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Abstract

In recent years, graph neural networks (GNNs) have become the de facto tool
for performing machine learning tasks on graphs. Most GNNs belong to the
family of message passing neural networks (MPNNs). These models employ an
iterative neighborhood aggregation scheme to update vertex representations. Then,
to compute vector representations of graphs, they aggregate the representations
of the vertices using some permutation invariant function. One would expect
the hidden layers of a GNN to be composed of parameters that take the form of
graphs. However, this is not the case for MPNNs since their update procedure is
parameterized by fully-connected layers. In this paper, we propose a more intuitive
and transparent architecture for graph-structured data, so-called Random Walk
Graph Neural Network (RWNN). The first layer of the model consists of a number
of trainable “hidden graphs” which are compared against the input graphs using a
random walk kernel to produce graph representations. These representations are
then passed on to a fully-connected neural network which produces the output. The
employed random walk kernel is differentiable, and therefore, the proposed model
is end-to-end trainable. We demonstrate the model’s transparency on synthetic
datasets. Furthermore, we empirically evaluate the model on graph classification
datasets and show that it achieves competitive performance.

1 Introduction

In recent years, graphs have become a very useful abstraction for representing a wide variety of
real-world datasets. Graphs are ubiquitous in several application domains, such as in social networks,
in bioinformatics, and in information networks. Due to this abundance of graph-structured data,
machine learning on graphs has recently emerged as a very important task with applications ranging
from drug design [18] to modeling physical systems [3].

In the past years, graph neural networks (GNNs) have attracted considerable attention in the machine
learning community. These models offer a powerful tool for performing machine learning on graphs.
Although numerous GNN variants have been recently proposed [35, 24, 23, 48, 46, 44], most of
them share the same basic idea, and can be reformulated into a single common framework, so-called
message passing neural networks (MPNNs) [13]. These models employ a message passing procedure
to aggregate local information of vertices. For graph-related tasks, MPNNs usually apply some
permutation invariant readout function to the vertex representations to produce a representation for
the entire graph. Common readout functions treat each graph as a set of vertex representations, thus
ignoring the interactions between the vertices. These interactions are implicitly encoded into the
learned vertex representations produced by the message passing procedure. However, due to the lack
of transparency brought by the combination of graph structure with feature information, it is not clear
whether the information of interest is encoded into these representations.

Before the advent of deep learning, graph kernels had established themselves as the standard approach
for performing machine learning tasks on graphs [33, 22]. A graph kernel is a symmetric positive
semidefinite function defined on the space of graphs. These methods enable the application of kernel
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methods such as the SVM classifier to graphs, and have achieved remarkable results in several
classification tasks. However, nowadays, they have been largely overshadowed by GNNs. This is
mainly due to the complexity of kernel methods, but also because data representation (produced by
graph kernels) and learning (performed by SVM) are independent from each other. On the other
hand, neural network models can learn representations that are useful for the task at hand. In contrast
to graph kernels, which directly compare graphs to each other, MPNNs first transform graphs into
vectors by aggregating the representations of their vertices, and then some function is applied to these
graph representations (i. e., modeled by a multi-layer perceptron). Furthermore, it is usually hard to
interpret and understand what these models have learned. Ideally, we would like to have a model that
applies directly some function to the input graphs without first transforming them into vectors.

In this paper, we propose such an architecture, called Random Walk Graph Neural Network (RWNN).
The model contains a number of trainable “hidden graphs”, and it compares the input graphs against
these graphs using a random walk kernel. The kernel values are then passed on to a fully-connected
neural network which produces the output. The employed random walk kernel is differentiable, and
we can thus update the “hidden graphs” during training with backpropagation. Hence, the proposed
neural network is end-to-end trainable. Furthermore, it delivers the “best of both worlds” from graph
kernels and neural networks, i. e., it retains the flexibility of kernel methods which can be easily
applied to structured data (e. g., graphs), and also learns task-dependent features without the need
for feature engineering. We compare the performance of the proposed model to state-of-the-art
graph kernels and recently-proposed neural architectures on several benchmark datasets for graph
classification. Results show that our model matches or outperforms competing methods. Our main
contributions are summarized as follows:

• We propose a novel neural network model, Random Walk Graph Neural Network, which
employs a random walk kernel to produce graph representations. Importantly, the model is
highly interpretable since it contains a set of trainable graphs.

• We develop an efficient computation scheme to reduce the time and space complexity of the
proposed model.

• We demonstrate the model’s high transparency on synthetic datasets, and evaluate its perfor-
mance on several graph classification datasets where it achieves performance comparable to
state-of-the-art GNNs and graph kernels.

The rest of this paper is organized as follows. Section 2 provides an overview of the related work.
Section 3 introduces some preliminary concepts. Section 4 provides a detailed description of the
proposed model. Section 5 evaluates the proposed model both in terms of its transparency and of its
performance. Finally, Section 6 concludes.

2 Related Work

In the past years, graph kernels have served as the dominant tool for graph classification. Graph
kernels are positive semidefinite kernel functions which enable the applicability of the whole family
of kernel methods to the domain of graphs. Most graph kernels are instances of the R-convolution
framework and compare different types of substructures in the input graphs. Such substructures
include random walks [17, 12, 25, 43, 42], shortest paths [5], subtrees [34], graphlets [37], etc.
Johansson et al. introduced two graph kernels that compare subgraphs based on the Lovász number
and the corresponding orthonormal representations [16], while Kondor and Pan developed the
multiscale Laplacian graph kernel which captures similarity at different granularity levels by building
a hierarchy of nested subgraphs [20]. The Weisfeiler-Lehman framework operates on top of existing
kernels and uses a relabeling procedure that is based on the Weisfeiler-Lehman isomorphism test [36].
Recently, the family of assigmnent kernels has gained some attention. For instance, Nikolentzos et al.
proposed an assignment kernel for graphs that capitalizes on the well-known pyramid match kernel
[32] , while Kriege et al. presented a framework for building valid optimal assignment kernels, and
they derived three graph kernels from that framework [21].

The concept of graph neural networks (GNNs) has been around for several years [40, 26, 35].
However, these models had received relatively little attention until recently, when Li et al. modified
the model proposed in [35] to use modern practices around recurrent neural networks and optimization
techniques [24]. Some other models that are based on spectral properties of graphs were also proposed
at that time. Bruna et al. generalized the convolution operator in the domain of graphs using the
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eigenvectors of the Laplacian matrix [6], while Defferrard et al. proposed a more efficient model
which uses Chebyshev polynomials up to order K − 1 to represent the spectral filters [9]. Later, it
became clear that all these models are special cases of a simple message-passing framework (MPNNs)
[13]. Most of the recently-proposed GNNs fit into this framework [23, 48, 44, 28]. Specifically,
MPNNs employ a message passing procedure, where each vertex updates its feature vector by
aggregating the feature vectors of its neighbors. After k iterations of the message passing procedure,
each vertex obtains a feature vector which captures the structural information within its k-hop
neighborhood. MPNNs then compute a feature vector for the entire graph using some permutation
invariant readout function such as summing the feature vectors of all the vertices of the graph.
Some models employ advanced pooling strategies for learning hierarchical graph representations
[41, 46]. The family of MPNNs is closely related to the Weisfeiler-Lehman subtree kernel (WL) [36].
Specifically, these models generalize the relabeling procedure of the WL kernel to the case where
vertices are associated with continuous feature vectors. Standard MPNNs have been shown to be
at most as powerful as the WL kernel in distinguishing non-isomorphic graphs [44, 27]. There are
models which are not members of the MPNN family. For instance, Niepert et al. proposed a model
that extracts neighborhood subgraphs for a subset of vertices, imposes an ordering on the vertices of
each subgraph, and then feeds the adjacency and feature matrices of these sugraphs to a convolutional
neural network [30]. The work closest to ours is the one reported in [23], where the authors propose
a class of GNNs whose generated representations are associated with either the random walk kernel
or the WL kernel. Specifically, the outputs of these models live in the reproducing kernel Hilbert
space (RKHS) of these kernels. However, the kernels are computed between the input graphs and the
row vectors from the parameter matrices. Unfortunately, these vectors cannot always be mapped to
graph structures. Our model differs from theirs in that its parameters correspond to the adjacency and
feature matrices of graphs. In [8], Chen et al. generate finite-dimensional vertex representations using
the Nyström method to approximate a kernel that compares a set of local patterns centered at vertices.
These representations can be learned without supervision by extracting a set of anchor points, or can
be modeled as parameters of a neural network and be learned end-to-end. Other works that merge
neural networks and graph kernels include [29, 31, 10] and [1]. In [29], Navarin et al. use graph
kernels to pre-train GNNs. In [31], Nikolentzos et al. use graph kernels to extract features that are
then passed on to convolutional neural networks, while in [10], Du et al. follow the opposite direction
and propose a new graph kernel which corresponds to infinitely wide multi-layer GNNs trained by
gradient descent. Finally, Al-Rfou et al. propose in [1] an unsupervised method for learning graph
representations by comparing the input graphs against a set of source graphs. However, the source
graphs are fixed and not trainable. Our work is also related to explainability techniques for GNNs
[45, 2, 47]. We should stress, however, that the main focus of the proposed model is not on providing
interpretable explanations for its predictions, but these explanations come as a byproduct of the
learning process.

3 Preliminaries

Before continuing with our contribution, we begin by introducing the problem which we address in
this paper and some key notation for graphs which will be used later.

In this paper, we focus on the graph classification problem. Formally, given a set of graphs
{G1, . . . , GN} ⊆ G and their class labels {y1, . . . , yN} ⊆ Y , we aim to learn a feature vector
hG that will allow us to predict the class label of graph G, i. e., yG = f(hG) where f is some
function. Note that the proposed model can also deal with other graph-related tasks such as the graph
regression problem.

Let G = (V,E) be an undirected graph, where V is the vertex set and E is the edge set. We will
denote by n the number of vertices and by m the number of edges. The adjacency matrix A ∈ Rn×n

is a symmetric (typically sparse) matrix used to encode edge information in a graph. The elements of
the ith row and jth column is equal to 1 if there is an edge between vi and vj , and 0 otherwise. For
node-attributed graphs, every node in the graph is associated with a feature vector. We use X ∈ Rn×d

to denote the node features where d is the feature dimensionality. The feature of a given node vi
corresponds to the ith row of X. Given two graphs G = (V,E) and G′ = (V ′, E′), their direct
product G× = (V×, E×) is a graph with vertex set V× = {(v, v′) : v ∈ V ∧ v′ ∈ V ′} and edge set
E× = {{(v, v′), (u, u′)} : {v, u} ∈ E ∧ {v′, u′} ∈ E′}. From the above definition of the direct
product, it is clear that G× is a graph over pairs of vertices from G and G′, and two vertices in G×
are neighbors if and only if the corresponding vertices in G and G′ are both neighbors.
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4 Random Walk GNNs

One of the main challenges when designing neural networks for graphs is how to deal with permutation
invariance. Any permutation of the vertices of a graph gives rise to a structurally identical graph.
Therefore, the output of a GNN is necessary to be the same regardless of the ordering of the graph’s
vertices. A graph is commonly represented by its adjacency matrix and possibly by a matrix that
contains the attributes of its vertices. Given the adjacency matrix A of a graph G, the model is
necessary to produce the same output for all matrices PAP> where P ∈ Π and Π denotes the set
of n× n permutation matrices. Most MPNNs achieve that by applying some permutation invariant
function to the vertex representations (e. g., sum, max, mean operators). Other GNNs, achieve
invariance by imposing an ordering on the graph’s vertices usually using some heuristic. In this
paper, we propose a different approach for obtaining graph representations. We capitalize on well-
established concepts from graph kernels and we employ functions for comparing graphs that are
invariant to permutations of the vertices of their inputs.

The proposed RWNN model compares the input graphs against a number of “hidden graphs”, i. e.,
graphs whose adjacency and attribute matrices are trainable. Specifically, the proposed model contains
N “hidden graphs” G1, G2, . . . , GN . The graphs may differ from each other in terms of size (i. e.,
number of vertices). These graphs may be either unlabeled or their vertices may be annotated with
continuous multi-dimensional features. Furthermore, as mentioned above, the structure and vertex
attributes (if any) of these “hidden graphs” are trainable, i. e., the adjacency matrix of a “hidden
graph” Gi of size n is described by a trainable matrix Wi ∈ Rn×n, while the vertex attributes are
contained in the rows of another trainable matrix Zi ∈ Rn×d. Note that the “hidden graphs” can
be weighted directed or undirected graphs with or without self-loops. In our implementation, we
constraint them to be undirected graphs without self-loops (n(n−1)/2 trainable parameters in total).
Since the structure of the “hidden graphs” is adapted to the task at hand, the proposed model is highly
interpretable. By visualizing the structure of the “hidden graphs” at the end of the training phase, we
can gain a more intuitive understanding of the considered problem. These graphs are expected to
learn structures which allow the model to distinguish between available classes.

In contrast to existing approaches, in this paper, to map input graphs to vectors, we compare them
against the model’s N “hidden graphs”. It should be noted that the graph comparison algorithm needs
to be differentiable in order for the network to be end-to-end trainabale. Otherwise, the structure and
attributes of the “hidden graphs” cannot be learned during training with backpropagation. Even though
there exist hundreds of algorithms for comparing graphs to each other, unfortunately, the majority
of these algorithms are not differentiable. For non-differentiable graph comparison algorithms, the
“hidden graphs” could be held constant during training. However, that would limit a lot the expressive
power of the model. In this paper, we propose a differentiable function for comparing graphs to
each other which belongs to the family of the random walk kernels, perhaps the most well-studied
family of graph kernels. Generally speaking, the random walk kernels quantify the similarity of two
graphs based on the number of common walks in the two graphs [17, 12, 25, 43, 42, 49]. Among the
numerous variations of the random walk kernel, in this paper, we focus on the P -step random walk
kernel which compares random walks up to length P in the two graphs.

Performing a random walk on the direct product G× (introduced in Section 3) of two graphs G and
G′ is equivalent to performing a simultaneous random walk on the two graphs G and G′. We denote
by A× the adjacency matrix of G×. As mentioned above, random walk kernels count all pairs of
matching walks on G and G′. If we assume a uniform distribution for the starting and stopping
probabilities over the vertices of G and G′, the number of matching walks can be obtained through
the adjacency matrix A× of the product graph G× [43]. Given some P ∈ N, the P -step random
walk kernel between two graphs G and G′is defined as:

k(G,G′) =

|V×|∑
i=1

|V×|∑
j=1

[
P∑

p=0

λpA
p
×

]
ij

(1)

with a sequence of positive, real-valued weights λ0, λ1, . . . , λP . The proposed RWNN model
computes a slight variant of the P -step random walk kernel which calculates the number of common
walks of length exactly p between two graphs G and G′:

k(p)(G,G′) =

|V×|∑
i=1

|V×|∑
j=1

[
Ap
×
]
ij

(2)
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Figure 1: Overview of the proposed RWNN model (biases are omitted for clarity).

Then, for each p ∈ {0, 1, . . . , P}, we obtain a different kernel value. These kernel values can be
thought of as features of the input graph. Therefore, given the two sets P = {0, 1, . . . , P} and
Gh = {G1, G2, . . . , GN} where G1, G2, . . . , GN denote the N “hidden graphs”, we can compute
one feature for each element of the Cartesian product P × Gh. For each input graph G, we can thus
build a matrix H ∈ RN×P where Hij = k(j−1)(G,Gi). Then, matrix H is flattened and fed into
a fully-connected neural network to produce the output. The proposed architecture is illustrated in
Figure 1.

Unfortunately, the architecture that was presented above cannot handle graphs whose vertices are
annotated with real-valued multi-dimensional vertex attributes. We next generalize the above function
to graphs that contain such vertex attributes. Specifically, let X ∈ Rn×d denote the matrix that
contains the vertex attributes of the input graph G. We also annotate the vertices of the “hidden
graphs” with vectors of the same dimensionality. For each “hidden graph” Gi, these vectors are
represented by the rows of a trainable matrix Zi ∈ Rc×d where c is the number of vertices of Gi.
Then, let S = Zi X

> where S ∈ Rc×n. The (i, j)th element (with a slight abuse of notation since it
is clear from the context) of matrix S is equal to the inner product between the attributes of the ith
vertex of the “hidden graph” and the jth vertex of the input graph G. Roughly speaking, this matrix
encodes the similarity between the attributes of the vertices of the two graphs. Let vec denote the
vectorization operator which transforms a matrix into a vector by stacking the columns of the matrix
one after another (see the supplementary material for the exact definition). We can then apply this
operator to matrix S to obtain s = vec(S) where s ∈ Rnc. Then, we can compute the kernel that
counts the number of common walks of length exactly p between the two graphs as follows:

k(p)(G,G′) =

|V×|∑
i=1

|V×|∑
j=1

sisj
[
Ap
×
]
ij

=

|V×|∑
i=1

|V×|∑
j=1

[
(s s>)�Ap

×
]
ij

= s>Ap
× s (3)

where � denotes the element-wise product between two matrices. Note that the (i, j)th element of
matrix Ap

× is equal to the number of walks of length p between the ith and jth vertex of G×. Each
vertex of G× corresponds to a pair of vertices, one from the input graph G and one from the “hidden
graph” Gi. We can assign a real value to each vertex of G× that quantifies the similarity between the
attributes of the two vertices it represents. These values are contained in vector s. Note that if s is the
nc-dimensional all-ones vector, then Equation (3) becomes equal to Equation (2).

4.1 Implementation Details

In what follows, we give more details about the implementation of the proposed RWNN model.
Importantly, we present the computation scheme that we employed to reduce the time and space
complexity of the proposed architecture.

As mentioned above, in our implementation, the “hidden graphs” correspond to undirected graphs
without self-loops. The adjacency matrix of a “hidden graph” with n vertices is thus represented
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by n(n−1)/2 trainable parameters. Since these graphs are trainable, the elements of their adjacency
matrices may take negative values. Although this is not a problem in general, to increase the
interpretability of the model, we restrict the edge weights to nonnegative real values by applying the
ReLU function to the adjacency matrices of the “hidden graphs”. It is known that if A and A′ are the
respective adjacency matrices of two graphs G and G′, then we have that the adjacency matrix A×
of the direct product G× is equal to A× = A⊗A′ where ⊗ denotes the Kronecker product between
two matrices (see the supplementary material for the exact definition) [43]. Therefore, in our setting,
if A and RELU(Wi) are the adjacency matrices of the input graph G and a “hidden graph” Gi, then
the adjacency matrix of the direct product is equal to A× = A⊗ RELU(Wi).

We will next show that in order to evaluate the kernel defined in Equation (3), it is not necessary to
explicitly compute the matrix A× and its powers. The Kronecker product and vec operator are linked
by the well-known property [4](Proposition 7.1.9):

vec(ABC) = (C> ⊗A)vec(B) (4)

Let vec−1 denote the inverse vectorization operator which transforms a vector into matrix (see the
supplementary material for the exact definition). Given matrices A, vec−1(b) and C, Equation (4)
can be written as:

vec
(
A vec−1(b)C

)
= (C> ⊗A) vec

(
vec−1(b)

)
= (C> ⊗A)b

From Equation (3) and based on the above Equation, we have:

k(1)(G,Gi) = s>A× s = s>
(
A⊗ RELU(Wi)

)
s = s>(A> ⊗ RELU(Wi)) s

= s>vec
(
RELU(Wi) vec−1(s)A

)
The third equality holds beacuse we have assumed that the input graphs are undirected. Note that the
above result holds only for p = 1. To generalize the result, it is necessary to show that Ap

× = Ap
1⊗A

p
2

holds for all p ∈ N.
Proposition 1. Let A1 ∈ Rn×n and A2 ∈ Rm×m be two real matrices such that A× = A1 ⊗A2.
Then, for any p ∈ N, we have that Ap

× = (A1 ⊗A2)p = Ap
1 ⊗Ap

2.

Based on the above result (the proof is left to the supplementary material), we have that:

k(p)(G,Gi) = s>vec
(
RELU(Wi)

p vec−1(s)Ap
)

= s>vec
(
RELU(Wi)

p SAp
)

= s>vec
(
RELU(Wi)

p Zi X
>Ap

)
= vec(S)>vec

(
RELU(Wi)

p Zi X
>Ap

)
= vec(ZX>)>vec

(
RELU(Wi)

p Zi X
>Ap

)
=

r∑
j=1

n∑
k=1

[
Zi X

> �
(
RELU(Wi)

p Zi X
>Ap

)]
jk

Note that we can compute k(p)(G,Gi) without calculating Ap and RELU(Wi)
p. We can calculate

RELU(Wi)
p Zi and X>Ap with right-to-left and left-to-right multiplications, respectively. For

instance, for p = 3, we can compute X>A3 as
((
X>A

)
A
)
A. Since we store A as a sparse matrix

with m non-zero entries, an efficient implementation of our model takes O
(
Pd(Nc(c+ n) +m)

)
computational time, where P is the size of the longest walks, d is the dimensionality of the vertex
attributes, N is the number of “hidden graphs”, and c is the size of each “hidden graph”. Under
the realistic assumptions of P � m and d � m, running the model takes O

(
Nc(c + n) + m

)
computational time.

If the vertex attributes are very high-dimensional, we can transform them using a 1-layer perceptron,
i. e., X̃ = f(XW+b) where W ∈ Rd×d̃ and b ∈ Rd̃ is a weight matrix and bias vector, respectively,
and f is a non-linear activation function. Alternatively, we can even use an MPNN architecture to
update these vertex representations, i. e., X̃ = MPNN(A,X).

5 Experimental Evaluation

In this Section, we empirically evaluate the proposed architecture on synthetic and real-world datasets,
and we compare it to several baseline methods.
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Caveman graph Cycle graph Grid graph Ladder graph Star graph

Figure 2: Structures planted into synthetic graphs.
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Figure 3: Examples of “hidden graphs” extracted from the proposed model for the 5 synthetic
datasets.

5.1 Synthetic Datasets

As previously mentioned, the proposed model is highly interpretable since we can visualize the
learned “hidden graphs”, and possibly discover the explanatory factors of variation behind the data.
The aim of these experiments is to qualitatively investigate what types of graph structures are learned
by RWNN.

Datasets. We created 5 binary classification datasets, each featuring 1000 synthetic graphs generated
as follows. First, we generate an Erdös-Rényi graph with number of vertices sampled from Z ∩
[100, 200] with uniform probability, and edge probability equal to 0.1. From this graph, we obtain a
positive and a negative sample by addding to the graph a dataset specific motif (the 5 motifs that we
considered are shown in Figure 2) and an Erdös-Rényi graph with the same number of nodes and
edges to the motif, respectively. The vertices of the motifs/Erdös-Rényi graphs are connected to the
vertices of the previously-generated Erdös-Rényi graph with probability 0.05.

Experimental Setup. We randomly split each dataset into a 90%/10% training/validation set. We
set the number of epochs to 50 and the batch size to 32. We use the Adam optimizer with learning
rate 0.001. We set the number of “hidden graphs” to 8 and their size equal to 6 vertices. We set the
hyperparameter P of the random walks to 3, and we use no vertex attributes. We store the model that
achieved the best validation accuracy into disk. At the end of training, the model is retrieved from the
disk, the adjacency matrices of the “hidden graphs” are extracted (i. e., RELU(Wi) matrices) and
visualized.

Results. Figure 3 illustrates two “hidden graphs” for each of the 5 datasets. Interestingly, the ”hidden
graphs” and their corresponding motifs share some similar properties. For instance, the caveman
graph consists of 4 triangles, and similarly, each of the two “hidden graphs” contains 2 triangles. The
“hidden graphs” extracted from the cycle dataset both contain some long cycles, while in the “hidden
graphs” extracted from the star dataset, there are some vertices with higher degree centrality than the
others. Finally, the graphs of the grid dataset and the ladder dataset contain cycles of length 4, the
main building block of these two motifs. Note that the “hidden graphs” are weighted graphs. Original
resolutions of the illustrations of these graphs as well as some more examples of “hidden graphs” are
provided in the supplementary material.

5.2 Real-World Datasets

We next evaluate the proposed RWNN model on standard graph classification datasets.
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Table 1: Classification accuracy (± standard deviation) of the proposed model and the baselines on
the 5 chemo/bio-informatics and on the 5 social interaction benchmark datasets. OOR means Out
of Resources, either time (>72 hours for a single training) or GPU memory. Best performance per
dataset in bold, among the neural network architectures underlined.

MUTAG D&D NCI1 PROTEINS ENZYMES
SP 80.2 (± 6.5) 78.1 (± 4.1) 72.7 (± 1.4) 75.3 (± 3.8) 38.3 (± 8.0)
GR 80.8 (± 6.4) 75.4 (± 3.4) 61.8 (± 1.7) 71.6 (± 3.1) 25.1 (± 4.4)
WL 84.6 (± 8.3) 78.1 (± 2.4) 84.8 (± 2.5) 73.8 (± 4.4) 50.3 (± 5.7)
DGCNN 84.0 (± 6.7) 76.6 (± 4.3) 76.4 (± 1.7) 72.9 (± 3.5) 38.9 (± 5.7)
DiffPool 79.8 (± 7.1) 75.0 (± 3.5) 76.9 (± 1.9) 73.7 (± 3.5) 59.5 (± 5.6)
ECC 75.4 (± 6.2) 72.6 (± 4.1) 76.2 (± 1.4) 72.3 (± 3.4) 29.5 (± 8.2)
GIN 84.7 (± 6.7) 75.3 (± 2.9) 80.0 (± 1.4) 73.3 (± 4.0) 59.6 (± 4.5)
GraphSAGE 83.6 (± 9.6) 72.9 (± 2.0) 76.0 (± 1.8) 73.0 (± 4.5) 58.2 (± 6.0)
1-step RWNN 89.2 (± 4.3) 77.6 (± 4.7) 71.4 (± 1.8) 74.7 (± 3.3) 56.7 (± 5.2)
2-step RWNN 88.1 (± 4.8) 76.9 (± 4.6) 73.0 (± 2.0) 74.1 (± 2.8) 57.4 (± 4.9)
3-step RWNN 88.6 (± 4.1) 77.4 (± 4.9) 73.9 (± 1.3) 74.3 (± 3.3) 57.6 (± 6.3)

IMDB IMDB REDDIT REDDIT COLLABBINARY MULTI BINARY MULTI-5K
SP 57.7 (± 4.1) 39.8 (± 3.7) 89.0 (± 1.0) 51.1 (± 2.2) 79.9 (± 2.7)
GR 63.3 (± 2.7) 39.6 (± 3.0) 76.6 (± 3.3) 38.1 (± 2.3) 71.1 (± 1.4)
WL 72.8 (± 4.5) 51.2 (± 6.5) 74.9 (± 1.8) 49.6 (± 2.0) 78.0 (± 2.0)
DGCNN 69.2 (± 3.0) 45.6 (± 3.4) 87.8 (± 2.5) 49.2 (± 1.2) 71.2 (± 1.9)
DiffPool 68.4 (± 3.3) 45.6 (± 3.4) 89.1 (± 1.6) 53.8 (± 1.4) 68.9 (± 2.0)
ECC 67.7 (± 2.8) 43.5 (± 3.1) OOR OOR OOR
GIN 71.2 (± 3.9) 48.5 (± 3.3) 89.9 (± 1.9) 56.1 (± 1.7) 75.6 (± 2.3)
GraphSAGE 68.8 (± 4.5) 47.6 (± 3.5) 84.3 (± 1.9) 50.0 (± 1.3) 73.9 (± 1.7)
1-step RWNN 70.8 (± 4.8) 47.8 (± 3.8) 90.4 (± 1.9) 51.7 (± 1.5) 71.7 (± 2.1)
2-step RWNN 70.6 (± 4.4) 48.8 (± 2.9) 90.3 (± 1.8) 51.7 (± 1.4) 71.3 (± 2.1)
3-step RWNN 70.7 (± 3.9) 47.8 (± 3.5) 89.7 (± 1.2) 53.4 (± 1.6) 71.9 (± 2.5)

Datasets. We evaluated the proposed model on 10 publicly available graph classification datasets
including 5 bio/chemo-informatics datasets: MUTAG, D&D, NCI1, PROTEINS, ENZYMES, and 5
social interaction datasets: IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI-
5K, COLLAB [19]. More details about the datasets are given in the supplementary material.

Experimental Setup. We compare the proposed model against the following three graph kernels:
(1) graphlet kernel (GR) [37], (2) shortest path kernel (SP) [5], and (3) Weisfeiler-Lehman subtree
kernel (WL) [36]. We use the implementations of the kernels contained in the GraKeL library [38].
We also compare our model against the following five state-of-the-art MPNNs: (1) DGCNN [48],
(2) DiffPool [46], (3) ECC [39], (4) GIN [44], and (5) GraphSAGE [14]. To evaluate the different
methods, we employ the framework proposed in [11]. Therefore, we perform 10-fold cross-validation
to obtain an estimate of the generalization performance of each method, while within each fold a
model is selected based on a 90%/10% split of the training set. We use exactly the same splits as in
[11], hence, for the common datasets, we use the results reported in [11]. For the remaining datasets,
we use the code provided by the authors of [11] to evaluate the five MPNNs.

For the graph kernels, to perform classification, we employed the LIBSVM implementation of the
C-Support Vector Machine (SVM) classifier [7], and we optimize its parameter C within each fold.
We also chose the number of iterations of the WL kernel from h = {4, 5, 6, 7}. For the GR kernel,
we set the number of graphlets to be sampled from each graph equal to 500.

For the proposed RWNN, we provide results for three different instances: 1-step RWNN, 2-step
RWNN, and 3-step RWNN for P = 1, P = 2, and P = 3, respectively. Note that for P = 1 (random
walks of length up to 1), the model takes into account only walks of length 1 (i. e., edges) between
the vertices. For all instances and all datasets, we set the batch size to 64 and the number of epochs to
500. We use the Adam optimizer with initial learning rate 0.01 and decay the learning rate by 0.5
every 50 epochs. We use a 1-layer perceptron to transform the vertex attributes. Batch normalization
[15] is applied on the generated graph representations (i. e., matrix H). The hyper-parameters we
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tune for each dataset are: (1) the number of hidden graphs ∈ {8, 16}, (2) the number of vertices
of the hidden graphs ∈ {5, 10}, (3) the dimensionality of the vertex features ∈ {16, 32, 64} for
the bio/chemo-informatics datasets and ∈ {4, 8} for the social interaction datasets, (4) whether to
normalize the obtained graph representations, and (5) the dropout ratio ∈ {0, 0.2}.
Results. Table 1 illustrates average prediction accuracies and standard deviations. We observe that
the proposed RWNN models outperform the baselines on 2 out of the 10 datasets, while they provide
the second or third best accuracy on 4 out of the remaining 8 datasets. The most successful method is
the WL kernel which performs best on 4 of the 10 datasets. Furthermore, on almost all of these 4
datasets, it outperforms the other approaches with quite wide margins. Among the neural network
models, the proposed RWNN models outperforms the baseline models on 5 out of the 10 datasets. On
the remaining 5 datasets, GIN is the best-performing model. On the MUTAG, D&D and PROTEINS
datasets, our model offers respective absolute improvements of 4.5%, 2.3%, and 1.4% in accuracy
over GIN. With regards to the three instances of the proposed architecture, it is quite surprising
that 1-step RWNN outperforms the other two models on 5 out of the 10 datasets. It may be the
case that on these datasets walks of length 2 and 3 provide no useful information for the respective
classification tasks. It is true though that on most datasets, the difference in performance between the
three RWNN variants is not large. Overall, the model exhibits highly competitive performance on
the graph classification datasets, while the achieved accuracies follow different patterns from all the
baseline methods.

6 Conclusion
In this paper, we presented RWNN, a novel neural network architecture for performing machine
learning tasks on graphs. The proposed model generates graph representations by comparing a
set of trainable “hidden graphs” against the input graphs using a variant of the well-known P -step
random walk kernel. The conducted experiments highlight the high interpretability of the proposed
model and its effectiveness on real-world datasets, where it performed comparably to state-of-the-art
neural networks and kernels. As further research, we plan to extend the method to unsupervised
settings, aiming at discovering the full spectrum of hidden features in the data in terms of interpretable
discriminative small graphs.

Broader Impact
GNNs have attracted a lot of attention in the past years and have been applied to a wide range
of problems, mainly in chemoinformatics, bioinformatics, computer vision and natural language
processing [50]. We claim that GNNs bear a stark representational power and can thus be used in
more application domains. What is currently missing is interpretability of the structures learned
as they are counter-intuitive. Our research in this paper offers a novel architecture tackling these
problems by representing input graphs in terms of learnable discriminative small graphs that can
be interpreted by human experts in the specific domain. Importantly, due to its transparency, our
model can provide explanations of the results in these applications, improving understanding of
decisions and of the underlying models. In addition to the intrepretability it brings, the model is also
competitive in terms of performance (e. g., accuracy in classification tasks).

Depending on the application, it can help mitigate different risks or can also give rise to new
opportunities. For instance, the learned graph features could assist pharmaceutical chemists in drug
design or physicists in explaining laws of physics. However, there are also potential risks associated
with our research. First, blind trust in our model (or machine learning models in general) which
may incur risks. Second, if systems are used by individuals that do not have the necessary level
of knowledge and skills, it is likely that the models will not be properly applied to the underlying
problems and/or there will be an incorrect interpretation of the results. Therefore, our model, as all AI
methods, needs sufficient human supervision and involvement of human experts. We thus encourage
research efforts to understand the impacts and limitations of using our model in real-world scenarios.
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