
A Appendix

A.1 Theoretical Results

First we state our conditions on the coefficient maps and initial conditions.
Assumptions 1 (Coefficient Maps & Initial Conditions). Let D be a compact set in Euclidean space
and for every γ ∈ D let ϕγ ∈ C(Rd,R), σγ ∈ C(Rd,Rd×d), and µγ ∈ C(Rd,Rd). Assume that for
every x ∈ Rd the mappings

γ 7→ ϕγ(x), γ 7→ σγ(x), and γ 7→ µγ(x)

are continuous and that there exists c ∈ (0,∞) such that for every γ ∈ D, x, y ∈ Rd it holds that8

(i) |ϕγ(x)− ϕγ(y)| ≤ c‖x− y‖(1 + ‖x‖c + ‖y‖c),

(ii) ‖µγ(x)− µγ(y)‖+ ‖σγ(x)− σγ(y)‖ ≤ c‖x− y‖, and

(iii) |ϕγ(0)|+ ‖µγ(0)‖+ ‖σγ(0)‖ ≤ c.

Note that the continuity assumptions on σγ and µγ and the condition in Item (ii) are fulfilled for
the case of affine-linear coefficient functions as described in Section 2.1 and used in our examples.
Further, the polynomial growth condition on the local Lipschitz constant in Item (i), the uniform
bound in Item (iii), and the continuity assumption on ϕγ are also satisfied for all our considered
examples. Under these assumptions we can precisely formulate the setting we are working in.
Setting (Parametric Kolmogorov PDEs). For every γ ∈ D let uγ : Rd × [0,∞)→ R be the unique
continuous, at most polynomially growing function satisfying for every x ∈ Rd that uγ(x, 0) = ϕγ(x)
and satisfying that u|Rd×(0,∞) is a viscosity solution of the Kolmogorov PDE

∂uγ
∂t (x, t) = 1

2 Trace
(
σγ(x)[σγ(x)]∗(∇2

xuγ)(x, t)
)

+ 〈µγ(x), (∇xuγ)(x, t)〉

for (x, t) ∈ Rd × (0,∞), see [23, Corollary 4.17]. Let (Ω,F , (Ft)t∈[0,T],P) be a suitable filtered
probability space satisfying the usual conditions, let

(Bt)t≥0 : [0,∞)× Ω→ Rd (11)

be a standard d-dimensional (Ft)-Brownian motion, let T ∈ (0,∞), u ∈ R, v ∈ (u,∞) and let

Λ = (Γ, X, T) : Ω→ D × [v, w]d × [0, T]

be a F0-measurable, uniformly distributed random variable. Let

(Sγ,x,t)t≥0 : [0,∞)× Ω→ Rd, (γ, x) ∈ D × [v, w]d, and (SΓ,X,t)t≥0 : [0,∞)× Ω→ Rd

be the up to indistinguishability unique (Ft)-adapted stochastic processes with continuous sample
paths satisfying that for every (γ, x, t) ∈ D × [v, w]d × [0,∞) it holds P-a.s. that

Sγ,x,t = x+

∫ t

0

µγ(Sγ,x,s)ds+

∫ t

0

σγ(Sγ,x,s)dBs, (12)

and that for every t ∈ [0,∞) it holds P-a.s. that

SΓ,X,t = X +

∫ t

0

µΓ(SΓ,X,s)ds+

∫ t

0

σΓ(SΓ,X,s)dBs, (13)

see, for instance, [17, Proof of Theorem 8.3]. For every M ∈ N, (γ, x, t) ∈ D × [v, w]d × [0,∞) let

(SM,m
γ,x,t)

M
m=0 : {0, . . . ,M} × Ω 7→ Rd

be a stochastic process satisfying that SM,0
γ,x,t = x and for every m ∈ {0, . . . ,M − 1} that

SM,m+1
γ,x,t = SM,m

γ,x,t + µγ(SM,m
γ,x,t)

t
M + σγ(SM,m

γ,x,t)
(
B (m+1)t

M
−Bmt

M

)
8For a finite index set I and a, b ∈ RI we define ‖a‖ =

√∑
i∈I |ai|2 and 〈a, b〉 =

∑
i∈I aibi.

14

and for every M ∈ N let
(SM,m

Γ,X,T)Mm=0 : {0, . . . ,M} × Ω 7→ Rd

be a stochastic process satisfying that SM,0
Γ,X,T = X and for every m ∈ {0, . . . ,M − 1} that

SM,m+1
Γ,X,T = SM,m

Γ,X,T + µΓ(SM,m
Γ,X,T) TM + σΓ(SM,m

Γ,X,T)
(
B (m+1)T

M
−BmT

M

)
.

Finally, let the random variable Y : Ω 7→ R be given by

Y := ϕΓ(SΛ) = ϕΓ(SΓ,X,T),

let
(Λi, Yi) : Ω 7→

(
D × [v, w]d × [0, T]

)
× R, i ∈ N,

be i.i.d. random variables with (Λ1, Y1) ∼ (Λ, Y), and for every M ∈ N let the random variable
YM : Ω 7→ R be given by

YM := ϕΓ(SM,M
Λ) = ϕΓ(SM,M

Γ,X,T).

In order to prove Theorem 1 we assume the following regularity on our SDEs in (12) and (13).
Assumptions 2 (Regularity Assumptions). Assume that there exists a jointly measurable9 function

Υ: C([0, T],Rd)×D × [v, w]d × [0, T]→ R

such that it holds P-a.s. that
Υ(B,Γ, X, T) = ϕΓ(SΛ)

and for every (γ, x, t) ∈ D × [v, w]d × [0, T] it holds P-a.s. that

Υ(B, γ, x, t) = ϕγ(Sγ,x,t),

where B : Ω → C([0, T],Rd), ω 7→ (t 7→ Bt(ω)), denotes the mapping to the sample paths of the
Brownian motion in (11).

Note that the above assumptions are satisfied for the Black-Scholes model in Section 3.1 and the heat
equations in Section 3.3. In the former case we can write

Υ(b, γ, x, t) = max{γϕ − xe−0.5t γ2
σ+
√
t γσb(1), 0}

and in the latter

Υ(b, γ, x, t) = ‖x+
√
t γσb(1)‖2 (paraboloid), Υ(b, γ, x, t) = e−‖x+

√
t γσb(1)‖2 (Gaussian)

where (b, γ, x, t) ∈ C([0, T],Rd) ×D × [v, w]d × [0, T]. Moreover, the existence of a suitable Υ
is in general given for non-parametric Kolmogorov PDEs, see [17, Theorem 8.5] and [5]. First we
establish that under our assumptions the minimizer of the statistical learning problem is indeed the
parametric Kolmogorov PDE solution map.
Theorem (Learning Problem). It holds that

ū : D × [v, w]d × [0, T]→ R, (γ, x, t) 7→ ū(γ, x, t) := uγ(x, t)

is the (up to sets of Lebesgue measure zero) unique minimizer of the statistical learning problem

minf E
[(
f(Λ)− Y

)2]
(14)

where the minimum is taken over all measurable functions f : D × [v, w]d × [0, T]→ R.

Proof. Note that one can extend standard results on the moments of SDE solution processes (see [34,
Theorems 4.5.3 and 4.5.4] and [16, Chapter 5, Theorem 2.3]) to prove that SΛ and thus also the
target variable Y = ϕΓ(SΛ) have bounded moments. It is well-known that under this condition
the (up to sets of measure zero w.r.t. the distribution of Λ) unique solution to the statistical learning
problem (14) is given by the regression function

f∗(γ, x, t) := E[Y | Λ = (γ, x, t)], (γ, x, t) ∈ D × [v, w]d × [0, T], (15)

9If not further specified, we consider measurability w.r.t. the corresponding Borel sigma algebras.

15

that is
f∗ = argminf E

[(
f(Λ)− Y

)2]
,

see, for instance, [11]. Moreover, the Feynman-Kac formula establishes for every (γ, x, t) ∈
D × [v, w]d × [0, T] that

E[ϕγ(Sγ,x,t)] = uγ(x, t) = ū(γ, x, t), (16)

see [23, Corollary 4.17]. Finally, Assumptions 2 and the independence of B and Λ ensure that for
every Borel measurable set A ⊆ D × [v, w]d × [0, T] it holds that

E
[
1{Λ∈A}ϕΓ(SΛ)

]
=

∫
A

∫
C([0,T],Rd)

Υ(b, γ, x, t) dPB(b) dP(Γ,X,T)(γ, x, t)

=

∫
A

E
[
ϕγ(Sγ,x,t)

]
dP(Γ,X,T)(γ, x, t)

where we denote the distributions of Λ and B by P(Γ,X,T) and PB (Wiener measure), respectively.
Together with the fact that Λ is uniformly distributed, this proves that for almost every (γ, x, t) ∈
D × [v, w]d × [0, T] it holds that

E[Y | Λ = (γ, x, t)] = E[ϕΓ(SΛ) | Λ = (γ, x, t)] = E[ϕγ(Sγ,x,t)],

see [46, Chapter 4] and [1, Theorem 13.46]. Combined with (15) and (16), this proves the claim.

Next, we establish the stability of the previous result w.r.t. approximate data generation via the
Euler-Maruyama scheme.

Theorem (Approximated Learning Problem). For every M ∈ N let

ūM : D × [v, w]d × [0, T]→ R

be the (up to sets of Lebesgue measure zero) unique solution to the approximated learning problem

min
f
E

[(
f(Λ)− YM

)2]
where the minimum is taken over all measurable functions f : D × [v, w]d × [0, T]→ R. Then there
exists a constant C > 0 such that for every M ∈ N it holds that

‖ūM − ū‖L∞(D×[v,w]d×[0,T]) ≤ C√
M
.

Proof. Extending results on the Euler-Maruyama scheme (see, e.g., [34, Theorem 10.2.2]) one can
prove that also in the parametric case for every p ≥ 2 there exists a constant C > 0 such that for
every M ∈ N, (γ, x, t) ∈ D × [v, w]d × [0, T] it holds that

E
[
‖SM,M

γ,x,t ‖p
]
≤ C and

(
E
[
‖SM,M

γ,x,t − Sγ,x,t‖p
])1/p ≤ C√

M
. (17)

Similar to the previous proof one can further establish that for every M ∈ N and almost every
(γ, x, t) ∈ D × [v, w]d × [0, T] it holds that

ūM (γ, x, t) = E[YM | Λ = (γ, x, t)] = E[ϕΓ(SM,M
Λ) | Λ = (γ, x, t)] = E[ϕγ(SM,M

γ,x,t)]

where the existence of functions ΥM with analogous properties as in Assumptions 2 are guaranteed
by the Euler-Maruyama scheme. The local Lipschitz property of ϕγ now ensures that for every
M ∈ N and almost every (γ, x, t) ∈ D × [v, w]d × [0, T] it holds that

|ūM (γ, x, t)− ū(γ, x, t)| =
∣∣E[ϕγ(SM,M

γ,x,t)
]
− E[ϕγ(Sγ,x,t)]

∣∣
≤ cE

[
‖SM,M

γ,x,t − Sγ,x,t‖
(
1 + ‖SM,M

γ,x,t ‖c + ‖Sγ,x,t‖c
)] (18)

which together with the Cauchy-Schwarz inequality and (17) proves the theorem.

16

Note that this result can also be used to show that our generalization result in Theorem 4 is not
compromised by using data simulated by the Euler-Maruyama scheme.

Now we outline how to prove the simultaneous approximation of the parametric solution map and its
partial derivatives by a neural networks without curse of dimensionality, i.e. with the network size
scaling only polynomially in the underlying spatial dimension. In mathematical terms, we prove
approximation results in the Sobolev norm ‖·‖W 1,∞ , see [15]. As a motivating example, we take the
heat equation from Section 3.3 and from now on we only consider feed-forward neural networks with
ReLU activation function (ReLU networks), see e.g. [44, Section 2] for a precise definition.
Theorem (Sobolev Approximation). Let a ∈ R, b ∈ (a,∞) and for every d ∈ N let

ūd(γσ, x, t) = ‖x‖2 + tTrace(γσγ
∗
σ), (γσ, x, t) ∈ [a, b]d×d × Rd × [0, T],

be the parametric solution map for the d-dimensional heat equation with paraboloid initial condition.
Then there exists a constant C > 0 with the following property: For every ε ∈ (0, 1/2), d ∈ N there
exists a ReLU network Φε,d with at most bCd4 log(d/ε)c parameters satisfying that

‖Φε,d − ūd‖W 1,∞([a,b]d×d×[v,w]d×[0,T]) ≤ ε.

Proof. Our result is based on the following ReLU network approximation result in [22, Proposition
C.1.], which is an extension of the work by Yarotsky [60]. Let ∆ > 0 and let sq : [−∆,∆]→ R be
the squaring function given by sq(x) := x2. Then there exists a ReLU network Φsqε withO(log(1/ε))
layers, O(1) neurons per layer, and parameters bounded by O(1) satisfying that

‖Φsqε − sq ‖W 1,∞([−∆,∆]) ≤ ε.
By the polarization identity xy = 1

2 ((x+y)2−x2−y2) an analogous result holds for the multiplication
function mult : [−∆,∆]2 → R given by mult(x, y) := xy, see [22, Proposition C.2.]. We can
therefore imitate the representation

ūd(γσ, x, t) =

d∑
i=1

sq(xi) +

d∑
i,j=1

mult
(
t, sq((γσ)ij)

)
using ReLU network concatenation and parallelization [14, Section 5]. Finally, we can estimate the
error using a chain rule for ReLU networks [7].

Next, we show that our setting even allows for combined approximation and generalization results
without curse of dimensionality. To prove this, we focus on the d-dimensional heat equation with
varying diffusivity and Gaussian initial condition. We first show that ReLU networks are capable of
efficiently approximating the parametric solution map.
Theorem (Approximation). Let a ∈ R, b ∈ (a,∞) and for every d ∈ N let

ūd(γσ, x, t) =
1

(1 + 2tγ2
σ)d/2

e
−
‖x‖2

1+2tγ2
σ , (γσ, x, t) ∈ [a, b]× Rd × [0, T],

be the parametric solution map of the d-dimensional heat equation with Gaussian initial condition.
Then there exists a constant C > 0 with the following property: For every ε ∈ (0, 1/2), d ∈ N there
exists a ReLU network Φε,d with at most bC polylog(d/ε)c layers, at most bCdc neurons per layer,
and parameters bounded by C satisfying that

‖Φε,d − ūd‖L∞([a,b]×[v,w]d×[0,T]) ≤ ε.

Proof. The proof is based on combining ReLU approximation results for Chebyshev polynomials
(see [21, Lemma III.6]), Gaussians (see [21, Theorem VIII.5]), and the squaring and multiplication
functions sq, mult (see the proof of the previous theorem). Specifically, for given ∆ > 0 we can
approximate the function

[0,∆] 3 x 7→ h(x) :=
√

1
1+2x

up to precision ε by ReLU networks with O(polylog(1/ε)) layers, O(1) neurons per layer, and
parameters bounded by O(1), see [21, Lemma III.6]10. Furthermore, the Gaussian

Rd 3 x 7→ g(x) := e−‖x‖
2

(19)
10Note that we can choose uniformly bounded parameters by leveraging the depth of the network and the

positive homogeneity of the ReLU activation function.

17

can be globally approximated up to precision ε by ReLU networks with O(polylog(1/ε)) layers,
O(d) neurons per layer, and parameters bounded byO(1), see [21, Theorem VIII.5]. Finally, observe
that

ūd(γσ, x, t) = mult
(
g
(
(mult(xi, f(t, γσ)))di=1

)
,powd

(
f(t, γσ)

))
where11

f(t, γσ) := h(mult(t, sq(γσ))) =
√

1
1+2tγ2

σ
and powd(x) := (sq ◦ sq ◦ · · · ◦ sq)(x) = xd.

We can imitate this representation using ReLU network concatenation and parallelization [14, Section
5] and estimate the error via the mean value theorem.

Now we show that the number of samples s in (7), needed to learn the parametric solution map
ū, does not suffer from the curse of dimensionality, either. To satisfy boundedness assumptions
commonly used in statistical learning theory, we restrict ourself to clipped ReLU networks whose
output is assumed to be bounded by 1. This can be achieved by composing each ReLU network with
a simple clipping function, which itself can be represented as a small ReLU network [8, Section A.4].
Note that this incorporates our prior knowledge that the parametric solution map of the heat equation
with Gaussian initial condition satisfies ‖ūd‖L∞ ≤ 1.
Theorem (Generalization). Let a ∈ R, b ∈ (a,∞) and for every d ∈ N let

ūd(γσ, x, t) =
1

(1 + 2tγ2
σ)d/2

e
−
‖x‖2

1+2tγ2
σ , (γσ, x, t) ∈ [a, b]× Rd × [0, T],

be the parametric solution map of the d-dimensional heat equation with Gaussian initial condition
and let

Vd := vol([a, b]× [v, w]d × [0, T]) = T (b− a)(w − v)d.

Then there exists a constant C > 0 with the following property: For every ε, ρ ∈ (0, 1/2), d, s ∈ N
with s ≥ C(d/ε)2 polylog(d/ε) log(1/ρ), there exists a neural network architecture Aε,d with at
most bC polylog(d/ε)c layers and at most bCdc neurons per layer such that every measurable
empirical risk minimizer

Φ̂ε,d,s : Ω→ Hε,d, Φ̂ε,d,s(ω) ∈ arg min
Φ∈H

1
s

s∑
i=1

(Φ(Λi(ω))− Yi(ω))2, ω ∈ Ω,

over an hypothesis space Hε,d of clipped ReLU networks with architecture Aε,d and parameters
bounded by C satisfies that

P

[
1
Vd
‖Φ̂ε,d,s − ūd‖2L2([a,b]×[v,w]d×[0,T]) ≤ ε

]
≥ 1− ρ.

Proof. To simplify notation, we define ‖·‖L2 := ‖·‖L2([a,b]×[v,w]d×[0,T]) and for every Φ ∈ Hε,d we
define its riskR(Φ) and its empirical risk R̂(Φ) by

R(Φ) := E
[(

Φ(Λ)− ϕΓ(SΛ)
)2]

and R̂(Φ) := 1
s

s∑
i=1

(Φ(Λi)− Yi)2.

The fact that the regression function coincides with the parametric solution map (see Theorem 1) and
the bias-variance decomposition (see [8, 11]) imply that

1
Vd
‖Φ̂ε,d,s − ūd‖2L2 = R(Φ̂ε,d,s)−R(Φ∗)︸ ︷︷ ︸

generalization error

+ 1
Vd
‖Φ∗ − ūd‖2L2︸ ︷︷ ︸

approximation error

where Φ∗ ∈ arg minΦ∈Hε,d ‖Φ− ūd‖L2 is a best approximation of ūd inHε,d. The previous theorem
ensures that there exists a clipped ReLU network Φε,d ∈ Hε,d satisfying that

1
Vd
‖Φ∗ − ūd‖2L2 ≤ 1

Vd
‖Φε,d − ūd‖2L2 ≤ ‖Φε,d − ūd‖2L∞([a,b]×[v,w]d×[0,T]) ≤ ε/2.

11If d is not a power of 2 we make use of a hierarchical composition of multiplication and squaring functions,
see also [14, Theorem 6.3].

18

For the generalization error we make use of results on the covering numbers of neural network
hypothesis spaces, see e.g. [8, Proposition 2.8]. They ensure the existence of clipped ReLU networks
(Φi)

n
i=1 ⊂ Hε,d with log(n) ∈ O(d2 polylog(d/ε) log(1/r)) such that balls of radius r (w.r.t. the

uniform norm) around those functions coverHε,d. We can then use the (uniform) Lipschitz continuity
of the (empirical) risk to bound the generalization error by

R(Φ̂ε,d,s)−R(Φ∗) ≤ R(Φ̂ε,d,s)− R̂(Φ̂ε,d,s) + R̂(Φ∗)−R(Φ∗)

≤ 2r
[

Lip(R) + Lip(R̂)
]

+ 2
n

max
i=1

∣∣R(Φi)− R̂(Φi)
∣∣.

Employing Hoeffding’s inequality [28] and a union bound, it holds that

P
[n

max
i=1

∣∣R(Φi)− R̂(Φi)
∣∣ ≤ ε/8] ≥ 1− ρ.

where we need s ∈ O(log(n/ρ)/ε2) many samples. Thus, choosing r ∼ ε implies the claim.

A.2 Implementation Details

First, we want to present a rigorous definition of our Multilevel network architecture.
Definition 1 (Multilevel Architecture). Let L, q, p ∈ N, χ ∈ {0, 1}, and % : R→ R. We define the
Multilevel network Φ: Rp → R with input dimension dimin(Φ) = p, L levels, amplifying factor q,
(component-wise applied) activation function %, and residual constant χ for every x ∈ Rp by

Φ(x) :=

L−1∑
l=0

Φ2l

l (x) ∈ R (20)

where for every l ∈ {0, . . . , L − 1}, i ∈ {2, . . . , 2l} the intermediate network outputs Φil(x) are
given by

Φil(x) = Ail(%Normi
l(Φ

i−1
l (x) + χΦ2i−2

l+1 (x)))

and
Φ1
l (x) = A1

l (%(Norm1
l (A0

l (x))) and Φ2i
L (x) = 0.

In the above, the constant χ controls whether we use intermediate residual connections, and for every
l ∈ {0, . . . , L− 1} the functions

Normi
l : Rqp → Rqp, i ∈ {1, . . . , 2l},

are denoting normalization layers, e.g. batch normalization [30] or layer normalization [3], and

A0
l : Rp → Rqp, Ali : Rqp → Rqp, i ∈ {1, . . . , 2l − 1}, A2l

l : Rqp → R

are learnable linear mappings (or affine-linear in case of A2l

l).

In the implementation of our examples we used χ = 1 to propagate intermediate residuals from the
corresponding higher level using additive skip-connections, followed by a Batch normalization layer
as proposed by [30]. This allows the length of the shortest gradient path during backpropagation to
scale like the number of levels L instead of the number of layers 2L; a feature commonly known to
prevent diminishing or exploding gradients [61]. Thus, we can maintain computational tractability
while at the same time having rather deep architectures. Note that a certain depth is needed for
our approximation and generalization results in Section A.1, as well as to optimally approximate
certain families of functions [41, 44, 60]. We pick the ReLU activation function as non-linearity
to remain consistent with our theoretical guarantees in Section A.1 and with the growing body of
literature on the approximation and generalization capabilities of ReLU networks. To optimize the
networks we use the Adam optimizer (with decoupled weight decay regularization as proposed
by [40]) and exponentially decaying learning rate. The precise setup is summarized in Table 5 and
the hyperparameters over which we optimized using Tune [38, 39] are given in Table 6.

19

Table 5: Training setup

Black-Scholes Basket Put Heat Paraboloid Heat Gaussian
Input sets
Dσ [0.1, 0.6]× {0} ([0.1, 0.6]3×3)4 {~0} × [0, 1]10×10 {~0} × [0, 0.1]I150

Dµ {~0} [0.1, 0.6]3×4 {~0} {~0}
Dϕ [10, 12] [10, 12] {} {}
[v, w] [9, 10] [9, 10] [0.5, 1.5] [−0.1, 0.1]
[0, T] [0, 1] [0, 1] [0, 1] [0, 1]

Network
dimin(Φ) 4 53 111 152
architecture Multilevel Multilevel Multilevel Multilevel
(L, q, χ) (4,5,1) (4,5,1) (4,4,1) (4,4,1)
activation % ReLU ReLU ReLU ReLU
Norm layer Batch norm Batch norm Batch norm Batch norm
#parameters 5.4K 0.8M 2.4M 4.5M

Training
solution SDE analytic Euler-Maruyama analytic analytic
optimizer AdamW AdamW AdamW AdamW
param. init. U([−ξ, ξ]) U([−ξ, ξ]) U([−ξ, ξ]) U([−ξ, ξ])
weight decay 0.01 0.01 0.01 0.01
batch-size 216 217 217 217

(initial lr., decay) (10−2, 0.25) (10−3, 0.4) (10−3, 0.4) (10−3, 0.4)
patience 4000 4000 4000 4000

Validation
solution PDE analytic MC-approx. analytic analytic
batch-size 216 217 217 217

#eval. batches 150 1 150 150

Execution
seeds 0,1,2,3 0,1,2,3 0,1,2,3 0,1,2,3
#GPUs per trial 2 (Tesla V100) 4 (Tesla V100) 2 (Tesla V100) 2 (Tesla V100)

1. Input sets: input sets for the parameter γ, the spatial variable x, and the time variable t, as
defined in Section 2.1.

2. Network: input dimension dimin(Φ), activation function %, number of levels L, amplifying
factor q, usage of intermediate residual connections χ, normalization layers Norm, and
approximate number of network parameters as defined in Definition 1.

3. Training: solution method for the SDE, optimizer, initialization of the linear maps Ali
where ξ := d

−1/2
in with din denoting the input dimension, weight decay, batch-size, initial

learning rate, and factor for learning rate decay each patience steps. Note that the training
data size in (7) is given by s = batch-size · #steps where the number of steps is reported in
our tables.

4. Validation: pointwise computation of the PDE solution, batch-size, and number of batches
per evaluation.12 Note that n = batch-size · #eval. batches for each reported L1 error,
see (9).

5. Execution: PyTorch module and random module seeds for the 4 independent runs, and
number and type of GPUs per run.

12The evaluation of the PDE via Monte Carlo simulation as in (10) is computationally very expensive. That is
the reason why we only took one evaluation batch per iteration for the Basket put option. However, note that
training the network with Euler-Maruyama simulated data does not increase the training time significantly (see
Table 2) which underlines the general applicability of our algorithm.

20

Table 6: Ranges for hyperparameter optimization

hyperparameter range

(L, q) {3, 4} × {4, 5, 6}
optimizer {AdamW, SGD (with momentum & weight decay)}
batch-size {16384, 32768, 65536, 131072}
learning rate (10−1, 10−5)
lr. decay factor (0.2, 0.6)

Table 7: Ablation study for the Black-Scholes model

avg. time (s) avg. best L1-error #parameters

Feed-Forward + LayerNorm 809 ± 9 0.1476 ± 0.0772 6741
Feed-Forward + None 496 ± 26 0.0526 ± 0.0002 6101
Feed-Forward + BatchNorm 3755 ± 57 0.0017 ± 0.0003 6741
Multilevel χ = 0 + LayerNorm 867 ± 10 0.0349 ± 0.0000 5404
Multilevel χ = 0 + None 570 ± 6 0.0069 ± 0.0001 4804
Multilevel χ = 0 + BatchNorm 3414 ± 18 0.0012 ± 0.0000 5404
Multilevel χ = 1 + LayerNorm 874 ± 13 0.0348 ± 0.0001 5404
Multilevel χ = 1 + None 581 ± 10 0.0069 ± 0.0000 4804
Multilevel χ = 1 + BatchNorm 3453 ± 34 0.0011 ± 0.0001 5404

Table 8: Ablation study for the heat equation with paraboloid initial condition

avg. time (s) avg. best L1-error #parameters

Feed-Forward 14764 ± 65 0.0090 ± 0.0003 3020977
Multilevel χ = 0 13892 ± 83 0.0058 ± 0.0001 2380732
Multilevel χ = 1 14049 ± 138 0.0055 ± 0.0001 2380732

A.3 Additional Numerical Results

In Tables 7 and 8 we present an ablation study which empirically proves the superior performance
of our Multilevel architecture in combination with batch normalization compared to feed-forward
architectures or the usage of layer normalization [3]. For the feed-forward architecture we used the
network Φ2L

L defined in (20) (i.e. only the highest level of the corresponding Multilevel network
with L + 1 layer and χ = 0). Despite having slightly less parameters, our Multilevel architecture
consistently outperforms the feed-forward architecture. Further, the use of residual connections, i.e.
χ = 1, has a positive impact. Note that all not-mentioned settings are kept as in Table 5.

The performance of our algorithm in the case of the Black-Scholes option pricing model from
Section 3.1 is further illustrated in Figures 5, 6, 7, and 8. Finally, Figure 9 depicts the computational
cost of our algorithm as a function of the problem input dimension for the heat equation with
paraboloid initial condition.

21

0.0 0.2 0.4 0.6 0.8 1.0
t

1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3

op
tio

n
pr

ice

avg. prediction
solution
± std.

Figure 5: Shows ū(γ, x, ·) vs. the average
prediction (and its standard deviation) at x =
9.5, γσ = 0.35, and γϕ = 11.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

ve
ga

avg. prediction
solution
± std.

Figure 6: Shows the Vega ∂ū
∂γσ

(γ, x, ·) vs. the
average prediction (and its standard deviation)
at x = 9.5, γσ = 0.35, and γϕ = 11.

0.0 0.2 0.4 0.6 0.8 1.0
t

0.000

0.001

0.002

0.003

0.004

er
ro

r (
op

tio
n

pr
ice

)

avg. error
± std.

Figure 7: Shows the average prediction error
|Φ(γ,x,·)−ū(γ,x,·)|

1+|ū(γ,x,·)| and its standard deviation

at x = 9.5, γσ = 0.35, and γϕ = 11.

0.0 0.2 0.4 0.6 0.8 1.0
t

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

er
ro

r (
ve

ga
)

avg. error
± std.

Figure 8: Shows the average error of the Vega
| ∂Φ
∂γσ

(γ,x,·)− ∂ū
∂γσ

(γ,x,·)|
1+| ∂ū∂γσ (γ,x,·)| and its standard devia-

tion at x = 9.5, γσ = 0.35, and γϕ = 11.

0 50 100 150 200 250
dimin

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1e11

y = 244415.6x2.36

#parameters × avg. #steps
± std.

101 102

107

108

109

1010

1011

Figure 9: Shows the cost in terms of number of network parameters times average number of steps
to achieve an L1-error of 10−2 w.r.t. to the problem dimension d2 + d + 1 for the heat equations
with paraboloid initial condition and d = 1, . . . , 17. The absence of the curse of dimensionality is
underlined by the linear behaviour in the log-log inset. The error was evaluated every 250 steps and
except of the varying dimension all settings are kept as in Table 5.

22

