, with b = O(N) corresponding to tight balance [11], b = O(

√
N) corresponding

to classical balance [19], and b < O(
√
N) corresponding to loose or no balance [21, 24, 31].

However, despite the prominent role of both balanced networks (e.g., [30, 32–35]) and predictive
coding [9, 13–15] in theoretical neuroscience, to our knowledge, an analytic theory of the robustness
of balanced predictive coding in the face of weight disorder, noise and delays in general nonlinear
networks has not yet been developed. We take advantage of our simple analytically tractable model
of balanced predictive coding in (1) and (2) to compute how the average error ε2 = 〈[x(t)− x̂(t)]

2〉
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Figure 1: (A) A schematic view of a balanced predictive coding network. (B) Graphical solution
method for mean field equations in (6) for φ = tanh. (C) The mean input-output transfer function
〈x̂〉 as a function of x obtained by solving (6) (solid curves) and numerical simulations of (3) (points)
with N = 1400, σ = 0.75 and g = d = 0 for 3 values of b. Grey line marks 〈x̂〉 = x. The inset
shows 3 corresponding examples of traces of x̂(t)−x when x = 0.5, demonstrating both bias (y-axis
baseline) and fluctuations δx̂(t). (D) The decoder bias 〈|x − 〈x̂〉|〉 (top) and standard deviation√
〈(δx̂)2〉 (bottom) as a function of balance b for theory (curves) and simulations (points). σ = 0.75,

g = 0 for noise (blue), σ = 0, g = 1.6 for chaos (orange). In both cases N = 1400 and x = 0.2.
Balance b yields power law suppression of variance with exponent −1 for noise and −2 for chaos.

of the neural code depends on various network properties. We work in an adiabatic limit in which
the external stimulus x(t) varies over a much longer time scale T than either the membrane time
constant τ or the delay d. Thus we can think of the stimulus x(t) as effectively a constant x, and
the squared error arises as the sum of a squared bias and a variance: ε2 = (〈x̂〉 − x)2 + 〈(δx̂)2〉,
where δx̂ = x̂− 〈x̂〉. The average 〈·〉 can be thought of as an average over the realizations of noise
ξi, or equivalently, a temporal average over an intermediate window of duration between that of the
microscopic times scales of τ and d and the macroscopic time scale T . Our goal in the following is
to compute the bias and variance by computing the mean and variance of x̂(t) and its dependence on
the strengths of noise σ, balance b, weight disorder g, delay d, and nonlinearity φ.

3 A mean-field theory for bias and variance in a noisy neural code

We first consider the case of no weight disorder and delay (g = d = 0 in (3)), focusing on the
interplay between balance b, nonlinearity φ and noise strength σ. To analyze these dynamics, we
first decompose the membrane voltage vector h into two components, parallel and perpendicular
to the readout vector w, via h(t) = h‖(t) + h⊥(t) where h‖ = Ph and h⊥ = (I − P)h, and
P = 1

NwwT is an orthogonal projection operator onto the direction of w. Thus h‖(t) = u(t)w

where u(t) ≡ 1
N

∑N
i=1 wihi(t) and h⊥ obeys wTh⊥ = 0. Now applying 1

NwT and I−P to both
sides of (3) we can decompose the dynamics into that of u(t) and h⊥i (t) respectively:

τ u̇(t) = −u(t) + b [x− x̂(t)] + σξ‖(t), and τ ḣ⊥i (t) = −h⊥i (t) + σξ⊥i (t). (4)

The noise ξ‖ = 1
N

∑N
i=1 wiξi along the decoder direction now has diminished autocorrelation

〈ξ‖(t)ξ‖(t′)〉 = 1
N δ(t − t′), while the perpendicular noise components have autocorrelation

〈ξ⊥i (t)ξ⊥j (t′)〉 = δijδ(t−t′) up toO(1/N) corrections due to satisfying the constraint
∑
i wiξ

⊥
i = 0,

which we can safely neglect. Thus in the large N limit, the variables h⊥i (t) undergo independent
Ornstein Uhlenbeck (OU) processes each corresponding to leaky integration with time constant τ of
white noise of variance σ2, yielding an output with zero mean and temporal variance 〈(h⊥i )2〉 = σ2

2τ .

Next, in order to compute the temporal mean and variance of x̂(t), we decompose u(t) into its tempo-
ral mean 〈u〉 and fluctuations δu(t) about that mean via u(t) = 〈u〉+ δu(t). Inserting this decompo-
sition into the dynamical equation for u(t) in (4) and taking the temporal average 〈·〉 of both sides, we
obtain the relation 〈u〉 = b [x− 〈x̂〉]. We can obtain a second relation between 〈x̂〉 and 〈u〉 by starting
from the definition of x̂(t) and inserting the decompositions hi(t) = wiu(t) + h⊥i (t) and u(t) =

〈u〉 + δu(t) to obtain x̂(t) = 1
N

∑N
i=1 wiφ(hi(t)) = 1

N

∑N
i=1 wiφ

(
wi〈u〉+ wiδu(t) + h⊥i (t)

)
.

Now since u(t) is driven by white noise ξ‖(t) of variance O(1/N) in (4), we expect the fluctuations
δu(t) in the coding direction w to be of variance O(1/N), and therefore much smaller than either
the mean 〈u〉 or the perpendicular membrane voltages h⊥i (t), both of O(1), inside the argument of φ.

4



Therefore we Taylor expand the nonlinearity φ about δu(t) = 0 to obtain to first order in δu:

x̂(t) =
1

N

N∑
i=1

wiφ
(
wi〈u〉+ h⊥i (t)

)
+

1

N

N∑
i=1

w2
i φ
′ (wi〈u〉+ h⊥i (t)

)
δu(t). (5)

Now, taking the temporal average 〈·〉 of both sides of this equation, we obtain, up to corrections of
O( 1

N ), 〈x̂〉 = 1
N

∑N
i=1 wi〈φ

(
wi〈u〉+ h⊥i (t)

)
〉 =

∫
Dz dwP(w)wφ(w〈u〉+ σ√

2τ
z). Here P(w) is

the distribution of readout weights and Dz = dz√
2π
e−z

2/2 is the standard Gaussian measure. Thus we
have obtained two equations for the two unknown means 〈x̂〉 and 〈u〉:

〈x̂〉 = x− 〈u〉
b
, and 〈x̂〉 =

∫
Dz dwP(w)wφ(w〈u〉+

σ√
2τ
z). (6)

The solutions to these equations can be viewed graphically (Fig. 1B). The first equation describes a
straight line in the 〈u〉-〈x̂〉 plane with intercept x and slope −1/b (blue curves). The second equation
behaves like a smoothed version of the nonlinearity φ (orange curve), and the intersection of these
curves yields the solution. Thus as b is increased, the slope of the line flattens, and the bias |〈x̂〉 − x|
decreases, as long as x lies in the dynamical range of the smoothed φ. In general, the input-output
behavior x → 〈x̂〉 is largely linear for all such values of x at large b (Fig. 1C). Our quantitative
predictions for the bias are confirmed via numerical simulations in Fig. 1D, top. With knowledge
of the nonlinearity φ, degree of balance b, and noise level σ, one can theoretically compute the
deterministic bias and remove it through the inverse map 〈x̂〉 → x when feasible. Therefore, we
focus on the contribution of variance 〈[δx̂(t)]2〉 to coding error ε, which cannot be easily removed.

To compute the variance of δx̂, we insert the decompositions u(t) = 〈u〉 + δu(t) and x̂(t) =
〈x̂〉+ δx̂(t) into (4) and use the mean relation −〈u〉+ b [x− 〈x̂〉] = 0 to extract a dynamic equation
for the fluctuations τ δ̇u(t) = −δu(t) − bδx̂(t) + σξ‖(t). We then subtract 〈x̂〉 from both sides of
(5) to obtain the linearized relation δx̂(t) = 〈φ′〉δu where 〈φ′〉 ≡ 1

N

∑N
i=1 w

2
i φ
′ (wi〈u〉+ h⊥i (t)

)
.

Inserting this relation into δ̇u(t) and replacing the sum over i with integrals yields

τδu̇(t) = −δu(t)− b〈φ′〉δu(t) + σξ‖(t) where 〈φ′〉 =

∫
Dz dwP(w)w2φ′(w〈u〉+

σ√
2τ
z).

(7)
This constitutes a dynamic mean field equation for the membrane voltage fluctuations δu(t) in the
coding direction w, where the average gain of the nonlinearity 〈φ′〉 across neurons multiplicatively
modifies the negative feedback due to balance b. Again, this is an OU process like that of h⊥i in
(4) except with a faster effective time constant τeff = τ

1+b〈φ′〉 and a smaller input noise variance

σ2
eff = σ2

N(1+b〈φ′〉)2 yielding a diminished variance 〈(δu(t))2〉 = σ2

2τN(1+b〈φ′〉) both due to effective
negative feedback, and averaging over the decoder direction w. Note the fluctuations of δu are
indeed O(1/N) making our initial assumption self-consistent. Finally, the variance of the readout
fluctuations follows from squaring and averaging both sides of δx̂(t) = 〈φ′〉δu(t), yielding

〈(δu(t))2〉 =
σ2

2τN(1 + b〈φ′〉)
, and 〈(δx̂(t))2〉 =

〈φ′〉2σ2

2τN(1 + b〈φ′〉)
. (8)

Taken together, the equations (6), (7) and (8) constitute a complete mean field theory of how the
first and second order statistics of the projection of the membrane voltages and firing rates onto the
decoder direction w, i.e. u(t) = 1

N

∑
i wihi(t) and x̂(t) = 1

N

∑
i wiri(t) respectively, depend on

the balance b and noise σ, in the large N limit. We compare the theoretically predicted decoder bias
〈x̂〉 − x and variance 〈(δx̂)2〉 with numerical experiments, obtaining an excellent match (see Fig. 1D
and Figures below). We find that the standard deviation of the decoder output scales as O(1/b

√
N).

This reveals a fundamental necessity of strong balance, in which b must scale as Nχ for some χ > 0,
to achieve superclassical scaling with decoder error falling off faster than O(1/

√
N). In particular,

error scaling of O(1/N), as reported in [8, 11, 23], is possible when χ = 1, for which individual
weights are O(1) and do not scale with network size. In Section 5 we present an important limitation
on the possible scaling.
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4 The interplay between balance and chaos induced by weight disorder

We next consider the effects of weight disorder alone, with no noise or delays (g nonzero but
σ = d = 0 in (3)). This network has been shown to exhibit a dynamical phase transition from
being a fixed point attractor when g ≤ gc to chaotic evolution induced by large weight disorder for
g ≥ gc [16]. The critical transition point gc depends on the nonlinearity φ and strength of inputs
x. Roughly, higher nonlinear gains φ′(x) promote chaos by reducing gc. However, gc does not
depend on the degree of balance where chaos and balance coexist [36, 37]. For g ≤ gc, there are
no temporal fluctuations, so the only source of error is bias, which is computable and therefore
can be removed. Thus we focus on the chaotic regime g ≥ gc in which the amplitude of chaotic
fluctuations of membrane voltages hi(t) increases with g − gc [36]. In essence, the recurrent input
gηi(t) ≡ g

∑
j Jijφ(hi(t)) due to the random connectivity J acts like a source of chaotic noise,

analogous to the stochastic noise source σξi(t) studied in Sec. 3. A major difference however is
that while the stochastic noise source is white across both neurons and time, with cross correlation
〈ξi(t)ξj(t′)〉 = δijδ(t− t′), the chaotic noise is, up to O(1/

√
N) corrections, white across neurons,

but not across time, with cross correlation 〈ηi(t)ηj(t′)〉 = δijq(t − t′). For chaotic models, the
temporal autocorrelation function q(t− t′) must be solved self-consistently [38, 39], and within the
chaotic regime it decays to a constant value on a time scale close to the membrane time constant τ .

While the full solution for the chaotic system is highly involved (see SM for comments on the
derivation), we can describe the main quantitative effects of chaos on predictive coding error through
an exceedingly simple derivation, which we give here. Basically, we can account for the chaotic
fluctuations simply by replacing the white noise σξi(t) in (3) by colored noise gηi(t) with temporal
autocorrelation q(t− t′) = exp(−|t− t′|/2τ), which qualitatively matches the typical self-consistent
solution to q(t − t′) in the chaotic regime. While this simplification does not describe the spatial
structure of the chaos, which resides on a low-dimensional chaotic attractor [40], it does capture the
temporal structure of the chaos which, as we see next, primarily determines the error of balanced
predictive coding. We then follow the noise based derivation in Sec. 3. The analog of (7) becomes

τδu̇(t) = −δu(t)− b〈φ′〉δu(t) + gη‖(t) where 〈η‖(t)η‖(t′)〉 =
1

N
exp(−|t− t′|/2τ). (9)

Thus the fluctuations δu of membrane voltages hi(t) in the decoder direction w are well approximated
by a leaky integrator with negative feedback proportional to b〈φ′〉 driven by colored noise, which is
a stochastic ODE that is well understood [41]. Importantly, when the auto-correlation time of the
driving noise equals the membrane time constant, as in this case, the variance is given by (see SM)
〈δu2〉 ≈ g2

2N〈φ′〉2b2 , yielding a decoder variance

〈δx̂2〉 ≈ 〈φ′2〉g2

2N〈φ′〉b2N
.

This should be compared to the decoder variance in (8) in the case of white noise, which instead
scales as O( σ

2

bN ). A rough intuition for the difference between chaos and noise can be obtained by
considering the Fourier decomposition of the dynamics. In the case of colored noise, the power of the
fluctuations is concentrated at low frequencies, while for white noise it is evenly distributed across
the spectrum. Increasing b has two opposing effects: attenuating the fluctuations on the one hand,
and allowing higher noise frequency through the synaptic low-pass filter on the other. In the case of
colored noise, the latter affect is negligible due to decaying power spectrum. Notably, 〈δu2〉 scales
with the balance b exactly as the inverse square 1/b2, and is a result of the exact match between the
time-constant of the noise autocorrelation function q(t− t′) and of the dynamics in (9), which are
both equal to τ (see SM for details). Thus our analysis reveals the important prediction that balance
much more effectively suppresses decoder variance due to chaos versus noise, with a power law
decay exponent in b that doubles when going from noise to chaos. We verify this important prediction
in Fig. 1D.

5 The role of delays, balance and noise in the onset of oscillatory instability

In the previous two sections we have seen that increasing balance b always suppresses decoder
variance 〈δx̂2〉, for fluctuations induced both by noise and chaos. We now consider the case of
a nonzero synaptic communication delay d, focusing first on the case of noise and no chaos (i.e.
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Figure 2: Dynamical phases in the presence of delays, balance and noise (g = 0, x = 0.2). Left: The
critical balance bc (blue curve) as a function of the delay (with σ2 = 2) obtained by solving for b̃c
in (11) and dividing by 〈φ′〉 in (7). Center: The critical balance bc as a function of noise σ for fixed
delay (d/τ = 0.15). Right: sample firing rates ri(t) (grey) from simulations of (3) with N = 1000,
with parameters corresponding to points in the left two panels, and the decoder trajectory x̂(t) (blue).

d, σ > 0 and g = 0 in (3)). In this setting, the entire derivation of Sec. 3 follows without modification
until the analysis of membrane voltage fluctuation dynamics δu(t) along the decoder direction w in
(7). With a nonzero delay d, the dynamics of δu(t) in (7) is modified to

τδu̇(t) = −δu(t)− b〈φ′〉δu(t− d) + σξ‖(t). (10)

This corresponds to a delay differential equation [42]. We first consider its properties in the absence
of noise input. First, for either zero balance b or zero delay d, the dynamics has a stable fixed
point at δu = 0. However, if either the delay d is increased at fixed b, or the negative feedback
b is increased at fixed delay d, the combination of strong negative feedback b and long delay d
can trigger an oscillatory instability. To detect this instability, we search for complex exponential
solutions to (10) of the form δu(t) = ezt where the complex frequency z = γ + iω. These solutions
correspond to stable damped oscillations at frequency ω if γ < 0, or unstable diverging oscillations if
γ > 0. Inserting δu(t) = ezt into (10) yields a constraint on z through the characteristic equation
G(z) = zτ + 1 + b̃e−zd = 0 where b̃ ≡ b〈φ′〉 is the effective negative feedback taking into account
the average nonlinear gain 〈φ′〉 in (7). At zero delay d, it has a solution z = −(1 + b)/τ indicating
damped exponential approach to the fixed point δu = 0.

However, for a fixed delay d, as one increases the negative feedback b̃, the solutions z to G(z) = 0
move in the left half of the complex plane with negative real part γ < 0 towards the imaginary axis
with γ = 0. Let b̃c be the smallest, or critical value of b̃ for which G(z) = 0 first acquires solutions
on the imaginary axis, indicating the onset of oscillatory instability for any b̃ ≥ b̃c. We can find b̃c
by searching for solutions of the form G(iωc) = 0. The real and imaginary parts of this complex
equation yield two real equations: b̃c cos(ωcd) + 1 = 0 and b̃c sin(ωcd)− ωcτ = 0. Here, ωc is the
frequency of unstable oscillations at onset, when b̃ approaches b̃c from below. Solving for b̃c yields

d

τ
= arccos(−1/b̃c)/

√
b̃2c − 1. (11)

Thus the maximal stable negative feedback b̃c is a function only of the relative delay d/τ . Indeed b̃c
is a decreasing function of d, indicating the longer the delay, the weaker the negative feedback must
be to avoid oscillatory instabilities. Beyond the linear oscillatory instability, with b̃ ≥ b̃c, each neuron
i oscillates with amplitude proportional to wi, stabilized by nonlinear saturation due to φ.

Importantly, the critical balance bc = b̃c/〈φ′〉 depends on the average gain of the nonlinearity 〈φ′〉,
which in turn depends on the degree of noise σ through (7). Increasing σ spreads out the distribution
of membrane voltages hi(t) across neurons i. For typical saturating nonlinearities, this increased
spread in membrane voltages leads to a decreased average nonlinear gain, which in turn raises the
critical balance level bc, thereby allowing stronger negative feedback b without triggering oscillatory
instabilities. Essentially, longer delays promote synchrony, while noise suppresses it, at any fixed
balance. The predicted phase boundary between stable noise suppression and oscillatory amplification
in the simultaneous presence of noise, delays and balance is verified in simulations (Fig. 2). .
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6 An optimal level of balance in the face of noise, chaos and delays

We now examine how the presence of the oscillatory instability of the previous section impacts the
nature of optimal predictive coding, by considering how the delay dynamical system in (10) responds
to the noise source σξ‖(t) in the stable regime, with b̃ ≤ b̃c. We can understand the response in
the frequency domain (see SM for detailed derivation). The power spectrum ∆(ω) at frequency ω
of the fluctuating time series δu(t) can be written in terms of the characteristic function G(z) as
∆(ω) = [G(iω)G∗(iω)]−1σ2, and the total variance is given by 〈δu2〉 =

∫∞
−∞ dω∆(ω). Now as b

approaches bc from below, the response power ∆(ωc) at the critical resonant frequency ωc increases,
since G(iωc) = 0 when b = bc. However, the power ∆(ω) at non-resonant frequencies ω far from ωc
is suppressed by increasing b. Indeed the total variance of both 〈δu2〉 and 〈δx̂2〉 can be approximated
by the sum of the power in the nonresonant frequencies, calculated above in (8), and the power at the
resonant frequency ∆(ωc), yielding (see SM)

〈δx̂2〉 =
σ2〈φ′〉2

2τN

(
1

1 + b̃
+

1

b̃c − b̃

)
. (12)

This expression exhibits a tradeoff: increasing b attenuates the first term by suppressing non-resonant
input noise frequencies, but increases the second term by amplifying resonant noise frequencies.
Intriguingly, this fundamental tradeoff sets an optimal level of balance that minimizes decoder
variance (Fig. 3). Indeed minimizing (12) yields an optimal balance b̃opt = 1

2 b̃c (note 〈φ′〉 does not
depend on b to leading order in 1/

√
N ). The resultant minimal error, ε2min = 〈δx̂2〉 as a function

of the delay is shown in Fig. 3. For small delays d � τ , the asymptotic expansion of (11) yields
b̃c ≈ πτ/2d, and so the error increases initially as the square-root of the delay and is given by

εmin = 2σ〈φ′〉
√

d

Nτπ
. (13)

The expression for minimal error in (13) implies that in order to achieve error scaling of O(1/N),
as obtained in [8, 11, 23], the delay must scale as d ∼ τ/N . In practice, both the time constant τ
and delay d are fundamental properties of the system. Thus, error scaling of O(1/N) can only be
achieved in networks smaller than N < d/τ .

Weight disorder, chaos and delays. Delays do not change the statistics of chaotic fluctuations,
since the mean-field equations are stationary, and fluctuations at times t and t − d are equivalent.
Moreover, the maximal critical balance b̃c does not depend on the fluctuations and is still given
by (11). Below critically b < bc and for small delays d � τ , resonant amplification at frequency
ωc plays less of a role in the case of chaos, since ωc ∝ 1/d and the power spectrum of chaotic
fluctuations is exponentially suppressed at frequencies ω � 1/τ . Without a strong tradeoff between
nonresonant suppression and resonant amplification, the optimal balance bopt for chaos is close to
the maximal balance bc, with a minimal decoder standard deviation that scales as εmin ∝ 1/bc. For
small delays where bc ∼ τ/d, the minimal deviation scales as: εmin ∼ d/τ . Our predicted scaling of
optimal balance and deviation with delay in the case of chaos is confirmed in simulations (Fig. 3).

7 Discussion

In summary we have introduced a theoretically tractable nonlinear neural circuit model of predic-
tive coding, and analytically derived many relations between coding accuracy and balance, noise,
weight disorder, chaos, delays, and nonlinearities. We find: (1) strong balance is a key requirement
for superclassical error scaling with network size; (2) without delays, increasing balance always
suppresses errors via powers laws with different exponents (-1 for noise, -2 for chaos); (3) delays
yield an oscillatory instability and a tradeoff between noise suppression and resonant amplification;
(4) this tradeoff sets a maximal critical balance level which decreases with delay; (5) noise or chaos
can increase this maximal level by promoting desynchronization; (6) the competition between noise
suppression and resonant amplification sets an optimal balance level that is half the maximal level
in the case of noise; (7) but is close to the maximal level in the case of chaos for small delays,
because the slow chaos has small power at the high resonant frequency; (8) the optimal decoder
error rises as a power law with delay (with exponent 1/2 for noise and 1 for chaos). Also, our model
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Figure 3: Optimally balanced network with delay, φ = tanh and x = 0. Points reflect simulations of
(3) with N = 1400 and curves reflect theory. Left: Decoder standard deviation (

√
〈(δx̂)2〉 ×

√
N )

as a function of balance b with σ = 0.75. For d = 0 this deviation decreases monotonically with b as
predicted by (8). With nonzero d this deviation exhibits a tradeoff between noise suppression and
resonant amplification as predicted by (12), with strong global oscillations triggered at b ≥ bc (grey
region), as predicted by (11). The optimal b occurs at bopt = bc/2 (see text). Center: optimal decoder
standard deviation (blue) and bopt (orange) as a function of delay, given by (13) with σ = 0.75.
Asymptotically, the error increases as

√
d/τ . Right: Same as center but with deterministic chaos

(g = 1.6, σ = 0). Theory curves are calculated via colored noise (see Sec. 4).

unifies a variety of perspectives in theoretical neuroscience, spanning classical synaptic balance
[18, 30, 43–46], efficient coding in tight balance [8, 47], the interplay of structured and random
connectivity in computation [19, 24, 25, 48, 49], the relation between oscillations and delays in
neural networks [50–52] and predictive coding [9, 11]. Moreover, the mean-field theory developed
here can be extended to spiking neurons with strong recurrent balance and delays [53], analytically
explaining relations between delays, coding and oscillations observed in simulations but previously
not understood [22, 23].

Acknowledgments

JK thanks the Swartz Foundation for Theoretical Neuroscience for funding; JT thanks the National
Science Foundation for funding. SG thanks the Simons and James S. McDonnell Foundations and an
NSF Career award for funding. We thank ID Landau and H Sompolinsky for fruitful discussions.

Broader impact

Our work is primarily theoretical and is designed to elucidate fundamental phenomena in nonlinear
neural circuit computation. Such a scientific understanding, may, in the long term, lead to more
robust technology.

Funding disclosure

All authors are funded as detailed in the Acknowledgements Section above. None of the authors have
competing interests.

References
[1] John Von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable

components. Automata studies, 34:43–98, 1956.

[2] Moshe Abeles. Corticonics: Neural circuits of the cerebral cortex. Cambridge University Press,
1991.

[3] William R Softky and Christof Koch. The highly irregular firing of cortical cells is inconsistent
with temporal integration of random epsps. Journal of Neuroscience, 13(1):334–350, 1993.

[4] M N Shadlen and W T Newsome. The variable discharge of cortical neurons: implications for
connectivity, computation, and information coding. The Journal of neuroscience: the official
journal of the Society for Neuroscience, 18(10):3870–3896, May 1998.

9



[5] Anna R Chambers and Simon Rumpel. A stable brain from unstable components: emerging
concepts and implications for neural computation. Neuroscience, 357:172–184, 2017.

[6] Paul Greengard. The neurobiology of slow synaptic transmission. Science, 294(5544):1024–
1030, 2001.

[7] Oleg I Rumyantsev, Jérôme A Lecoq, Oscar Hernandez, Yanping Zhang, Joan Savall, Radosław
Chrapkiewicz, Jane Li, Hongkui Zeng, Surya Ganguli, and Mark J Schnitzer. Fundamental
bounds on the fidelity of sensory cortical coding. Nature, 580(7801):100–105, April 2020.

[8] Martin Boerlin, Christian K Machens, and Sophie Denève. Predictive coding of dynamical vari-
ables in balanced spiking networks. PLoS computational biology, 9(11):e1003258, November
2013.

[9] Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional
interpretation of some extra-classical receptive-field effects. Nature neuroscience, 2(1):79–87,
1999.

[10] Chris Eliasmith and Charles H Anderson. Neural engineering: Computation, representation,
and dynamics in neurobiological systems. MIT press, 2004.

[11] Sophie Denève and Christian K Machens. Efficient codes and balanced networks. Nature
neuroscience, 19(3):375–382, March 2016.

[12] Nicolas Giret, Joergen Kornfeld, Surya Ganguli, and Richard HR Hahnloser. Evidence for a
causal inverse model in an avian cortico-basal ganglia circuit. Proceedings of the National
Academy of Sciences, 111(16):6063–6068, 2014.

[13] Georg B Keller, Tobias Bonhoeffer, and Mark Hübener. Sensorimotor mismatch signals in
primary visual cortex of the behaving mouse. Neuron, 74(5):809–815, 2012.

[14] Luc H Arnal, Valentin Wyart, and Anne-Lise Giraud. Transitions in neural oscillations reflect
prediction errors generated in audiovisual speech. Nature neuroscience, 14(6):797, 2011.

[15] Georg B Keller and Thomas D Mrsic-Flogel. Predictive processing: a canonical cortical
computation. Neuron, 100(2):424–435, 2018.

[16] Haim Sompolinsky, Andrea Crisanti, and Hans-Jurgen Sommers. Chaos in random neural
networks. Physical review letters, 61(3):259, 1988.

[17] Fred Wolf, Rainer Engelken, Maximilian Puelma-Touzel, Juan Daniel Flórez Weidinger, and
Andreas Neef. Dynamical models of cortical circuits. Current opinion in neurobiology, 25:228–
236, 2014.

[18] C van Vreeswijk and H Sompolinsky. Chaos in neuronal networks with balanced excitatory and
inhibitory activity. Science, 274(5293):1724–1726, December 1996.

[19] Itamar Daniel Landau and Haim Sompolinsky. Coherent chaos in a recurrent neural network
with structured connectivity. PLoS computational biology, 14(12):e1006309, December 2018.

[20] Guillaume Hennequin, Yashar Ahmadian, Daniel B Rubin, Máté Lengyel, and Kenneth D Miller.
The dynamical regime of sensory cortex: Stable dynamics around a single Stimulus-Tuned
attractor account for patterns of noise variability. Neuron, 98(4):846–860.e5, May 2018.

[21] Yashar Ahmadian and Kenneth D Miller. What is the dynamical regime of cerebral cortex?
arXiv preprint arXiv:1908.10101, 2019.

[22] Michael A Schwemmer, Adrienne L Fairhall, Sophie Denéve, and Eric T Shea-Brown. Con-
structing precisely computing networks with biophysical spiking neurons. The Journal of
neuroscience: the official journal of the Society for Neuroscience, 35(28):10112–10134, July
2015.

[23] Matthew Chalk, Boris Gutkin, and Sophie Denève. Neural oscillations as a signature of efficient
coding in the presence of synaptic delays. eLife, 5, July 2016.

10



[24] Francesca Mastrogiuseppe and Srdjan Ostojic. Linking connectivity, dynamics, and computa-
tions in Low-Rank recurrent neural networks. Neuron, 99(3):609–623.e29, August 2018.

[25] Francesca Mastrogiuseppe and Srdjan Ostojic. A geometrical analysis of global stability in
trained feedback networks. Neural computation, 31(6):1139–1182, 2019.

[26] Alexander Rivkind and Omri Barak. Local dynamics in trained recurrent neural networks.
Physical review letters, 118(25):258101, June 2017.

[27] Alireza Alemi, Christian K Machens, Sophie Deneve, and Jean-Jacques Slotine. Learning
nonlinear dynamics in efficient, balanced spiking networks using local plasticity rules. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[28] Lyudmila Kushnir and Sophie Denève. Learning temporal structure of the input with a network
of integrate-and-fire neurons. arXiv: Neurons and Cognition, 2019.

[29] Shun-Ichi Amari. Characteristics of random nets of analog neuron-like elements. IEEE
Transactions on systems, man, and cybernetics, SMC-2(5):643–657, 1972.

[30] Alfonso Renart, Rubén Moreno-Bote, Xiao-Jing Wang, and Néstor Parga. Mean-driven and
fluctuation-driven persistent activity in recurrent networks. Neural computation, 19(1):1–46,
January 2007.

[31] Daniel B Rubin, Stephen D Van Hooser, and Kenneth D Miller. The stabilized supralinear
network: a unifying circuit motif underlying multi-input integration in sensory cortex. Neuron,
85(2):402–417, 2015.

[32] Yasser Roudi and Peter E Latham. A balanced memory network. PLoS computational biology,
3(9):1679–1700, September 2007.

[33] Michael Monteforte and Fred Wolf. Dynamical entropy production in spiking neuron networks
in the balanced state. Physical review letters, 105(26):268104, December 2010.

[34] Robert Rosenbaum and Brent Doiron. Balanced networks of spiking neurons with spatially
dependent recurrent connections. Physical Review X, 4(2):021039, May 2014.

[35] Jagruti J Pattadkal, German Mato, Carl van Vreeswijk, Nicholas J Priebe, and David Hansel.
Emergent orientation selectivity from random networks in mouse visual cortex. Cell reports,
24(8):2042–2050.e6, August 2018.

[36] J Kadmon and H Sompolinsky. Transition to chaos in random neuronal networks. Physical
Review X, 5(4), 2015.

[37] Sven Goedeke, Jannis Schücker, and Moritz Helias. Transition to chaos and signal response in
driven random neural networks. Technical report, Computational and Systems Neuroscience,
2017.

[38] Jannis Schuecker, Sven Goedeke, and Moritz Helias. Optimal sequence memory in driven
random networks. Physical Review X, 8(4):041029, November 2018.

[39] Jonas Stapmanns, Tobias Kühn, David Dahmen, Thomas Luu, Carsten Honerkamp, and Moritz
Helias. Self-consistent formulations for stochastic nonlinear neuronal dynamics. Physical
Review E, 101(4):042124, 2020.

[40] Kanaka Rajan, L Abbott, and Haim Sompolinsky. Inferring stimulus selectivity from the spatial
structure of neural network dynamics. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S.
Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages
1975–1983. Curran Associates, Inc., 2010.

[41] Peter Hänggi and Peter Jung. Colored noise in dynamical systems. Advances in chemical
physics, 89:258–259, 1995.
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