
A Derivation of the Score Function Estimator

Given K samples, the objective being maximized is

LK(x) := E
h
log Ẑ

i
Ẑ :=

1

K

KX

k=1

wk wk :=
p✓(x, zk)

q�(zk|x)
. (19)

The gradients of the multi-sample objective LK with respect to the parameter � can be expressed as
a sum of two terms, one arising from the expectation over the variational posterior q�(z1:K |x) :=QK

k=1 q�(zk|x) and one from log Ẑ:

r�LK = E

log Ẑ

r�q�(z1:K |x)

q�(z1:K |x)

�

| {z }
(a)

+E
h
r� log Ẑ

i

| {z }
(b)

.

The term (a) yields the traditional score function estimator

(a) = E
h
log Ẑr� log q�(z1:K |x)

i

= E
"
log Ẑ

KX

k=1

r� log q�(zk|x)

#
. (20)

The term (b) is

(b) = E
"
r� log

1

K

KX

k=1

wk

#

= E
"

1

1
K

PK
k=1 wk

r�
1

K

KX

k=1

wk

#

= E
"

1
PK

l=1 wl

KX

k=1

r�wk

#

= E
"

1
PK

l=1 wl

KX

k=1

wkr� logwk

#

= E
"

KX

k=1

vkr� logwk

#
, vk =

wkPK
l=1 wl

= �E
"

KX

k=1

vkr� log q�(zk|x)

#
. (21)

The derivation yields a factorized expression of the gradients

r�LK = Eq�(z1:K |x)

"
KX

k=1

⇣
log Ẑ � vk

⌘
hk

#
with hk := r� log q�(zk|x) . (22)

B Asymptotic Analysis

We present here a short derivation and direct the reader to [23] for the fine prints of the proof.
The main requirement is that wk is bounded, so that Ẑ � Z (with Z = p(x)) will converge to 0
almost surely as K ! 1. We can also state this through the central limit theorem by noting that
Ẑ�Z =

1
K

P
k(wk �Z) is the sum of K independent terms so if Var1[w1] is finite then Ẑ�Z will

converge to a Gaussian distribution with mean E[Ẑ�Z] = 0 and variance Var[Ẑ�Z] =
1
K Var1[w1].

The K�1 factor on the variance follows from independence. This means that in a Taylor expansion
in Ẑ � Z higher order terms will be suppressed.
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Rewriting g in terms of log Ẑ:

g =

X

k

(dk � ck)hk =

X

k

✓
log Ẑ � wk

@

@wk
log Ẑ � ck

◆
hk (23)

and using the second-order Taylor expansion of log Ẑ about Z:

log Ẑ ⇡ logZ +
Ẑ � Z

Z
�

(Ẑ � Z)
2

2Z2
(24)

we have

log Ẑ ⇡ logZ �
3

2
+

2

KZ

X

l

wl �
1

2K2Z2

 
X

l

wl

!2

(25)

@

@wk
log Ẑ ⇡

2

KZ
�

1

K2Z2

X

l

wl . (26)

The term dk can thus be approximated as follows:

dk = log Ẑ � wk
@

@wk
log Ẑ

⇡ logZ �
3

2
+

2

KZ

X

l 6=k

wl �
1

2K2Z2

 
X

l

wl

!2

+
1

K2Z2
wk

X

l

wl

= logZ �
3

2
+

2

KZ

X

l 6=k

wl �
1

2K2Z2

 
X

l 6=k

wl

!2

+
1

2K2Z2
w2

k (27)

where we used
 
X

l

wl

!2

=

 
X

l 6=k

wl

!2

+ w2
k + 2wk

X

l 6=k

wl .

By separately collecting the terms that depend and do not depend on zk into fk = fk(zk, z�k) and
f�k = f�k(z�k), respectively, we can rewrite the estimator g as:

g =

X

k

(fk + f�k � ck)hk (28)

and from (27) we have

fk ⇡
w2

k

2K2Z2
(29)

f�k ⇡ logZ �
3

2
+

2

KZ

X

l 6=k

wl �
1

2K2Z2

 
X

l 6=k

wl

!2

. (30)

C Asymptotic Expectation and Variance

We derive here the asymptotic expectation and variance of the gradient estimator g in the limit
K ! 1.

C.1 Expectation

If both f�k and ck are independent of zk, we can write:

E[g] = E
"
X

k

(fk + f�k � ck)hk

#
=

X

k

E [fkhk] (31)
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where we used that E [f�khk] and E [ckhk] are zero. In the limit K ! 1, each term of the sum can
be expanded with the approximation (29) and simplified:

E [fkhk] ⇡ E


w2
k

2K2Z2
hk

�
=

1

2K2Z2
E1

⇥
w2

1h1

⇤
(32)

where E1 denotes an expectation over the posterior q�(z1|x). The last step follows from the fact that
the latent variables {zk}Kk=1 are i.i.d. and the argument of the expectation only depends on one of
them. In conclusion, the expectation is:

E[g] =
X

k

E [fkhk] ⇡
1

2KZ2
E1

⇥
w2

1h1

⇤
= O(K�1

) (33)

irrespective of f�k and ck.

C.2 Variance

If ck is chosen to be ck(z�k) = f�k(z�k) then we can again use the approximation (29) for K ! 1

and get the asymptotic variance:

Var[g] = Var

"
X

k

fkhk

#
(34)

⇡ Var

"
X

k

w2
k

2K2Z2
hk

#
(35)

=
1

4K4Z4

X

k

Vark

⇥
w2

khk

⇤
(36)

=
1

4K3Z4
Var1

⇥
w2

1h1

⇤
(37)

= O(K�3
) (38)

where Vark denotes the variance over the kth approximate posterior q�(zk|x), and we used the fact
that the latent variables {zk}Kk=1 are i.i.d. and therefore there are no covariance terms.

D Optimal Control for the ESS Limits and Unified Interpolation

D.1 Control Variate for Large ESS

In the gradient estimator g =
P

k

⇣
log Ẑ �

@ log Ẑ
@wk

wk � ck
⌘
hk, we consider the kth term in the

sum, where we have that Ẑ � eZ[�k] =
wk
K ! 0 as K ! 1. We can therefore expand log Ẑ as a

Taylor series around Ẑ = eZ[�k], obtaining:

log Ẑ = log eZ[�k] +

1X

p=1

(�1)
p+1

p

 
wk

K eZ[�k]

!p

(39)

@ log Ẑ

@wk
=

1

wk

1X

p=1

(�1)
p+1

 
wk

K eZ[�k]

!p

. (40)

Inserting these results into the gradient estimator and using the expression g =
P

k(fk+f�k�ck)hk

we see that
f�k = log eZ[�k] (41)

fk =

1X

p=1

(�1)
p+1

✓
1

p
� 1

◆ 
wk

K eZ[�k]

!p

(42)

=

1X

p=2

(�1)
p

✓
1�

1

p

◆ 
wk

K eZ[�k]

!p

. (43)
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We now use this to simplify the optimal control variate (10) to leading order. Since fk is order K�2,
the term Ek

⇥
fkkhkk

2
⇤

will be of order K�2 as well. The l 6= k terms Ek

⇥
flhT

k hl

⇤
get non-zero

contributions only through the wk term in fl. As wk appears in eZ[�l] with a prefactor K�1, we have
Ek

⇥
flhT

k hl

⇤
= O(K�3

) for l 6= k, and the sum of these terms is O(K�2
). Overall, this means that

the second term in the control variate only gives a contribution of O(K�2
) and thus can be ignored:

ck ⇡ log eZ[�k] = log
1

K

X

l 6=k

wl = log
1

K � 1

X

l 6=k

wl + log(1�
1

K
) . (44)

Note that in the simplifying approximation in Section 4 we argue that the l 6= k terms Ek

⇥
flhT

k hl

⇤

can be omitted and only the l = k term retained. Here we show that their overall contribution is
the same order as the l = k term. These results are not in contradiction because here we are only
discussing orders and not the size of terms.

D.2 Control Variate for Small ESS

In the case ESS ⇡ 1 we can write log Ẑ as a sum of two terms:

log Ẑ = log
wk0

K
+ log

 
1 +

KZ̃[�k0]

wk0

!
, (45)

where wk0 is the dominating weight. The first term dominates and the second can be ignored to leading
order. We will leave out a derivation for non-leading terms for brevity. So the gradient estimator
g =

P
k

⇣
log Ẑ �

@ log Ẑ
@wk

wk � ck
⌘
hk simply becomes g ⇡

P
k

�
log

wk0
K � �k,k0 � ck

�
hk. This

corresponds to fk = �k,k0 logwk0 and f�k = (1� �k,k0) logwk0 � �k,k0 � logK. Inserting this into
Equation (11) we get:

g =

X

k

 
fk �

X

l

Ek

⇥
flhT

k hl

⇤

Ek [khkk
2]

!
hk =

 
logwk0 �

Ek0
⇥
logwk0 ||hk0 ||

2
⇤

Ek0 [||hk0 ||2]

!
hk0 . (46)

Estimating the expectation Ek0 [. . . ] in Equation (46) using i.i.d. samples from q�(z|x) is computa-
tionally involved. Therefore we resort to the approximation g ⇡

P
k

�
log

wk0
K � �k,k0 � ck

�
hk and

�k,k0 ⇡ vk, which holds in the limit ESS ! 1. We get:

ck ⇡ log Ẑ[�k] � vk = log
1

K � 1

X

l 6=k

wl � vk . (47)

Relying on the approximation �k,k0 ⇡ vk corresponds to suppressing the term �vk of the prefactors
dk = log Ẑ � vk and does not guarantee the resulting objective to be unbiased for ESS > 1.
Suppressing this term has been explored in depth for the pathwise gradient estimator [32]. The
gradient estimator

P
k vkhk corresponds to wake-phase update in RWS.

D.3 Unified Interpolation

We unify the two ESS limits under a unifying expression OVIS⇠ defined for a scalar � 2 [0, 1]:

c�k := log Ẑ[�k] � �vk + (1� �) log(1� 1/K) (48)

where

c0k = log
1

K � 1

X

l 6=k

wl + log(1� 1/K) (49)

c1k = log
1

K � 1

X

l 6=k

wl � vk . (50)
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E Rényi Importance Weighted Bound

All the analysis applied to the score function estimator for the importance weighted bound including
asymptotic SNR can directly be carried over to the Rényi importance weighted bound L

↵
K(x) because

all the independence properties are unchanged. The score function estimator of the gradient of � is
given by

r�L
↵
K(x) =

X

k

✓
1

1� ↵
log Ẑ(↵)� vk(↵)

◆
hk, vk(↵) =

w1�↵
kP

l w
1�↵
l

. (51)

The OVISMC formulation holds using dk =
1

1�↵ log Ẑ(↵)�vk(↵) within the equation 12. Similarly
for the asymptotic expression OVIS⇠, the unified control variate 17 becomes:

c�k := log
1

1� ↵
log Ẑ[�k](↵)� �vk + (1� �) log(1� 1/K) (52)

F Gradient Estimators Review

In this paper, gradient ascent is considered (i.e. maximizing the objective function). The expression
of the gradient estimators presented below are therefore adapted for this setting.

VIMCO The formulation of the VIMCO [14] control variate exploits the structure of Ẑ :=
1
K

P
l wl using ck := ck(z�k) = log

1
K

P
l 6=k wl + ŵ[�k] where ŵ[�k] stands for the arithmetic or

geometric average of the weights wl given the set of outer samples z�k. Defining log Ẑ[�k] := ck,
the VIMCO estimator of the gradients is

r�LK = Eq�(z1:K |x)

"
KX

k=1

⇣
log Ẑ � log Ẑ[�k]

⌘
hk

| {z }
(a)

+

KX

k=1

vkr� logwk

| {z }
(b)

#
. (53)

We refer to [14] for the derivation. Here, the term Ẑ[�k] can be expressed using the arithmetic and
the geometric averaging [14]. The leave-one-sample estimate can be expressed as

Ẑ[�k] =
1

K

X

l 6=k

wl + ŵ[�k] with

(
ŵ[�k] =

1
K�1

P
l 6=k wl (arithmetic)

ŵ[�k] = exp
1

K�1

P
l 6=k logwl (geometric)

(54)

The term (b) is well-behaved because it is a convex combination of the K gradients r� logwk.
However, the term (a) may dominate the term (b). In contrast to VIMCO, OVIS allows controlling
the variance of both terms (a) and (b), resulting in a more optimal variance reduction. In the
Reweighted Wake Sleep (RWS) with wake-wake-� update, the gradient of the parameters � of the
inference network corresponds to the negative of the term (b).

Wake-sleep The algorithm [19] relies on two separate learning steps that are alternated during
training: the wake-phase that updates the parameters of the generative model ✓ and the sleep-phase
used to update the parameters of the inference network with parameters �. During the wake-phase, the
generative model is optimized to maximize the evidence lower bound L1 given a set of observation
x ⇠ p(x). During the sleep-phase, a set of observations and latent samples are dreamed from the
model: x, z ⇠ p✓(x, z) and the parameters � of the inference network are optimized to minimize
the KL divergence between the true posterior of the generative model and the approximate posterior:
DKL (p✓(z|x)||q�(z|x)).

Reweighted Wake-Sleep (RWS) extends the original Wake-Sleep algorithm for importance
weighted objectives [20]. The generative model is now optimized for the importance weighted
bound LK , which gives the following gradients

r✓LK = Eq�(z1:K |x)

"
X

k

vkr✓ logwk

#
(wake-phase ✓) . (55)
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The parameters � of the inference network are optimized given two updates: the sleep-phase � an the
wake-phase �. The sleep-phase � is identical to the original Wake-Sleep algorithm, the gradients of
the parameters � of the inference model are given by

�r�Ep✓(x) [DKL (p✓(z1:K |x)||q�(z1:K |x))] = Ep✓(z1:K ,x)

"
X

k

hk

#
(sleep-phase �) . (56)

The wake-phase � differs from the original Wake-Sleep algorithm that samples x, z are sampled
respectively from the dataset and from the inference model q�(z|x). In this cases the gradients are
given by:

�r�Ep(x) [DKL (p✓(z1:K |x)||q�(z1:K |x))] = Ep(x)

"
Eq�(z1:K |x)

"
X

k

vkhk

##
(wake-phase �) .

(57)
Critically, in Variational Autoencoders one optimizes a lower bound of the marginal log-likelihood
(LK), while RWS instead optimizes a biased estimate of the marginal log-likelihood log p(x).
However, the bias decreases with K [20]. [9] shows that RWS is a method of choice for training
deep generative models and stochastic control flows. In particular, [9] shows that increasing the
budget of particles K benefits the learning of the inference network when using the wake-phase
update (Wake-Wake algorithm).

We refer the reader to [20] for the derivations of the gradients and [9] for an extended review of the
RWS algorithms for the training of deep generative models.

The Thermodynamic Variational Objective (TVO) The gradient estimator consists of express-
ing the marginal log-likelihood log p✓(x) using Thermodynamic Integration (TI). Given two un-
normalized densities ⇡̃0(z) and ⇡̃1(z) and their respective normalizing constants Z0, Z1 with
Zi =

R
⇡̃i(z)dz given the unnormalized density ⇡̃�(z) := ⇡1(z)�⇡

1��
0 (z) parameterized by

� 2 [0, 1], and the corresponding normalized density ⇡�(z) = ⇡̃�(z)/
R
⇡̃�(z)dz, TI seeks to

evaluate the ratio of the normalizing constants using the identity

logZ1 � logZ0 =

Z 1

0
E⇡�


d log ⇡̃�(z)

d�

�
d� . (58)

[21] connects TI to Variational Inference by setting the base densities as ⇡̃0(z) = q�(z|x) and
⇡̃1(z) = p✓(x, z), which gives the Thermodynamic Variational Identity (TVI):

log p✓(x) =

Z 1

0
E⇡�


log

p✓(x, z)

q�(z|x)

�
d�. (59)

Applying left Riemannian approximation yields the Thermodynamic Variational Objective (TVO):

TVO(✓,�,x) =
1

P

"
ELBO(✓,�,x) +

P�1X

p=1

E⇡�P


log

p✓(x, z)

q�(z|x)

�#
 log p✓(x) . (60)

Notably, the integrand E⇡�

h
log

p✓(x,z)
q�(z|x)

i
is monotically increasing, which implies that the TVO is a

lower-bound of the marginal log-likelihood.

The TVO allows connecting both Variational Inference and the Wake-Sleep objectives by ob-
serving that when using a partition of size P = 1, the left Riemannian approximation of the
TVI, TVO

L
1 (✓,�,x) = ELBO(✓,�,x) and the right Riemannian approximation of the TVI,

TVO
U
1 (✓,�,x) is an upper bound of the marginal log-likelihood and equals the objective being

maximized in the wake-phase for the parameters � of the inference network.

Estimating the gradients of the TVO requires computing the gradient for each of the P expectations
E⇡�,� [f�(z)] with respect to a parameter � := {✓,�} where f�(z) = log

p✓(x,z)
q�(z|x) and x is fixed. In
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the general case, differentiation through the expectation is not trivial. Therefore the authors propose a
score function estimator

r�E⇡�,� [f�(z)] = E⇡�,� [r�f�(z)] + Cov⇡�,� [r� log ⇡̃�,�(z), f�(z)] , (61)

where the covariance term can be expressed as

E⇡�,�

⇥�
f�(z)� E⇡�,� [f�(z)]

� �
r� log ⇡̃�,�(z)� E⇡�,� [r� log ⇡̃�,�(z)]

�⇤
. (62)

The covariance term arises when differentiating an expectation taken over a distribution with an
intractable normalizing constant, such as ⇡�(z) in the TVO. The normalizing constant can be
substituted out, resulting in a covariance term involving the tractable un-normalized density ⇡̃�(z).
Hence, such a covariance term does not usually arise in IWAE due to the derivative of q�(z|x) being
available in closed form.

G Gaussian Model

Figure 5: Distribution of the gradients for an arbitrarily chosen component of the parameter b. The
tight control of the variance provided by OVIS allows keeping the distribution of gradients off-center.

Distribution of gradients We report the distributions of the 10
4 MC estimates of the gradient of

the first component b0 of the parameter b. Figure 5. The pathwise estimator and VIMCO yield
estimates which distributions are progressively centered around zero as K ! 1. The faster decrease
of the variance of the gradient estimate for OVIS results in a distribution of gradients that remains
off-centered.

Figure 6: Asymptotic analysis of the gradients for OVIS⇠ and the STL and DReG IWAE estimators.

Analysis for advanced pathwise IWAE estimators We perform the experiment 3 using additional
pathwise estimators: STL [32] and DReG-IWAE [24]. Both the STL and OVIS⇠(� = 1) rely on
the suppression of the term

P
k vkhk from the gradient estimate and adopt the same behaviour:

the variance decreases at a slower rate than OVIS⇠(� = 0) and DReG, however, its bias remains
constant as K is increased.
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Fitting the Gaussian Model

Figure 7: Fitting the Gaussian toy model from section 6.1 and measuring the L2 distance with the
optimal parameters as well as the variance and the SNR of the gradient estimates. OVIS methods
target the optimal parameters A? of the inference network more accurately than the baseline methods.

We study the relative effect of the different estimators when training the Gaussian toy model from
section 6.1. The model is trained for 5.000 epochs using the Adam optimizer with a base learning
rate of 10�3 and with a batch-size of 100. In Figure 7, we report the L2 distance from the model
parameters A to the optimal parameters A?, the parameters-average SNR and parameters-average
variance of the inference network (� = {A,b},M = card(�)). We compare OVIS methods with
VIMCO, the pathwise IWAE, RWS and the TVO for which we picked a partition size P = 5 and
�1 = 10

�3, although no extensive grid search has been implemented to identify the optimal choice
for this parameters.

OVIS yields gradient estimates of lower variance than the other methods. The inference network
solutions given by OVIS are slightly more accurate than the baseline methods RWS and the TVO,
despite being slower to converge. OVIS, RWS and the TVO exhibit gradients with comparable
SNR values, which indicate OVIS yield estimate of lower expected value, thus leading to a smaller
maximum optimization step-size. Setting � = 0 for OVIS⇠ results in more accurate solutions than
using � = 1, this coincides with the measured ESS ⇡ K.
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H Gaussian Mixture Model

Figure 8: Training curves for the Gaussian Mixture Model for different numbers of particles K =

[2, 5, 10, 20] samples averaged over 5 random seeds. The SNR is measured on one mini-batch and
averaged over the M parameters of the inference network. In contrast to VIMCO, OVIS estimators
all generate gradients with a higher SNR. This results in a more accurate estimate of the true posterior,
when compared to VIMCO and the baselines RWS and the TVO.

I Comparison of OVIS⇠ and OVISMC with under a fixed Particle Budget

OVISMC has complexity requires K + S importance weights whereas OVIS⇠ requires only K.
Estimating � using OVISMC requires a budget of K 0

= K+S particles. The ratio S/K is a trade-off
between the tightness of the bound LK and the variance of the control variate estimate. In the main
text, we focus on studying the sole effect of the control variate given the bound LK . This corresponds
to a sub-optimal use of the budget K 0 because LK0 is tighter than LK . By contrast with the previous
experiments, we trained the Gaussian VAE using the budget K 0 optimally (i.e. relying on LK0

whenever no auxiliary samples are used). We observed that OVIS⇠(� = 1) outperforms OVISMC

despite the generative model is evaluated using LK0 in all cases (figure 9). This experiment will be
detailed in the Appendix.

Figure 9: Training the Gaussian VAE model with a fixed and optimally used particle budget K 0
=

K + S and ↵ = 0.7.
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J Training Curves for the Deep Generative Models

J.1 Sigmoid Belief Network

Figure 10: Training curves for the Sigmoid Belief Network using K = [5, 10, 50] particles, using two
initial random seeds, with and without using the IWR bound. The number of active units is evaluated
as AU =

PD
d=1

�
Covp(x)

�
Eq�(z|x) [zd]

�
� 0.01

 
[22] using 1000 MC samples for each element

of a randomly sampled subset of 1000 data points. Warming up the model by optimizing for the IWR
bound with ↵ > 0 allows activating a larger number of units and results in models scoring higher
training likelihoods.

22



J.2 Gaussian Variational Autoencoder

Figure 11: Training curves a Gaussian VAE using K = [5, 10, 50] particles and using two initial
random seeds. The OVIS estimators are used in tandem with the IWR bound with ↵ fixed to 0.3.
OVIS for the IWR bound yields high-quality inference networks, as measured by the divergence
DKL (p✓(z|x)||q�(z|x)).
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K Implementation Details for OVIS⇠

In order to save computational resources for large K values, we implement the following factorization

log Ẑ � log Ẑ[�k] = log
1� 1/K

1� vk
. (63)

In order to guarantee computational stability, we clip the normalized importance weights vk using the
default PyTorch value ✏ = 1.19e�7. The resulting gradient estimate, used in the main experiments, is

g :=

X

k

✓
log

1� 1/K

1�min(1� ✏, vk)
+ (� � 1)vk � (1� �) log(1� 1/K)

◆
hk . (64)

Clipping the normalized importance weights can be interpreted as an instance of truncated importance
sampling. Hence, the value of ✏ must be carefully selected. In the figure 12, we present a comparison
of OVIS⇠ with and without clipping. The experiments indicate that the difference is insignificant
when using the default ✏.

Figure 12: Effect of the importance weight clipping. Training the Gaussian Mixture Model, Sigmoid
Belief Network and Gaussian VAE with and without clipping.
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