
Appendix

We introduce the following extra notations which are used in several parts of the Appendix. Suppose
that θ`i , i ∈ [N ] is the weight of theN neurons of the `-th layer in the original network F . We simplify
the notation by denoting θ`i = θi, i ∈ [N ]. Suppose σ(θ, z) ∈ Rd, we define the data-dependent
feature by

φMatrix (θ) =
[
σ(θ, z(1)), ..., σ(θ, z(m))

]>
∈ Rm×d,

and its vectorization

φ(θ) =
[
vec>

(
σ(θ, z(1))

)
, ..., vec>

(
σ(θ, z(m))

)]>
∈ Rmd.

We also define hi = φ(θi), i ∈ [N ], h̄ = 1
N

∑N
i=1 hi and hA =

∑N
i=1 aihi with A =

[a1, a2, ..., aN ]. Define M = conv ({φ(θi) | i ∈ [N ]}) as the convex hull generated by the set
{φ(θi) | i ∈ [N ]}. Given some set M ⊆ Rd, we denote the relative interior of M by riM , the
closure of M by clM and the affine hull of M by AffM . We define B(x0, r) as the ball centered at
x0 with radius r.

5.1 Details on Solving (4) for Local Imitation

Now we describe the approach to solve problem (4) with only compute one forward pass. Define

Vi,A(γ) = D̄[(1− γ)f`,A + γσ(θ`i , ·), F`] = γ2gi,A − 2γqi,A + D̄[f`,A, F`],

where qi,A = Ez∼D`
m

[
(F` − f`,A)

(
σ(θ`i , ·)− f`,A

)]
, gi,A = Ez∼D`

m

[(
σ(θ`i , ·)− f`,A

)2]
.

Notice that it is easy to obtain σ(θ`i , z
(j)) for all i ∈ [N ] and j ∈ [m] by feeding the dataset into the

neural network once, as it is the output of neuron i in layer j. And thus qi,A(k) and gi,A(k) can be
calculated cheaply given σ(θ`i , z

(j)), i ∈ [N ] and j ∈ [m]. Define γ̃i,A(k) = qi,A(k)/gi,A(k), which
is the optimum of Vi,A(k)(γ) w.r.t. γ given i (here the optimization of γ is unconstrained). The
following theorem shows some properties of the greedy local imitation method.

Theorem 3 Under assumption 1, if D̄[f`,A(k), F`] > 0, then we have γ̃`,i∗`,k < 1.

Now we proceed to show how to obtain i∗k and γ∗k efficiently. Suppose at iteration k, D̄[f`,A(k), F`] >
0 (otherwise the algorithm has converged). Given some neuron i with ai(k) = 0, we first calculate
γ̃i,A(k). If γ̃i,A(k) ∈ (0, 1), then we define the score of this neuron by the decrease of loss with this
neuron selected, i.e.,

scoreA(k)(i) := D̄[f`,A, F`]− min
γ∈Ui

Vi,A(k)(γ) = −q2
i,A(k)/gi,A(k).

If γ̃i,A(k) ≥ 1, then from Theorem 3, we know that i 6= i∗k. If γ̃i,A(k) ≤ 0 and if i = i∗k, we have
γ∗k = 0, which implies that D̄[f`,A(k+1), F`] = D̄[f`,A(k), F`]. It makes contradiction to Theorem 3,
which implies that i 6= i∗k. In this two cases, since neuron i is not the optimal neuron to select, we can
safely set scoreA(k)(i) = 0. For neuron i with ai(k) > 0. Similarly, if γ̃i,A(k) ≥ 1, then i 6= i∗k and
thus we set scoreA(k)(i) = 0. If γ̃i,A(k) ∈ Ui, then similarly scoreA(k)(i) = −q2

i,A(k)/gi,A(k). If
γ̃i,A(k) < −ai(k)/(1− ai(k)), then

scoreA(k)(i) = Vi,A(k)(−ai(k)/(1− ai(k))).

And thus we have i∗k = arg max
i∈[N ]

scoreA(k)(i). Notice that the score of most neuron can be

calculated cheaply using qi,A(k) and gi,A(k). The only exception are neuron with ai(k) > 0 and
γ̃i,A(k) < −ai(k)/(1− ai(k)). However, its score can be calculated using σ(θ`i , ·) and thus no extra
forward pass is required.

13



5.2 Local Imitation with Fixed Step Sizes

In this section we give detailed discussion on local imitation with a fixed step size scheme shown in
Section 2.2.1. Different from the greedy optimization (4), in this scheme, as the step size is fixed, the
solution returned in each iteration is no better than the one of (4). As a consequence, it gives slower
convergence rate.

Theorem 4 Under Assumption 1, at each step k of the greedy optimization in 5, we have
D[fA(k), F ] ≤ ‖H‖2Lip D̄

[
f`,A(k), F`

]
= O((k + 1)−2) and ‖A(k)‖0 ≤ k + 1.

5.3 Theory on Greedy Global Imitation

Now we give the theoretical result on greedy global imitation. Denote κ1 = supA∈ΩN

‖H◦h̄−H◦hA‖
‖h̄−◦hA‖ ,

κ2 = supA∈ΩN

‖h̄−◦hA‖
‖H◦h̄−H◦hA‖ and D as the diameter ofM, which is defined in Lemma 5. Notice

that κ1κ2 ≥ 1. Using Lemma 3, we know that h̄ ∈ riM, which indicate that there exists some λ > 0
such that

B(h̄, λ) ∩ AffM⊆M,

where B(h̄, λ) denotes the ball with radius λ centered at h̄.

Theorem 5 (Complete Version of Theorem 2) Suppose Assumption 1 holds. Further suppose that
1. D2 ≥ κ2

1κ
2
2(D2 − λ2); 2. at initialization

∥∥h̄− hA(0)

∥∥ ≤ R; 3. κ1D ≤ R, where we define R =
κ2
1κ2λ+κ1

√
κ2
1κ

2
2(λ2−D2)+D2

(κ2
1κ

2
2−1)

(R = +∞ if κ1κ2 = 1). Then we have D[fA(k), F ] = O((k + 1)−2),
and ‖A(k)‖0 ≤ k + 1.

Remark Here the descending property of global imitation is influenced by the non-linear mapping
H . As a consequence, the algorithm gives good convergence property when the whole dynamics
is guaranteed to stay in a proper convergence region (R). The first extra assumption assumes the
existence of this convergence region; The second extra assumption assumes a good initialization to
ensure the dynamics stays in the convergence region at initialization; The third assumption can be
roughly interpreted as assuming the dynamics will not jump out of the convergence region during
descending. Notice that the extra assumptions holds when κ1 and κ2 is sufficiently close to 1.

5.4 Details on Taylor Approximation Tricks

In this section we give details on the computation of Taylor approximation tricks. Notice that

grA,i =
∂

∂γ
D [H ◦ [(1− γ)f`,A + γσ(θi, ·)] , F ]

∣∣∣∣
γ=0

=
∂

∂γ
Ez∼D`

m
(H ◦ [(1− γ)f`,A(z) + γσ(θi, z)]−H ◦ F`(z))

2

∣∣∣∣
γ=0

=2Ez∼D`
m

(H ◦ [(1− γ)f`,A(z) + γσ(θi, z)]−H ◦ F`(z))
∂

∂γ
(H ◦ [(1− γ)f`,A(z) + γσ(θi, z)])

∣∣∣∣
γ=0

=2Ez∼D`
m

(H ◦ f`,A(z)−H ◦ F`(z))H ′ (f`,A(z)) (σ(θi, z)− f`,A(z))

=2Ez∼D`
m

(H ◦ f`,A(z)−H ◦ F`(z))H ′ (f`,A(z))

σ(θi, z)−
N∑
j=1

ajσ(θj , z)


=2

N∑
j=1

(I{j = i} − aj) rA,j .

Thus the key quantities we want to obtain is

rA,i = Ez∼D`
m

[
(H ◦ f`,A(z)−H ◦ F`(z))H ′(f`,A(z))σ(θ`i , z)

]
.

14



And once we obtain rA,i, we are able to calculate grA,i = 2
∑N
j=1 (I {j = i} − aj) rA,j . Now

we introduce how to calculate rA,i efficiently by introducing an ancillary variable. Suppose when
pruning layer `, we have

f`,A(z) =

N∑
i=1

aiσ(θ`i , z) =

N∑
i=1

(ai + bi)σ(θ`i , z), where bi = 0 ∀i ∈ [N ].

Here bi is the introduced ancillary variable, which alway takes 0 value. We have

∂

∂bi
Ez∼D`

m

(
H ◦

(
N∑
i=1

(ai + bi)σ(θ`i , z)

)
−H ◦ F`(z)

)2 ∣∣∣∣
bi=0

=Ez∼D`
m

(H ◦ f`,A(z)−H ◦ F`(z))
∂

∂bi
(H ◦ f`,A)

∣∣∣∣
bi=0

=Ez∼D`
m

(H ◦ f`,A(z)−H ◦ F`(z))H ′(f`,A)
∂

∂bi
f`,A

∣∣∣∣
bi=0

=Ez∼D`
m

(H ◦ f`,A(z)−H ◦ F`(z))H ′(f`,A)
∂

∂bi

(
N∑
i=1

(ai + bi)σ(θ`i , z)

)∣∣∣∣
bi=0

=Ez∼D`
m

(H ◦ f`,A(z)−H ◦ F`(z))H ′(f`,A)σ(θ`i , z)

=rA,i.

This for implementation in practice, we can introduce bi with its value fixed 0 and calculate its
gradient using, which is rA,i using the auto differentiate operator in common deep learning libraries.

5.5 Details on Numeric Verification of Rate

In this section, we give details on the toy experiment on verifying numeric rate. We first introduce
the problem setup for the comparison between pruning and direct gradient training in obtaining small
network. We use the two-hidden-layer deep mean field network formulated by Araújo et al. (2019).
Suppose that the second hidden layer (the one close to output) has 50 neurons; the first hidden layer
(the one close to input) has n ≤ 50 neurons with 50 dimensional feature map; and the input has 100
dimension. That is, we consider the following deep mean field network

Fn(x) = F2 ◦ Fn1 (x),

where

Fn1 (x) =
1

n

n∑
i=1

a1,iReLU(b>1,ix)

with x ∈ R100, b1,i ∈ R100×50, a1,i ∈ R. And

F2(z) =
1

50

50∑
i=1

a2,iReLU(b>2,iz),

with z ∈ R50, b2,i ∈ R50, a1,i ∈ R. Suppose that we train the original network FN with N = 50
neuron at the first hidden layer using gradient descent defined in Araújo et al. (2019) for T time
(T < ∞) with random initialization. To obtain a small network with n neurons at the first hidden
layer, we consider two approaches. In the first approach, we prune the first hidden layer of the trained
FN using local imitation to obtain Fnlocal where n indicates the number of neurons remained in the
first hidden layer. In the second approach, we direct train the network Fndirect train with n neurons in
the first layer using the same gradient descent dynamics, initialization and training time as that in
training FN . By the analysis in Araújo et al. (2019), we have D[Fndirect train, F

N ] = O(n−1). And by
Theorem 1, we have D[Fnlocal, F

N ] = O(exp(−λn)) for some λ > 0. This implies that pruning is
provably much better than directly training in obtaining compact neural network.

Now we introduce the experiment settings. To simulate the data, we first generate a random network

Fgen(x) = (exp (w2/10)− 0.5)
> Tanh(sin (2πw1)

>
x/5)/1000,

15



where w1 ∈ R1000×100 and w2 ∈ R1000 is generated by randomly sampling from uniform
distribution Unif[0, 1] (each element is sampled independently). And then we generate the training
data by sampling feature x from Unif[0, 1] (each coordinate is sampled independently) and then
generate label y = Fgen(x). The simulated training dataset consists of 200 data points. We initialize
the parameters of FN and Fndirect train from standard Gaussian distribution with variance 1, N (0, 1)
(each element are initialized independently) and both FN and Fndirect train are trained using the same
and sufficiently long time to ensure convergence. We also include the pruned model using global
imitation, which is denoted as Fnglobal. The pruned models are not finetuned. We vary different n and
summarize the discrepancy.

5.6 Theory on Pruning All Layers

In the main text, we mainly discuss the convergence rate of pruning one layer. In this section, we
discuss how to apply our convergence rate for single layer pruning to obtain an overall convergence
rate. Following the layer-wise procedure introduced in Section 2.4, suppose that the algorithms
prunes F` to f`,A`

, ` ∈ [L]. And thus, during the layer-wise pruning, the algorithm generates a
sequence of pruned networks

f[0] = FL ◦ FL−1 ◦ ... ◦ F3 ◦ F2 ◦ F1

f[1] = FL ◦ FL−1 ◦ ... ◦ F3 ◦ F2 ◦ f1,A1

f[2] = FL ◦ FL−1 ◦ ... ◦ F3 ◦ f2,A2
◦ f1,A1

...
f[L−1] = FL ◦ fL−1,AL−1

◦ ... ◦ f3,A3
◦ f2,A2

◦ f1,A1

f[L] = fL,AL
◦ fL−1,AL−1

◦ ... ◦ f3,A3 ◦ f2,A2 ◦ f1,A1

Thus here f[`] is the network with the first ` layers pruned, f[L] is the final pruned network with all
layers pruned and f[0] is the original network. Notice that f[`] is obtained by pruning the `-th layer of
f[`−1]. In this step, we suppose that we try both greedy local and global imitation and obtain f`,Alocal

`

and f`,Aglobal
`

with
∥∥Alocal

`

∥∥
0

=
∥∥∥Aglobal

`

∥∥∥
0
. And if D[FL ◦ ...F`+1 ◦ f`,Alocal

`
◦ ... ◦ f1,A1 , f[`−1]] ≤

D[FL ◦ ...F`+1 ◦ f`,Aglobal
`
◦ ... ◦ f1,A1

, f[`−1]], we setA` = Alocal
` , else we setA` = Aglobal

` . Define

H[`] = FL◦FL−1◦...◦F`+1, ` ∈ [L−1] (hereH[L−1] = FL) and z(i)
[`] = f`−1,A`−1

◦...◦f1,A1
(x(i)),

` ∈ [L − 1] (here we define z(i)
[1] = x(i)). The set D[`]

m :=
(
z

(i)
[`]

)m
i=1

denotes the distribution of
training data pushed through the first `− 1 layers.

We introduce the following assumption on the boundedness.

Assumption 2 Assume that for any i ∈ [N ], ` ∈ [L− 1], z(j)
[`] ∈ D

[`]
m , we have

∥∥∥σ(θ`i , z
(j)
[`] )
∥∥∥ ≤ c2

and
∥∥H[`]

∥∥
Lip ≤ c2 for some c2 <∞.

Theorem 6 (Overall Convergence) Under assumption 2, we have
√

D[f[L], F ] =

O
(∑L

`=1 exp
(
−λ`

2 ‖A`‖0
))

, with λ` > 0 for all ` ∈ [L] depending on f[`−1].

5.7 DGCNN Experiment

We deploy our method on DGCNN (Wang et al., 2019). DGCNN contains 4 EdgeConv layers that use
K-Nearest-Neighbor(KNN) to aggregate the information from the output of convolution operation.
Pruning the convolution operation in EdgeConv can significantly speed up the KNN operation and
therefor make the whole model more computational efficient.

Settings The full network is trained with SGD optimizer with momentum 0.9 and weight decay
1× 10−4. We train the model using 64 batch size with an initial learning rate 0.1 for 250 epochs. We
apply cosine learning rate scheduler during the training and decrease the learning rate to 0.001 at the
final epoch. During the pruning, we use 32 batch sizes and the other settings keep the same as our
ImageNet experiment in Section 3.2.

16



Technical Lemmas

We introduce several technical Lemmas that are useful for proving the main theorems.

Lemma 1 Given some convex set M ⊂ Rd, for any q1 ∈ riM and q2 ∈ clM . Then all the points
from the half-segment [q1, q2) belongs to the relative interior of M , i.e.,

[q1, q2)=̂ {(1− λ)q1 + λq2 | 0 ≤ λ < 1} ⊆ riM.

Lemma 2 Let M be a convex set in Rd, then if M is nonempty, then the relative interior of M is
nonempty.

Lemma 1 and 2 are classic results from convex optimization.

Lemma 3 Define
M = conv {q | q ∈ S} ,

where S = {q1, ..., qn} ⊆ Rd with 1 ≤ n <∞. Define q̄ = 1
n

∑n
i=1 qi, then q̄ ∈ riM .

Lemma 4 Suppose that for some λ > 0 such that
(
B(h̄, λ) ∩ AffM

)
⊆ M, then

maxs∈M
〈
h̄− hA, h̄− s

〉
≥ λ

∥∥h̄− hA∥∥.

Lemma 5 Under Assumption 1, for any h,h′ ∈ M, ‖h− h′‖ ≤ D for some D ≤ 2
√
mc1. Here

D can be viewed as the diameter ofM.

Lemma 6 Under assumption 1, suppose s̃∗k = arg min
s∈M

〈
h̄− hA(k), s− hA(k)

〉
and γ̃∗k =

arg min
γ∈[0,1]

∥∥hA(k) + γ
(
s̃∗k − hA(k)

)
− h̄

∥∥2
, then

∥∥hA(k) + γ̃∗k
(
s̃∗k − hA(k)

)
− h̄

∥∥2 ≤ ρ
∥∥hA(k) − h̄

∥∥2
,

for some ρ ∈ (0, 1).

Lemma 7 Consider the following number sequence x2
k+1 ≤ ax2

k − bxk + c. Suppose that this
number sequence satisfies the following conditions: (1) a > 1, b ≥ 0, c ≥ 0; (2) xk ≥ 0 for any k;
(3) (a− 1)x2 − bx2 + c has two real roots z1 ≤ z2; (we allow z1 = z2); (4)

√
c ≤ z2; (5) x0 ≤ z2.

Then supk xk ≤ z2.

Proof of Main Theorems

5.7.1 Proof of Theorem 1

Using Lemma 3, we know that h̄ ∈ riM, which indicate that there exists some λ > 0 such that

B(h̄, λ) ∩ AffM⊆M,

where B(h̄, λ) denotes the ball with radius λ centered at h̄. Define Extre(M) as the set of extreme
points ofM, we know that Extre(M) ⊆ {h1, ...,hN}. Consider the following problem

min
s∈M

〈
h̄− hA(k), s− hA(k)

〉
.

As the objective
〈
h̄− hA(k), s− hA(k)

〉
is linear w.r.t. s, we know that s ∈ Extre(M) ⊆

{h1, ...,hN}. Also, for any i ∈ [N ], we have [0, 1] ⊆ Ui. This gives that

min
i∈[N ]

min
γ∈Ui

D̄[(1− γ)f`,A(k) + γσ(θi, ·), F`] ≤ min
γ∈[0,1]

∥∥hA(k) + γ
(
s̃∗k − hA(k)

)
− h̄

∥∥2

≤ (1− λ2/D2)
∥∥hA(k) − h̄

∥∥2
,

where s̃∗k = arg mins∈M
〈
h̄− hA(k), s− hA(k)

〉
. Here the last inequality is by Lemma 6. This

gives that ∥∥hA(k+1) − h̄
∥∥2 ≤ (1− λ2/D2)

∥∥hA(k) − h̄
∥∥2
.

17



And thus we have ∥∥hA(k) − h̄
∥∥2 ≤ (1− λ2/D2)k

∥∥hA(0) − h̄
∥∥2
.

And thus we have

D[fA(k), F ] ≤ c21(1− λ2/D2)k
∥∥hA(0) − h̄

∥∥2 ≤ c21(1− λ2/D2)‖A(k)‖0
∥∥hA(0) − h̄

∥∥2
,

where the last inequality is by ‖A(k)‖0 ≤ k.

Proof of Theorem 3

Notice that if we have

〈
h̄−hA(k),hi∗

k
−hA(k)

〉
∥∥∥hi∗

k
−hA(k)

∥∥∥2 ≥ 1, then γ∗k = 1 and in this case,

∥∥hA(k+1) − h̄
∥∥ = D̄[σ(θi∗k , ·), F (·)] ≥ D̄[σ(θi∗0 , ·), F (·)].

On the other hand, since 0 <
∥∥h̄− hA(k)

∥∥, by the argument in proving Theorem 1, we have∥∥h̄− hA(k+1)

∥∥ ≤√1− λ2/D2
∥∥h̄− hA(k)

∥∥ < ∥∥h̄− hA(k)

∥∥ .
This gives that ∥∥h̄− hA(k+1)

∥∥ < ∥∥h̄− hA(k)

∥∥ ≤ D̄[σ(θi∗0 , ·), F (·)],
which makes contradiction.

Proof of Theorem 4

Using Lemma 3, we know that h̄ ∈ riM, which indicate that there exists some λ > 0 such that

B(h̄, λ) ∩ AffM⊆M,

where B(h̄, λ) denotes the ball with radius λ centered at h̄. Following the same argument of Ye
et al. (2020) in proving theorem 2, we have

∥∥h̄− hA(k)

∥∥2
= O((k + 1)−2). The result that

‖A(k)‖0 ≤ k + 1 is obvious as in each iteration, the number of nonzero elements in A at most
increases by 1.

Proof of Theorem 5

Suppose that at iteration k, we have hA(k). And the global imitation algorithm returns hA(k+1)

with f`.A(k+1) = H2 ◦
[
(1− γk)f`,A(k) + σ(θi∗k , ·)

]
◦ H1. We also define i′k as the solution of

local imitation. And we let fA′(k+1) = H2 ◦
[
(1− γk)f`,A(k) + σ(θi′k , ·)

]
◦H1. Define wk+1 =

(k + 1)(h̄ − hA(k)), w′k+1 = (k + 1)
(
h− hA′(k)

)
, Wk+1 = (k + 1)

(
H ◦ h̄−H ◦ hA(k)

)
and

W ′
k+1 = (k + 1)

(
H ◦ h̄−H ◦ hA′(k)

)
. We have

‖Wk+1‖2 ≤
∥∥W ′

k+1

∥∥2

= (k + 1)2
∥∥H ◦ h̄−H ◦ hA′(k)

∥∥2

(1)

≤ κ2
1(k + 1)2

∥∥h̄− hA′(k)

∥∥2

= κ2
1

∥∥w′k+1

∥∥2

(2)

≤ κ2
1

(
‖wk‖2 − 2λ ‖wk‖+D2

)
(3)

≤ κ2
1

(
κ2

2 ‖W k‖2 − κ22λ ‖W k‖+D2
)

= κ2
1κ

2
2 ‖W k‖2 − 2κ2

1κ2λ ‖W k‖+ κ2
1D

2.

Here D is the quantities defined in Lemma 5, (1) and (3) use the definition of κ1 and κ2 and
(2) is by the argument of Ye et al. (2020) in proving Theorem 2 (notice that their argument also
applies to the case that h̄ is in the relative interior of M, which is proved by Lemma 3, instead

18



of that h̄ is in the interior of M). By the assumption that D2 ≥ κ2
1κ

2
2(D2 − λ2), the formula

κ2
1κ

2
2x

2 − 2κ2
1κ2λx+ κ2

1D
2 = x2 has two real root, denoted by z1 ≤ z2, where

z1 =
κ2

1κ2λ− κ1

√
κ2

1κ
2
2(λ2 −D2) +D2

(κ2
1κ

2
2 − 1)

z2 =
κ2

1κ2λ+ κ1

√
κ2

1κ
2
2(λ2 −D2) +D2

(κ2
1κ

2
2 − 1)

.

We define q1 = κ2
1κ

2
2 and q2 = κ2

1κ2, and we have

‖Wk+1‖2 ≤ q1 ‖W k‖2 − 2q2λ ‖W k‖+ κ2
1D

2.

If q1 = 1, then the rate holds by directly applying the argument of Ye et al. (2020) in proving Theorem
2. If q1 > 1, we know that 2q2λ ≥ 0 and κ2

1D
2 ≥ 0; ‖W k‖ ≥ 0 for any k by its definition; the

formula q1x
2 − 2q2λx+ κ2

1D
2 = x2 has two real roots z1 ≤ z2; z2 ≥ κ1D by the assumption; and

‖Wk+1‖ ≤ z2 by the assumption. Using Lemma 7, we have, for any k,

‖Wk‖ ≤ z2,

which implies that ∥∥H ◦ h̄−H ◦ hA(k)

∥∥2
= O((k + 1)−2),

and thus D[fA(k), F ] = O(k−2). The result that ‖A(k)‖0 ≤ k + 1 is obvious as in each iteration,
‖A(k)‖0 at most increase 1.

Proof of Theorem 6

When pruning the `-th layer, if this layer is pruned by local imitation, by applying Theorem 1 on the
`-th layer of f[`−1], we have√

D[f[`], f[`−1]] = O
(

exp(−λ`
2
‖A`‖0)

)
,

for some λ` > 0. Else if this layer is pruned by global imitation, we have√
D[f[`], f[`−1]] ≤

√
D[FL ◦ ...F`+1 ◦ f`,Alocal

`
◦ ... ◦ f1,A1

, f[`−1]]

= O
(

exp(−λ`
2

∥∥Alocal
`

∥∥
0
)

)
= O

(
exp(−λ`

2
‖A`‖0)

)
.

Using triangle inequality, we know that√
D[f[L], F ] ≤

L∑
`=1

√
D[f[`], f[`−1]] = O

(
L∑
`=1

exp

(
−λ`

2
‖A`‖0

))
,

with λ` > 0 for all ` ∈ [L].

Proof of Technical Lemmas

Proof of Lemma 3

The case that n = 1 is trivial and we consider the case that n ≥ 2. By the definition, we know that
M is an non-empty and closed convex set. And thus by Lemma 2, riM is not empty. Define

q̃ ∈ riM, q̃ =

n∑
i=1

αiqi,

n∑
i=1

αi = 1 and αi ≥ 0 ∀i ∈ [n].

We define αmax = maxi∈[n] αi. Notice that αmax ≥ 1/n, otherwise, if αmax < 1/n, we have∑n
i=1 αi ≤ nαmax < 1, which makes contradiction. If αmax = 1/n, then αi = 1/n for all i ∈ [n],

otherwise,
∑n
i=1 αi < 1, which makes contradiction. In the case that αmax = 1/n, we have already

obtained the desired result.

19



Now we assume αmax >
1
n . Define λ = 1 − 1

nαmax
∈ [0, 1) and βi = αmax−αi

nαmax−1 . Notice this gives
that

n∑
i=1

βi =

n∑
i=1

αmax − αi
nαmax − 1

=
nαmax −

∑n
i=1 αi

nαmax − 1
= 1 and βi ≥ 0 ∀i ∈ [n].

We define q′ =
∑n
i=1 βiqi and by the property of βi and the definition ofM , we have q′ ∈M = clM .

Notice that

q̄ =
1

n

n∑
i=1

qi = (1− λ)

n∑
i=1

αiqi + λ

n∑
i=1

βi.

Using Lemma 1, we know that q̄ ∈ riM .

5.8 Proof of Lemma 4

Notice that by choosing s′ = h̄− λ h̄−hA

‖h̄−hA‖ ∈ M, we have

max
s∈M

〈
h̄− hA, h̄− s

〉
≥
〈
h̄− hA, h̄− s′

〉
= λ

∥∥h̄− hA∥∥ .
5.9 Proof of Lemma 5

Notice that for any i ∈ [N ],

‖hi‖ =

√√√√ m∑
j=1

σ2(θi, z(j)) ≤
√
mc1.

And for any h ∈M, we have h =
∑N
i=1 βihi, for some βi ≥ 0 and

∑N
i=1 βi = 1, which gives that

‖h‖ =

∥∥∥∥∥
N∑
i=1

βihi

∥∥∥∥∥ ≤
n∑
i=1

βi ‖hi‖ ≤
√
mc1.

Proof of Lemma 6

Proof of this Lemma follows standard argument in analyzing Frank Wolfe algorithm. We include it
for the completeness. Notice that
s̃∗k = arg min

s∈M

〈
h̄− hA(k), s− hA(k)

〉
= arg min

s∈M

〈
h̄− hA(k), s− h̄

〉
= −arg max

s∈M

〈
h̄− hA(k), h̄− s

〉
.

Using Lemma 4, we know that
〈
h̄− hA(k), h̄− s̃∗k

〉
≤ −λ

∥∥h̄− hA(k)

∥∥. Notice that〈
h̄− hA(k), s̃

∗
k − hA(k)

〉
=
〈
h̄− hA(k), h̄− hA(k) + s̃∗k − h̄

〉
=−

〈
h̄− hA(k), h̄− s̃∗k

〉
+
∥∥h̄− hA(k)

∥∥2

≤− 2
〈
h̄− hA(k), h̄− s̃∗k

〉
+
∥∥h̄− hA(k)

∥∥2
+
∥∥h̄− s̃∗k∥∥2

=
∥∥(h̄− hA(k)

)
−
(
h̄− s̃∗k

)∥∥2
=
∥∥hA(k) − s̃∗k

∥∥2
,

where the last inequality uses the fact that
〈
h̄− hA(k), h̄− s̃∗k

〉
≤ 0. This gives that 0 ≤〈

h̄− hA(k), s̃
∗
k − hA(k)

〉
≤
∥∥hA(k) − s̃∗k

∥∥2
. And thus we have

min
γ∈[0,1]

∥∥hA(k) − h̄
∥∥2 − 2γ

〈
h̄− hA(k), s̃

∗
k − hA(k)

〉
+ γ2

∥∥s̃∗k − hA(k)

∥∥2

=
∥∥hA(k) − h̄

∥∥2 −
〈
h̄− hA(k), s̃

∗
k − hA(k)

〉2∥∥hA(k) − s̃∗k
∥∥2

≤
∥∥hA(k) − h̄

∥∥2 − λ2

∥∥h̄− hA(k)

∥∥2∥∥hA(k) − s̃∗k
∥∥2

≤(1− λ2/D2)
∥∥hA(k) − h̄

∥∥2
,

where the last inequality is by Lemma 5.

20



Proof of Lemma 7

Define f(x) = ax2−bx+c. By assumption (1) and assumption (3), for any z ∈ [z1, z2], f(z)−z2 ≤
0. We proof the desired result by induction. Suppose that xk ∈ [0, z2]. Case 1: xk ∈ [z1, z2] and in
this case,

x2
k+1 ≤ f(xk) ≤ x2

k ≤ z2
2 .

Case 2: xk ∈ [0, z1) and in this case

x2
k+1 ≤ f(x1) ≤ max

z∈[0,z1]
f(z) ≤ max(f(0), f(z1)) = max(c, z2

1).

This gives that xk+1 ≤ max(
√
c, z1) ≤ max(z2, z1) = z2. The desired result follows by induction.

21


