
Supplementary Material

A Dataset Detail

In PDA, 10 classes in Caltech-256 are used as shared classes (Ls ∩ Lt). The other 21 classes are
used as source private classes (Ls − Lt). Since DSLR and Webcam do not have many examples, we
conduct experiments on D to A, W to A, A to C (Caltech), D to C, and W to C shifts. In OSDA,
the same 10 classes are used as shared classes (Ls ∩ Lt) and the selected 11 classes are used as
unknown classes (Lt − Ls). The setting is the same as (11). In OPDA, the same 10 class are used
as shared classes (Ls ∩ Lt) and then, in alphabetical order, the next 10 classes are used as source
private classes (Ls − Lt), and the remaining 11 classes are used as unknown classes (Lt − Ls). The
second benchmark dataset is OfficeHome (OH) (12), which contains four domains and 65 classes.
In PDA, in alphabetical order, the first 25 classes are selected as shared classes (Ls ∩Lt) and the rest
classes are source private classes (Ls − Lt). In OSDA, the first 15 classes are used as shared classes
(Ls ∩ Lt) and the rest classes are used as unknown classes (Lt − Ls). In OPDA, the first 10 classes
are used as shared classes (Ls ∩ Lt), the next 5 classes are source private classes (Ls − Lt) and
the rest are unknown classes (Lt − Ls). The third dataset is VisDA (9), which contains 12 classes
from the two domains, synthetic and real images. The synthetic domain consists of 152,397 synthetic
2D renderings of 3D objects and the real domain consists of 55,388 real images. In PDA, the first
6 classes are used as shared classes (Ls ∩ Lt) and the rest are source private classes (Ls − Lt). In
OSDA, we follow (11) and use the 6 classes as shared classes |Ls ∩ Lt| and the rest as unknown
classes (Lt − Lt). In OPDA, the first 6 classes are shared classes (Ls ∩ Lt), the next 3 are source
private classes (Ls −Lt) and the other 3 classes are unknown classes (Lt −Ls). We mainly perform
experiments on these three datasets with four settings because it enables direct comparison with many
state-of-the-art results. We provide an analysis of varying the number of classes using Caltech (5)
and ImageNet (3) because these datasets contain a large number of classes.

B Implementation Detail

We list the implementation details which are excluded from the main paper due to a limit of space.
We used TITAN X (Pascal) with 12GB. One GPU is used for each experiment and each experiment
takes about 2 hours.

DANCE (universal comparison). The batch-size is set as 36. The temperature parameter in Eq. 5
is set as 0.05 by following (10). We train a model for 10,000 iterations with nestrov momentum SGD
and report the performance at the end of the iterations. The initial learning rate is set as 0.01, which
is decayed with the factor of (1 + γ i

10,000)
−p, where i denotes the number of iterations and we set

γ = 10 and p = 0.75. The learning rate of pre-trained layers is multiplied by 0.1. We follow (10) for
this scheduling method.

Baselines (universal comparison). We use the following released codes for
ETN (1)(https://github.com/thuml/ETN), UAN (13)(https://github.com/thuml/
Universal-Domain-Adaptation), and STA (7)(https://github.com/thuml/Separate_to_
Adapt). We tune the hyper-parameter of these methods by validating the performance on OPDA,
Amazon to DSLR, Office. Since we could not see improvements by changing the hyper-parameters
from their codes, we employed the hyper-parameters provided in their codes. For ETN, we use the
hyper-parameters for Office-Home. For UAN and STA, we use the hyper-parameters for Office.
We implement DANN by ourselves and tuned the hyper-parameters by the performance on OPDA,
Amazon to DSLR, Office. For all of these methods, we report the performance at the end of training
for comparison. We observe that there is a gap in the performance between the best checkpoint and

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/thuml/ETN
https://github.com/thuml/Universal-Domain-Adaptation
https://github.com/thuml/Universal-Domain-Adaptation
https://github.com/thuml/Separate_to_Adapt
https://github.com/thuml/Separate_to_Adapt

Table A: Results on open-partial domain adaptation. USFDA (6) focuses on open-partial domain adaptation
without access to source samples in adapting a model to a target domain. The number of UAN (13) in a lower
row is taken from their paper.

Universal comparison

Method Office(10 / 10 / 11) Office-Home(10 / 5 / 50) VisDA
A2W D2W W2D A2D D2A W2A Avg A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg (6 / 3 / 3)

SO 75.7 95.4 95.2 83.4 84.1 84.8 86.4 50.4 79.4 90.8 64.9 66.1 79.9 71.6 48.5 87.6 77.8 52.1 82.8 71.0 38.8
DANN (4) 87.6 90.5 91.2 88.7 87.4 87.0 88.7 59.9 80.6 89.8 77.5 73.3 86.4 78.5 61.5 88.5 80.3 62.1 82.4 76.7 50.6
ETN (1) 89.1 90.6 90.9 86.3 86.4 86.5 88.3 58.2 78.5 89.1 77.2 69.3 87.5 77.0 56.0 88.2 77.5 58.4 83.0 75.0 66.6
STA (7) 85.2 96.3 95.1 88.1 87.9 86.0 89.8 54.8 76.6 91.2 71.5 71.8 82.0 70.7 50.1 88.2 74.1 60.0 80.5 72.6 47.4
UAN (13) 76.2 82.0 80.4 80.0 93.8 92.2 84.1 60.8 79.1 87.8 72.4 73.5 83.2 78.6 56.4 87.4 79.9 61.1 79.8 75.0 47.3
DANCE 92.8 97.8 97.7 91.6 92.2 91.4 93.9 64.1 84.3 91.2 84.3 78.3 89.4 83.4 63.6 91.4 83.3 63.9 86.9 80.4 69.2

Methods tailored for Open-Partial Domain Adaptation
UAN (13) 85.6 94.8 98.0 86.5 85.5 85.1 89.2 63.0 82.8 87.9 76.9 78.7 85.4 78.2 58.6 86.8 83.4 63.2 79.4 77.0 60.8
USFDA (6) 85.6 95.2 97.8 88.5 87.5 86.6 90.2 63.4 83.3 89.4 71.0 72.3 86.1 78.5 60.2 87.4 81.6 63.2 88.2 77.0 63.9

Table B: Evaluation on two metrics on open-set and open partial domain adaptation. OS is average of
all classes. OS* is the average of known classes.

Open Set

Method A to W D to W W to D A to D D to A W to A
OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

SO 83.8 87.7 95.3 99.0 95.3 100.0 89.6 93.6 85.6 86.3 84.9 88.2
DANN 87.6 95.7 90.5 99.3 91.2 100.0 88.7 96.9 87.4 95.4 87.0 95.2
ETN 86.7 95.4 90.0 99.0 90.1 99.1 89.1 98.0 86.7 95.3 86.6 95.3
STA 91.7 94.6 94.4 98.1 94.8 100.0 90.9 94.2 87.3 88.8 80.6 82.4
UAN 86.2 94.6 89.5 98.5 90.2 99.2 89.8 98.7 85.8 94.4 84.2 92.7

DANCE 93.6 97.2 97.0 100.0 97.1 100.0 95.7 98.4 91.0 94.9 90.3 95.6
Open Partial

Method A to W D to W W to D A to D D to A W to A
OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

SO 75.7 79.2 95.4 98.1 95.2 100.0 83.4 88.3 84.1 84.9 84.8 85.7
DANN 83.0 90.0 89.3 97.1 89.5 96.9 81.9 88.8 80.2 86.8 78.2 77.8
ETN 89.1 98.0 90.6 99.7 90.9 100.0 86.3 94.9 86.4 95.0 86.5 95.1
STA 85.2 87.8 96.3 99.1 95.1 100.0 88.1 90.6 87.9 88.7 86.0 87.1
UAN 78.8 86.7 83.5 91.9 84.9 93.4 77.5 85.3 75.7 83.3 75.6 83.1

DANCE 92.8 96.4 97.8 99.1 97.7 99.6 91.6 94.0 92.2 94.5 91.4 94.7

the final checkpoint. This can explain the gap between the reported performance in their paper and
the performance in our universal comparisons.

Baselines tailored for each category shift. We run experiments for ETN (A2C, W2C, D2C, PDA)
since the results are not available in their papers. For ETN, we report the performance which employs
the same hyper-parameters as the universal comparison but does not use “unknown” sample rejection.
For the methods tailored for each setting, we show the performance of the results reported in their
papers. “NA” indicates the results are not available in their paper. We observe the performance gap in
our universal comparison and the reported performance in each paper. For example, the performance
of UAN in OPDA has a big gap between the universal comparison and the reported accuracy although
we use the same hyper-parameters. We could obtain similar performance to the reported number if
we pick up the best checkpoint for each setting. But, we report the performance of fixed iterations’
checkpoints for a fair comparison, which can explain the gap.

Table C: Standard deviation of DANCE in experiments on Office and VisDA. The deviation is
calculated by three runs. DANCE shows descent deviations.

Setting A2W D2W W2D A2D D2A W2A Avg VisDA
CDA 88.6±0.4 97.5±0.4 100±0.0 89.4±1.3 69.5±1.5 68.2±0.0 85.5±0.2 70.2±0.3
ODA 93.6±2.3 97.0±0.2 97.1±0.5 95.7±0.3 91.0±0.8 90.3±0.2 94.1±2.5 65.3±2.3

OPDA 92.8±0.2 97.8±0.6 97.7±0.5 91.6±1.9 92.2±0.1 91.4±0.4 93.9±0.3 69.2±0.6
Setting A2C W2C D2C D2A W2A Avg VisDA
PDA 88.8±0.4 79.2±0.3 79.4±0.3 83.7±3.3 92.6±0.5 84.8±1.5 73.7±2.9

2

Table D: Comparison between jigsaw (2; 8) and DANCE on the Office dataset. For a fair comparison,
we replace the loss of entropy similarity with jigsaw puzzle loss.

Setting Method A2W D2W W2D A2D D2A W2A Avg

Closed Jigsaw 87.7 98.7 100.0 84.5 61.7 62.5 82.5
DANCE 88.6 97.5 100.0 89.4 69.5 68.2 85.5

Open Jigsaw 89.4 95.5 93.6 93.8 90.3 89.3 92.0
DANCE 93.6 97.0 97.1 95.7 91.0 90.3 94.1

(a) Value of λ in Eq. 9. (b) Value of m in Eq. 7. (c) Value of ρ in Eq. 7.

Figure A: (a): Varying the value of λ in Eq. 9. (b): Varying the value of margin in Eq. 7. (c): Varying
the value of ρ in Eq. 7, which is determined based on the number of known classes.

C Supplemental Results

Detailed results of ODA and OPDA. Table A and Table B shows the detailed results of ODA and
OPDA. OS* shows the averaged accuracy over known classes while OS shows the averaged accuracy
including unknown class. DANCE shows good performance on both metrics. ETN shows better
results on OS* than DANCE in several scenarios. In ETN results, OS* shows much better results on
OS, which means that ETN is not good at recognizing unknown samples as unknown. This is clearly
shown in Fig. 4 (c) in our main paper.

Comparison with Jigsaw (2). Table D shows the comparison with jigsaw puzzle based self-
supervised learning. To consider the self-supervised learning part of DANCE, we replaced neigh-
borhood clustering loss with the jigsaw puzzle loss on the target domain. The jigsaw puzzle loss is
calculated on target samples. We can see that DANCE performed better in almost all settings and
confirm the effectiveness of clustering based self-supervision for this task.

Results with standard deviations. Table C show results of DANCE with standard deviations. We
show only the averaged accuracy over three runs in the main paper due to a limit of space. We show
the standard deviation. We can observe that DANCE shows decent standard deviations.

Sensitivity to hyper-parameters. In Fig. A, we show the sensitivity to hyper-parameters on OPDA
setting of Amazon to DSLR, which we used to tune the hyper-parameters. Although ρ in Eq. 5 is
decided based on the number of source classes, we show the behavior of our method when changing
it in Fig. A(c). When we increase the value, more examples will be decided as known, then the
performance on unknown examples decreases.

References
[1] Z. Cao, K. You, M. Long, J. Wang, and Q. Yang. Learning to transfer examples for partial domain

adaptation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
[2] F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi. Domain generalization by solving

jigsaw puzzles. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image

database. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009.
[4] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky.

Domain-adversarial training of neural networks. JMLR, 17(59):1–35, 2016.
[5] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. California Institute of Technology,

2007.

3

[6] J. N. Kundu, N. Venkat, and R. V. Babu. Universal source-free domain adaptation. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[7] H. Liu, Z. Cao, M. Long, J. Wang, and Q. Yang. Separate to adapt: Open set domain adaptation via
progressive separation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[8] M. Noroozi and P. Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In
European Conference on Computer Vision (ECCV). Springer, 2016.

[9] X. Peng, B. Usman, N. Kaushik, J. Hoffman, D. Wang, and K. Saenko. Visda: The visual domain
adaptation challenge. arXiv preprint arXiv:1710.06924, 2017.

[10] K. Saito, D. Kim, S. Sclaroff, T. Darrell, and K. Saenko. Semi-supervised domain adaptation via minimax
entropy. In IEEE International Conference on Computer Vision (ICCV), 2019.

[11] K. Saito, S. Yamamoto, Y. Ushiku, and T. Harada. Open set domain adaptation by backpropagation. In
European Conference on Computer Vision (ECCV), 2018.

[12] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan. Deep hashing network for unsupervised
domain adaptation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[13] K. You, M. Long, Z. Cao, J. Wang, and M. I. Jordan. Universal domain adaptation. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

4

	Dataset Detail
	Implementation Detail
	Supplemental Results

