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Abstract

In this paper, we present new second-order algorithms for composite convex
optimization, called Contracting-domain Newton methods. These algorithms are
affine-invariant and based on global second-order lower approximation for the
smooth component of the objective. Our approach has an interpretation both as a
second-order generalization of the conditional gradient method, or as a variant of
trust-region scheme. Under the assumption, that the problem domain is bounded,
we prove O(1/k?) global rate of convergence in functional residual, where k is the
iteration counter, minimizing convex functions with Lipschitz continuous Hessian.
This significantly improves the previously known bound O(1/k) for this type of
algorithms. Additionally, we propose a stochastic extension of our method, and
present computational results for solving empirical risk minimization problem.

1 Introduction

Classical Newton method is one of the most popular optimization schemes for solving ill-conditioned
problems. The method has very fast quadratic convergence, provided that the starting point is
sufficiently close to the optimum [3} 22, [31]. However, the questions related to its global behaviour
for a wide class of functions are still open, being in the area of active research.

The significant progress in this direction was made after [33]], where Cubic regularization of Newton
method with its global complexity bounds were justified. The main idea of [33] is to use a global upper
approximation model of the objective, which is the second-order Taylor’s polynomial augmented
by a cubic term. The next point in the iteration process is defined as the minimizer of this model.
Cubic Newton attains global convergence for convex functions with Lipschitz continuous Hessian.
The rate of convergence in functional residual is of the order O(1/k?) (here and later on, k is the
iteration counter). This is much faster than the classical O(1/k) rate of the Gradient Method [31]].
Later on, accelerated [27]], adaptive [7, 18] and universal [[17, 12, |18] second-order schemes based on
cubic regularization were developed. Randomized versions of Cubic Newton, suitable for solving
high-dimensional problems were proposed in [13}[19].

Another line of results on global convergence of Newton method is mainly related to the framework
of self-concordant functions [32} 31]]. This class is affine-invariant. From the global perspective,
it provides us with an upper second-order approximation of the objective, which naturally leads
to the Damped Newton Method. Several new results are related to its analysis for generalized
self-concordant functions [2} [38]], and the notion of Hessian stability [23]. However, for more
refined problem classes, we can often obtain much better complexity estimates, by using the cubic
regularization technique [14].
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In this paper, we investigate a different approach, which is motivated by a new global second-order
lower model of the objective function, introduced in Section E}

We incorporate this model into a new second-order optimization algorithm, called Contracting-
Domain Newton Method (Section[d]). At every iteration, it minimizes a lower approximation of the
smooth component of the objective, augmented by a composite term. The next point is defined as
a convex combination of the minimizer, and the previous point. By its nature, it is similar to the
scheme of Conditional Gradient Method (or, Frank-Wolfe algorithm, [15}130]). Under assumption
of boundedness of the problem domain, for convex functions with Holder continuous Hessian of
degree v € [0,1], we establish its O(1/k' ") global rate of convergence in functional residual.
In the case v = 1, for the class of convex function with Lipschitz continuous Hessian, this gives
O(1/k?) rate of convergence. As compared with Cubic Newton, the new method is affine-invariant
and universal, since it does not depend on the norms and parameters of the problem class. When the
composite component is strongly convex (with respect to arbitrary norm), we show O(1/k%*+2¥) rate
for a universal scheme. If the parameters of problem class are known, we can prove a global linear
convergence. We also provide different trust-region interpretations for our algorithm.

In Section [5] we present aggregated models, which accumulate second-order information into
quadratic Estimating Functions [31]. This leads to another optimization process, called Aggregating
Newton Method, with the global convergence of the same order O(1/k' ™) as for general convex
case. The latter method can be seen as a second-order counterpart of the dual averaging gradient
schemes [28, [29].

In Section[6] we consider the problem of finite-sum minimization. We propose stochastic extensions
of our method. During the iterations of the basic variant, we need to increase the batch size for
randomized estimates of gradients and Hessians up to the order O(k*) and O(k?) respectively. Using
the variance reduction technique for the gradients, we reduce the batch size up to the level O(k?) for
both estimates. At the same time, the global convergence rate of the resulting methods is of the order
O(1/k?), as for general convex functions with Lipschitz continuous Hessian.

Section [7| contains numerical experiments. Section [ contains some final remarks. All necessary
proofs are provided in the supplementary material.

2 Problem formulation and notations
Our goal is to solve the following composite convex minimization problem:
minF(z) = f(x) + (), M

where ¢ : R” — RU {400} is a simple proper closed convex function, and function f is convex
and twice continuously differentiable at every point z € dom . Let us fix an arbitrary (possibly

non-Euclidean) norm || - || on R™. We denote by D the corresponding diameter of dom 1):
D := sup ||z — vyl
z,yEdom 1) (2)

Our main assumption on problem (TJ) is that dom ¢ is bounded:
D < +oo. 3)

The most important example of ¢ is {0, 400 }-indicator of a simple compact convex set () = dom 1.
In particular, for a ball in || - ||,-norm with p > 1, this is

sy = 10 el = (S )

400, else.

1/p
D
S 2

4)

From the machine learning perspective, D is usually considered as a regularization parameter in this
setting. We denote by (-, -) the standard scalar product of two vectors, z,y € R™:

(wy) = X2y
For function f, we denote its gradient by V f(x) € R", and its Hessian matrix by V2 f(z) € R"*".
Having fixed the norm || - || for primal variables = € R", the dual norm can be defined in the standard
way:
Isl = suwp  (s.h).
heR™:||h||<1



The dual norm is necessary for measuring the size of gradients. For a matrix A € R"*", we use the
corresponding induced operator norm, defined as

Al = sup [ Ah..
heR™:|[h||<1

3 Second-order lower model of objective function

To characterize the complexity of problem (), we need to introduce some assumptions on the growth
of derivatives. Let us assume that the Hessian of f is Holder continuous of degree v € [0, 1] on
dom #:

IV2f(@) = V2f)l < Hyllz—yl",  2y€dome. (5)

The actual parameters of this problem class may be unknown. However, we assume that for some
v € [0,1] inequality (3 is satisfied with corresponding constant 0 < H, < +oco. The direct
consequence of (3) is the following global bounds for Taylor’s approximation, for all z,y € dom ¢

IVf(y) - Vf(z) - V2f(x)(y —2)|. < Delvzel 6)
F(y) = f(2) = (Vf(@).y - 2) - 5(V2f )y —2)y—a)| < Hleds )

Recall, that in addition to (]§[), we assume that f is convex:
fly) > f@)+(Vf(z),y—z), a,y€domy. ®)

Employing both smoothness and convexity, we are able to enhance this global lower bound, as
follows.

Lemma 1 Forall z,y € dom and t € [0, 1], it holds

F@) > f@)+ (V@) —2) + 5V f o)y — 2),y — z) — il ()

Note that the right-hand side of (9) is concave in ¢ € [0, 1], and for ¢ = 0 we obtain the standard
first-order lower bound. The maximization of (9) over ¢ gives

fy) > f@) +(Vf(@),y—a)+ (V2 f(a)(y — z),y — ), (10)

with
1

v min{l, C+v)(V f () (y—=),y—=) };7 €T 7é Yy, veE (07 1]

Yoy 5 T4 2H, [[y—= [>T~

Thus, (10) is always tighter than (8), employing additional global second-order information. The
relationship between them is shown on Figure[I] Hence, it seems natural to incorporate the second-
order lower bounds into optimization schemes.
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Figure 1: Global lower bounds for logistic regression loss, f(z) = log(1 + exp(x)).



4 Contracting-Domain Newton Methods

Let us introduce a general scheme of Contracting-Domain Newton Method, which is based on global
second-order lower bounds. Note, that the right hand side of @]) is nonconvex in y. Hence, it
can hardly be used directly in a computational algorithm. To tackle this issue, we use a sequence
of contracting coefficients {7 }r>0. Each coefficient 75, € (0, 1] can be seen as an appropriate
substitute of 7, ,, in (I0). Then, we minimize the corresponding global lower bound augmented by
the composite component 1 (-). The next point is taken as a convex combination of the minimizer
and the current point. Let us present this method formally, as Algorithm [T}

Algorithm 1: Contracting-Domain Newton Method, I

Initialization. Choose z( € dom .
Iteration k£ > 0.
1: Pick up % € (0,1].
2: Compute
verr € Argmin{(Vi(ae),y— i) + (VA0 (y—m)oy —2) + ().
y

3: Setxpq1 = T+ 'yk(vk+1 — {Zik).

There is a clear connection of this method with Frank-Wolfe algorithm, [[15]. Indeed, instead of
the standard first-order approximation (8)), we use the lower global quadratic model. Thus, as
compared with the gradient methods, every iteration of Algorithm I|is more expensive. However,
this is a standard situation with the second-order schemes (see the below discussion on the iteration
complexity). At the same time, our method is affine-invariant, since it does not depend on the norms.

It is clear, that for 7, = 1 we obtain iterations of the classical Newton method. Its local quadratic
convergence for composite optimization problems was established in [26]. However, for the global
convergence, we need to adjust the contracting coefficients accordingly. To state the global conver-
gence result, let us introduce the following linear Estimating Functions (see [31]]):

on@) T alf@) + (Vi) —w) @), ¢ = mingi(x), (D

for the sequence of test points {xy, : x3 € dom},>; and positive scaling coefficients {ay }r>1. We
relate them with contracting coefficients, as follows

a def
v = kL A €Y (12)

Ag41?

Theorem 1 Let A, := k3, and consequently, vy, = 1 — (L)d = O(%) Then for the
sequence {xy}i>1 generated by Algorithm we have

Flag) —F* < 6 ¥ Flo) -9 < o(ILE). (13)

For the case v = 1 (convex functions with Lipschitz continuous Hessian), estimate (T3] gives the
convergence rate of the order O(k%) This is the same rate, as we can achieve on this functional class
by Cubic Regularization of Newton Method [33]]. In accordance to (13)), in order to obtain e-accuracy
in functional residual, F'(zx) — F* < ¢, it is enough to perform

K of(mem) /) o

iterations of Algorithm[I] In [17]], there were proposed first universal second-order methods (which
do not depend on parameters v and H, of the problem class), having complexity guarantees of
the same order (T4). These methods are based on Cubic regularization and an adaptive search for
estimating the regularization parameter at every iteration. It is important that Algorithm[I]is both
universal and affine-invariant. Additionally, convergence result (13) provides us with a sequence
{x}>1 of computable accuracy certificates, which can be used as a stopping criterion of the method.

Now, let us assume that the composite component is strongly convex with parameter p > 0. Thus, for
all z,y € dom and ¢’ (x) € O (x), it holds
Uy) = Pl@)+ @ (@),y — o)+ Glly — 2 (15)

In this situation, we are able to improve convergence estimate (13), as follows.



Theorem 2 Let Ay, := k°, and consequently, vy, = 1 — (kLH)S = O(%) Then for the
sequence {xy,}r>1 generated by Algorithm we have

v 24v

Fla) — F* < 6 < OHlt. 8000, (16)

Moreover, if the second-order condition number

1
def H, D" T+v

Wy - |:(1+V)H:| (]7)
is known, then, defining Ay, := (1 +w; )k, k> 1, Ay := 0, and vy, := 1-1-%’ k>1,v:=1,

we obtain the global linear rate of convergence
Flag) - F* < & < exp(—£7L) - 2222 (18)

According to the estimate (I8), in order to get e-accuracy in function value, it is enough to perform
F(zo)—F*
K = O((1+w,)-log Fel=F")
iterations of the method. Hence, condition number w, plays the role of the main complexity factor.
This rate corresponds to that one of Cubically Regularized Newton Method (see [[11}[12]). At the
same time, there exists a second variant of Contracting-Domain Newton Method, where the next

point is defined by minimization of the full second-order model for the smooth component augmented
by the composite term over the contracted domain (this explains the names of our methods).

Algorithm 2: Contracting-Domain Newton Method, 11

Initialization. Choose g € dom .
Iteration & > 0.
1: Pick up v € (0, 1].
2: Denote V(y), y € wdomp + (1 — )k,
Se(y) =

+o0, else.
3: Compute

wip € Argmin{ (Vf(@e)y —an) + JV2F(e)(y - a0).y — 2 + Si)}.

Y

Note, that Algorithm [1| admits similar representation as well. E] Both methods produce the same
sequences of points when ¢ (-) is {0, +-cc}-indicator of a convex set. Otherwise, they are different.
Using the same contraction technique, it was shown in [30Q] that the classical Frank-Wolfe algorithm
can be extended onto the case of the composite optimization problems. Additionally, the second-order
Contracting Trust-Region method was proposed, which has the same form as Algorithm 2} However,
its convergence rate was established only at the level (9(%) Here, we improve its rate as follows.

Theorem 3 Let Ay, := k3 and v, := 1 — (kLH):g = (9(%) Then for the sequence {Ty}r>1
generated by Algorithm[2] we have

Flzy) - F* < 4 < O(HBT). (19)

This result is very similar to Theorem E} However, the first algorithm can be accelerated on the class
of strongly convex functions (see Theorem [2). Thus, it seems that it is more preferable.

Finally, let us consider an example, when the composite component ¢)(-) is an £,,-ball, as in (4). Then,
iterations of the method can be represented as

Tpy1 € Tp Tt Arghmin{Wf(JJk%m + 5(V2f (i), h) ok + -, < %} (20)

In this form, it looks as a variant of Trust-Region scheme. To solve the subproblem in @]), we can
use Interior Point Methods (e.g. Chapter 5 in [31]]). See also [9], for techniques, developed for Trust-
Region schemes. Usually, complexity of this step can be estimated as O(n?) arithmetic operations,

*Indeed, it is enough to take S (y) := Yrtp(xk + %(y — k).



which comes from the cost of computing a suitable factorization for the Hessian matrix. Alternatively,
Hessian-free gradient methods can be applied, for computing an inexact step (see [6} 5]]).

S Aggregated second-order models

In this section, we propose more advanced second-order models, based on global lower bound (9).
Using the same notation as before, consider a sequence of test points {zy, : x; € dom ¢ },>o and
sequences of coefficients {ay }x>1, {7& } k>0, satisfying the relations (IZ). Then, we can introduce
the following Quadratic Estimating Functions (compare with definition (TT))):

Qu(w) = NI @it (@) + (T (@i)w —2) + FV (@)@ — wi) 2 — @) + (@)

By (9), we have the main property of Estimating Functions being satisfied. Namely, for all z € dom ¢

@ 1 a; 1+v T—s v
AF(z) > Qula) — by wmr Mol it

i=0 (14+v)(24v)
2L
” H, D>t k—1 1+v  _, Ch
> Qu(z) — [EEEDIPE=D) > ic0 Git1%; = Qu(z) — 3
Therefore, if we would be able to guarantee for our test points the relation
Qr = mzin Qr(xz) > ApF(xk)— %7 (22)

then we could immediately obtain the global convergence in function value. Fortunately, relation (22))
can be achieved by simple iterations.

Algorithm 3: Aggregating Newton Method

Initialization. Choose xy € dom 1. Set Ay := 0, Qo(x) = 0.
Iteration &k > 0.
1: Pickup ax4+1 > 0. Set Ap41 := A + agy1 and v :=
2: Update Estimating Function
Qri1(z) = Qr(@) + apgr [f (i) H(V f (@), 1—2)+ 2 (V2 f (1) (z—p ), 2 —21) + () ]

3: Compute Vgr1 €  Argmin Qg1 (7).
x

4: Setxp41 = Xk + 'Yk(vk+1 — l‘k).

Qg1
Agyr”

Clearly, the most complicated part of this process is Step 3, which is computation of the minimum
of Estimating Function. However, the complexity of this step remains the same, as that one for
Contracting-Domain Newton Method. We obtain the following convergence result.

Theorem 4 For the sequence {xy}r>1 generated by Algorithm (3| relation 22)) is satisfied.
Consequently, for the choice Ay, := k3, we obtain

©2)

" * 24v
Flzx)—F* < Fla)- %+ 8 < $ < o(&EX) (23)

Now, for the accuracy certificate we have new expression £y, := F(zy) — %’: + 2%2. The value of Q7

is available within the method directly. However, in order to compute ¢}, in practice, some estimate
for O is required. Note, that for the given choice of coefficients A; := k?, we have ap = O(k?)
and v = O(%) Therefore, new information enters into the model with increasing weights, which
seems to be natural.

6 Stochastic finite-sum minimization

In this section, we consider the case when the smooth part f of the objective (I)) is represented as a
sum of M convex twice-differentiable components,

f@) = £33N filw). (24)



This setting appears in many machine learning applications, such as empirical risk minimization.
Often, the number M is very big. Thus, it becomes expensive to evaluate the whole gradient or the
Hessian at every iteration. Hence, stochastic or incremental methods are the methods of choice in
this situation. See [4] for a survey of first-order incremental methods. The Newton-type Incremental
Method with superlinear local convergence was proposed in [35]]. Local linear rate of stochastic
Newton methods was studied in [25]. Global convergence of sub-sampled Newton schemes, based
on Damped iterations, and on Cubic regularization, was established in [36} 124} 39].

The basic idea of stochastic algorithms is to substitute the true gradients and Hessians by some
random unbiased estimators gy, and Hy, respectively, with E[gx] = V f(x1) and E[Hy] = V2 f(zx).

First, let us consider the simplest estimation strategy. At iteration k, we sample uniformly and

independently two subsets of indices Sy, S{ C {1,...,M}. Their sizes are m{ := |S7| and
mi .= |SH|, which are possibly different. Then, in Algorithm E], we can use the following random
estimators:

gk = ,,%Zziesg V fi(zk), Hy = %Ziesg V2 fi(zg). (25)

Let us present for this process a result on its global convergence. Note that in this section, we use the
standard Euclidean norm for vectors and the corresponding induced spectral norm for matrices.

Theorem 5 Let each component f;(-) be Lipschitz continuous on dom v with constant Ly,
and have Lipschitz continuous gradients and Hessians on dom v with constants L1 and Lo,

respectively. Let vy, := 1 — (kiﬂ)g = (’)(%) Set
my = 1/, my o= 1 (26)
Then, for the iterations {x, };>1 of Algorithm (1), based on estimators (23)), it holds

E[F(z) — F*] < O(L2D3*LlDQ(;jIOg(””*LoD). 27)

Therefore, in order to solve our problem with e-accuracy in expectation, E[F(xx) — F*] < ¢, we
need to perform K = O (51%) iterations of the method. In this case, the total number of gradient

and Hessian samples are O (=) and O (35 ), respectively. It is interesting that we need higher
accuracy for estimating the gradients, which results in a bigger batch size.

To improve this result, we incorporate a simple variance reduction strategy for the gradients. This is
a popular technique in stochastic convex optimization (see [37, 21,10} 20 [1} 34} [16]] and references
therein). At some iterations, we recompute the full gradient. However, during the whole optimization
process this happens logarithmic number of times in total. Let us denote by 7 (k) the maximal power
of two, which is less than or equal to k: m(k) := 2U1°82*] for k& > 0, and define 7(0) := 0. The
entire scheme looks as follows.

Algorithm 4: Stochastic Variance-Reduced Contracting-Domain Newton

Initialization. Choose zy € dom .

Iteration k& > 0.
1: Set anchor point zg, := T ().
2: Sample random batch S, C {1,..., M} of size my.
3: Compute variance-reduced stochastic gradient

g = e 2ies, (Vilzr) = Viilze) + VF(21)).
4: Compute stochastic Hessian
Hy = 5=Yics, V2 Silar).

5: Pick up 3, € (0, 1].
6: Perform the main step

Tpy1 € Argmin{@k,y—ﬂ?k) + S(Hi(y —xp),y —ap) + 7k¢($k+$,€(y—$k))}-
Yy

Note that this is just Algorithm [T] with random estimators gj, and H}, instead ot the true gradient and
Hessian. The following global convergence result holds.



Theorem 6 Let each component f;(-) have Lipschitz continuous gradients and Hessians on
dom ¢ with constants L1 and Lo, respectively. Let vy, := 1 — ( k )3 = (9(%) Set batch size

k+1
mp = 1/7%. (28)
Then, for all iterations {xy}r>1 ofAlgorithm we have
1/2 *
E[F(z) — F*] < Off2Btlalilbloste) + L DUFGa-IT)), (29)

It is thanks to the variance reduction that we can use the same batch size for both estimators now. To
solve the problem with e-accuracy in expectation, we need K = O( ) iterations of the method.

And the total number of gradient and Hessian samples during these iterations is O (7 ).

7 Experiments

Let us demonstrate computational results for the problem of training Logistic Regression model,
regularized by £5-ball constraints. Thus, the smooth part of the objective has the finite-sum represen-
tation (24)), each component is f;(z) := log(1 + exp({a;, z))). The composite part is given by @),
with p = 2. Diameter D plays the role of regularization parameter, while vectors {a; : a; € R"};2,
are determined by the dataseﬂ First, we compare the performance of Contracting-Domain Newton
Method (Algorithm [I)) and Aggregating Newton Method (Algorithm [3)) with first-order optimiza-
tion schemes: Frank-Wolfe algorithm [15]], the classical Gradient Method, and the Fast Gradient
Method [29]. For the latter two we use a line-search at each iteration, to estimate the Lipschitz
constant. The results are shown on Figure 2}

) w8a, D = 20 w8a, D = 100 w8a, D = 500
10
- Frank-Wolfe
-1
10 ~~ Grad. Method
10-2 —- FastGrad. Method | (o) Bl 2.45s e,
T . = Contr. Newton T [P, e ls 08s| T RN. e 10.03s
S \% o el T ROTERAEEEOR b S VRN T e 50 RN T e
E 10 = Aggr. Newton % %
2104 el 0.4s o ¢ Ik TU=-a 15.01s
3 10 ‘& g - g T
-5 s
21 2 Al 2
-6 ~~
10 O I Tt T el N DA ~.
107 . ~~ ~.[14.97s
<
0 50 100 150 200 1000 1500 2000 0 1000 2000 3000 4000
Iterations Iterations Iterations

Figure 2: Training logistic regression, w8a (M = 49749, n = 300).

We see, that for bigger D, it becomes harder to solve the optimization problem. Second-order methods
demonstrate good performance both in terms of the iterations, and the total computational time. E|

covtype, D = 20 covtype, D = 100 covtype, D = 500
10711 |
10-2] = .
% “\— s s
=4 Y o= el =1 >
D103 L bt R b=t
[20s); iy
élo"‘ § X S . § N
..e. SGD - ) "
I fre I
s — SVR — J20.01s N
10 19.68s SVRG 105 o] I . 208
— - SNewton 10
. 1 .21, 19.
10-6 s SVRNewton 106 8.21s 106 9.95s
0 20 40 60 80 0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs Epochs

Figure 3: Stochastic methods for training logistic regression, covtype (M = 581012, n = 54).

*https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
Clock time was evaluated using the machine with Intel Core i5 CPU, 1.6GHz; 8 GB RAM. All

methods were implemented in C++. The source code can be found at https://github.com/doikov/
contracting-newton/


https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://github.com/doikov/contracting-newton/
https://github.com/doikov/contracting-newton/

In the next set of experiments, we compare the basic stochastic version of our method, using
estimators @[) — SNewton, the method with the variance reduction (AlgorithmEq) — SVRNewton,
and first-order algorithms (with constant step-size, tuned for each problem): SGD and SVRG [21]].
We see (Figure [3) that using the variance reduction strategy significantly improve the convergence for
both first-order and second-order stochastic optimization methods.

According to these graphs, our second-order algorithms can be more efficient when solving ill-
conditioned problems, producing the better solution within a given computational time. See also
Section E in the supplementary material for extra experiments.

8 Discussion

Let us discuss complexity estimates, which we established in our work. For the basic versions of our
method we have the global convergence in the functional residual of the form

F(zy) — F* < O(HD)

Note that the complexity parameter H, depends only on the variation of the Hessian (in arbitrary
norm). It can be much smaller than the maximal eigenvalue of the Hessian, which typically appears
in the rates of first-order methods. It is important that our algorithms are free from using the norms or
any other particular parameters of the problem class.

At the same time, the arithmetic complexity of one step of our methods for simple sets can be
estimated as the sum of the cost of computing the Hessian, and O(n?) additional operations (to
compute a suitable factorization of the matrix). For example, the cost of computing the gradient of
Logistic Regression is O(Mn), and the Hessian is O(Mn?), where M is the dataset size. Hence, it
is preferable to use our algorithms with exact steps in the situation when M is much bigger than n.
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Supplementary material

A Proof of Lemmal/[l]

First, let us note that inequality (6) follows from the following simple observation, using Newton-
Leibniz formula and Holder continuity of the Hessian, for all x,y € dom )

1

I Of(V2f(93 +7(y — ) = Vf(2)(y — 2)dr]l.

IVf(y) = Vi(x) = V() (y — )|«

NG

Hy|ly—z|**”
14+v :

We are ready to prove the lemma.

Lemma 1 Forall z,y € dom and t € [0, 1], it holds
14v 2+
fly) = f@)+ (Vf@)y—a)+ 5V @)y — ),y —2) - —gpld—.

Proof:

Let us prove the following bound, for all x,y € dom and ¢ € [0, 1]

(V) —Vi@),y—z) = HV2f(2)(y - ),y —a) - el (30

For ¢ = 1 it follows from (6). Therefore, we may assume that ¢ < 1. Let us take z; := = + t(y — z).
Then, by convexity of f, we have

(Viw),y—2) = t5(Vf(y),y—2)

> ﬁ<vf(zt)ay_zt> = <Vf(2t),y—5(1>

Now, from Holder continuity of the Hessian, we get

VG —a) 2 (Vf(z),y —a) + (V2f(2)(z — )y — a) — Lelzmzl ]

(Vf(x),y— ) +t(Vif(2)(y —2),y — &) — %

Thus we prove (30). Then, the claim of the lemma can be obtained by simple integration:

fy) = f@) = (Vf@),y—z) = [(Vf(zr) = Vf(x),y—x)dr

Ot

VE
Ot—

(V2 (@) (y — 2),y — ) — O el g

14+v |2tV
LV f(2)(y — w),y — ) — Sl
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B Convergence of Contracting-Domain Newton Method

In this section, we prove the global convergence of Algorithms|[I|and[2] We use the same notation as
in the main part. There is a sequence of controlling coefficients {ay },>1 (see relations @)), and a
sequence of linear Estimating Functions {¢x(x) }x>0. We denote by 1 > 0 the constant of strong
convexity of ¢(-). We allow y = 0 in the following auxiliary lemma, in order to cover both the
general convex and the strongly convex cases.

Lemma 2 For the sequences {x, }>1 and {vy }r>1, produced by Algorithm we have

ApF(zr) < ¢r(z) + Be(a), x € dom), 31
with
k 24 1+v 2 2
Hya; T—Vg||||Ti—1—Vj il|x—v; a; A;_1||zi_1—v;
By(z) = ;[ i (1+v‘;zﬂ;+" Ry R T e } (32)
Proof:

Let us prove (31) by induction. It obviously holds for k = 0, since Ay := 0, ¢o(z) = 0, and
By(x) = 0 by definition. Assume that it holds for the current & > 0, and consider the next iterate.
Stationary condition for the method step is

(Vf(xr) + V2 f(zr) (@rsr — o), ¢ —vpgn) +(x) > (op) + 5lle —vea?, (33)
for all x € dom . Then, we have

Or1(x) = app [f(@hg)  (V(@rp), 7 — 2r) + 9(2)] + or(2)

VE

a1 [f(@rr1) + (VI (@r1), @ = Tpgr) + ¢(2)] + ApF(21) — Bi(z)

—~
*
~

> Awn[f(@rn) + (Vf (@), S22 —ap0)] + (@)
+ Agp(xg) — Br(x)

= A1 f (@) + a1 (Vf (@r41), 0 — Upg1) + anp19(z)
+ App(xg) — Bi(x)

= A f(ee) + arp (V) + V2 f(@r) (@r1 — 2x), & — k) + 9 (2)]
+ aps 1 (Vf(@rr1) = ViF(@r) = V2 (@) (@re1 — Tk), @ — Vk41)
+ Agp(x) — Bi(x)

G3).@

> Apgrf(@rg1) + apgr [U(0rg1) + Sllo — vpga ||?]

Hyait la—vkga |- lonpr—a ||
vag iy +1 b1 —Tk LA B
— i k) — x
OJFV)AEL kw( k) k( )
() parglle—vry|? pak1Ag 2
> ApprF(@eg) + 5 + St ok — vra
Hyait la—vkga || lonpr—a || T
Va1t +1 b1 —Tk LA B
— a k) — x
(1+V)Allc:1 kw( k) k( )

=  AppF(2r41) — Brga(z),

where () and () stand for convexity of f, and strong convexity of v, correspondingly. Thus we
have (BI)) established for all £ > 0. O
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B.1 Proof of Theorem[l

Theorem 1 Let A;, := k3, and consequently, vy, := 1 — (m)s = (9(%) Then for the sequence

{zk}r>1 generated by Algorithm we have

Flag) ~F* < 6, ¥ Fo) - %

IA

O(HB).

Proof:
First, by convexity of f we have, for all z € dom 1

op(z) < AiF(z).
Therefore, for the solution 2* of our problem: F* = F'(z*), it holds

* z* def *
Fzp)—F* < Fla) - 25 < 4 = Fo) - §

and this is the first part of (T3).

At the same time, by Lemma|2|, and using boundness of the domain, we have

(31)
*ooi= 1 = . ALF _B }
% merggx?lw{qsk(m)} = merglég¢{ kF () k(2)
LA e
> AF(o) - B Y

Therefore, for the choice Ay, := k2, we finally obtain

k y k5 . 3io4s
E < HVD2+" Z a?+ . H,,D2+" Z (137(171)3)24—
k= Tr)Ay - A (L 3TY)
1= t =
< H, D2tV k 32+ui2(2+u) 32+v g p2tv k Ay
S Aok ;1 BT = T+v)k3 ;11

= o).

B.2 Proof of Theorem 2]

Theorem 2 Let A;, := k®, and consequently, vy, := 1 — (k—_H)S = (9(%) Then for the sequence
{zk}x>1 generated by Algorithm we have

H,D”  H,
F(mk)*F* < ¢ < O( n k2T )
Moreover, if the second-order condition number

1
def H,DY |1FVv
W = [(wﬂ

is known, then, defining Ay, := (1 + w;l)k, k>1 Ay:=0,and vy, := H%’ k>1,v:=1, we

obtain the global linear rate of convergence

_ 24v
Fla) = F* < 6 < exp(—55) - 35—

Proof:

Starting from the same reasoning, as in the proof of Theorem ([T} we get

« def ¥
Flog) —F* < 4, = F(xk)_%-

14



Let us denote by uy the minimum of the Estimating Function ¢. Thus,

(31) k i
by = Fla)— &) 2 LB(w) = A%;g;}ﬁ)’

with

i

(i) def aA{H,,ai*”Huk—vil\'l\lﬁiﬂ—mHH" pllug—v;|? pnaiAs 1|1 —vi |2
1 v
(1+V)Ai 2

IN

Hya; V|lmi_y—vi|' Tt ut? pai Az —vi?
aimax{ L -5/ ~ <

() AT 24, (34)

2
ai Hya;tV||mioy—vi|' T _paiAi ||z =
2p (1+v)A; T 24; :

Therefore, for the choice A, := k®, we have

0 < LS g (Heal e\ g0 oo
BOS /Tk;ﬂ( A ) S e & T
H2p2(1+v) k (% — (i—1)7)2(+)+1 52(1+0)+1 f2 p2(1+v) k o o,
= 2u(1+v)2kS 231 G10(1+v) = 2u(14+v)2k5 2:12
1= =

O(HD" . 2D

Thus we have justified (T6). To obtain the linear rate (I8), we set
A = (et k21
and Ag := 0. So, a; = A; and
a; = Ai—A1 = w;tA; 4, 7> 2.

Therefore, for the values {B,(j) 1k, we have

(1) H, D>t _ H,D?""
B < e = A
and
. 34] v v
B(l) " H2D|lwioq—vi||?ad™®  pai Ay lzio1—vi?
k = 2u(1+41)2 AZF2 24,
2 L 12 2420
_ paiAi_i|lxi—1—vil| H,D aj 1
24, A+v)p | A2 a,_,

< paiAi_i|lzioi—vill® ([ H,D” 2 a; 2(H_V)—l
— 2A; (1+l/)p. Ay

= 0, 2<i<k,

since by our choice

o _ o1 @ [arnu]T
A1 Wy - H,Dv
Finally, we obtain
a1 pM Ay H,D>V 1 . H,D?**"
Ek) S AkBk: S Ak 1+IJ - (1+wy_1)k’1 1+l,
k—1 H, D>t
S exp(i l+wl,) ’ 1+v
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B.3 Proof of Theorem[3|

Theorem 3 Let Ay, := k3 and v, == 1 — (%ﬂ)s = (’)(%) Then for the sequence {xy}i>1
generated by Algorithm 2} we have

Proof:

The proof is very similar to that one for Algorithm|I] First, stationary condition for one iteration of
Algorithm2]is

(VF(xr) + V2 f(ar)(@re1 — 2x), @ = ver) + 50 (e + (1 — yx)a)

(35
> ,Yikw('rk-i-l)v
for all 2 € dom) and k > 0 (compare with (33))), where
Vg1 = Tk + %(%H —x) € dom1p.
Now, let us prove by induction the following bound
gf)k(ﬂj) > AkF(fEk) — By, x € dom 1, (36)
. H, D>tV k a?+" . . .
with By, := =4 Doicg AT It obviously holds for k = 0, since both sides are zero. Assume
that it holds for the current £ > 0. Then, we have for the next iterate
Or1(x) = apnr[f(@e) + (VI (@hp), = 2p41) + ()] + or(2)

> app [f(@ng) + (V(@rp1), 2 — 2rp) + 9(2)] + ApF(2r) — By

> Appr [f(@rg1) + (VF(@rgr), SR g )] + arr1(z) + Avtb(ar)

Agt1
— Bk:

(+%)

> Apsr [f(@rg1) + (VS (@p41), %ﬁ?m = Tpg1) + 1#(%)] — By,

where () and (*x) stand for convexity of f and v, correspondingly. Using both stationary condition
and smoothness, we obtain, for all x € dom ¢

+ Ay +A
(Vf(rry), 7ak+fk+l B Zggr) + ¢(7ak+fk+l ATk )

VeV (@hi1), & — vigr) + ¥ (vex + (1 — ) zk)
(V[ (xr) + V2 f (k) (@hs1 — 2x), ¢ — vpr1) + 0 (e + (1 — )k

+ 1V f(@p41) — V(@) — V2 (28) (@hg1 — Tk), & — Vp1)

@’@ _ 1+v _ 24v _ 1+v _

> w(karl)_%HV”mHl gfﬂ, lo—veesl ¢($k+1)_7k Helltnes 1?;” R
24v 24v
o H,D

> p(apyr) — A—

Therefore, we have
2+VHVD2+V
dryi(z) > A [f(@rg1) + Y(zrg) — 35— — Bx

= App1F(vg11) — Bita,

16



and (36) is justified for all & > 0. Finally, by convexity of f, we get

Flay) -F* < 4 < F(ﬂfk)—zi’
(36) ore B 240
B, _ H,D a;
S AT Wom X am
2+
= O(%),

where the last equation holds from the choice Ay := k3 (see the end of the proof of Theorem . ]

C Convergence of Aggregating Newton Method
In this section, we establish the convergence result for Algorithm 3]

C.1 Proof of Theorem[d]

Theorem 4 For the sequence {xy }>1 generated by Algorithm relation (22)) is satisfied.

Proof:

Let us establish the relation (22)) by induction. It obviously holds for k£ = 0. Assume that it is proven
for the current iterate k£ > 0, and consider the next step:

Qrot1(Vk+1)
= apr1 [flen) +(VF(@r), vk — zx) + B (V2 f(2r) (k1 — Th), Vka1 — k)

+ Y(org1)] + Qrlvrr)

(122)
agr1 [f(@r) + (VF(@r), veer — x) + B (V2 F () (Ukar — Tr), Ve — o)
+P(vng)] + ApF(zi) — G
2
= A [f(@r) + (Y (@r), vrg1 — a) + 2V F(2r) (Vkg1 — T1), vk g1 — o))
+ a1 (Vey1) + Aptp(xg) — %
= At [f(l’k) +(Vf(re), The1 — k) + %<V2f(xk)(xk+1 — T), Thy1 — Tk))
+ ap 19 (V1) + Apto(ag) — %
” A Hyllwryr—ze|*H A C
> Apn[f(zei) - O eny ) T o i) + Agd(an) - G
2+v vpa1—xk |2V
= Apprf(apg) — 2 (115;'(2?;) Ut an (o) + Ar(en) - e
@ Itvg, p2tv ,
> Appif(rg) — % + Apprt(zg) —
o Cr41
= AppF(opg) — =55
Thus, we have (22)) justified for all & > 0. O
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D Convergence of stochastic methods
Let us consider the following general iterations, for solving optimization problem (TJ):

Tpy1 € Argmin{@k, y— )+ 5 (He(y — o),y — ap) + Sk(y)}, k>0 (37)
Y

with Si(y) = e (xr + %k(y — z3,)). This is Algorithm [I{ with substituted vector g5, and matrix
Hj; instead of the true gradient and the Hessian. First, we need to study the convergence of this
process. For simplicity, let us study the case v = 1 only (convex functions with Lipschitz continuous
Hessian, we denote the corresponding Lipschitz constant by Lo). Recall, that in this section we use
the standard Euclidean norm for vectors and induced spectral norm for matrices.

As before, we use the sequence of positive numbers {ay },>1, and set

J— Ak+1 A dﬁf u
’}/k T Ak+1’ k - 7{; ai'

Lemma 3 For iterations (37), we have for all k > 1

Flog) - F* < Bk (38)
with
Ly D3 R a?+1 Rl 2 R a72+1 2
By = "m o @ +D ;)ai+1||Vf(xi) —gil +D % A IIV2f (i) — Hil.
Proof:

Let us prove by induction the following inequality
ApF(z) > AxF(xy) — By, z € dom 1. (39)

It obviously holds for k£ = 0, and for k& > 1 it is equivalent to (38).

Assume that (39) is satisfied for some & > 0, and consider the next step:

A1 F(z) = app1F(x) + AgF ()
(39)
> app1 F(x) + ApF(2r) — By
(*) a x kT
> Ak-i—lf(%) + ap19(x) + Aptp(xr) — By (40)
(;) A 1T+ AT
> A1 [f(@ren) + (Vf(@prn), P2 = ap)] + apy (@)

+ Ar(xk) — B,
where () stands for convexity of f. Now, let us denote the point
Vg1 = Tp -+ %(karl —x) € domq.
Then, stationary condition for the method step (37) can be written as

(9k + Hp(Zp41 — 2x), & — Vg1) + () > ¥(vk41), 41)

18



for all x € dom . Therefore,

A1 (V f (@), BT — )+ a1 (2)

= a1 [(VF(@r41), 7 = vpg1) + ()]
= apr1 [{gr + He(zps1 — 2p), 0 — vpp1) + ¢()
+ (V@) = gk, @ — vis1)
+ (V2 f (@) — H)(@pt1 — T1), & — V1)
+ (Vf(@rs1) — V() = V2f (@) (@pg1 — Th), T — Vps1)| (42)

En.@
> g1 [Y(ver1) = IV (k) = gkl - 12 = vpa |

= Wl V2 f(2k) = Hell - llver — 2]l - |2 = vega |

. szil\vkﬂf:rkH2~H:rka+1H]
2

i1 D21V f (@) —Hi| i1 L2D?
> a1y (ven) = anp DV F(ax) = gill. — FE— mH— - S

Thus, combining all together, and using convexity of ¢, we obtain

@0),@2)
A F(z) > Appr f(@r1) + arr1¥(vksr) + Axt(2r) — By

ap  D?|V2f(xx)—Hy|  aj L2D*
— a1 DIV f(zk) — gl] — 2= Ao e kzlijl
> A F(2p41) — By
So, we have (39) justified for all £ > 0. O

Now, we are ready to prove convergence results for the process (37) with the basic variant of
stochastic estimators (23), and with the variance reduction strategy for the gradients, incorporated
into Algorithm 4]

D.1 Proof of Theorem[3

Theorem 5 Let each component f;(-) be Lipschitz continuous on dom ) with constant Ly, and have
Lipschitz continuous gradients and Hessians on dom i) with constants L and Ls, respectively. Let

3
=1-— (rf_l) =O(%). Set

mp = v omy o= 1%

Then, for the iterations {xy, } ,>1 of Algorithm (1), based on estimators (23)), it holds

E[F (o) - F*] < O(fRthDiGlost) 1 1oD),

Proof:

Let us fix iteration & > 0. For one uniform random sample i € {1,..., M}, we have

B[V f(zr) = VSi(@o)ll? = EIVfilzi)l? = IVF(@e)]? < L§. 43)
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Therefore, for the random batch of size mi, we obtain

E|Vf(ze) =gl < VEIVF(2r) — gel?

= Bl S (V) V)P

; . (44)
= /o7 Tiesp EIVf(aw) - Vi)l
i
< Lo
< L

More advanced reasoning for matrices (Matrix Bernstein Inequality; see Chapter 6 in [40]) gives

EHVQf(xk) - Hk” < Ll( /21c7>7g1§12n) + 21;5,(1?1”))
k k
(45)
L1(3y/2log(2n)+210g(2n)) Ly (6+7log(2n))
- 3 mkH - 6 mkH ’
So, using these estimates together, we have, for every k > 1
* 8 1 LoD? k=l a3+1 k=l
BlF@) -] S A (B L 4D D anaBIVS ) - g
i= i=
2 " a? 2
+ DT GBIV () - Hil)
=
).@ s k=1 ;3 k=1
B (' ' 2
i=0 "t i=0 Vi
+ L1D?(6+71og(2n)) k=l af+1 )
6 i=0 Airry/mi’
k—1 3
" Aik (7];22133 + LoD + 4L1D2(6+6710g(2"))> Zi{l
i=0 "t
Thus, for the choice A := k3, we get
E[F(zy) — F*] < O(L2D3+L1D2(;;rlog(n))+LoD>'
O

D.2 Proof of Theorem 6]

Theorem 6 Let each component f;(-) have Lipschitz continuous gradients and Hessians on dom 1)
with constants Ly and Lo, respectively. Let v, := 1 — (kiﬂ)?’ = O(%) Set batch size

mp = 1/7%.
Then, for all iterations {x }>1 ofAlgorithm we have

1/2 o
E[F (z) — F*] < O<L2D3+L1D2(1+log(7;)2)+Ll D(F(z0) F))'

Proof:

Let us consider the following stochastic estimate
gi = Vfi(zg) = Vfi(zk) + Vf(zk),
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for a uniform random sample ¢ € {1,..., M}, and a current iterate k > 0. We denote by z* the
solution of our problem: F* = F'(x*), stationary condition for which is

(Vf(@),z —a*) +¢(x) > P(*), 2 €domy. (46)
Then, it holds

E|Vf(ze) —gill* = E[(Vf(zx) - Vf(2*))
+ (Vfilzr) = VSi(z®) = Vf(z) + V(7))

+  (Vfilz*) = Vfi(a))|?

< 3E|Vf(ar) - V()2
+ BEN(VAi(m) — V@) - (Vi) - V)2
+ BEIV/i(ar) - Vfile)]?

< 3(BIVS (i) = VI + BV i) - Vi) 2

+ EIIVfile) - VSila)IP),
where we used the following simple bounds:
latb+el* < 3llal*+3[b]* + 3lell?,
El¢—E¢? < Ele)?,

which are valid for any a, b, c € R™ and arbitrary random vector £ € R™.

Now, by Lipschitz continuity of the gradients, we have (see Theorem 2.1.5 in [31]])
IVfzr) =V @)? < 2Li(f(zx) = fla*) = (Vf(z*), zp — 2*))

<

2L, (F(ij) - F*)
The same holds for the random sample ¢, for arbitrary fixed z € dom ¢

Ei||Vfi(x) = Viz)II? < 2LEi[fi(z) — fi(a*) = (Vfi(z*),z — z*)]

= 2Li(f(2) - f(a*) = (V[(z"),z — a"))

204 (F(m) — F*).
Thus, we obtain
E(Vf(zr) —gil? < 12L1E[F(zg) — F*] 4+ 6L E[F(2) — F*]. (47)
Consequently, for the random batch
Gk = o Yics, i

we have (compare with (@4))

BV f(xr) =gl < \/W Yies, BIVSf(zr) = gill?

L (GB[F (1) - F*] + EIF () - ) (48)
< JERE[F(@) - F1) 4 SE[F(s) - F)
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So, using the variance reduction for the gradients, and the basic estimate for the Hessians, we have,
forevery k > 1

&op, 3 k=1
]E[F(:Z?k)fF*] @)@@ Ai}Q(LzD il

+ D\/6Ly Z S (V2E[F (2) — F*] + /E[F(2:) — F*])

i L1 D?(6+7log(2n)) kz_:l al,,
6 Aip1y/my

@ 1 ([3L2D°+LyD>(647log(2n) kil ad,,
- Apg 6

2
=0 A

k—1 a2
+ DVBLT & et (VEBIF () — ]+ VEIR D—F7)).

Now, let us set A; 1 := (i + 1)3, and thus a;+1 := (i + 1)® — i3 < 3(i + 1)2, so we have

E[F(z) — F*] < a+5(\/§+1k)2(F($0)*F*)
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+ 5 i ( i+1)(v/2E[F(z;) — F*] + /E[F F*])) )
where
a = 927. [3L2D3+L1DZ(6+7log(2n))]7 3 = 9.D\GL,.
We are going to prove by induction, for every k > 1
E[F(zp) — F*] < 4, (50)
with
¢ == 4B+ /a+3B(F(xo) — F*) +1682)° < T4B%+2a + 68(F(xo) — F*) "

—  O(LyD? + Ly D2(1 +log(n)) + Ly/*D(F(xo) — F*)).

Hence, if (50) is true, then we essentially obtain the claim of the theorem. For k = 1, (50) follows
directly from (@9). Assume that (50) holds for all 1 < i < k, and consider iteration k + 1:

* @’@ oY V2 F(zo)—F* k
E[F(zp1) — F*] < off802eh () W%,_Zl((wl)(fh{z)))
(2 a+ B( e (2244
< 4 5 (6 (2
— ot (V241D B(F (o) —F*) + (2v2+4)BV/e
= >
< a+3B8(F(x0)-F*)+88vc Bl ¢
= k2 - k2>
where in (x) we have used two simple bounds: ¢ < 27 (i), and ¢ + 1 < 2¢, valid forall: > 1. O
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E Extra experiments

In this section, we provide additional experimental results for the problem of training Logistic
Regression model, regularized by ¢>-ball constraints: Figure @] for the exact methods, and Figure 6]
for the stochastic algorithms.
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Figure 4: Training logistic regression, datasets: a9a (M = 32561,n = 123), connect-4 (M =
67557, n = 126), mnist (M = 60000, n = 780).

We see, that the second-order schemes usually outperforms first-order methods, in terms of the
number of iterations, and the number of epochs. Despite the fact, that the Newton step is more
expensive, in many situations we see superiority of the second-order schemes in terms of the total
computational time as well.

Comparing Contracting-Domain Newton Method (Algorithm I)), and Aggregating Newton Method
(Algorithm [3), we conclude that both of the algorithms show reasonably good performance in
practice. The latter one works a bit slower. However, the aggregation of the Hessians helps to improve
numerical stability. On Figure[5] we demonstrate influence of the parameter of inner accuracy (EPS),
which we use in our subsolver, on the convergence of the algorithms. We see much more robust
behaviour for Aggregating Newton Method, while the first algorithm can potentially stop, or even
start to diverge, if the parameter is chosen in a wrong way.

To compute one step of our second-order methods for this task, we need to solve subproblem (20)
for p = 2. This is minimization of quadratic function over the standard Euclidean ball. First, we
compute tridiagonal decomposition of the Hessian (it requires O(n?) arithmetical operations). Then,
we solve the dual to our subproblem (which is maximization of one-dimensional concave function)
by classical Newton iterations (the cost of each iteration is O(n)). For more details, see Chapter 7

in [9].
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Figure 5: Influence of the parameter of inner accuracy.

mnist, D = 20 mnist, D = 100 mnist, D = 500
===+ SGD )
—— SVRG 10
1071 —- SNewton
© ) == SVRNewton -, © 10-1 ]
S 4 ekity S S
b=l : N il h=l
S g 107 S
c =3 c
S S E
N frd fr
1073
\/ A\ M
v AYNEAVS
107* 10-4 - .
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
Epochs Epochs Epochs
YearPredictionMSD, D = 20 100 YearPredictionMSD, D = 100 YearPredictionMSD, D = 500
10t
o SGD SGD
10 —— SVRG 100 —— SVRG
10-1 —- SNewton 101 —- SNewton
Tg === SVRNewton § r_:u === SVRNewton
31072 o e 3 3 1072
] 3 ]
=107 = =107
g < g
T 107 2 3107
e —— SVRG
s o -5 -5
10 T 10 —+ SNewton 10
10-6 106 === SVRNewton 10°°
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epochs Epochs Epochs
100 HIGGS2m, D = 20 HIGGS2m, D = 100 HIGGS2m, D = 500
. SGD
10 —— SVRG
10-1 =+ SNewton
T === SVRNewton E E
5107 3 3
3 3 3
2103 e I
g g %)
5107 S S
L frd P
107
10-¢
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs Epochs

Figure 6: Stochastic methods for training logistic regression, datasets: mnist (M = 60000, n = 780),
YearPredictionMSD (M = 463715,n = 90), HIGGS2m (M = 2 - 105, n = 28).
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