
We thank the reviewers for their thorough reading and thoughtful comments. Below we address their major concerns.1

All minor points are corrected in the revised draft.2

Reviewers R1 & R2 agreed with some of the concerns we raised in the original submission regarding scalability and3

generalization of our results (old Fig. 2). Since submission, we have made substantial progress in scaling our approach4

and networks. We now use an evolutionary search strategy (i.e., CMA-ES; Hansen, arXiv 2016) in the outer loop of our5

algorithm, to replace SGD and finite differences. CMA-ES has significantly improved scaling properties and allowed us6

reproduce our results with larger (up to N=100) rate networks (see Figure below) and substantially shortened computing7

times for both rate and spiking neuron simulations (not shown here). We will include these new methods and results in8

our manuscript. The rapidly expanding optimization literature will allow us to meta-learn plasticity rules for problems9

of larger scale and complexity (e.g., via reinforcement learning strategies, such as Abdolmaleki et al. arXiv 2018). This10

strategy has already greatly improved the performance of our code. The next challenge will be developing a tool to go11

beyond single GPU computers to simulate many of such networks in parallel. Even if questions such as how to make a12

spiking network learn and recall stimuli are difficult problems to date, we are confident that they must be tackled. Our13

work presents a first avenue towards this end. It should be noted that scalability is idiosyncratic, i.e., specific to the14

problem rather than framework-wide, and challenges will change for network-level problems. For example, the loss15

function to discover Oja’s rule aims to match every synaptic weight to a desired value. This is not required for other16

problems, and the loss-landscape for a network task may thus be easier, or at least different but not necessarily more17

difficult to navigate.18

Reviewers R2 & R4 also raised questions about the relevance of our work for neuroscience and additional value of19

a meta-learning approach. Uncovering the plasticity rules that underlie brain functions such as learning or memory is20

a key and open question in neuroscience. Plasticity rules directly deduced from experimental data have thus far failed to21

exhibit rules that accomplish goals useful for the brain on their own. Meta-learning approaches similar to those develop22

here could help bridge the gap between empirical observations and function. Our study is a proof of principle to show23

that known/analytically predictable rules can be successfully recovered by a meta-learning approach on a biologically24

interpretable search space of plasticity rules.25

Analytical approaches deducing a small number of plasticity rules that optimally implement a given function have also26

shown to be successful (Pehlevan and Chklovskii IEEE 2019). However, one cannot be sure that the learning rules27

used by the brain are analytically tractable, or which functions are being optimized by the brain -if any-. The dizzying28

number of different synapse types and thus learning rules at play in the brain make alternative, numeric strategies29

imperative, because we can also deduce rules that don’t necessarily behave well. The ultimate goal of our approach30

is to find learning rules from large datasets, by comparing, e.g., patterns of activation before and after learning, and31

asking by what rules a simulated network has to be altered to achieve comparable dynamics. Such goals seem within32

reach. From the ML perspective, the search for unsupervised learning rules able to produce useful representations that33

could provide alternatives to backpropagation is an active area of research (Jaderberg et al. ICML 2017). Our approach34

provides real-world challenges that sit at the interface of neuroscience and could contribute to such alternatives.35

In summary, our approach is complementary to both analytical and experimental ones, as we can apply any loss36

function in silico, e.g., functions that incorporate experimental data, desired behavioral outputs or functional hypotheses.37

Our meta-learning approach has many advantages with regard to its generality, flexibility and interpretability that we38

believe will provide a great backdrop for stimulating discussions at NeurIPS 2020.39

Minor points. We thank the reviewers for their suggestions of prior work, which we now cite and discuss. R2 asked40

how a non-differentiable system (old Fig. 4) could be trained. - We previously used finite differences to compute41

gradients of the loss w.r.t. plasticity parameters, using perturbations that change the number of output spikes in at least42

one data set. We now also use CMA-ES where a selection mechanism governs plasticity parameters updates instead of43

gradient descent. R4 commented on the plausibility of the spiking set-up (old Fig. 4). - While it is not realistic to44

assume inhibitory plasticity acts in isolation, we chose a simple rule as a first goal in a spiking network. It is a rule45

ascribing a given function to a network, stable and analytically tractable. R4 will hopefully be relieved to know that46

including excitatory plasticity is currently in progress and we will report our progress for combined plastic inhibitory47

and excitatory synapses in the camera ready version.48
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Figure 1: Extended results for old Fig. 1, with N = 100 inputs (A) and Fig. 3, with N = 50 inputs and M = 5
outputs (B), using CMA-ES instead of SGD + finite differences. The same color scheme and notations as in the original
figures were used. In (B) the parameters of the two co-optimized rules have been collapsed in a single plot.


