
Convex optimization based on global lower
second-order models

Nikita Doikov∗
Catholic University of Louvain,

Louvain-la-Neuve, Belgium
Nikita.Doikov@uclouvain.be

Yurii Nesterov†
Catholic University of Louvain,

Louvain-la-Neuve, Belgium
Yurii.Nesterov@uclouvain.be

Abstract

In this paper, we present new second-order algorithms for composite convex
optimization, called Contracting-domain Newton methods. These algorithms are
affine-invariant and based on global second-order lower approximation for the
smooth component of the objective. Our approach has an interpretation both as a
second-order generalization of the conditional gradient method, or as a variant of
trust-region scheme. Under the assumption, that the problem domain is bounded,
we prove O(1/k2) global rate of convergence in functional residual, where k is the
iteration counter, minimizing convex functions with Lipschitz continuous Hessian.
This significantly improves the previously known bound O(1/k) for this type of
algorithms. Additionally, we propose a stochastic extension of our method, and
present computational results for solving empirical risk minimization problem.

1 Introduction

Classical Newton method is one of the most popular optimization schemes for solving ill-conditioned
problems. The method has very fast quadratic convergence, provided that the starting point is
sufficiently close to the optimum [3, 22, 31]. However, the questions related to its global behaviour
for a wide class of functions are still open, being in the area of active research.

The significant progress in this direction was made after [33], where Cubic regularization of Newton
method with its global complexity bounds were justified. The main idea of [33] is to use a global upper
approximation model of the objective, which is the second-order Taylor’s polynomial augmented
by a cubic term. The next point in the iteration process is defined as the minimizer of this model.
Cubic Newton attains global convergence for convex functions with Lipschitz continuous Hessian.
The rate of convergence in functional residual is of the order O(1/k2) (here and later on, k is the
iteration counter). This is much faster than the classical O(1/k) rate of the Gradient Method [31].
Later on, accelerated [27], adaptive [7, 8] and universal [17, 12, 18] second-order schemes based on
cubic regularization were developed. Randomized versions of Cubic Newton, suitable for solving
high-dimensional problems were proposed in [13, 19].

Another line of results on global convergence of Newton method is mainly related to the framework
of self-concordant functions [32, 31]. This class is affine-invariant. From the global perspective,
it provides us with an upper second-order approximation of the objective, which naturally leads
to the Damped Newton Method. Several new results are related to its analysis for generalized
self-concordant functions [2, 38], and the notion of Hessian stability [23]. However, for more
refined problem classes, we can often obtain much better complexity estimates, by using the cubic
regularization technique [14].

∗Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM)
†Center for Operations Research and Econometrics (CORE)

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

In this paper, we investigate a different approach, which is motivated by a new global second-order
lower model of the objective function, introduced in Section 3.

We incorporate this model into a new second-order optimization algorithm, called Contracting-
Domain Newton Method (Section 4). At every iteration, it minimizes a lower approximation of the
smooth component of the objective, augmented by a composite term. The next point is defined as
a convex combination of the minimizer, and the previous point. By its nature, it is similar to the
scheme of Conditional Gradient Method (or, Frank-Wolfe algorithm, [15, 30]). Under assumption
of boundedness of the problem domain, for convex functions with Hölder continuous Hessian of
degree ν ∈ [0, 1], we establish its O(1/k1+ν) global rate of convergence in functional residual.
In the case ν = 1, for the class of convex function with Lipschitz continuous Hessian, this gives
O(1/k2) rate of convergence. As compared with Cubic Newton, the new method is affine-invariant
and universal, since it does not depend on the norms and parameters of the problem class. When the
composite component is strongly convex (with respect to arbitrary norm), we show O(1/k2+2ν) rate
for a universal scheme. If the parameters of problem class are known, we can prove a global linear
convergence. We also provide different trust-region interpretations for our algorithm.

In Section 5, we present aggregated models, which accumulate second-order information into
quadratic Estimating Functions [31]. This leads to another optimization process, called Aggregating
Newton Method, with the global convergence of the same order O(1/k1+ν) as for general convex
case. The latter method can be seen as a second-order counterpart of the dual averaging gradient
schemes [28, 29].

In Section 6, we consider the problem of finite-sum minimization. We propose stochastic extensions
of our method. During the iterations of the basic variant, we need to increase the batch size for
randomized estimates of gradients and Hessians up to the orderO(k4) andO(k2) respectively. Using
the variance reduction technique for the gradients, we reduce the batch size up to the level O(k2) for
both estimates. At the same time, the global convergence rate of the resulting methods is of the order
O(1/k2), as for general convex functions with Lipschitz continuous Hessian.

Section 7 contains numerical experiments. Section 8 contains some final remarks. All necessary
proofs are provided in the supplementary material.

2 Problem formulation and notations

Our goal is to solve the following composite convex minimization problem:
min
x
F (x) := f(x) + ψ(x), (1)

where ψ : Rn → R ∪ {+∞} is a simple proper closed convex function, and function f is convex
and twice continuously differentiable at every point x ∈ domψ. Let us fix an arbitrary (possibly
non-Euclidean) norm ‖ · ‖ on Rn. We denote by D the corresponding diameter of domψ:

D := sup
x,y∈domψ

‖x− y‖. (2)

Our main assumption on problem (1) is that domψ is bounded:
D < +∞. (3)

The most important example of ψ is {0,+∞}-indicator of a simple compact convex set Q = domψ.
In particular, for a ball in ‖ · ‖p-norm with p ≥ 1, this is

ψ(x) =

0, ‖x‖p :=
(∑n

i=1 |x(i)|p
)1/p

≤ D
2 ,

+∞, else.
(4)

From the machine learning perspective, D is usually considered as a regularization parameter in this
setting. We denote by 〈·, ·〉 the standard scalar product of two vectors, x, y ∈ Rn:

〈x, y〉 :=
∑n
i=1 x

(i)y(i).

For function f , we denote its gradient by ∇f(x) ∈ Rn, and its Hessian matrix by ∇2f(x) ∈ Rn×n.
Having fixed the norm ‖ · ‖ for primal variables x ∈ Rn, the dual norm can be defined in the standard
way:

‖s‖∗ := sup
h∈Rn:‖h‖≤1

〈s, h〉.

2

The dual norm is necessary for measuring the size of gradients. For a matrix A ∈ Rn×n, we use the
corresponding induced operator norm, defined as

‖A‖ := sup
h∈Rn:‖h‖≤1

‖Ah‖∗.

3 Second-order lower model of objective function

To characterize the complexity of problem (1), we need to introduce some assumptions on the growth
of derivatives. Let us assume that the Hessian of f is Hölder continuous of degree ν ∈ [0, 1] on
domψ:

‖∇2f(x)−∇2f(y)‖ ≤ Hν‖x− y‖ν , x, y ∈ domψ. (5)

The actual parameters of this problem class may be unknown. However, we assume that for some
ν ∈ [0, 1] inequality (5) is satisfied with corresponding constant 0 ≤ Hν < +∞. The direct
consequence of (5) is the following global bounds for Taylor’s approximation, for all x, y ∈ domψ

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖∗ ≤ Hν‖y−x‖1+ν
1+ν , (6)

|f(y)− f(x)− 〈∇f(x), y − x〉 − 1
2 〈∇

2f(x)(y − x), y − x〉| ≤ Hν‖y−x‖2+ν
(1+ν)(2+ν) . (7)

Recall, that in addition to (5), we assume that f is convex:

f(y) ≥ f(x) + 〈∇f(x), y − x〉, x, y ∈ domψ. (8)

Employing both smoothness and convexity, we are able to enhance this global lower bound, as
follows.

Lemma 1 For all x, y ∈ domψ and t ∈ [0, 1], it holds

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ t
2 〈∇

2f(x)(y − x), y − x〉 − t1+νHν‖y−x‖2+ν
(1+ν)(2+ν) . (9)

Note that the right-hand side of (9) is concave in t ∈ [0, 1], and for t = 0 we obtain the standard
first-order lower bound. The maximization of (9) over t gives

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
γ̄x,y

2 〈∇
2f(x)(y − x), y − x〉, (10)

with

γ̄x,y := ν
1+ν min

{
1, (2+ν)〈∇2f(x)(y−x),y−x〉

2Hν‖y−x‖2+ν

} 1
ν

, x 6= y, ν ∈ (0, 1].

Thus, (10) is always tighter than (8), employing additional global second-order information. The
relationship between them is shown on Figure 1. Hence, it seems natural to incorporate the second-
order lower bounds into optimization schemes.

−3 −2 −1 0 1 2 3 4

−1

0

1

2

3

4

Second-order
First-order

Figure 1: Global lower bounds for logistic regression loss, f(x) = log(1 + exp(x)).

3

4 Contracting-Domain Newton Methods

Let us introduce a general scheme of Contracting-Domain Newton Method, which is based on global
second-order lower bounds. Note, that the right hand side of (10) is nonconvex in y. Hence, it
can hardly be used directly in a computational algorithm. To tackle this issue, we use a sequence
of contracting coefficients {γk}k≥0. Each coefficient γk ∈ (0, 1] can be seen as an appropriate
substitute of γ̄x,y in (10). Then, we minimize the corresponding global lower bound augmented by
the composite component ψ(·). The next point is taken as a convex combination of the minimizer
and the current point. Let us present this method formally, as Algorithm 1.

Algorithm 1: Contracting-Domain Newton Method, I

Initialization. Choose x0 ∈ domψ.
Iteration k ≥ 0.

1: Pick up γk ∈ (0, 1].
2: Compute

vk+1 ∈ Argmin
y

{
〈∇f(xk), y − xk〉 + γk

2 〈∇
2f(xk)(y − xk), y − xk〉 + ψ(y)

}
.

3: Set xk+1 := xk + γk(vk+1 − xk).

There is a clear connection of this method with Frank-Wolfe algorithm, [15]. Indeed, instead of
the standard first-order approximation (8), we use the lower global quadratic model. Thus, as
compared with the gradient methods, every iteration of Algorithm 1 is more expensive. However,
this is a standard situation with the second-order schemes (see the below discussion on the iteration
complexity). At the same time, our method is affine-invariant, since it does not depend on the norms.

It is clear, that for γk ≡ 1 we obtain iterations of the classical Newton method. Its local quadratic
convergence for composite optimization problems was established in [26]. However, for the global
convergence, we need to adjust the contracting coefficients accordingly. To state the global conver-
gence result, let us introduce the following linear Estimating Functions (see [31]):

φk(x)
def
=

∑k
i=1 ai

[
f(xi) + 〈∇f(xi), x− xi〉+ ψ(x)

]
, φ∗k := min

x
φk(x), (11)

for the sequence of test points {xk : xk ∈ domψ}k≥1 and positive scaling coefficients {ak}k≥1. We
relate them with contracting coefficients, as follows

γk := ak+1

Ak+1
, Ak

def
=

∑k
i=1 ai. (12)

Theorem 1 Let Ak := k3, and consequently, γk := 1 −
(

k
k+1

)3
= O

(
1
k

)
. Then for the

sequence {xk}k≥1 generated by Algorithm 1, we have

F (xk)− F ∗ ≤ `k
def
= F (xk)− φ∗

k

Ak
≤ O

(
HνD

2+ν

k1+ν

)
. (13)

For the case ν = 1 (convex functions with Lipschitz continuous Hessian), estimate (13) gives the
convergence rate of the order O(1

k2). This is the same rate, as we can achieve on this functional class
by Cubic Regularization of Newton Method [33]. In accordance to (13), in order to obtain ε-accuracy
in functional residual, F (xK)− F ∗ ≤ ε, it is enough to perform

K = O
((

HνD
2+ν

ε

)1/(1+ν)
)

(14)

iterations of Algorithm 1. In [17], there were proposed first universal second-order methods (which
do not depend on parameters ν and Hν of the problem class), having complexity guarantees of
the same order (14). These methods are based on Cubic regularization and an adaptive search for
estimating the regularization parameter at every iteration. It is important that Algorithm 1 is both
universal and affine-invariant. Additionally, convergence result (13) provides us with a sequence
{`k}k≥1 of computable accuracy certificates, which can be used as a stopping criterion of the method.

Now, let us assume that the composite component is strongly convex with parameter µ > 0. Thus, for
all x, y ∈ domψ and ψ′(x) ∈ ∂ψ(x), it holds

ψ(y) ≥ ψ(x) + 〈ψ′(x), y − x〉+ µ
2 ‖y − x‖

2. (15)
In this situation, we are able to improve convergence estimate (13), as follows.

4

Theorem 2 Let Ak := k5, and consequently, γk := 1 −
(

k
k+1

)5
= O

(
1
k

)
. Then for the

sequence {xk}k≥1 generated by Algorithm 1, we have

F (xk)− F ∗ ≤ `k ≤ O
(
HνD

ν

µ · HνD
2+ν

k2+2ν

)
. (16)

Moreover, if the second-order condition number

ων
def
=

[
HνD

ν

(1+ν)µ

] 1
1+ν (17)

is known, then, defining Ak := (1 +ω−1
ν)k, k ≥ 1, A0 := 0, and γk := 1

1+ων
, k ≥ 1, γ0 := 1,

we obtain the global linear rate of convergence

F (xk)− F ∗ ≤ `k ≤ exp
(
− k−1

1+ων

)
· HνD

2+ν

1+ν . (18)

According to the estimate (18), in order to get ε-accuracy in function value, it is enough to perform

K = O
(
(1 + ων) · log F (x0)−F∗

ε

)
iterations of the method. Hence, condition number ων plays the role of the main complexity factor.
This rate corresponds to that one of Cubically Regularized Newton Method (see [11, 12]). At the
same time, there exists a second variant of Contracting-Domain Newton Method, where the next
point is defined by minimization of the full second-order model for the smooth component augmented
by the composite term over the contracted domain (this explains the names of our methods).

Algorithm 2: Contracting-Domain Newton Method, II

Initialization. Choose x0 ∈ domψ.
Iteration k ≥ 0.

1: Pick up γk ∈ (0, 1].
2: Denote

Sk(y) :=

{
ψ(y), y ∈ γkdomψ + (1− γk)xk,

+∞, else.
3: Compute

xk+1 ∈ Argmin
y

{
〈∇f(xk), y − xk〉 + 1

2 〈∇
2f(xk)(y − xk), y − xk〉 + Sk(y)

}
.

Note, that Algorithm 1 admits similar representation as well. 3 Both methods produce the same
sequences of points when ψ(·) is {0,+∞}-indicator of a convex set. Otherwise, they are different.
Using the same contraction technique, it was shown in [30] that the classical Frank-Wolfe algorithm
can be extended onto the case of the composite optimization problems. Additionally, the second-order
Contracting Trust-Region method was proposed, which has the same form as Algorithm 2. However,
its convergence rate was established only at the level O(1

k). Here, we improve its rate as follows.

Theorem 3 Let Ak := k3 and γk := 1 −
(

k
k+1

)3
= O

(
1
k

)
. Then for the sequence {xk}k≥1

generated by Algorithm 2, we have

F (xk)− F ∗ ≤ `k ≤ O
(
HνD

2+ν

k1+ν

)
. (19)

This result is very similar to Theorem 1. However, the first algorithm can be accelerated on the class
of strongly convex functions (see Theorem 2). Thus, it seems that it is more preferable.

Finally, let us consider an example, when the composite component ψ(·) is an `p-ball, as in (4). Then,
iterations of the method can be represented as

xk+1 ∈ xk + Argmin
h

{
〈∇f(xk), h〉+ 1

2 〈∇
2f(xk)h, h〉 : ‖xk + 1

γk
h‖p ≤ D

2

}
. (20)

In this form, it looks as a variant of Trust-Region scheme. To solve the subproblem in (20), we can
use Interior Point Methods (e.g. Chapter 5 in [31]). See also [9], for techniques, developed for Trust-
Region schemes. Usually, complexity of this step can be estimated as O(n3) arithmetic operations,

3Indeed, it is enough to take Sk(y) := γkψ(xk +
1
γk

(y − xk)).

5

which comes from the cost of computing a suitable factorization for the Hessian matrix. Alternatively,
Hessian-free gradient methods can be applied, for computing an inexact step (see [6, 5]).

5 Aggregated second-order models

In this section, we propose more advanced second-order models, based on global lower bound (9).
Using the same notation as before, consider a sequence of test points {xk : xk ∈ domψ}k≥0 and
sequences of coefficients {ak}k≥1, {γk}k≥0, satisfying the relations (12). Then, we can introduce
the following Quadratic Estimating Functions (compare with definition (11)):

Qk(x)
def
=

∑k−1
i=0 ai+1

[
f(xi) + 〈∇f(xi), x− xi〉+ γi

2 〈∇
2f(xi)(x− xi), x− xi〉+ ψ(x)

]
.

By (9), we have the main property of Estimating Functions being satisfied. Namely, for all x ∈ domψ

AkF (x)
(9)

≥ Qk(x)−
∑k−1
i=0

ai+1γ
1+ν
i Hν‖x−xi‖2+ν
(1+ν)(2+ν)

(2)

≥ Qk(x)− HνD
2+ν

(1+ν)(2+ν)

∑k−1
i=0 ai+1γ

1+ν
i =: Qk(x)− Ck

2 .

(21)

Therefore, if we would be able to guarantee for our test points the relation

Q∗k := min
x
Qk(x) ≥ AkF (xk)− Ck

2 , (22)

then we could immediately obtain the global convergence in function value. Fortunately, relation (22)
can be achieved by simple iterations.

Algorithm 3: Aggregating Newton Method

Initialization. Choose x0 ∈ domψ. Set A0 := 0, Q0(x) ≡ 0.
Iteration k ≥ 0.

1: Pick up ak+1 > 0. Set Ak+1 := Ak + ak+1 and γk := ak+1

Ak+1
.

2: Update Estimating Function
Qk+1(x) ≡ Qk(x) + ak+1

[
f(xk)+〈∇f(xk), x−xk〉+ γk

2 〈∇
2f(xk)(x−xk), x−xk〉+ψ(x)

]
.

3: Compute vk+1 ∈ Argmin
x

Qk+1(x).

4: Set xk+1 := xk + γk(vk+1 − xk).

Clearly, the most complicated part of this process is Step 3, which is computation of the minimum
of Estimating Function. However, the complexity of this step remains the same, as that one for
Contracting-Domain Newton Method. We obtain the following convergence result.

Theorem 4 For the sequence {xk}k≥1 generated by Algorithm 3, relation (22) is satisfied.
Consequently, for the choice Ak := k3, we obtain

F (xk)− F ∗
(21)

≤ F (xk)− Q∗
k

Ak
+ Ck

2Ak

(22)

≤ Ck
Ak
≤ O

(
HνD

2+ν

k1+ν

)
. (23)

Now, for the accuracy certificate we have new expression ¯̀
k := F (xk)− Q∗

k

Ak
+ Ck

2Ak
. The value of Q∗k

is available within the method directly. However, in order to compute ¯̀
k in practice, some estimate

for Ck is required. Note, that for the given choice of coefficients Ak := k3, we have ak = O(k2)
and γk = O(1

k). Therefore, new information enters into the model with increasing weights, which
seems to be natural.

6 Stochastic finite-sum minimization

In this section, we consider the case when the smooth part f of the objective (1) is represented as a
sum of M convex twice-differentiable components,

f(x) := 1
M

∑M
i=1 fi(x). (24)

6

This setting appears in many machine learning applications, such as empirical risk minimization.
Often, the number M is very big. Thus, it becomes expensive to evaluate the whole gradient or the
Hessian at every iteration. Hence, stochastic or incremental methods are the methods of choice in
this situation. See [4] for a survey of first-order incremental methods. The Newton-type Incremental
Method with superlinear local convergence was proposed in [35]. Local linear rate of stochastic
Newton methods was studied in [25]. Global convergence of sub-sampled Newton schemes, based
on Damped iterations, and on Cubic regularization, was established in [36, 24, 39].

The basic idea of stochastic algorithms is to substitute the true gradients and Hessians by some
random unbiased estimators gk, and Hk, respectively, with E[gk] = ∇f(xk) and E[Hk] = ∇2f(xk).

First, let us consider the simplest estimation strategy. At iteration k, we sample uniformly and
independently two subsets of indices Sgk , S

H
k ⊆ {1, . . . ,M}. Their sizes are mg

k := |Sgk | and
mH
k := |SHk |, which are possibly different. Then, in Algorithm 1, we can use the following random

estimators:
gk := 1

mgk

∑
i∈Sgk
∇fi(xk), Hk := 1

mHk

∑
i∈SHk

∇2fi(xk). (25)

Let us present for this process a result on its global convergence. Note that in this section, we use the
standard Euclidean norm for vectors and the corresponding induced spectral norm for matrices.

Theorem 5 Let each component fi(·) be Lipschitz continuous on domψ with constant L0,
and have Lipschitz continuous gradients and Hessians on domψ with constants L1 and L2,
respectively. Let γk := 1−

(
k
k+1

)3
= O

(
1
k

)
. Set

mg
k := 1/γ4

k, mH
k := 1/γ2

k. (26)

Then, for the iterations {xk}k≥1 of Algorithm (1), based on estimators (25), it holds

E[F (xk)− F ∗] ≤ O
(
L2D

3 +L1D
2(1+log(n)) +L0D
k2

)
. (27)

Therefore, in order to solve our problem with ε-accuracy in expectation, E[F (xK)− F ∗] ≤ ε, we
need to perform K = O

(
1

ε1/2

)
iterations of the method. In this case, the total number of gradient

and Hessian samples are O
(

1
ε5/2

)
and O

(
1

ε3/2

)
, respectively. It is interesting that we need higher

accuracy for estimating the gradients, which results in a bigger batch size.

To improve this result, we incorporate a simple variance reduction strategy for the gradients. This is
a popular technique in stochastic convex optimization (see [37, 21, 10, 20, 1, 34, 16] and references
therein). At some iterations, we recompute the full gradient. However, during the whole optimization
process this happens logarithmic number of times in total. Let us denote by π(k) the maximal power
of two, which is less than or equal to k: π(k) := 2blog2 kc, for k > 0, and define π(0) := 0. The
entire scheme looks as follows.

Algorithm 4: Stochastic Variance-Reduced Contracting-Domain Newton

Initialization. Choose x0 ∈ domψ.
Iteration k ≥ 0.

1: Set anchor point zk := xπ(k).
2: Sample random batch Sk ⊆ {1, . . . ,M} of size mk.
3: Compute variance-reduced stochastic gradient

gk := 1
mk

∑
i∈Sk

(
∇fi(xk)−∇fi(zk) +∇f(zk)

)
.

4: Compute stochastic Hessian
Hk := 1

mk

∑
i∈Sk ∇

2fi(xk).

5: Pick up γk ∈ (0, 1].
6: Perform the main step

xk+1 ∈ Argmin
y

{
〈gk, y − xk〉 + 1

2 〈Hk(y − xk), y − xk〉 + γkψ(xk + 1
γk

(y − xk))
}
.

Note that this is just Algorithm 1 with random estimators gk and Hk instead ot the true gradient and
Hessian. The following global convergence result holds.

7

Theorem 6 Let each component fi(·) have Lipschitz continuous gradients and Hessians on
domψ with constants L1 and L2, respectively. Let γk := 1−

(
k
k+1

)3
= O(1

k). Set batch size

mk := 1/γ2
k. (28)

Then, for all iterations {xk}k≥1 of Algorithm 4, we have

E[F (xk)− F ∗] ≤ O
(
L2D

3 +L1D
2(1+log(n)) +L

1/2
1 D(F (x0)−F∗)

k2

)
. (29)

It is thanks to the variance reduction that we can use the same batch size for both estimators now. To
solve the problem with ε-accuracy in expectation, we need K = O

(
1

ε1/2

)
iterations of the method.

And the total number of gradient and Hessian samples during these iterations is O
(

1
ε3/2

)
.

7 Experiments

Let us demonstrate computational results for the problem of training Logistic Regression model,
regularized by `2-ball constraints. Thus, the smooth part of the objective has the finite-sum represen-
tation (24), each component is fi(x) := log(1 + exp(〈ai, x〉)). The composite part is given by (4),
with p = 2. Diameter D plays the role of regularization parameter, while vectors {ai : ai ∈ Rn}Mi=1

are determined by the dataset4. First, we compare the performance of Contracting-Domain Newton
Method (Algorithm 1) and Aggregating Newton Method (Algorithm 3) with first-order optimiza-
tion schemes: Frank-Wolfe algorithm [15], the classical Gradient Method, and the Fast Gradient
Method [29]. For the latter two we use a line-search at each iteration, to estimate the Lipschitz
constant. The results are shown on Figure 2.

0 50 100 150 200
Iterations

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Fu
nc

. r
es

id
ua

l

0.4s

0.31s

0.2s

4.64s 6.99s

w8a, D = 20
Frank-Wolfe
Grad. Method
Fast Grad. Method
Contr. Newton
Aggr. Newton

0 500 1000 1500 2000
Iterations

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Fu
nc

. r
es

id
ua

l 2.45s
5.08s

2.53s

5s

4.99s
4.49s

6.98s

w8a, D = 100

0 1000 2000 3000 4000
Iterations

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
Fu

nc
. r

es
id

ua
l 10.03s

15.01s

14.97s1.31s

15s

w8a, D = 500

Figure 2: Training logistic regression, w8a (M = 49749, n = 300).

We see, that for biggerD, it becomes harder to solve the optimization problem. Second-order methods
demonstrate good performance both in terms of the iterations, and the total computational time. 5

0 20 40 60 80
Epochs

10−6

10−5

10−4

10−3

10−2

10−1

Fu
nc

. r
es

id
ua

l 20s

1s

19.92s

19.68s

covtype, D = 20

SGD
SVRG
SNewton
SVRNewton

0 20 40 60 80 100
Epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

Fu
nc

. r
es

id
ua

l

20s

20.01s

19.74s

8.21s

covtype, D = 100

0 20 40 60 80 100
Epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Fu
nc

. r
es

id
ua

l

20s

20s

19.87s

19.95s

covtype, D = 500

Figure 3: Stochastic methods for training logistic regression, covtype (M = 581012, n = 54).

4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
5Clock time was evaluated using the machine with Intel Core i5 CPU, 1.6GHz; 8 GB RAM. All

methods were implemented in C++. The source code can be found at https://github.com/doikov/
contracting-newton/

8

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://github.com/doikov/contracting-newton/
https://github.com/doikov/contracting-newton/

In the next set of experiments, we compare the basic stochastic version of our method, using
estimators (25) — SNewton, the method with the variance reduction (Algorithm 4) — SVRNewton,
and first-order algorithms (with constant step-size, tuned for each problem): SGD and SVRG [21].
We see (Figure 3) that using the variance reduction strategy significantly improve the convergence for
both first-order and second-order stochastic optimization methods.

According to these graphs, our second-order algorithms can be more efficient when solving ill-
conditioned problems, producing the better solution within a given computational time. See also
Section E in the supplementary material for extra experiments.

8 Discussion

Let us discuss complexity estimates, which we established in our work. For the basic versions of our
method we have the global convergence in the functional residual of the form

F (xk)− F ∗ ≤ O
(
HνD

2+ν

k1+ν

)
.

Note that the complexity parameter Hν depends only on the variation of the Hessian (in arbitrary
norm). It can be much smaller than the maximal eigenvalue of the Hessian, which typically appears
in the rates of first-order methods. It is important that our algorithms are free from using the norms or
any other particular parameters of the problem class.

At the same time, the arithmetic complexity of one step of our methods for simple sets can be
estimated as the sum of the cost of computing the Hessian, and O(n3) additional operations (to
compute a suitable factorization of the matrix). For example, the cost of computing the gradient of
Logistic Regression is O(Mn), and the Hessian is O(Mn2), where M is the dataset size. Hence, it
is preferable to use our algorithms with exact steps in the situation when M is much bigger than n.

Broader Impact

This work does not present any foreseeable societal consequence.

Acknowledgments and Disclosure of Funding

The research results of this paper were obtained in the framework of ERC Advanced Grant 788368.

References
[1] Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. The

Journal of Machine Learning Research, 18(1):8194–8244, 2017.

[2] Francis Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics,
4:384–414, 2010.

[3] Albert A Bennett. Newton’s method in general analysis. Proceedings of the National Academy
of Sciences, 2(10):592–598, 1916.

[4] Dimitri P Bertsekas. Incremental gradient, subgradient, and proximal methods for convex
optimization: A survey. Optimization for Machine Learning, 2010(1-38):3, 2011.

[5] Alejandro Carderera and Sebastian Pokutta. Second-order conditional gradients. arXiv preprint
arXiv:2002.08907, 2020.

[6] Yair Carmon and John C Duchi. First-order methods for nonconvex quadratic minimization.
arXiv preprint arXiv:2003.04546, 2020.

[7] Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. Adaptive cubic regularisation
methods for unconstrained optimization. Part I: motivation, convergence and numerical results.
Mathematical Programming, 127(2):245–295, 2011.

9

[8] Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. Adaptive cubic regularisation
methods for unconstrained optimization. Part II: worst-case function-and derivative-evaluation
complexity. Mathematical programming, 130(2):295–319, 2011.

[9] Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Trust region methods. SIAM, 2000.

[10] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in neural
information processing systems, pages 1646–1654, 2014.

[11] Nikita Doikov and Yurii Nesterov. Local convergence of tensor methods. CORE Discussion
Papers 2019/21, 2019.

[12] Nikita Doikov and Yurii Nesterov. Minimizing uniformly convex functions by cubic regulariza-
tion of Newton method. arXiv preprint arXiv:1905.02671, 2019.

[13] Nikita Doikov and Peter Richtárik. Randomized block cubic Newton method. In International
Conference on Machine Learning, pages 1289–1297, 2018.

[14] Pavel Dvurechensky and Yurii Nesterov. Global performance guarantees of second-order
methods for unconstrained convex minimization. Technical report, CORE Discussion Paper,
2018.

[15] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

[16] Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of sgd: Variance
reduction, sampling, quantization and coordinate descent. arXiv preprint arXiv:1905.11261,
2019.

[17] Geovani N Grapiglia and Yurii Nesterov. Regularized Newton methods for minimizing functions
with Hölder continuous Hessians. SIAM Journal on Optimization, 27(1):478–506, 2017.

[18] Geovani N Grapiglia and Yurii Nesterov. Accelerated regularized Newton methods for minimiz-
ing composite convex functions. SIAM Journal on Optimization, 29(1):77–99, 2019.

[19] Filip Hanzely, Nikita Doikov, Peter Richtárik, and Yurii Nesterov. Stochastic subspace cubic
Newton method. arXiv preprint arXiv:2002.09526, 2020.

[20] Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic optimization. In
International Conference on Machine Learning, pages 1263–1271, 2016.

[21] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems, pages 315–323, 2013.

[22] Leonid V Kantorovich. Functional analysis and applied mathematics. Uspekhi Matematicheskikh
Nauk, 3(6):89–185, 1948.

[23] Sai Praneeth Karimireddy, Sebastian U Stich, and Martin Jaggi. Global linear conver-
gence of Newton’s method without strong-convexity or Lipschitz gradients. arXiv preprint
arXiv:1806.00413, 2018.

[24] Jonas Moritz Kohler and Aurelien Lucchi. Sub-sampled cubic regularization for non-convex
optimization. In International Conference on Machine Learning, pages 1895–1904, 2017.

[25] Dmitry Kovalev, Konstantin Mishchenko, and Peter Richtárik. Stochastic Newton and cubic
Newton methods with simple local linear-quadratic rates. arXiv preprint arXiv:1912.01597,
2019.

[26] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal Newton-type methods for
minimizing composite functions. SIAM Journal on Optimization, 24(3):1420–1443, 2014.

[27] Yurii Nesterov. Accelerating the cubic regularization of Newton’s method on convex problems.
Mathematical Programming, 112(1):159–181, 2008.

10

[28] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical program-
ming, 120(1):221–259, 2009.

[29] Yurii Nesterov. Gradient methods for minimizing composite functions. Mathematical Program-
ming, 140(1):125–161, 2013.

[30] Yurii Nesterov. Complexity bounds for primal-dual methods minimizing the model of objective
function. Mathematical Programming, 171(1-2):311–330, 2018.

[31] Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

[32] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex
programming. SIAM, 1994.

[33] Yurii Nesterov and Boris T Polyak. Cubic regularization of Newton’s method and its global
performance. Mathematical Programming, 108(1):177–205, 2006.

[34] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for
machine learning problems using stochastic recursive gradient. In International Conference on
Machine Learning, pages 2613–2621, 2017.

[35] Anton Rodomanov and Dmitry Kropotov. A superlinearly-convergent proximal Newton-type
method for the optimization of finite sums. In International Conference on Machine Learning,
pages 2597–2605, 2016.

[36] Farbod Roosta-Khorasani and Michael W Mahoney. Sub-sampled newton methods i: globally
convergent algorithms. arXiv preprint arXiv:1601.04737, 2016.

[37] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

[38] Tianxiao Sun and Quoc Tran-Dinh. Generalized self-concordant functions: a recipe for Newton-
type methods. Mathematical Programming, 178(1-2):145–213, 2019.

[39] Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I Jordan. Stochastic
cubic regularization for fast nonconvex optimization. In Advances in Neural Information
Processing Systems, pages 2899–2908, 2018.

[40] Joel A Tropp. An introduction to matrix concentration inequalities. Foundations and Trends R©
in Machine Learning, 8(1-2):1–230, 2015.

11

Supplementary material

A Proof of Lemma 1

First, let us note that inequality (6) follows from the following simple observation, using Newton-
Leibniz formula and Hölder continuity of the Hessian, for all x, y ∈ domψ

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖∗ = ‖
1∫
0

(∇2f(x+ τ(y − x))−∇2f(x))(y − x)dτ‖∗

(5)
≤ Hν‖y−x‖1+ν

1+ν .

We are ready to prove the lemma.

Lemma 1 For all x, y ∈ domψ and t ∈ [0, 1], it holds

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ t
2 〈∇

2f(x)(y − x), y − x〉 − t1+νHν‖y−x‖2+ν
(1+ν)(2+ν) .

Proof:

Let us prove the following bound, for all x, y ∈ domψ and t ∈ [0, 1]

〈∇f(y)−∇f(x), y − x〉 ≥ t〈∇2f(x)(y − x), y − x〉 − t1+νHν‖y−x‖2+ν
1+ν . (30)

For t = 1 it follows from (6). Therefore, we may assume that t < 1. Let us take zt := x+ t(y − x).
Then, by convexity of f , we have

〈∇f(y), y − x〉 = 1
1−t 〈∇f(y), y − zt〉

≥ 1
1−t 〈∇f(zt), y − zt〉 = 〈∇f(zt), y − x〉.

Now, from Hölder continuity of the Hessian, we get

〈∇f(zt), y − x〉
(6)

≥ 〈∇f(x), y − x〉+ 〈∇2f(x)(zt − x), y − x〉 − Hν‖zt−x‖1+ν‖y−x‖
1+ν

= 〈∇f(x), y − x〉+ t〈∇2f(x)(y − x), y − x〉 − t1+νHν‖y−x‖2+ν
1+ν .

Thus we prove (30). Then, the claim of the lemma can be obtained by simple integration:

f(y)− f(x)− 〈∇f(x), y − x〉 =
1∫
0

〈∇f(zτ)−∇f(x), y − x〉dτ

(30)

≥
1∫
0

tτ〈∇2f(x)(y − x), y − x〉 − (tτ)1+νHν‖y−x‖2+ν
1+ν dτ

= t
2 〈∇

2f(x)(y − x), y − x〉 − t1+νHν‖y−x‖2+ν
(1+ν)(2+ν) .

�

12

B Convergence of Contracting-Domain Newton Method

In this section, we prove the global convergence of Algorithms 1 and 2. We use the same notation as
in the main part. There is a sequence of controlling coefficients {ak}k≥1 (see relations (12)), and a
sequence of linear Estimating Functions {φk(x)}k≥0. We denote by µ ≥ 0 the constant of strong
convexity of ψ(·). We allow µ = 0 in the following auxiliary lemma, in order to cover both the
general convex and the strongly convex cases.

Lemma 2 For the sequences {xk}k≥1 and {vk}k≥1, produced by Algorithm 1, we have

AkF (xk) ≤ φk(x) + Bk(x), x ∈ domψ, (31)

with

Bk(x) ≡
k∑
i=1

[
Hνa

2+ν
i ‖x−vi‖·‖xi−1−vi‖1+ν

(1+ν)A1+ν
i

− µai‖x−vi‖2
2 − µaiAi−1‖xi−1−vi‖2

2Ai

]
. (32)

Proof:

Let us prove (31) by induction. It obviously holds for k = 0, since A0 := 0, φ0(x) ≡ 0, and
B0(x) ≡ 0 by definition. Assume that it holds for the current k ≥ 0, and consider the next iterate.
Stationary condition for the method step is

〈∇f(xk) +∇2f(xk)(xk+1 − xk), x− vk+1〉+ ψ(x) ≥ ψ(vk+1) + µ
2 ‖x− vk+1‖2, (33)

for all x ∈ domψ. Then, we have

φk+1(x) ≡ ak+1

[
f(xk+1) + 〈∇f(xk+1), x− xk+1〉+ ψ(x)

]
+ φk(x)

(31)

≥ ak+1

[
f(xk+1) + 〈∇f(xk+1), x− xk+1〉+ ψ(x)

]
+AkF (xk)−Bk(x)

(∗)
≥ Ak+1

[
f(xk+1) + 〈∇f(xk+1), ak+1x+Akxk

Ak+1
− xk+1〉

]
+ ak+1ψ(x)

+ Akψ(xk)−Bk(x)

= Ak+1f(xk+1) + ak+1〈∇f(xk+1), x− vk+1〉+ ak+1ψ(x)

+ Akψ(xk)−Bk(x)

= Ak+1f(xk+1) + ak+1

[
〈∇f(xk) +∇2f(xk)(xk+1 − xk), x− vk+1〉+ ψ(x)

]
+ ak+1〈∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk), x− vk+1〉

+ Akψ(xk)−Bk(x)

(33),(6)
≥ Ak+1f(xk+1) + ak+1

[
ψ(vk+1) + µ

2 ‖x− vk+1‖2
]

− Hνa
2+ν
k+1‖x−vk+1‖·‖vk+1−xk‖1+ν

(1+ν)A1+ν
k+1

+Akψ(xk)−Bk(x)

(∗∗)
≥ Ak+1F (xk+1) + µak+1‖x−vk+1‖2

2 + µak+1Ak
2Ak+1

‖xk − vk+1‖2

− Hνa
2+ν
k+1‖x−vk+1‖·‖vk+1−xk‖1+ν

(1+ν)A1+ν
k+1

+Akψ(xk)−Bk(x)

≡ Ak+1F (xk+1)−Bk+1(x),

where (∗) and (∗∗) stand for convexity of f , and strong convexity of ψ, correspondingly. Thus we
have (31) established for all k ≥ 0. �

13

B.1 Proof of Theorem 1

Theorem 1 Let Ak := k3, and consequently, γk := 1 −
(

k
k+1

)3
= O

(
1
k

)
. Then for the sequence

{xk}k≥1 generated by Algorithm 1, we have

F (xk)− F ∗ ≤ `k
def
= F (xk)− φ∗

k

Ak
≤ O

(
HνD

2+ν

k1+ν

)
.

Proof:

First, by convexity of f we have, for all x ∈ domψ

φk(x) ≤ AkF (x).

Therefore, for the solution x∗ of our problem: F ∗ = F (x∗), it holds

F (xk)− F ∗ ≤ F (xk)− φk(x∗)
Ak

≤ `k
def
= F (xk)− φ∗

k

Ak
,

and this is the first part of (13).

At the same time, by Lemma 2, and using boundness of the domain, we have

φ∗k := min
x∈domψ

{
φk(x)

} (31)

≥ min
x∈domψ

{
AkF (xk)−Bk(x)

}
≥ AkF (xk)− HνD

2+ν

1+ν

k∑
i=1

a2+νi

A1+ν
i

Therefore, for the choice Ak := k3, we finally obtain

`k ≤ HνD
2+ν

(1+ν)Ak

k∑
i=1

a2+νi

A1+ν
i

= HνD
2+ν

(1+ν)k3

k∑
i=1

(i3−(i−1)3)2+ν

i3(1+ν)

≤ HνD
2+ν

(1+ν)k3

k∑
i=1

32+ν i2(2+ν)

i3(1+ν)
= 32+νHνD

2+ν

(1+ν)k3

k∑
i=1

i1−ν

= O
(
HνD

2+ν

k1+ν

)
.

�

B.2 Proof of Theorem 2

Theorem 2 Let Ak := k5, and consequently, γk := 1 −
(

k
k+1

)5
= O

(
1
k

)
. Then for the sequence

{xk}k≥1 generated by Algorithm 1, we have

F (xk)− F ∗ ≤ `k ≤ O
(
HνD

ν

µ · HνD
2+ν

k2+2ν

)
.

Moreover, if the second-order condition number

ων
def
=

[
HνD

ν

(1+ν)µ

] 1
1+ν

is known, then, defining Ak := (1 + ω−1
ν)k, k ≥ 1, A0 := 0, and γk := 1

1+ων
, k ≥ 1, γ0 := 1, we

obtain the global linear rate of convergence

F (xk)− F ∗ ≤ `k ≤ exp
(
− k−1

1+ων

)
· HνD

2+ν

1+ν .

Proof:

Starting from the same reasoning, as in the proof of Theorem 1, we get

F (xk)− F ∗ ≤ `k
def
= F (xk)− φ∗

k

Ak
.

14

Let us denote by uk the minimum of the Estimating Function φk. Thus,

`k = F (xk)− φk(uk)
Ak

(31)

≤ 1
Ak
Bk(uk) ≡ 1

Ak

k∑
i=1

B
(i)
k ,

with

B
(i)
k

def
= ai

[
Hνa

1+ν
i ‖uk−vi‖·‖xi−1−vi‖1+ν

(1+ν)A1+ν
i

− µ‖uk−vi‖2
2

]
− µaiAi−1‖xi−1−vi‖2

2Ai

≤ ai max
t≥0

{
Hνa

1+ν
i ‖xi−1−vi‖1+νt

(1+ν)A1+ν
i

− µt2

2

}
− µaiAi−1‖xi−1−vi‖2

2Ai

= ai
2µ

(
Hνa

1+ν
i ‖xi−1−vi‖1+ν

(1+ν)A1+ν
i

)2

− µaiAi−1‖xi−1−vi‖2
2Ai

.

(34)

Therefore, for the choice Ak := k5, we have

`k ≤ 1
Ak

k∑
i=1

ai
2µ

(
Hνa

1+ν
i ‖xi−1−vi‖1+ν

(1+ν)A1+ν
i

)2

≤ H2
νD

2(1+ν)

2µ(1+ν)2Ak

k∑
i=1

a
2(1+ν)+1
i

A
2(1+ν)
i

=
H2
νD

2(1+ν)

2µ(1+ν)2k5

k∑
i=1

(i5−(i−1)5)2(1+ν)+1

i10(1+ν)
≤ 52(1+ν)+1H2

νD
2(1+ν)

2µ(1+ν)2k5

k∑
i=1

i2−2ν

= O
(
HνD

ν

µ · HνD
2+ν

k2+2ν

)
.

Thus we have justified (16). To obtain the linear rate (18), we set

Ak := (1 + ω−1
ν)k, k ≥ 1,

and A0 := 0. So, a1 = A1 and

ai = Ai −Ai−1 = ω−1
ν Ai−1, i ≥ 2.

Therefore, for the values {B(i)
k }ki=1, we have

B
(1)
k ≤ a1

HνD
2+ν

1+ν = A1
HνD

2+ν

1+ν ,

and

B
(i)
k

(34)

≤ H2
νD

2ν‖xi−1−vi‖2a3+2ν
i

2µ(1+ν)2A2+2ν
i

− µaiAi−1‖xi−1−vi‖2
2Ai

= µaiAi−1‖xi−1−vi‖2
2Ai

([
HνD

ν

(1+ν)µ

]2
a2+2ν
i

A1+2ν
i Ai−1

− 1
)

≤ µaiAi−1‖xi−1−vi‖2
2Ai

([
HνD

ν

(1+ν)µ

]2[
ai
Ai−1

]2(1+ν)

− 1
)

= 0, 2 ≤ i ≤ k,
since by our choice

ai
Ai−1

= ω−1
ν

(17)
=

[
(1+ν)µ
HνDν

] 1
1+ν

.

Finally, we obtain

`k ≤ 1
Ak
B

(1)
k ≤ A1

Ak
· HνD

2+ν

1+ν = 1
(1+ω−1

ν)k−1
· HνD

2+ν

1+ν

≤ exp
(
− k−1

1+ων

)
· HνD

2+ν

1+ν .

�

15

B.3 Proof of Theorem 3

Theorem 3 Let Ak := k3 and γk := 1 −
(

k
k+1

)3
= O

(
1
k

)
. Then for the sequence {xk}k≥1

generated by Algorithm 2, we have

F (xk)− F ∗ ≤ `k ≤ O
(
HνD

2+ν

k1+ν

)
.

Proof:

The proof is very similar to that one for Algorithm 1. First, stationary condition for one iteration of
Algorithm 2 is

〈∇f(xk) +∇2f(xk)(xk+1 − xk), x− vk+1〉+ 1
γk
ψ
(
γkx+ (1− γk)xk

)
≥ 1

γk
ψ(xk+1),

(35)

for all x ∈ domψ and k ≥ 0 (compare with (33)), where

vk+1 := xk + 1
γk

(xk+1 − xk) ∈ domψ.

Now, let us prove by induction the following bound

φk(x) ≥ AkF (xk)−Bk, x ∈ domψ, (36)

with Bk := HνD
2+ν

1+ν

∑k
i=1

a2+νi

A1+ν
i

. It obviously holds for k = 0, since both sides are zero. Assume
that it holds for the current k ≥ 0. Then, we have for the next iterate

φk+1(x) ≡ ak+1

[
f(xk+1) + 〈∇f(xk+1), x− xk+1〉+ ψ(x)

]
+ φk(x)

(36)

≥ ak+1

[
f(xk+1) + 〈∇f(xk+1), x− xk+1〉+ ψ(x)

]
+AkF (xk)−Bk

(∗)
≥ Ak+1

[
f(xk+1) + 〈∇f(xk+1), ak+1x+Akxk

Ak+1
− xk+1〉

]
+ ak+1ψ(x) +Akψ(xk)

− Bk

(∗∗)
≥ Ak+1

[
f(xk+1) + 〈∇f(xk+1), ak+1x+Akxk

Ak+1
− xk+1〉+ ψ

(ak+1x+Akxk
Ak+1

)]
−Bk,

where (∗) and (∗∗) stand for convexity of f and ψ, correspondingly. Using both stationary condition
and smoothness, we obtain, for all x ∈ domψ

〈∇f(xk+1), ak+1x+Akxk
Ak+1

− xk+1〉+ ψ
(ak+1x+Akxk

Ak+1

)
= γk〈∇f(xk+1), x− vk+1〉+ ψ

(
γkx+ (1− γk)xk

)
= γk〈∇f(xk) +∇2f(xk)(xk+1 − xk), x− vk+1〉+ ψ

(
γkx+ (1− γk)xk

)
+ γk〈∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk), x− vk+1〉

(35),(6)
≥ ψ(xk+1)− γkHν‖xk+1−xk‖1+ν‖x−vk+1‖

1+ν = ψ(xk+1)− γ2+ν
k Hν‖vk+1−xk‖1+ν‖x−vk+1‖

1+ν

≥ ψ(xk+1)− γ2+ν
k HνD

2+ν

1+ν .

Therefore, we have

φk+1(x) ≥ Ak+1

[
f(xk+1) + ψ(xk+1)− γ2+ν

k HνD
2+ν

1+ν

]
−Bk

= Ak+1F (xk+1)−Bk+1,

16

and (36) is justified for all k ≥ 0. Finally, by convexity of f , we get

F (xk)− F ∗ ≤ `k
def
= F (xk)− φ∗

k

Ak

(36)

≤ Bk
Ak

= HνD
2+ν

(1+ν)Ak

k∑
i=1

a2+νi

A1+ν
i

= O
(
HνD

2+ν

k1+ν

)
,

where the last equation holds from the choice Ak := k3 (see the end of the proof of Theorem 1). �

C Convergence of Aggregating Newton Method

In this section, we establish the convergence result for Algorithm 3.

C.1 Proof of Theorem 4

Theorem 4 For the sequence {xk}k≥1 generated by Algorithm 3, relation (22) is satisfied.

Proof:

Let us establish the relation (22) by induction. It obviously holds for k = 0. Assume that it is proven
for the current iterate k ≥ 0, and consider the next step:

Qk+1(vk+1)

≡ ak+1

[
f(xk) + 〈∇f(xk), vk+1 − xk〉+ γk

2 〈∇
2f(xk)(vk+1 − xk), vk+1 − xk〉

+ ψ(vk+1)
]

+ Qk(vk+1)

(22)

≥ ak+1

[
f(xk) + 〈∇f(xk), vk+1 − xk〉+ γk

2 〈∇
2f(xk)(vk+1 − xk), vk+1 − xk〉

+ ψ(vk+1)
]

+ AkF (xk)− Ck
2

= Ak+1

[
f(xk) + γk〈∇f(xk), vk+1 − xk〉+

γ2
k

2 〈∇
2f(xk)(vk+1 − xk), vk+1 − xk〉]

+ ak+1ψ(vk+1) +Akψ(xk)− Ck
2

= Ak+1

[
f(xk) + 〈∇f(xk), xk+1 − xk〉+ 1

2 〈∇
2f(xk)(xk+1 − xk), xk+1 − xk〉]

+ ak+1ψ(vk+1) +Akψ(xk)− Ck
2

(7)

≥ Ak+1

[
f(xk+1)− Hν‖xk+1−xk‖2+ν

(1+ν)(2+ν)

]
+ ak+1ψ(vk+1) +Akψ(xk)− Ck

2

= Ak+1f(xk+1)− Ak+1γ
2+ν
k Hν‖vk+1−xk‖2+ν

(1+ν)(2+ν) + ak+1ψ(vk+1) +Akψ(xk)− Ck
2

≥ Ak+1f(xk+1)− ak+1γ
1+ν
k HνD2+ν

(1+ν)(2+ν) +Ak+1ψ(xk+1)− Ck
2

= Ak+1F (xk+1)− Ck+1

2 .

Thus, we have (22) justified for all k ≥ 0. �

17

D Convergence of stochastic methods

Let us consider the following general iterations, for solving optimization problem (1):

xk+1 ∈ Argmin
y

{
〈gk, y − xk〉+ 1

2 〈Hk(y − xk), y − xk〉+ Sk(y)
}
, k ≥ 0 (37)

with Sk(y) := γkψ(xk + 1
γk

(y − xk)). This is Algorithm 1 with substituted vector gk and matrix
Hk instead of the true gradient and the Hessian. First, we need to study the convergence of this
process. For simplicity, let us study the case ν = 1 only (convex functions with Lipschitz continuous
Hessian, we denote the corresponding Lipschitz constant by L2). Recall, that in this section we use
the standard Euclidean norm for vectors and induced spectral norm for matrices.

As before, we use the sequence of positive numbers {ak}k≥1, and set

γk := ak+1

Ak+1
, Ak

def
=

k∑
i=1

ai.

Lemma 3 For iterations (37), we have for all k ≥ 1

F (xk)− F ∗ ≤ Bk
Ak
, (38)

with

Bk := L2D
3

2

k−1∑
i=0

a3i+1

A2
i+1

+D
k−1∑
i=0

ai+1‖∇f(xi)− gi‖+D2
k−1∑
i=0

a2i+1

Ai+1
‖∇2f(xi)−Hi‖.

Proof:

Let us prove by induction the following inequality

AkF (x) ≥ AkF (xk)−Bk, x ∈ domψ. (39)

It obviously holds for k = 0, and for k ≥ 1 it is equivalent to (38).

Assume that (39) is satisfied for some k ≥ 0, and consider the next step:

Ak+1F (x) = ak+1F (x) +AkF (x)

(39)

≥ ak+1F (x) +AkF (xk)−Bk

(∗)
≥ Ak+1f

(ak+1x+Akxk
Ak+1

)
+ ak+1ψ(x) +Akψ(xk)−Bk

(∗)
≥ Ak+1

[
f(xk+1) + 〈∇f(xk+1), ak+1x+Akxk

Ak+1
− xk+1〉

]
+ ak+1ψ(x)

+ Akψ(xk)−Bk,

(40)

where (∗) stands for convexity of f . Now, let us denote the point

vk+1 := xk + 1
γk

(xk+1 − xk) ∈ domψ.

Then, stationary condition for the method step (37) can be written as

〈gk +Hk(xk+1 − xk), x− vk+1〉+ ψ(x) ≥ ψ(vk+1), (41)

18

for all x ∈ domψ. Therefore,

Ak+1〈∇f(xk+1), ak+1x+Akxk
Ak+1

− xk+1〉+ ak+1ψ(x)

= ak+1

[
〈∇f(xk+1), x− vk+1〉+ ψ(x)

]
= ak+1

[
〈gk +Hk(xk+1 − xk), x− vk+1〉+ ψ(x)

+ 〈∇f(xk)− gk, x− vk+1〉

+ 〈(∇2f(xk)−Hk)(xk+1 − xk), x− vk+1〉

+ 〈∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk), x− vk+1〉
]

(41),(6)
≥ ak+1

[
ψ(vk+1)− ‖∇f(xk)− gk‖ · ‖x− vk+1‖

− γk‖∇2f(xk)−Hk‖ · ‖vk+1 − xk‖ · ‖x− vk+1‖

− L2γ
2
k‖vk+1−xk‖2·‖x−vk+1‖

2

]
≥ ak+1ψ(vk+1)− ak+1D‖∇f(xk)− gk‖∗ −

a2k+1D
2‖∇2f(xk)−Hk‖
Ak+1

− a3k+1L2D
3

A2
k+1

.

(42)

Thus, combining all together, and using convexity of ψ, we obtain

Ak+1F (x)
(40),(42)
≥ Ak+1f(xk+1) + ak+1ψ(vk+1) +Akψ(xk)−Bk

− ak+1D‖∇f(xk)− gk‖ −
a2k+1D

2‖∇2f(xk)−Hk‖
Ak+1

− a3k+1L2D
3

A2
k+1

≥ Ak+1F (xk+1)−Bk+1.

So, we have (39) justified for all k ≥ 0. �

Now, we are ready to prove convergence results for the process (37) with the basic variant of
stochastic estimators (25), and with the variance reduction strategy for the gradients, incorporated
into Algorithm 4.

D.1 Proof of Theorem 5

Theorem 5 Let each component fi(·) be Lipschitz continuous on domψ with constant L0, and have
Lipschitz continuous gradients and Hessians on domψ with constants L1 and L2, respectively. Let
γk := 1−

(
k
k+1

)3
= O

(
1
k

)
. Set

mg
k := 1/γ4

k, mH
k := 1/γ2

k.

Then, for the iterations {xk}k≥1 of Algorithm (1), based on estimators (25), it holds

E[F (xk)− F ∗] ≤ O
(
L2D

3 +L1D
2(1+log(n)) +L0D
k2

)
.

Proof:

Let us fix iteration k ≥ 0. For one uniform random sample i ∈ {1, . . . ,M}, we have

E‖∇f(xk)−∇fi(xk)‖2 = E‖∇fi(xk)‖2 − ‖∇f(xk)‖2 ≤ L2
0. (43)

19

Therefore, for the random batch of size mg
k, we obtain

E‖∇f(xk)− gk‖ ≤
√
E‖∇f(xk)− gk‖2

=
√

1
(mgk)2

E‖
∑
i∈Sgk

(∇f(xk)−∇fi(xk))‖2

=
√

1
(mgk)2

∑
i∈Sgk

E‖∇f(xk)−∇fi(xk)‖2

(43)

≤ L0√
mgk
.

(44)

More advanced reasoning for matrices (Matrix Bernstein Inequality; see Chapter 6 in [40]) gives

E‖∇2f(xk)−Hk‖ ≤ L1

(√
2 log(2n)

mHk
+ 2 log(2n)

3mHk

)
≤ L1(3

√
2 log(2n)+2 log(2n))

3
√
mHk

≤ L1(6+7 log(2n))

6
√
mHk

.

(45)

So, using these estimates together, we have, for every k ≥ 1

E[F (xk)− F ∗]
(38)

≤ 1
Ak

(
L2D

3

2

k−1∑
i=0

a3i+1

A2
i+1

+D
k−1∑
i=0

ai+1E‖∇f(xi)− gi‖

+ D2
k−1∑
i=0

a2i+1

Ai+1
E‖∇2f(xi)−Hi‖

)
(44),(45)
≤ 1

Ak

(
L2D

3

2

k−1∑
i=0

a3i+1

A2
i+1

+ L0D
k−1∑
i=0

ai+1√
mgi

+ L1D
2(6+7 log(2n))

6

k−1∑
i=0

a2i+1

Ai+1

√
mHi

)
(26)
= 1

Ak

(
L2D

3

2 + L0D + L1D
2(6+7 log(2n))

6

) k−1∑
i=0

a3i+1

A2
i+1
.

Thus, for the choice Ak := k3, we get

E[F (xk)− F ∗] ≤ O
(
L2D

3+L1D
2(1+log(n))+L0D
k2

)
.

�

D.2 Proof of Theorem 6

Theorem 6 Let each component fi(·) have Lipschitz continuous gradients and Hessians on domψ

with constants L1 and L2, respectively. Let γk := 1−
(

k
k+1

)3
= O(1

k). Set batch size

mk := 1/γ2
k.

Then, for all iterations {xk}k≥1 of Algorithm 4, we have

E[F (xk)− F ∗] ≤ O
(
L2D

3 +L1D
2(1+log(n)) +L

1/2
1 D(F (x0)−F∗)

k2

)
.

Proof:

Let us consider the following stochastic estimate

gik := ∇fi(xk)−∇fi(zk) +∇f(zk),

20

for a uniform random sample i ∈ {1, . . . ,M}, and a current iterate k ≥ 0. We denote by x∗ the
solution of our problem: F ∗ = F (x∗), stationary condition for which is

〈∇f(x∗), x− x∗〉+ ψ(x) ≥ ψ(x∗), x ∈ domψ. (46)

Then, it holds

E‖∇f(xk)− gik‖2 = E‖(∇f(xk)−∇f(x∗))

+ (∇fi(zk)−∇fi(x∗)−∇f(zk) +∇f(x∗))

+ (∇fi(x∗)−∇fi(xk))‖2

≤ 3E‖∇f(xk)−∇f(x∗)‖2

+ 3E‖(∇fi(zk)−∇fi(x∗))− (∇f(zk)−∇f(x∗))‖2

+ 3E‖∇fi(xk)−∇fi(x∗)‖2

≤ 3
(
E‖∇f(xk)−∇f(x∗)‖2 + E‖∇fi(zk)−∇fi(x∗)‖2

+ E‖∇fi(xk)−∇fi(x∗)‖2
)
,

where we used the following simple bounds:

‖a+ b+ c‖2 ≤ 3‖a‖2 + 3‖b‖2 + 3‖c‖2,

E‖ξ − Eξ‖2 ≤ E‖ξ‖2,

which are valid for any a, b, c ∈ Rn and arbitrary random vector ξ ∈ Rn.

Now, by Lipschitz continuity of the gradients, we have (see Theorem 2.1.5 in [31])

‖∇f(xk)−∇f(x∗)‖2 ≤ 2L1

(
f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉

)
(46)

≤ 2L1

(
F (xk)− F ∗

)
.

The same holds for the random sample i, for arbitrary fixed x ∈ domψ

Ei‖∇fi(x)−∇fi(x∗)‖2 ≤ 2L1Ei
[
fi(x)− fi(x∗)− 〈∇fi(x∗), x− x∗〉

]
= 2L1

(
f(x)− f(x∗)− 〈∇f(x∗), x− x∗〉

)
(46)

≤ 2L1

(
F (x)− F ∗).

Thus, we obtain

E‖∇f(xk)− gik‖2 ≤ 12L1E[F (xk)− F ∗] + 6L1E[F (zk)− F ∗]. (47)

Consequently, for the random batch

gk := 1
mk

∑
i∈Sk g

i
k,

we have (compare with (44))

E‖∇f(xk)− gk‖ ≤
√

1
(mk)2

∑
i∈Sk E‖∇f(xk)− gik‖2

(47)

≤
√

6L1

mk

(
2E[F (xk)− F ∗] + E[F (zk)− F ∗]

)
≤

√
12L1

mk
E[F (xk)− F ∗] +

√
6L1

mk
E[F (zk)− F ∗].

(48)

21

So, using the variance reduction for the gradients, and the basic estimate for the Hessians, we have,
for every k ≥ 1

E[F (xk)− F ∗]
(38),(48),(45)
≤ 1

Ak

(
L2D

3

2

k−1∑
i=0

a3i+1

A2
i+1

+ D
√

6L1

k−1∑
i=0

ai+1√
mi

(√
2E[F (xi)− F ∗] +

√
E[F (zi)− F ∗]

)
+ L1D

2(6+7 log(2n))
6

k−1∑
i=0

a2i+1

Ai+1
√
mi

)
(28)
= 1

Ak

([
3L2D

3+L1D
2(6+7 log(2n))
6

] k−1∑
i=0

a3i+1

A2
i+1

+ D
√

6L1

k−1∑
i=0

a2i+1

Ai+1

(√
2E[F (xi)− F ∗] +

√
E[F (zi)− F ∗]

))
.

Now, let us set Ai+1 := (i+ 1)3, and thus ai+1 := (i+ 1)3 − i3 ≤ 3(i+ 1)2, so we have

E[F (xk)− F ∗] ≤ α+ β(
√

2+1)(F (x0)−F∗)
k2

+ β
k3

k−1∑
i=1

(
(i+ 1)

(√
2E[F (xi)− F ∗] +

√
E[F (zi)− F ∗]

))
,

(49)

where
α := 27 ·

[
3L2D

3+L1D
2(6+7 log(2n))
6

]
, β := 9 ·D

√
6L1.

We are going to prove by induction, for every k ≥ 1

E[F (xk)− F ∗] ≤ c
k2 , (50)

with

c :=
(
4β +

√
α+ 3β(F (x0)− F ∗) + 16β2

)2 ≤ 74β2 + 2α+ 6β(F (x0)− F ∗)

= O
(
L2D

3 + L1D
2(1 + log(n)) + L

1/2
1 D(F (x0)− F ∗)

)
.

(51)

Hence, if (50) is true, then we essentially obtain the claim of the theorem. For k = 1, (50) follows
directly from (49). Assume that (50) holds for all 1 ≤ i ≤ k, and consider iteration k + 1:

E[F (xk+1)− F ∗]
(49),(50)
≤ α+ β(

√
2+1)(F (x0)−F∗)

k2 + β
k3

k∑
i=1

(
(i+ 1)

(√
2c
i +

√
c

π(i)

))
(∗)
≤ α+ β(

√
2+1)(F (x0)−F∗)

k2 + β
√
c

k3

k∑
i=1

(
(i+ 1)

(
2
√

2 + 4
i+1

))
= α+ (

√
2+1)β(F (x0)−F∗) + (2

√
2+4)β

√
c

k2

≤ α+ 3β(F (x0)−F∗) + 8β
√
c

k2
(51)
= c

k2 ,

where in (∗) we have used two simple bounds: i ≤ 2π(i), and i+ 1 ≤ 2i, valid for all i ≥ 1. �

22

E Extra experiments

In this section, we provide additional experimental results for the problem of training Logistic
Regression model, regularized by `2-ball constraints: Figure 4 for the exact methods, and Figure 6
for the stochastic algorithms.

0 100 200 300 400
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Fu
nc

. r
es

id
ua

l

0.4s
0.51s

0.51s

0.45s

0.46s

a9a, D = 20

Frank-Wolfe
Grad. Method
Fast Grad. Method
Contr. Newton
Aggr. Newton

0 500 1000 1500 2000 2500 3000 3500
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Fu
nc

. r
es

id
ua

l 4.03s
4.98s

5.04s

0.34s

1.04s

a9a, D = 100

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Fu
nc

. r
es

id
ua

l

5.04s10s

9.99s

0.36s

1.01s

a9a, D = 500

0 100 200 300 400
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Fu
nc

. r
es

id
ua

l

1.98s2.03s

3.97s

1.02s

1.04s

4.02s

connect-4, D = 20

Frank-Wolfe
Grad. Method
Fast Grad. Method
Contr. Newton
Aggr. Newton

0 100 200 300 400 500 600 700
Iterations

10 7

10 5

10 3

10 1

101

Fu
nc

. r
es

id
ua

l

4.05s
5.05s

5.03s

1.09s

1.08s

connect-4, D = 100

0 200 400 600 800 1000
Iterations

10 7

10 5

10 3

10 1

101

Fu
nc

. r
es

id
ua

l

4.97s

9.98s

9.96s

1.1s

3.65s

connect-4, D = 500

0 2000 4000 6000 8000
Iterations

10 6

10 4

10 2

100

102

Fu
nc

. r
es

id
ua

l 149.96s

150.04s
50.01s

52.44s

148.66s

mnist, D = 20

Frank-Wolfe
Grad. Method
Fast Grad. Method
Contr. Newton
Aggr. Newton

0 1000 2000 3000 4000 5000 6000 7000
Iterations

10 6

10 4

10 2

100

102

104

Fu
nc

. r
es

id
ua

l

100.04s

99.97s
99.99s

56.35s

101.4s

mnist, D = 100

0 2000 4000 6000 8000
Iterations

10 6

10 4

10 2

100

102

104
Fu

nc
. r

es
id

ua
l

99.96s

100s
100.04s

50.36s

99.3s

mnist, D = 500

Figure 4: Training logistic regression, datasets: a9a (M = 32561, n = 123), connect-4 (M =
67557, n = 126), mnist (M = 60000, n = 780).

We see, that the second-order schemes usually outperforms first-order methods, in terms of the
number of iterations, and the number of epochs. Despite the fact, that the Newton step is more
expensive, in many situations we see superiority of the second-order schemes in terms of the total
computational time as well.

Comparing Contracting-Domain Newton Method (Algorithm 1), and Aggregating Newton Method
(Algorithm 3), we conclude that both of the algorithms show reasonably good performance in
practice. The latter one works a bit slower. However, the aggregation of the Hessians helps to improve
numerical stability. On Figure 5, we demonstrate influence of the parameter of inner accuracy (EPS),
which we use in our subsolver, on the convergence of the algorithms. We see much more robust
behaviour for Aggregating Newton Method, while the first algorithm can potentially stop, or even
start to diverge, if the parameter is chosen in a wrong way.

To compute one step of our second-order methods for this task, we need to solve subproblem (20)
for p = 2. This is minimization of quadratic function over the standard Euclidean ball. First, we
compute tridiagonal decomposition of the Hessian (it requires O(n3) arithmetical operations). Then,
we solve the dual to our subproblem (which is maximization of one-dimensional concave function)
by classical Newton iterations (the cost of each iteration is O(n)). For more details, see Chapter 7
in [9].

23

0 50 100 150 200
Iterations

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Fu
nc

. r
es

id
ua

l

1.99s

1.99s

a9a, D = 20, EPS = 10 5

Contr. Newton
Aggr. Newton

0 20 40 60 80
Iterations

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Fu
nc

. r
es

id
ua

l

1.27s
2.05s

a9a, D = 20, EPS = 10 9

Contr. Newton
Aggr. Newton

0 20 40 60 80 100 120 140
Iterations

10 5

10 3

10 1

101

103

Fu
nc

. r
es

id
ua

l

1.99s

52.85s

99.9s

mnist, D = 20, EPS = 10 5

Frank-Wolfe
Contr. Newton
Aggr. Newton

0 20 40 60 80 100 120 140
Iterations

10 5

10 3

10 1

101

103

Fu
nc

. r
es

id
ua

l

1.94s
98.78s

100.01s
299.74s

mnist, D = 20, EPS = 10 9

Frank-Wolfe
Contr. Newton
Aggr. Newton

Figure 5: Influence of the parameter of inner accuracy.

0 100 200 300 400 500 600
Epochs

10 4

10 3

10 2

10 1

Fu
nc

. r
es

id
ua

l 48s

50.01s

50.38s

69.54s

mnist, D = 20
SGD
SVRG
SNewton
SVRNewton

0 100 200 300 400 500 600
Epochs

10 4

10 3

10 2

10 1

100

Fu
nc

. r
es

id
ua

l

30.03s

50.01s

49.69s

148.74s

mnist, D = 100

0 100 200 300 400 500 600
Epochs

10 4

10 3

10 2

10 1

100

101

102

Fu
nc

. r
es

id
ua

l

50s

50.02s

50.61s

50.62s

mnist, D = 500

0 50 100 150 200
Epochs

10 6

10 5

10 4

10 3

10 2

10 1

100

Fu
nc

. r
es

id
ua

l

20s

20.14s

19.75s

19.85s

YearPredictionMSD, D = 20
SGD
SVRG
SNewton
SVRNewton

0 50 100 150 200
Epochs

10 6

10 5

10 4

10 3

10 2

10 1

100

Fu
nc

. r
es

id
ua

l

20s
20.06s

19.68s

19.61s

YearPredictionMSD, D = 100

SGD
SVRG
SNewton
SVRNewton

0 50 100 150 200
Epochs

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Fu
nc

. r
es

id
ua

l

20s

20.11s
20.3s

19.52s

YearPredictionMSD, D = 500
SGD
SVRG
SNewton
SVRNewton

0 10 20 30 40 50
Epochs

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Fu
nc

. r
es

id
ua

l

50s

28.21s

50.37s

10.5s

HIGGS2m, D = 20
SGD
SVRG
SNewton
SVRNewton

0 10 20 30 40 50
Epochs

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Fu
nc

. r
es

id
ua

l

50s

37.44s

39.79s

8.66s

HIGGS2m, D = 100

0 10 20 30 40 50
Epochs

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Fu
nc

. r
es

id
ua

l

50s

28.36s

50.07s

8.46s

HIGGS2m, D = 500

Figure 6: Stochastic methods for training logistic regression, datasets: mnist (M = 60000, n = 780),
YearPredictionMSD (M = 463715, n = 90), HIGGS2m (M = 2 · 106, n = 28).

24

	Introduction
	Problem formulation and notations
	Second-order lower model of objective function
	Contracting-Domain Newton Methods
	Aggregated second-order models
	Stochastic finite-sum minimization
	Experiments
	Discussion
	Proof of Lemma 1
	Convergence of Contracting-Domain Newton Method
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Convergence of Aggregating Newton Method
	Proof of Theorem 4

	Convergence of stochastic methods
	Proof of Theorem 5
	Proof of Theorem 6

	Extra experiments

