
Coded Sequential Matrix Multiplication For
Straggler Mitigation

M. Nikhil Krishnan
University of Toronto

nikhilkrishnan.m@gmail.com

Erfan Hosseini
University of Toronto

ehosseini2108@gmail.com

Ashish Khisti
University of Toronto

akhisti@ece.utoronto.ca

Abstract

In this work, we consider a sequence of J matrix multiplication jobs which needs
to be distributed by a master across multiple worker nodes. For i ∈ {1, 2, . . . , J},
job-i begins in round-i and has to be completed by round-(i+ T ). Previous works
consider only the special case of T = 0 and focus on coding across workers. We
propose here two schemes with T > 0, which feature coding across workers as
well as the dimension of time. Our first scheme is a modification of the polynomial
coding scheme introduced by Yu et al. and places no assumptions on the straggler
model. Exploitation of the temporal dimension helps the scheme handle a larger set
of straggler patterns than the polynomial coding scheme, for a given computational
load per worker per round. The second scheme assumes a particular straggler model
to further improve performance (in terms of encoding/decoding complexity). We
develop theoretical results establishing (i) optimality of our proposed schemes for
certain classes of straggler patterns and (ii) improved performance for the case of
i.i.d. stragglers. These are further validated by experiments, where we implement
our schemes to train neural networks.

1 Introduction
The sheer scale of data in present day applications necessitates distributing the computation across
multiple nodes (will also be referred to as workers). One of the key issues faced in distributing the
computation across multiple workers is that slow workers (will be referred to as stragglers) act as
bottlenecks. A naive approach for straggler mitigation is to replicate computation across multiple
workers. Clearly, this is wasteful of resources and calls for the need of a systematic approach to
introduce redundancy in computational systems. It is in this context that coded computation has been
developed, with the goal of introducing redundancy in computation in a resource-efficient manner.

In this paper, we focus on coded computation for distributing matrix multiplication, which is a key
building block for linear regression, principal component analysis, training of deep neural networks
etc. The idea of introducing redundancy in matrix operations appears in an early paper by Huang and
Abraham [1]. The paper [1] considers a multi-processor system and proposes a product-code-based
coding scheme to detect and correct errors caused within a single processor. In the distributed matrix
multiplication setting, the use of coded computation to provide resiliency against stragglers, has been
explored initially in [2]. Coded computation for distributed matrix multiplication (or simply, coded
matrix multiplication) has since been actively pursued in the literature. For instance, see [3–15] and
references therein. In [16], the authors provide a survey on coded matrix multiplication.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



We consider a new setting where a stream of matrix multiplication jobs, indexed by i ∈ {1, 2, . . . , J},
must be finished in a sequential manner. The processing of job-i is initiated in round-i, and must
be completed by round-(i+ T ), where T ≥ 0 will be referred to as the delay parameter. Previous
works have exclusively focused on the case, T = 0, which is essentially a one-shot setting, where
coding can only be done across workers. In contrast, our model enables us to perform coding across
both workers and time. We propose two new coded matrix multiplication schemes that exploit these
dimensions, illustrate significant gains over previously proposed schemes via theoretical analysis,
and present improvements in a practical application of training deep neural networks.

2 System model and summary of results
In this section, we present our system model and discuss how our approach differs from existing
coded matrix multiplication techniques. For integers a, b, let [a : b] , {i | a ≤ i ≤ b}.
2.1 System model

We consider a distributed system consisting of a master and P workers. Master has to distribute
multiplication of a sequence of J pairs of matrices (X(1), Y (1)), (X(2), Y (2)), . . . , (X(J), Y (J)).
For i ∈ [1 : J ], we have X(i) ∈ Rm×n and Y (i) ∈ Rn×p. The process of multiplication of matrices
X(i) and Y (i) will be referred to as job-i. The tuple (X(i), Y (i)) will be termed as the input
matrix-pair for job-i. The matrices X(i) and Y (i) will be referred to as input matrices for job-i. The
matrix product X(i) ∗ Y (i) will be referred to as the result of job-i. The master operates based on a
certain concept of rounds and it takes at most J + T rounds to complete processing the sequence of
J jobs. Here, T is a system parameter, which takes non-negative integer values as discussed below.
The time taken to complete each round will depend on the processing speed of the workers. The goal
of the master is to finish processing all the J jobs as quickly as possible (in terms of time in seconds).

For consistency in notation, we additionally define T trivial jobs, {job-i′}i′∈[J+1:J+T ]. For each
trivial job-i′, the input matrices are both all-zero matrices and the result of job-i′, i.e., 0m×p, is known
to the master by default. For t ∈ [1 : J + T ] and j ∈ [1 : P ], in the beginning of round-t, master
will generate 2`t matrices {X̃j(t; l)}`tl=1, {Ỹj(t; l)}`tl=1 and communicate them to each worker-j.
These matrices X̃j(t; l) ∈ Rm

x ×
n
z , Ỹj(t; l) ∈ R

n
z×

p
y are arbitrary functions of {X(i′)}ti′=1 and

{Y (i′)}ti′=1, respectively. The generation step of these matrices is referred to as encoding.

In round-t, each worker-j attempts to compute the matrix products X̃j(t; 1) ∗ Ỹj(t; 1), X̃j(t; 2) ∗
Ỹj(t; 2),. . . ,X̃j(t; `t) ∗ Ỹj(t; `t), one after another, in that order. For l ∈ [1 : `t], the process
of multiplication of X̃j(t; l) and Ỹj(t; l) will be referred to as the l-th mini-task of worker-j in
round-t. The matrices X̃j(t; l), Ỹj(t; l) will be referred to as input matrices for the mini-task. Also,
(X̃j(t; l), Ỹj(t; l)) will be referred to as the input matrix-pair for this mini-task. The matrix product
X̃j(t; l) ∗ Ỹj(t; l) will be termed the result of the mini-task. The result of each mini-task will be
communicated to the master as soon as it is ready. When master advances to round-(t+ 1), if there
are pending mini-tasks in a worker-j, it will get canceled. We refer to these canceled mini-tasks as
failed mini-tasks. The `t mini-tasks assigned by the master to worker-j in round-t will be collectively
referred to as a task.

Note that by definition, the input matrix-pair (X̃j(t; l), Ỹj(t; l)) for any mini-task assigned to a
worker-j in round-t, is a function of input matrices for jobs in the range [1 : t]. Hence, the workers
potentially ‘work on’ job-t only from round-t onwards. The master has to compute X(t) ∗ Y (t) by
the end of round-(t+ T ), or sooner, using results of non-canceled mini-tasks from all the workers
since round-t. This step will be referred to as decoding (of job-t). The parameter T will be naturally
referred to as delay. In Fig. 1, we provide an overview of the framework that we consider in this
paper.

We do not assume that all the input matrix-pairs for the stream of J jobs are available at once to the
master. For instance, if these J jobs are to be performed as a part of an iterative algorithm, the input
matrices for some job-i might depend on the result of some job-i′, i′ < i. The delay parameter T
plays an important role in streamlining processing of jobs under such situations. For instance, a delay
of T ≤ i− i′ − 1 immediately helps us manage the dependency between result of job-i′ and input
matrices for job-i. As we will see later in Section 5, such jobs naturally arise during the training of
deep neural networks.

2



Round-𝑡

Master

Worker-1

Worker-𝑃

𝑿 𝟏 ,… , 𝑿 𝒕 − 𝟏 ,𝑿(𝒕)

𝒀 𝟏 ,… , 𝒀 𝒕 − 𝟏 , 𝒀(𝒕)

Worker-2

..........

Figure 1: An overview of the setting we pursue in the paper. The master needs to distribute and finish
the processing of a stream of J matrix multiplication jobs in at most J + T rounds. In the beginning
of each round-t, master assigns `t mini-tasks to each worker. Each worker attempts to finish one
after another, all the mini-tasks assigned to it. In this figure, worker-2 is a potential straggler who
lags behind in sending its mini-task results to the master, in comparison to other workers. Through
a decoding step, master obtains the result of job-i (i ∈ [1 : J ]) from a subset of mini-task results
received in rounds [i : i+ T ].

Identification of stragglers: Stragglers in each round are identified with the help of a tolerance
parameter µ ≥ 0. Let τ(t) be the time (in seconds) taken by the fastest worker in round-t to finish
all the `t mini-tasks assigned to it and return the results to master. The master waits for µτ(t) more
seconds after it receives the mini-task results from the fastest worker. Any worker who has not
finished its `t mini-tasks within this time will be deemed a straggler. Each round-t will thus have
a duration of at least (1 + µ)τ(t) seconds. The exact manner in which master decides on when to
advance from round-t to round-(t+ 1) will depend on the coding schemes discussed later.

Normalized load: Multiplication of the two matrices X(t) and Y (t) requires O(mnp) floating point
operations (assuming the naive matrix multiplication algorithm). Motivated by this, we say that job
load is mnp. Similarly, for each task in round-t consisting of `t matrix multiplications, we have a
load of `t mnpxyz . The normalized task load in round-t is the ratio L(t) ,

`t
mnp
xyz

mnp = `t
xyz .

Why T > 0 can help?: Existing coded matrix multiplication schemes in the literature implicitly
assume T = 0, where job-i has to be finished in round-i itself. As a representative scenario, consider
the application of polynomial code [3] for our setting. In the beginning of round-i (i ∈ [1 : J ]),
master generates two matrices {X̃j(i), Ỹj(i)} for each worker-j (j ∈ [1 : P ]), where X̃j(i) ∈
Rm

x ×n, Ỹj(i) ∈ Rn×
p
y are some functions of X(i) and Y (i), respectively. Each worker-j will

attempt to compute the matrix product X̃j(i) ∗ Ỹj(i) and return this result to the master. As soon as
master receives results from some xy < P workers, the master will be able to compute X(i) ∗ Y (i)

(via a decoding step). The pending computations being performed by the remaining S , (P − xy)
workers will be canceled and master will enter the next round. Clearly, the system is resilient to S
stragglers in each round-i, which points to a persistent straggler pattern across time. Introduction of
the delay parameter T > 0 essentially indicates coding across time, which can possibly make the
system robust against persistent straggler patterns as well as non-persistent straggler patterns (for
instance, a scenario where there are no stragglers in round-1 and 2S stragglers in round-2).

Motivating example Consider a distributed system with a master and three workers. In Fig. 2a,
which is representative of the existing approaches, we consider the application of a simple parity
check code to split each matrix multiplication job into three ‘smaller’ matrix multiplication jobs
(mini-tasks). Master partitions rows of each X(i) into x = 2 sub-matrices {X(i; l)}2l=1. In each

3



𝑿 𝟏; 𝟐 ,
𝒀(𝟏)

𝑿 𝟐; 𝟐 ,
𝒀(𝟐)

𝑿 𝟑; 𝟐 ,
𝒀(𝟑)

𝑿 𝟒; 𝟐 ,
𝒀(𝟒) --

Worker-3

Round 1 2 3 4

Worker-2

𝑿 𝟏; 𝟏 ,
𝒀(𝟏)

𝑿 𝟐; 𝟏 ,
𝒀(𝟐)

𝑿 𝟑; 𝟏 ,
𝒀(𝟑)

𝑿 𝟒; 𝟏 ,
𝒀(𝟒) --Worker-1

𝑿 𝟏; 𝟏
+ 𝑿 𝟏; 𝟐 ,
𝒀(𝟏)

𝑿 𝟐; 𝟏
+ 𝑿 𝟐; 𝟐 ,
𝒀(𝟐)

𝑿 𝟑; 𝟏
+ 𝑿 𝟑; 𝟐 ,
𝒀(𝟑)

𝑿 𝟒; 𝟏
+ 𝑿 𝟒; 𝟐 ,
𝒀(𝟒)

--

5

(a)

𝑿 𝟏; 𝟒 ,
𝒀(𝟏)

𝑿 𝟐; 𝟒 ,
𝒀(𝟐)

𝑿 𝟑; 𝟒 ,
𝒀(𝟑)

𝑿 𝟒; 𝟒 ,
𝒀(𝟒)

෩𝑿 𝟏; 𝟏 ,
𝒀(𝟏)

෩𝑿 𝟐; 𝟏 ,
𝒀(𝟐)

෩𝑿 𝟑; 𝟏 ,
𝒀(𝟑)

෩𝑿 𝟒; 𝟏 ,
𝒀(𝟒)

Worker-3

Round 1 2 3 4

Worker-2

Worker-1

𝑿 𝟏; 𝟏 ,
𝒀(𝟏)

𝑿 𝟐; 𝟏 ,
𝒀(𝟐)

𝑿 𝟑; 𝟏 ,
𝒀(𝟑)

𝑿 𝟒; 𝟏 ,
𝒀(𝟒) --

𝑿 𝟏; 𝟐 ,
𝒀(𝟏)

𝑿 𝟐; 𝟐 ,
𝒀(𝟐)

𝑿 𝟑; 𝟐 ,
𝒀(𝟑)

𝑿 𝟒; 𝟐 ,
𝒀(𝟒) --

𝑿 𝟏; 𝟑 ,
𝒀(𝟏)

𝑿 𝟐; 𝟑 ,
𝒀(𝟐)

𝑿 𝟑; 𝟑 ,
𝒀(𝟑)

𝑿 𝟒; 𝟑 ,
𝒀(𝟒) --

෩𝑿 𝟏; 𝟐 ,
𝒀(𝟏)

෩𝑿 𝟐; 𝟐 ,
𝒀(𝟐)

෩𝑿 𝟑; 𝟐 ,
𝒀(𝟑)

෩𝑿 𝟒; 𝟐 ,
𝒀(𝟒)

5

(b)

Figure 2: (a) A system resilient to one straggler in every round (b) a system resilient to two stragglers
in every two consecutive rounds. Here, shaded rectangles indicate mini-tasks not returned by
stragglers.

round-i, i ∈ {1, 2, . . . , J = 4}, master provides to each worker-j, j ∈ {1, 2, 3}, a pair of matrices
(X̃j(i), Y (i)), where X̃1(i) = X(i; 1), X̃2(i) = X(i; 2) and X̃3(i) = X(i; 1) + X(i; 2). Each
worker-j computes the matrix product X̃j(i) ∗ Y (i). It is straightforward to verify from 2a that the
master can compute X(i) ∗ Y (i) from the results returned by any two workers, in every round-i.
Thus, the system can handle one straggler in every round, which points to a persistent straggler
pattern across rounds. Assume that a non-straggling worker (non-straggler) takes τ seconds to finish
the mini-task (with load mnp

2 ) assigned to it, whereas a straggler takes 2τ seconds to finish the same
mini-task. For the scenario described in Fig. 2a, rounds 2 & 4 are ‘bad’, as there are two stragglers
in each of these rounds and the system is resilient only to one straggler per round. Thus, master
has to wait for stragglers to finish their mini-tasks in these rounds. The approach in Fig. 2a takes
τ + 2τ + τ + 2τ = 6τ seconds to complete four jobs.

In Fig.2b, the master ‘spreads’ processing of each job across two consecutive round (thus, there is a
delay of one round). Master partitions rows of each X(i) into x = 4 sub-matrices {X(i; l)}4l=1. In
Fig. 2b, X̃(i; 1), X̃(i; 2) are coded matrices so that {X(i; l) ∗ Y (i)}4l=1 can be retrieved from any
four out of the six matrix products {X(i; l) ∗ Y (i)}4l=1 ∪ {X̃(i; 1) ∗ Y (i), X̃(i; 2) ∗ Y (i)}. As in the
previous case, load per worker in each round is 2 ∗ mnp4 = mnp

2 . Moreover, from Fig. 2b, it can be
verified that this approach too is resilient to the persistent straggler scenario, i.e., one straggler in
each round. However, this approach is also resilient to the scenario of alternating ‘good’ and ‘bad’
rounds as depicted in Fig. 2b. The system here only takes τ + τ + τ + τ + τ = 5τ seconds to finish
four jobs, despite the delay of one round.

Comparison with streaming codes: Streaming codes [17] are packet-level forward error correcting
codes which enable reliable, high throughput, low-latency communication. Under the streaming code
setting, each packet sent in time slot t has to be recovered by time t+ T . Thus, with regard to the
presence of a delay parameter T , the framework that we pursue in the paper has some resemblance
to the streaming code setting. However, there are fundamental differences in the two approaches,
because of which, streaming code constructions do not seem to be applicable to our setting. For
instance, consider the streaming code toy example, where packets p1, p2, p1 + p2 are transmitted
in time 1, 2 and 3, respectively (any lost packet can be recovered here with a delay of at most 2).
Extending this to the matrix multiplication setting, suppose a worker computes A1B1, A2B2 and
A1B1 +A2B2 in successive rounds. This scheme is sub-optimal as A1B1 +A2B2 involves 2 matrix
multiplications.

2.2 Summary of results

• We introduce the problem of coded sequential matrix multiplication, where a stream of
matrix multiplication jobs must be completed in a sequential manner. In contrast to the
one-shot setting studied in the literature, our setting enables us to take advantage of coding
across temporal dimension, as well as across workers.

4



• In Section 3, we present two new coding schemes. Our first scheme, diagonally interleaved
polynomial (DIP) code is a natural extension of polynomial code [3] to the sequential setting.
Our second scheme, improved diagonally interleaved polynomial (IDIP) code improves
upon DIP coding in terms of encoding and decoding complexity, for certain classes of
straggler patterns. We present theoretical analysis to illustrate the advantage of our proposed
schemes over baseline schemes.

• We present an application of our framework to training deep neural networks in Section 5.
Our simulations indicate significant gains when the stragglers are sampled from two statisti-
cal models; (i) i.i.d. model and (ii) Fritchman model.

Remark 2.1. We note that regardless of the actual straggler patterns, our schemes are designed such
that job-i will be finished by round-(i+ T ). The master node ensures this by waiting for stragglers to
return mini-task results in certain rounds, if needed, before proceeding to the next round.
Remark 2.2. For simplicity in exposition, we set z = 1 throughout the paper. It is to be noted
however that by appropriately modifying the existing coding schemes appearing in works such
as [14, 15], the coding scheme presented in Section 3.1 can be generalized to include z > 1 case.

3 Coded sequential matrix multiplication schemes
3.1 Diagonally interleaved polynomial (DIP) coding scheme

In this scheme, in addition to the parameters T, x, y, z = 1, µ introduced in Section 2.1, we have
a hyperparameter λ ∈ [1 : P ]. Let rows of each X(i) ∈ Rm×n (similarly, columns of each
Y (i) ∈ Rn×p), i ∈ [−T + 1 : J + T ], be divided into x submatrices (similarly, y submatrices) as
follows:

X(i) ,


X(i; 1)
X(i; 2)

...
X(i;x)

 , Y (i) , [ Y (i; 1) Y (i; 2) · · · Y (i; y) ] ,

where X(i; i′) ∈ Rm
x ×n, Y (i; j′) ∈ Rn×

p
y for i′ ∈ [1 : x], j′ ∈ [1 : y]. The submatri-

ces {X(i; i′)} and {Y (i; j′)} will be referred to as subchunks of X(i) and Y (i), respectively.
We also set X(l′) , 0m×n, Y (l′) , 0n×p, whenever l′ /∈ [1 : J ] (jobs 1 to J are non-
trivial, the rest are trivial jobs defined for consistency in notation). We define polynomials
Xi(Θ) ,

∑x
i′=1X(i; i′)Θy(i′−1), Yi(Θ) ,

∑y
j′=1 Y (i; j′)Θj′−1. Note thatXi(Θ)∗Yi(Θ) takes the

form:
∑
i′∈[1:x],j′∈[1:y][X(i; i′)∗Y (i; j′)]Θy(i′−1)+j′−1, which is a polynomial of degree xy−1. The

xy coefficients of this polynomial is precisely given by the set χi , {X(i; i′)∗Y (i; j′)}i′∈[1:x],j′∈[1:y].
The matrix product X(i) ∗ Y (i) can be obtained by simply arranging the xy elements of χi in the
form of an m× p matrix. Since all the coefficients of a degree-(xy − 1) polynomial can be retrieved
from evaluations at xy distinct points in R, master can essentially compute X(i) ∗ Y (i) from xy
evaluations of the polynomial Xi(Θ) ∗ Yi(Θ).

In round-t (t ∈ [1 : J + T ]), master assigns `t ∈ [T : T + dxyλ e] mini-tasks to each worker. The
exact value of `t is chosen by the master based on the history of mini-task results it has received
in the previous rounds. For l ∈ [1 : `t], the l-th mini-task assigned to worker-j (j ∈ [1 : P ]) in
round-t involves multiplication of two input matrices X̃j(t; l), Ỹj(t; l). For l′ ∈ [1 : T ], X̃j(t; l

′) and
Ỹj(t; l

′) are obtained as the evaluations Xt−l′+1(Θ)|Θ=θj,t,l′ and Yt−l′+1(Θ)|Θ=θj,t,l′ , respectively,
at some θj,t,l′ ∈ R. Naturally, we can say that the l′-th mini-task assigned to worker-j in round-t
corresponds to job-(t − l′ + 1). For l′′ ∈ [T + 1 : `t], the l′′-th mini-task assigned to worker-j in
round-t corresponds to job-(t− T ). In Fig. 3, we illustrate how mini-tasks correspond to different
jobs. It can be observed that mini-tasks corresponding to each job are distributed in a near-diagonal
manner across rounds. This explains the name “diagonally interleaved polynomial coding scheme”.

In Algorithm 1, we formally describe how the master selects each input matrix-pair (X̃j(t; l), Ỹj(t; l))
provided to worker-j in the beginning of round-t, as per the DIP coding scheme. For consistency, we
assume that job-i′ is finished and xy mini-task results corresponding to job-i′ are received by the
master by default, whenever i′ /∈ [1 : J ].

Let τ(t) denote the time (in seconds) taken by the fastest worker in round-t to return all its `t =
T + max(dxy−γtλ e, 0) mini-task results to the master. The master waits for µτ(t) more seconds. If

5



3

2

1

0

3

2

1

4

3

2

1

4

1

52

1

0

−1

𝑇 = 4

3

2

4

5

6

Worker-𝑗

2 3 4 5 6

…………

Round

Figure 3: An illustration of how each mini-task corresponds to a job. Each rectangle here depicts
a mini-task. The number inside each rectangle indicates which job does that particular mini-task
correspond to. Uncolored rectangles indicate trivial mini-tasks corresponding to trivial jobs, which
are just place-holders for notational convenience and do not have to be processed by a worker.

Algorithm 1: Algorithm used by master to assign mini-tasks in the DIP coding scheme
1 for j ∈ [1 : P ] do
2 for l ∈ [1 : T ] do
3 if job-(t− l + 1) is finished then

// results of xy mini-tasks corresponding to job-(t− l + 1)
already received by master

4 assign a trivial mini-task with input matrix pair (0m
x ×n,0n×

p
y
) as the l-th mini-task

of worker-j in round-t (just as a placeholder, will not require any computation)
5 else
6 generate a random number θ ∈ R
7 pass the evaluations Xt−l+1(Θ)|Θ=θ,Yt−l+1(Θ)|Θ=θ to worker-j
8 assign a new mini-task with the input matrices Xt−l+1(Θ)|Θ=θ,Yt−l+1(Θ)|Θ=θ as

the l-th mini-task of worker-j in round-t

9 Let γt denote the number of results of mini-tasks corresponding to job-(t− T ) received in
previous rounds by master.

10 for l ∈ [T + 1 : T + dxy−γtλ e] do
11 generate a random number θ ∈ R
12 pass the evaluations Xt−T (Θ)|Θ=θ,Yt−T (Θ)|Θ=θ to worker-j
13 assign a new mini-task with the input matrices Xt−T (Θ)|Θ=θ,Yt−T (Θ)|Θ=θ as the l-th

mini-task of worker-j in round-t

max(xy− γt, 0) mini-task results corresponding to job-(t− T ) are received by the master in round-t
within this time, it advances to round-(t+ 1). If not, as job-(t− T ) has to be finished in round-t, the
master will wait until it receives max(xy − γt, 0) mini-task results corresponding to job-(t− T ) and
then proceed to round-(t+1). If γt < xy, note that master assigns dxy−γtλ emini-tasks corresponding
to job-(t− T ) to each worker. In round-t, even if P − λ workers do not return any mini-task results
corresponding to job-(t−T ), the master can still finish job-(t−T ) as soon as it gets mini-task results
corresponding to job-(t− T ) from the remaining λ workers.
Remark 3.1. As some of the mini-tasks assigned to workers in round-t can be trivial mini-tasks
which do not require any processing, the normalized task load in round-t given by L(t) = `t

xyz is a
worst-case estimate.
Remark 3.2. In the worst-case scenario, (non-trivial) mini-tasks corresponding to a job-i will be
present in all the T + 1 consecutive rounds [i : i+ T ]. However, to the contrary, if the number of
stragglers the system encounters is small, the number of rounds required to process a job could be as
small as min(dxyP e, T + 1).

The decoding step to finish job-i in DIP coding scheme involves determining the degree-(xy − 1)
polynomial Xi(Θ) ∗ Yi(Θ) from xy evaluations (polynomial interpolation). If we impose a straggler
model and modify the DIP coding scheme to have a model-dependent mini-task assignment algorithm,

6



….

Worker 1

Worker 2

Worker 3

Round

4

….

....

….

5 6 7 8 9 10 11 12

….

....

𝑊 = 5

Figure 4: A straggler pattern conforming to the (N = 4,W = 5)-arbitrary straggler model. In every
sliding window of size W = 5, there are at most N = 4 stragglers in total. Each shaded rectangle
indicates a straggler.

it is possible to improve the decoding performance. In the following section, we present such a
modification.

3.2 An improved coding scheme for specific straggler models

3.2.1 (N,W )-arbitrary straggler model

The arbitrary straggler model is an extension of the persistent straggler model explored in the existing
literature (i.e., S stragglers in each round) to include non-persistent straggler patterns as well. The
model is parameterized by W and N ∈ [0 : WP − 1]. For t ∈ [1 : J + T ] and j ∈ [1 : P ], let Sj(t)
be an indicator function as defined below:

Sj(t) =

{
1, Worker-j is a straggler in round-t,
0, otherwise. (1)

A sliding window of W consecutive rounds is of the form Wi , {i, i + 1, i + 2, . . . , i + W − 1}
(i ∈ [1 : J + T −W + 1]). Let:

Sj(A) , {t′ ∈ A | Sj(t′) = 1},

whereA ⊆ [1 : J +T ]. i.e., Sj(A) consists of the rounds inA for which worker-j is a straggler. The
straggler pattern seen by the system in rounds [a : b] ⊆ [1 : J + T ], where b− a+ 1 ≥W , is said to
conform to the (N,W )-arbitrary straggler model, if

∑P
j=1 |Sj(Wi)| ≤ N for all Wi ⊆ [a : b] (see

Fig. 4). If b− a+ 1 < W , the straggler pattern seen by the system in rounds [a : b] ⊆ [1 : J + T ] is
said to conform to the (N,W )-arbitrary straggler model, if

∑P
j=1 |Sj([a : b])| ≤ N . Furthermore, if

worker-j is a straggler in round-t, it will not return results of any of the mini-tasks assigned to it in
round-t.

3.2.2 (B, ε,W )-bursty straggler model

In this deterministic straggler model, which we will refer to as the bursty straggler model, we deal
with the scenario that a worker can behave as a straggler for several consecutive rounds. The model is
parameterized by W , ε ∈ [0 : P ] and B ∈ [1 : W ]. The configuration {ε = P,B = W} is infeasible.
For i ∈ [1 : J + T −W + 1], j ∈ [1 : P ] and t ∈ [1 : J + T ], let Wi, Sj(t), Sj(.) be as defined in
Section 3.2.1. Let B ⊆ [1 : J + T ]. We have P(B) , {j ∈ [1 : P ] | Sj(t′) = 1 for some t′ ∈ B}.
For the null-set φ, we set max(φ) = min(φ) , 0. The straggler pattern seen by the system in rounds
[a : b] ⊆ [1 : J + T ], where b − a + 1 ≥ W , is said to conform to the (B, ε,W )-bursty straggler
model, if it satisfies the two conditions:

• |P(Wi)| ≤ ε,
• max(Sj(Wi))−min(Sj(Wi)) + 1 ≤ B,

for all Wi ⊆ [a : b] and j ∈ [1 : P ]. If b− a+ 1 < W , the straggler pattern seen by the system in
rounds [a : b] ⊆ [1 : J + T ] is said to conform to the (B, ε,W )-bursty straggler model, if it satisfies
the two conditions:

• |P([a : b])| ≤ ε,

7



….

Worker 1

Worker 2

Worker 3

Round

4

….

....

….

5 6 7 8 9 10 11 12

….

....

𝑊 = 5

Figure 5: A straggler pattern conforming to the (B = 2, ε = 2,W = 5)-bursty straggler model. In
every sliding window of size W = 5, there are at most ε = 2 workers who behave as stragglers for at
most B = 2 consecutive rounds. Each shaded rectangle indicates a straggler.

• max(Sj([a : b]))−min(Sj([a : b])) + 1 ≤ B.

In other words, under the (B, ε,W )-bursty straggler model, within any sliding window Wi of size
W , at most ε out of P workers are permitted to be stragglers and a worker can remain a straggler
only for a maximum of B consecutive rounds (see Fig. 5). As in the previous model, a straggler in a
round will not return any results.

3.2.3 Improved diagonally interleaved polynomial (IDIP) coding scheme

We consider here the (N,W ) arbitrary straggler model (i.e., straggler pattern seen by the system in
rounds [1 : J + T ] conforms to the (N,W )-arbitrary straggler model) and show how the DIP scheme
can be improved under this model assumption (subsequently, in Remark 3.3, we discuss how the
scheme can be extended for the bursty straggler model). Our proposed scheme (referred to as IDIP
coding scheme) has two advantages; (i) it introduces a fixed load per worker in each round, while the
load in the DIP scheme can vary per round, (ii) it takes advantage of uncoded mini-tasks to reduce
the encoding and decoding complexity.

Let rows of each X(i) ∈ Rm×n (similarly, columns of each Y (i) ∈ Rn×p), i ∈ [−T + 1 :
J + T ], be divided into x subchunks (similarly, y subchunks) as in Section 3.1. Again, we set
X(l′) , 0m×n, Y (l′) , 0n×p, whenever l′ /∈ [1 : J ], as only jobs 1 to J are non-trivial. Let
kN , PW −N , nN ,W . Recall the definition of polynomials Xi(Θ) ,

∑x
i′=1X(i; i′)Θy(i′−1),

Yi(Θ) ,
∑y
j′=1 Y (i; j′)Θj′−1, whose coefficients are subchunks of X(i) and Y (i), respectively.

Here x, y are chosen so that xy = kN . The scheme operates with a delay T = nN − 1.

For each i ∈ [−T + 1 : J + T ], the master keeps an ordered list Ui of the form:

Ui , {(X(i; 1), Y (i; 1)), (X(i; 1), Y (i; 2)), . . . , (X(i;x), Y (i; y − 1)), (X(i;x), Y (i; y))},

which consists of xy entries. Each entry in the ordered list Ui is a 2-tuple composed of two matrices;
a subchunk of X(i) and Y (i) each. The ordering of these entries within Ui is in such a way that
multiplication of the two subchunks in the n′-th entry, for 1 ≤ n′ ≤ xy, gives the coefficient
corresponding to Θn′−1 of the polynomial Xi(Θ) ∗ Yi(Θ).

In each round-t (t ∈ [1 : J + T ]), the master assigns ` = nN = T + 1 mini-tasks to each worker
(some of these mini-tasks can be trivial mini-tasks). For l ∈ [1 : `], the l-th mini-task assigned to
worker-j (j ∈ [1 : P ]) in round-t corresponds to job-(t− l + 1) in the following sense. The input
matrix-pair (X̃j(t; l), Ỹj(t; l)) for this mini-task will be either (i) uncoded: one of the entries of
Ut−l+1 or else (ii) coded: evaluation of (Xt−l+1(Θ),Yt−l+1(Θ)) at some θj,t,l ∈ R. Each worker-j
processes the ` mini-tasks one after another and communicates each result to the master. As can be
seen from Fig. 6, mini-tasks corresponding to each job-i assigned to any worker-j are distributed in a
diagonal manner across rounds.

In Algorithm 2, we describe how master selects the input matrix-pair (X̃j(t; l), Ỹj(t; l)) for the l-th
mini-task to be assigned to each worker-j in round-t. We assume that job-i′ is finished, whenever
i′ /∈ [1 : J ]. Furthermore, when l = 1 in the outermost loop of Algorithm 2, J in line-5 becomes the
empty set, as mini-tasks are indexed in the range [1 : `].

8



3

2

1

0

3

2

1

4

3

2

1

4

52

1

0

−1

𝑛𝑁 = 𝑇 + 1 = 5

3

2

4

5

6

Worker-𝑗

2 3 4 5 6

…………

Round

0−1−2

Figure 6: Each rectangle here depicts a mini-task. The number inside each rectangle is indicative of
the job corresponding to that particular mini-task. Uncolored rectangles indicate trivial mini-tasks,
which correspond to trivial jobs.

We claim that all the uncoded mini-tasks corresponding to each job-i will succeed in one of the rounds
[i : i+T ] (as per the straggler model). This claim can be verified as follows. For l ∈ [1 : T+1], recall
that mini-tasks corresponding to job-(t− l+ 1) appear as the first mini-task of every worker in round-
(t− l+ 1), second mini-task in round-(t− l+ 2), . . . , (T + 1)-th mini-task in round-(t− l+ 1 + T ).
The master makes the l-th mini-task of worker-j in round-t (corresponding to job-(t− l+1)) uncoded
only if worker-j cannot be a straggler in at least one of the rounds [t : t− l+1+T ] as per the straggler
model (see line-13 of Algorithm 2). Any such uncoded mini-task will be successfully processed by
worker-j in the first round among [t : t− l + 1 + T ] where worker-j is not a straggler, as a failed
mini-task of worker-j in a round is reattempted in the next round (see line-7 of the algorithm).

Improved encoding and decoding performance: As per the straggler model, in every sliding window
of W = T + 1 rounds, there at most N stragglers. For any job-i, which will be processed during
rounds [i : i + T ], the master can thus obtain results of at least WP − N = kN mini-tasks
corresponding to job-i. Furthermore, as discussed earlier, Algorithm 2 is designed such that all
uncoded mini-tasks corresponding to a job-i will succeed. Let ui indicate the number of uncoded
mini-tasks corresponding to job-i. In the end of round-(i+ T ), master is guaranteed to have access
to results of; (i) ui uncoded mini-tasks corresponding to job-i (these ui mini-tasks have the first ui
entries of Ui as their input matrices) and (ii) at least (kN −ui) coded mini-tasks (these are evaluations
of the degree kN − 1 polynomial Xi(Θ) ∗ Yi(Θ) at distinct non-zero points). Note that the results
of the ui uncoded mini-tasks, X(i; 1) ∗ Y (i; 1), X(i; 1) ∗ Y (i; 2), . . . are precisely the coefficients
of Θ0,Θ, . . . ,Θui−1 in Xi(Θ) ∗ Yi(Θ). Owing to the knowledge of these coefficients, any given
evaluation of Xi(Θ)∗Yi(Θ) at some θ 6= 0, can be simplified to evaluation of a polynomial of degree
(kN − ui − 1) (whose coefficient of Θl is precisely the coefficient of Θl+ui in Xi(Θ) ∗ Yi(Θ)) at
θ 6= 0. In order to finish job-i, master determines coefficients of this polynomial via a decoding
step which effectively corresponds to inverting a (kN − ui)× (kN − ui) Vandermonde matrix. In
comparison, in the DIP scheme with parameters x, y such that xy = kN , there are no uncoded
mini-tasks and hence, the master deals with a larger, kN × kN Vandermonde matrix. As condition
number of an n× n Vandermonde matrix is known to increase exponentially in n [18] (which makes
it increasingly susceptible to numerical errors), it is better to have lower values for n. Owing to the
presence of uncoded mini-tasks, the encoding complexity of IDIP will also be clearly smaller.

How to handle a straggler pattern not conforming to the straggler model?: If the master is in round-t,
it has the history of stragglers in rounds [1 : t− 1]. After (1 + µ)τ(t) seconds into round-t, master
gets the straggler pattern in round-t. If the straggler pattern in rounds [1 : t] conforms to the model
assumption, the master advances to round-(t+1). Otherwise, master will wait for a few more workers
to complete their mini-tasks, mark them as non-stragglers and reassess the straggler pattern. Round-t
will finish when a straggler pattern conforming to the model assumption is generated.

Example 3.1. Consider a distributed system consisting of a master and P = 3 workers. Let
the straggler pattern conform to the (N = 4,W = 4)-arbitrary straggler model. The matrices
X(i), Y (i) are of size m × n and n × p, respectively, where for convenience in notation, we
set the range i ∈ [−T + 1 : J + T ]. Note that as we have only J non-trivial jobs, we have
X(i′) , 0m×n, Y (i′) , 0n×p, whenever i′ /∈ [1 : J ]. The load corresponding to a job is mnp. We

9



Algorithm 2: Algorithm used by master to assign mini-tasks in the IDIP coding scheme
1 for l ∈ [1 : `] do
2 if job-(t− l + 1) is finished then
3 assign a trivial mini-task as the l-th mini-task of every worker in round-t
4 else
5 Let J = {j ∈ [1 : P ] | (l − 1)-th mini-task assigned to worker-j in round-(t− 1) has

failed}
6 for j ∈ J do
7 reassign the failed (l − 1)-th mini-task of worker-j as the l-th mini-task of worker-j

in round-t
8 for j ∈ [1 : P ] \ J do
9 if number of remaining unassigned entries of Ut−l+1 < (P − |J |) then

10 generate a random number θ ∈ R \ {0}
11 pass the evaluations Xt−l+1(Θ)|Θ=θ,Yt−l+1(Θ)|Θ=θ to worker-j
12 assign a new mini-task with the input matrices Xt−l+1(Θ)|Θ=θ,Yt−l+1(Θ)|Θ=θ

as the l-th mini-task of worker-j in round-t
13 else if worker-j cannot be a straggler during at least one of the rounds in

[t : t+ nN − l], due to the straggler model then
14 pass the two subchunks in the first previously unassigned entry of Ut−l+1 to

worker-j
15 assign the l-th mini-task of worker-j in round-t, with this entry as the input

matrix-pair
16 else
17 generate a random number θ ∈ R \ {0}
18 pass the evaluations Xt−l+1(Θ)|Θ=θ,Yt−l+1(Θ)|Θ=θ to worker-j
19 assign a new mini-task with the input matrices Xt−l+1(Θ)|Θ=θ,Yt−l+1(Θ)|Θ=θ

as the l-th mini-task of worker-j in round-t

divide the rows of X(i) into x = 4 subchunks and columns of Y (i) into y = 2 subchunks:

X(i) ,

 X(i; 1)
X(i; 2)
X(i; 3)
X(i; 4)

 , Y (i) , [ Y (i; 1) Y (i; 2) ] ,

where X(i; j′) ∈ Rm
4 ×n, Y (i; l′) ∈ Rn×

p
2 for j′ ∈ [1 : 4], l′ ∈ [1 : 2]. Let t ∈ [1 : J + T ]. In

round-t, each worker will be assigned a task consisting of ` = 4 mini-tasks. Each mini-task involves
multiplication of two matrices having dimensions m

4 × n and n× p
2 , respectively. There are T + 1

such mini-tasks assigned to each worker, in each round. Hence, the task load is 4 ∗ mnp8 = mnp
2 .

Thus, normalized task load equals 1
2 . The scheme discussed here operates with a delay T = 3. Let

Xi(Θ) , X(i; 1) +X(i; 2)Θ2 +X(i; 3)Θ4 +X(i; 4)Θ6, Yi(Θ) , Y (i; 1) + Y (i; 2)Θ.

We have:

Ui , {(X(i; 1), Y (i; 1)), (X(i; 1), Y (i; 2)), (X(i; 2), Y (i; 1)), . . . , (X(i; 4), Y (i; 2))},

For l ∈ [1 : 4], j ∈ [1 : 3], t ∈ [1 : J + T ], the l-th mini-task assigned to worker-j in round-t
(corresponding to job-(t− l+ 1)) is non-trivial iff both following conditions are true (i) (t− l+ 1) ∈
[1 : J ] and (ii) master cannot decode job-(t− l + 1) with the available mini-task results from rounds
[t − l + 1 : t − 1]. A non-trivial mini-task can either be coded or uncoded. If the mini-task is
uncoded, the input matrices (X̃j(t; l), Ỹj(t; l)) for the mini-task will be an entry of Ut−l+1. If the
mini-task is coded, the master set (X̃j(t; l), Ỹj(t; l)) = (X ′(t− l + 1; i′), Y ′(t− l + 1; i′)), where
X ′(t− l+1; i′), Y ′(t− l+1; i′) are evaluations of Xt−l+1(Θ) and Yt−l+1(Θ), respectively, at some
θi′ ∈ R.

Consider the assignment of mini-tasks corresponding to job-3 in Fig. 7. These mini-tasks will be
distributed across workers from round-3 till round-6 (recall that delay T = 3 in this example).

10



Round-3: In rounds 1 and 2, the master has seen three straggling rounds faced in total by all the three
workers. Hence, none of the workers can be a straggler in both rounds 3 and 4, as it violates the
straggler model assumption. Thus, any mini-task corresponding to job-3 assigned to a worker-j in
round-3 will succeed in one of the rounds {3, 4} (because of the possibility of reattempts). Exploiting
this scenario, master pushes uncoded mini-tasks corresponding to job-3 to all the workers in round-3
(as the first mini-task of every worker).

Round-4: As worker-2 is a straggler in round-3, the mini-task corresponding to job-3 assigned in
round-3 will be reattempted as the second mini-task of worker-2 in round-4. The master has seen
three straggling rounds faced by workers in total, in rounds 2 and 3. Hence, it is not possible for any
worker-j to be a straggler in rounds 4 and 5 both. Thus for workers 1 and 3, uncoded mini-tasks
corresponding to job-3 will be assigned by the master.

Round-5: Master now has history of all the straggling rounds till round-4. It is possible that a
given worker-j can be a straggler in both rounds 5 and 6. Thus, master assigns coded mini-tasks
corresponding to job-3 to all the workers.

Round-6: As mini-task assigned to worker-3 failed in round-5, it will be reattempted in round-6. As
workers 1 and 2 can possibly be a straggler in round-6, coded mini-tasks corresponding to job-3 will
be assigned to workers 1 and 2.

Once round-6 is over, master has access to results of 8 mini-tasks corresponding to job-3; five of them
uncoded and remaining three are coded. The results of uncoded mini-tasks available to the master are:
{X(3; 1) ∗Y (3; 1), X(3; 1) ∗Y (3; 2), X(3; 2) ∗Y (3; 1), X(3; 2) ∗Y (3; 2), X(3; 3) ∗Y (3; 1)}. The
results of coded mini-tasks available are {X ′(3; 1)∗Y ′(3; 1), X ′(3; 2)∗Y ′(3; 2), X ′(3; 5)∗Y ′(3; 5)}.
The coded mini-task results correspond to evaluations of X3(Θ) ∗ Y3(Θ) at three distinct non-zero
points θ1, θ2, θ5. As the results of uncoded mini-tasks are nothing but coefficients of {Θ0,Θ, . . . ,Θ4},
the master effectively has three evaluations of the polynomialX(3; 3)∗Y (3; 2)+X(3; 4)∗Y (3; 1)Θ+
X(3; 4)∗Y (3; 2)Θ2 at θ1, θ2, θ5. The coefficientsX(3; 3)∗Y (3; 2), X(3; 3)∗Y (3; 2) andX(3; 3)∗
Y (3; 2) can thus be obtained via polynomial interpolation. Finally, X(3)∗Y (3) is obtained by simply
arranging all the coefficients of X3(Θ) ∗ Y3(Θ) in the form of an m× p matrix.
Remark 3.3 (Extension of the IDIP scheme for the bursty straggler model). IDIP scheme for the
(B, ε,W )-bursty straggler model follows exactly the same manner as in the case of arbitrary straggler
model. Let B < W . Instead of kN , nN , we use here the parameters kB , P (W − 1 + B) − Bε,
nB ,W − 1 +B, respectively. Delay parameter, T ,W − 2 +B = nB − 1. When B = W , the
straggler model degenerates to a scenario where there can be ε stragglers in each round. In this case,
we can deploy polynomial code [3], which is resilient against S = ε stragglers in each round.

3.3 Optimality of DIP, IDIP coding schemes under arbitrary, bursty straggler model
assumptions

The following theorems provide lower bounds for worst-case task load of any z = 1 scheme
resilient against straggler patterns conforming to arbitrary or bursty straggler models in all the rounds
[1 : J + T ], under the system model discussed in Section 2.1. Proofs are deferred to Appendices A
and B.
Theorem 3.1 (Worst-case load for arbitrary straggler model). Let J → ∞ and T < ∞. The
worst-case normalized task load L under the (N,W )-arbitrary straggler model is lower bounded as:

L ≥ L∗ =
1

P − N
W

. (2)

Theorem 3.2 (Worst-case load for bursty straggler model). Let J →∞ and T <∞. The worst-case
normalized task load L under the (B, ε,W )-bursty straggler model is lower bounded as:

L ≥ L∗ =

{
W−1+B

P (W−1+B)−Bε , if B < W,
1

P−ε , if B = W.
(3)

3.3.1 Optimality of DIP scheme

DIP coding scheme does not require any underlying assumptions on the straggler model. In the
following, we state results showing that if the straggler pattern conforms to arbitrary/bursty straggler
model, the scheme provides optimal worst-case normalized task load (under a certain choice of
parameters).

11



𝑿′ 𝟏; 𝟏 ,
𝒀′(𝟏; 𝟏)

𝑿′ 𝟐; 𝟏 ,
𝒀′(𝟐; 𝟏)

𝑿 𝟑; 𝟏 ,
𝒀(𝟑; 𝟏)

𝑿 𝟒; 𝟏 ,
𝒀(𝟒; 𝟏)

𝑿′ 𝟓; 𝟏 ,
𝒀′(𝟓; 𝟏)

𝑿′ 𝟔; 𝟏 ,
𝒀′(𝟔; 𝟏)

𝑿 𝟕; 𝟏 ,
𝒀(𝟕; 𝟏)

𝑿 𝟖; 𝟏 ,
𝒀(𝟖; 𝟏)

--- 𝑿′ 𝟏; 𝟏 ,
𝒀′(𝟏; 𝟏)

𝑿 𝟐; 𝟏 ,
𝒀(𝟐; 𝟏)

𝑿 𝟑; 𝟐 ,
𝒀(𝟑; 𝟐)

𝑿′ 𝟒; 𝟏 ,
𝒀′(𝟒; 𝟏)

𝑿′ 𝟓; 𝟒 ,
𝒀′(𝟓; 𝟒)

𝑿′ 𝟔; 𝟏 ,
𝒀′(𝟔; 𝟏)

𝑿 𝟕; 𝟏 ,
𝒀(𝟕; 𝟏)

--- --- 𝑿 𝟏; 𝟏 ,
𝒀(𝟏; 𝟏)

𝑿 𝟐; 𝟏 ,
𝒀(𝟐; 𝟐)

𝑿′ 𝟑; 𝟏 ,
𝒀′(𝟑; 𝟏)

𝑿′ 𝟒; 𝟒 ,
𝒀′(𝟒; 𝟒)

𝑿′ 𝟓; 𝟒 ,
𝒀′(𝟓; 𝟒)

𝑿′ 𝟔; 𝟏 ,
𝒀′(𝟔; 𝟏)

--- --- --- 𝑿 𝟏; 𝟏 ,
𝒀(𝟏; 𝟐)

𝑿′ 𝟐; 𝟒 ,
𝒀′(𝟐; 𝟒)

𝑿′ 𝟑; 𝟒 ,
𝒀′(𝟑; 𝟒)

𝑿′ 𝟒; 𝟒 ,
𝒀′(𝟒; 𝟒)

𝑿′ 𝟓; 𝟒 ,
𝒀′(𝟓; 𝟒)

𝑿′ 𝟏; 𝟐 ,
𝒀′(𝟏; 𝟐)

𝑿′ 𝟐; 𝟐 ,
𝒀′(𝟐; 𝟐)

𝑿 𝟑; 𝟏 ,
𝒀(𝟑; 𝟐)

𝑿 𝟒; 𝟏 ,
𝒀(𝟒; 𝟐)

𝑿′ 𝟓; 𝟐 ,
𝒀′(𝟓; 𝟐)

𝑿′ 𝟔; 𝟐 ,
𝒀′(𝟔; 𝟐)

𝑿 𝟕; 𝟏 ,
𝒀(𝟕; 𝟐)

𝑿 𝟖; 𝟏 ,
𝒀(𝟖; 𝟐)

--- 𝑿′ 𝟏; 𝟒 ,
𝒀′(𝟏; 𝟒)

𝑿′ 𝟐; 𝟐 ,
𝒀′(𝟐; 𝟐)

𝑿 𝟑; 𝟏 ,
𝒀(𝟑; 𝟐)

𝑿′ 𝟒; 𝟐 ,
𝒀′(𝟒; 𝟐)

𝑿′ 𝟓; 𝟓 ,
𝒀′(𝟓; 𝟓)

𝑿 𝟔; 𝟏 ,
𝒀(𝟔; 𝟏)

𝑿 𝟕; 𝟐 ,
𝒀(𝟕; 𝟐)

--- --- 𝑿′ 𝟏; 𝟒 ,
𝒀′(𝟏; 𝟒)

𝑿′ 𝟐; 𝟐 ,
𝒀′(𝟐; 𝟐)

𝑿′ 𝟑; 𝟐 ,
𝒀′(𝟑; 𝟐)

𝑿′ 𝟒; 𝟓 ,
𝒀′(𝟒; 𝟓)

𝑿 𝟓; 𝟏 ,
𝒀(𝟓; 𝟏)

𝑿 𝟔; 𝟏 ,
𝒀(𝟔; 𝟐)

--- --- --- 𝑿′ 𝟏; 𝟒 ,
𝒀′(𝟏; 𝟒)

𝑿′ 𝟐; 𝟓 ,
𝒀′(𝟐; 𝟓)

𝑿′ 𝟑; 𝟓 ,
𝒀′(𝟑; 𝟓)

𝑿′ 𝟒; 𝟔 ,
𝒀′(𝟒; 𝟔)

𝑿 𝟓; 𝟏 ,
𝒀(𝟓; 𝟐)

𝑿′ 𝟏; 𝟑 ,
𝒀′(𝟏; 𝟑)

𝑿′ 𝟐; 𝟑 ,
𝒀′(𝟐; 𝟑)

𝑿 𝟑; 𝟐 ,
𝒀(𝟑; 𝟏)

𝑿 𝟒; 𝟐 ,
𝒀(𝟒; 𝟏)

𝑿′ 𝟓; 𝟑 ,
𝒀′(𝟓; 𝟑)

𝑿′ 𝟔; 𝟑 ,
𝒀′(𝟔; 𝟑)

𝑿 𝟕; 𝟐 ,
𝒀(𝟕; 𝟏)

𝑿 𝟖; 𝟐 ,
𝒀(𝟖; 𝟏)

--- 𝑿′ 𝟏; 𝟓 ,
𝒀′(𝟏; 𝟓)

𝑿′ 𝟐; 𝟑 ,
𝒀′(𝟐; 𝟑)

𝑿 𝟑; 𝟑 ,
𝒀(𝟑; 𝟏)

𝑿′ 𝟒; 𝟑 ,
𝒀′(𝟒; 𝟑)

𝑿′ 𝟓; 𝟑 ,
𝒀′(𝟓; 𝟑)

𝑿′ 𝟔; 𝟑 ,
𝒀′(𝟔; 𝟑)

𝑿 𝟕; 𝟑 ,
𝒀(𝟕; 𝟏)

--- 𝑿′ 𝟏; 𝟓 ,
𝒀′(𝟏; 𝟓)

𝑿 𝟐; 𝟐 ,
𝒀(𝟐; 𝟏)

𝑿′ 𝟑; 𝟑 ,
𝒀′(𝟑; 𝟑)

𝑿′ 𝟒; 𝟑 ,
𝒀′(𝟒; 𝟑)

𝑿′ 𝟓; 𝟑 ,
𝒀′(𝟓; 𝟑)

𝑿 𝟔; 𝟐 ,
𝒀(𝟔; 𝟏)

--- --- --- 𝑿 𝟏; 𝟐 ,
𝒀(𝟏; 𝟏)

𝑿′ 𝟐; 𝟔 ,
𝒀′(𝟐; 𝟔)

𝑿′ 𝟑; 𝟑 ,
𝒀′(𝟑; 𝟑)

𝑿′ 𝟒; 𝟑 ,
𝒀′(𝟒; 𝟑)

𝑿 𝟓; 𝟐 ,
𝒀(𝟓; 𝟏)

Worker 1

Worker 2

Worker 3

Round 1 2 3 4 5 6 7 8

..... 

Figure 7: An illustration of the task assignment to workers when the straggler pattern conforms to the
(N = 4,W = 4)-arbitrary straggler model. Each rectangular box here corresponds to a mini-task
involving multiplication of two matrices having sizes m

4 × n and n × p
2 , respectively. Stragglers

are identified using shaded boxes. Uncoded and coded mini-tasks are indicated in green and red,
respectively.

Optimality under arbitrary straggler model Let parameters x, y, λ, T of the DIP coding scheme
be such that xy = PW −N,λ = P, T = W − 1. It can be shown that the worst-case normalized
task load matches (2).

We outline the proof as follows. The number of mini-tasks assigned per worker in round-t is given
by `t = T + max(dxy−γtλ e, 0), where γt is the number of results of mini-tasks corresponding to
job-(t − T ) received by master from all the previous rounds prior to round-t. The first mini-task
corresponding to job-(t − T ) gets assigned in round-(t − T ). As per the straggler model, in any
sliding window of W = T + 1 rounds, the workers face at most N straggling rounds in total. For the
T = W − 1 rounds in the range [t− T : t− 1], let there be N − δ1 straggling rounds in total, for
some δ1 ≥ 0. Hence, from the P (W − 1) mini-tasks corresponding to job-(t−T ) assigned in rounds
[t−T : t−1], the master must have received results of P (W−1)−N+δ1 mini-tasks prior to round-t.
Thus γt = P (W − 1)−N + δ1 and we have `t = T + max(dxy−γtλ e, 0) = T + max(dP−δ1P e, 0) ≤
T + 1 = W . If γt ≥ xy, the master already has enough results of mini-tasks corresponding to
job-(t − T ), hence no mini-task corresponding to job-(t − T ) has to be assigned in round-t and
`t will be equal to T . If γt < xy, `t will be equal to T + 1 and each worker will be having one
mini-task corresponding to job-(t− T ). As per the straggler model, in round-t, there can be at most
δ1 stragglers. Hence, the master will receive at least P − δ1 more mini-task results corresponding to
job-(t−T ) in round-t. Thus, in total, master will receive at least P (W −1)−N + δ1 +P − δ1 = xy
mini-tasks corresponding to job-(t − T ) from all the rounds [t − T : t] and hence, job-(t − T )
can be successfully finished after round-t. As `t ≤ W , we have a normalized task load of at most
W
xy = W

PW−N , which matches (2).

Optimality under bursty straggler model Let B < W and parameters x, y, λ, T of the DIP
coding scheme be such that xy = P (W − 1 +B)−Bε, λ = P, T = W − 2 +B. In an analogous
manner, it can be argued that the normalized task load matches (3).

12



3.3.2 Optimality of IDIP scheme

Consider the arbitrary straggler model and the associated IDIP scheme presented in Section 3.2.3.
Clearly, by design, IDIP scheme is resilient against any straggler pattern conforming to the (N,W )-
arbitrary straggler model. The number of mini-tasks assigned to each worker is nN and normalized
task load is nN

kN
, which matches (2). The optimality of IDIP scheme for bursty straggler model (see

Remark 3.3) can also be shown in a similar manner.

4 Numerical results
In this section, we analytically compare the performance of our two schemes with the polynomial
coding scheme. We consider in this section, a probabilistic, i.i.d. straggler model, i.e., any worker
in any given round will be a straggler with probability δ. We make the simplifying assumption that
for a normalized task load L(t) in round-t, a non-straggler takes τL(t) seconds to finish the task.
Conversely, a straggler takes ατL(t) seconds to finish the task (α > 1). As randomness in this
system is occurring only due to the straggler model, we set µ = 0 (the parameter used by master
to detect stragglers in each round). Let RJ denote the time required to complete J jobs. We have
R̂ , limJ→∞

E[RJ ]
Jτ .

4.1 Uncoded scheme

In this scheme, no coding is performed while generating input matrix-pairs for mini-tasks. For t ∈
[1 : J ], let rows of each X(t) ∈ Rm×n (similarly, columns of each Y (t) ∈ Rn×p) be divided into x
subchunks {X(t; 1), X(t; 2), . . . , X(t;x)} (similarly, y subchunks {Y (t; 1), Y (t; 2), . . . , Y (t; y)}),
where xy = P , the total number of workers. In the beginning of round-t, master will communicate
the subchunks {X(t; i), Y (t; j)} to worker-((i − 1)y + j), where 1 ≤ i ≤ x, 1 ≤ j ≤ y. Each
worker-((i− 1)y + j) computes X(t; i) ∗ Y (t; j) and returns this matrix-product to the master. The
master can compute X(t) ∗ Y (t) when it receives results from all workers. Here, normalized task
load L(t) = 1

xy = 1
P .

Proposition 1. We have:

R̂uncoded
α,P,δ =

αpuncoded
P,δ + (1− puncoded

P,δ )

P
,

where puncoded
P,δ = 1− (1− δ)P .

Proof. Note that puncoded
P,δ is the probability that at least one of the workers is a straggler in any given

round-t, t ∈ [1 : J ]. As master requires results from all the workers in round-t to complete job-t, the
duration rt of round-t is distributed as:

rt =

{
τ
P , w.p. 1− puncoded

P,δ
ατ
P , w.p. puncoded

P,δ

.

Thus, we have:

E[RJ ] = E[

J∑
t=1

rt] = JE[rt] = Jτ
αpuncoded

P,δ + (1− puncoded
P,δ )

P
,

and the proof follows.

4.2 Polynomial coding scheme

For t ∈ [1 : J ], consider the polynomials Xt(Θ) ,
∑x
i′=1X(t; i′)Θy(i′−1), Yt(Θ) ,∑y

j′=1 Y (t; j′)Θj′−1. In the beginning of round-t, master transmits (Xt(Θ)|Θ=θj,t ,Yt(Θ)|Θ=θj,t) to
each worker-j, j ∈ [1 : P ]. Here, {θj,t}Pj=1 are P distinct evaluation points drawn from R. Worker-j
attempts to compute Xt(Θ)|Θ=θj,t ∗ Yt(Θ)|Θ=θj,t . Owing to the algebraic properties of Xt(Θ) and
Yt(Θ), master can compute X(t) ∗ Y (t) via a decoding step, if it receives results from any xy < P

workers. Hence, the scheme can tolerate S , (P − xy) stragglers. As Xt(Θ)|Θ=θj,t ∈ Rm
x ×n and

Yt(Θ)|Θ=θj,t ∈ Rn×
p
y , normalized task load L(t) = 1

xy = 1
P−S .

13



Proposition 2. We have:

R̂poly
α,S,P,δ =

αppoly
S,P,δ + (1− ppoly

S,P,δ)

P − S
,

where ppoly
S,P,δ ,

∑P
i=S+1

(
P
i

)
δi(1− δ)P−i.

Proof. We begin with noting that ppoly
S,P,δ is the probability that there are at least S + 1 stragglers in

any given round-t, t ∈ [1 : J ]. The master requires results from P −S workers to compute the matrix
product X(t) ∗ Y (t). Thus, the duration rt of round-t is distributed as:

rt =

{
τ

P−S , w.p. 1− ppoly
S,P,δ

ατ
P−S , w.p. ppoly

S,P,δ

.

Hence:

E[RJ ] = E[

J∑
t=1

rt] = JE[rt] = Jτ
αppoly

S,P,δ + (1− ppoly
S,P,δ)

P − S
,

and the proof follows.

4.3 IDIP coding scheme

Here, we study the performance of the IDIP coding scheme designed for the (N,W )-arbitrary
straggler model, although the stragglers are sampled from an i.i.d. model. Recall that the IDIP scheme
is resilient against upto N stragglers in any sliding window consisting of W consecutive rounds.

Proposition 3. We have:

R̂IDIP
α,N,W,P,δ ≤

αpIDIP
N,W,P,δ + (1− pIDIP

N,W,P,δ)

P − N
W

,

where pIDIP
N,W,P,δ ,

∑PW
i=N+1

(
PW
i

)
δi(1− δ)PW−i.

Proof. Let t ∈ [1 : J + T ], j ∈ [1 : P ]. Recall the waiting strategy employed by master (Section
3.2.3), if the actually experienced straggler pattern does not conform to the (N,W )-arbitrary straggler
model in any round-t. As we assume no randomness in processing times across workers, the waiting
strategy simplifies as follows. After τL(t) seconds into round-t, if straggler pattern from rounds
[1 : t] does not conform to the (N,W )-arbitrary straggler model, the master will wait for all the
remaining workers to return their mini-task results (i.e., round-t will have duration rt = ατL(t)). Let
Mj(t) be an indicator function taking value 1 if and only if worker-j is a straggler after τL(t) seconds
into round-t. Because of the i.i.d. straggler model, Mj(t) = 1 with probability δ (independently for
each j, t). Note that master will be forced to wait in round-t only if

∑t
i=t−T

∑P
j=1Mj(i) > N . Let

pwait(t) denote the probability that master will wait in round-t. We have:

pwait(t) ≤ Pr


t∑

i=t−T

P∑
j=1

Mj(i) > N


=

PW∑
i=N+1

(
PW

i

)
δi(1− δ)PW−i

, pIDIP
N,W,P,δ. (4)

Clearly, the duration rt of round-t satisfies:

rt =

{
τL(t), w.p. 1− pwait(t)

ατL(t), w.p. pwait(t)
(5)

14



From the design of the IDIP scheme, we have:

L(t) ≤ W

WP −N
. (6)

We have an inequality in (6), as some of the mini-tasks (among the total W mini-tasks per worker in
each round-t of the IDIP scheme) might be trivial mini-tasks. Trivial mini-tasks do not contribute
towards processing time and computational load. Hence, the RHS of (6) is a worst-case estimate of
normalized task load. We now have:

E[RJ ] = E[

J+T∑
t=1

rt]

(a)
= E[

J+T∑
t=1

τ
(1− pwait(t)) + αpwait(t)

β
L(t)]

(b)

≤ (J + T )τ
αWpIDIP

N,W,P,δ +W (1− pIDIP
N,W,P,δ)

WP −N
,

where (a) follows from (5), (b) follows from (4) and (6). Hence, R̂IDIP
α,N,W,P,δ = limJ→∞

E[RJ ]
Jτ ≤

αpIDIP
N,W,P,δ+(1−pIDIP

N,W,P,δ)

P− N
W

.

In order to compare R̂IDIP
α,N,W,P,δ with R̂poly

α,S,P,δ, set N = SW . The probability that there are more
than N straggling rounds across P workers in W consecutive rounds is given by pIDIP

N,W,P,δ. By
pigeonhole principle, at least one round will now have more than S stragglers. The probability that
a given round has more than S stragglers is given by ppoly

S,P,δ. Thus pIDIP
N,W,P,δ ≤ ppoly

S,P,δ and hence,

R̂IDIP
α,N,W,P,δ ≤ R̂poly

α,S,P,δ. In this case, the worst-case normalized task load for both the schemes is
given by W

WP−N = W
WP−SW = 1

P−S .

4.4 DIP coding scheme

In the analysis of DIP scheme, we consider two regimes; (i) infinite T and (ii) finite T .

4.4.1 Unconstrained delay (T =∞)

Let β = xy, which is the total number of mini-tasks needed for completing each job. When T =∞,
the DIP scheme described in Section 3.1 simplifies to the following. For t ∈ [1 :∞] and l ∈ [1 :∞],
the l-th mini-task of any worker-j (j ∈ [1 : P ]) in round-t corresponds to job-(t− l + 1). As only
jobs in the range [1 : J ] are non-trivial, even though the range of l varies over [1 :∞], only a finite
number of mini-tasks will be non-trivial. The parameter λ is inactive when T =∞ (we simply set
λ ,∞ to emphasize that it is inactive). Clearly, decoding of job-i (i ∈ [1 : J ]) happens when master
collects β mini-task results corresponding to job-i. The expected number of rounds required to finish
processing a job (denoted by fβ,P,δ), as we will see, is a finite quantity (also, see Fig. 8). Thus,
despite setting T =∞, each job will be finished in finite number of rounds.

Let C(t) denote the number of workers who return results of all the mini-tasks assigned to them in
round-t. Let the number of non-stragglers in round-t be Ŝ(t). If Ŝ(t) 6= 0, we have C(t) = Ŝ(t).
However, if Ŝ(t) = 0, i.e., if all the workers in round-t are stragglers, all of them will be incurring
ατL(t) seconds to finish the mini-tasks assigned to them. As master identifies stragglers by comparing
the processing times of workers with respect to the fastest worker, master will receive mini-task
results from every worker. Thus, when Ŝ(t) = 0, we have C(t) = P . Clearly, C(t) is distributed as:

P[C(t) = k] , qk =

{(P
k

)
(1− δ)kδP−k, if 1 ≤ k ≤ P − 1(

P
0

)
δP +

(
P
P

)
(1− δ)P , if k = P

, (7)

where P[E] denotes probability of some event E. For i ∈ [1 : J ], let ti denote the number of rounds
taken to complete job-i. Since, C(t) workers return all their mini-task results in round-t, ti is the

15



0.0 0.2 0.4 0.6 0.8 1.0
2

3

4

5

6

7

8

9

10

f
,

,P

= 6
= 10
= 20

Figure 8: Let P = 4. We illustrate here how fβ,δ,P varies for different values of β and δ.

smallest t∗i satisfying:
i+t∗i−1∑
t=i

C(t) ≥ β.

We are slightly conservative here as even though stragglers cannot provide all the mini-task results, it
can still provide some mini-task results, which can perhaps contribute towards making ti smaller. Let
fβ,δ,P , E[ti]. It can be easily verified that f1,δ,P = 1. We will now recursively compute the value
of fβ,δ,P . First, let us assume that β ≤ P . If C(i) ≥ β, we will have ti = 1. Thus, we have:

fβ,δ,P =

β−1∑
k=1

qk(1 + fβ−k,δ,P ) +

P∑
k=β

qk = 1 +

β−1∑
k=1

qkfβ−k,δ,P . (8)

For the case β > P , job-i clearly cannot be finished in one round and ti ≥ 2. Here, we have:

fβ,δ,P =

P∑
k=1

qk(1 + fβ−k,δ,P ) = 1 +

P∑
k=1

qkfβ−k,δ,P . (9)

Combining (8) and (9),

fβ,δ,P =

{
1 +

∑β−1
k=1 qkfβ−k,δ,P , if β ≤ P,

1 +
∑P
k=1 qkfβ−k,δ,P , if β > P.

(10)

Let `t denote the number of non-trivial mini-tasks assigned per worker in round-t. Hence, the
normalized task load (considering non-trivial mini-tasks alone) per worker in round-t, L(t) = `t

β . In
the case of T =∞, the only way round-t will have duration α`tτ

β is when all the workers in round-t
are stragglers. Let pall

δ,P , δP be the probability that all the workers in a given round-t are stragglers.
The duration rt of round-t satisfies:

rt =

{
`tτ
β , w.p. 1− pall

δ,P ,
α`tτ
β , w.p. pall

δ,P .
(11)

As each non-trivial mini-task corresponds to some job-i, based on double counting, we have:
∞∑
t=1

`t =

J∑
i=1

ti. (12)

Now, we can calculate the average run-time for finishing J jobs as:

E[RJ ] = E[

∞∑
t=1

rt] = E[τ
(1− pall

δ,P ) + αpall
δ,P

β

∞∑
t=1

`t]

= τ
(1− pall

δ,P ) + αpall
δ,P

β

J∑
i=1

E[ti]

=
Jτfβ,δ,P

β
((1− pall

δ,P ) + αpall
δ,P ). (13)

16



It follows that:
R̂DIP
α,β,T=∞,λ=∞,P,δ =

fβ,P,δ
β

(αpall
δ,P + (1− pall

δ,P )).

The expected number of workers E[C(t)] returning their mini-tasks in round-t is given by
P (1− δ) + PδP . Hence, fβ,P,δ can be approximated as β

P (1−δ)+PδP . Thus, R̂DIP
α,β,T=∞,λ=∞,P,δ u

αpall
δ,P+(1−pall

δ,P )

P (1−δ+δP )
. Note that this quantity is comparable to the naive lower bound R̂poly

α,S,P,δ ≥
αδP+(1−δP )

P obtained via minimizing the numerator (S = P − 1) and maximizing the denomi-
nator (S = 0) of R̂poly

α,S,P,δ. This intuitively suggests that the DIP coding scheme can potentially
perform better than the polynomial coding scheme (Fig. 9 ascertains our intuition).

4.4.2 Constrained delay (T <∞)

In this setting, each job-i, i ∈ [1 : J ], will be initiated in round-i and has to be finished before the
end of round-(i+ T ). Recall from Algorithm 1 that for t ∈ [1 : J + T ], γ′t denotes the number of
remaining mini-task results corresponding to job-(t− T ) that need to be obtained during round-t, in
order to finish job-(t− T ) in round-t. As job-i′ is trivial whenever i′ /∈ [1 : J ], we have γi′+T , 0.
Let C̃(t) denote the number of workers who return results of all the mini-tasks assigned to them
in round-t. Note that distribution of C̃(t) will be different from that of C(t) defined in (7), as here,
the master can potentially wait for more workers to return all their mini-task results in round-t as
job-(t− T ) has to be finished by the end of round-t. Hence, we have C̃(t) ≥ C(t). We have:

γ′t = max

0, β −
t−1∑

j=t−T
C̃(j)

 , (14)

where β , xy. Let qt denote the number of jobs in the range [t − T : t] which have less than
β corresponding mini-tasks processed in the beginning of round-t. Let `t denote the number of
non-trivial mini-tasks assigned to each worker in round-t. If master has already received β or more
mini-task results corresponding to job-(t− T ) before round-t, we have `t = qt. Otherwise, we have
`t = qt − 1 +

⌈
γ′t
λ

⌉
. It is straightforward to note that the following inequality holds in either case:

`t ≤ qt +
γ′t
λ
. (15)

We have:

E[γ′t] = E

max

0, β −
t−1∑

j=t−T
C̃(j)


≤ E

max

0, β −
t−1∑

j=t−T
C(j)


=

β∑
k=0

k.P

 t−1∑
j=t−T

C(t) = β − k


, LT,β,δ,P . (16)

Master waits for the stragglers to return their mini-task results in round-t only if γ′t > 0 and there are
more than P − λ stragglers in round-t. Let pλ,P,δ(t) denote the probability of master waiting for a
straggler in round-t. Thus, we have:

pλ,P,δ(t) ≤
λ−1∑
j=0

(
P

j

)
(1− δ)jδP−j , p∗λ,P,δ. (17)

The duration rt of round-t clearly satisfies:

rt =

{
`tτ
β , w.p. 1− pλ,P,δ(t),
α`tτ
β , w.p. pλ,P,δ(t).

17



0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R

uncoded
poly
DIP (T=3)
DIP (T= )
IDIP (T=3)

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R

uncoded
poly
DIP (T=4)
DIP (T= )
IDIP (T=4)

(b)

Figure 9: A plot of δ vs. R̂. In Fig. (a) and Fig. (b), we consider {α = 5, P = 4, T = W − 1 = 3}
and {α = 10, P = 6, T = W − 1 = 4}, respectively. For given {α, P, δ}, we minimize each of
R̂poly
α,S,P,δ , R̂DIP

α,β,∞,∞,P,δ , R̂DIP
α,β,T,λ,P,δ , R̂IDIP

α,N,W,P,δ (upper bound) with respect to {S ≥ 1}, {β ≥ P},
{β ≥ P, λ} and {N ≥ 1}, respectively.

The expected processing time for (J + T ) rounds is now given by:

E[RJ ] =

J+T∑
t=1

E[rt] =

J+T∑
t=1

E[
`tτ

β
(αpλ,P,δ(t) + (1− pλ,P,δ(t)))]

(a)

≤
αp∗λ,P,δ + (1− p∗λ,P,δ)

β
τ

J+T∑
t=1

(
E[qt] + E[

γ′t
λ

]

)
(b)

≤
αp∗λ,P,δ + (1− p∗λ,P,δ)

β
τ
( J+T∑
t=1

E[qt] + (J + T )
LT,β,δ,P

λ

)
, (18)

where (a) follows from (15) and (17), (b) follows from (16). Let t′j denote the number of rounds
required to complete job-j (j ∈ [1 : J ]). It can be easily verified that:

J∑
j=1

t′j =

J+T∑
t=1

qt. (19)

Using (18) and (19) we have:

E[RJ ]≤
αp∗λ,P,δ + (1− p∗λ,P,δ)

β
τ
( J∑
j=1

E[t′j ] + (J + T )
LT,β,δ,P

λ

)
. (20)

Note that in this scheme, compared to the unconstrained delay scenario, each job has to be finished
with a delay of at most T rounds. Hence, we have:

E[t′j ] ≤ min(T + 1, fβ,δ,P ), (21)

where fβ,δ,P is as given by (10). Substituting (21) in (20), we have:

E[RJ ]≤
αp∗λ,P,δ + (1− p∗λ,P,δ)

β
Jτ

(
min(T + 1, fβ,δ,P ) + (1 +

T

J
)
LT,β,δ,P

λ

)
,

and consequently:

R̂DIP
α,β,T,λ,P,δ ≤

αp∗λ,P,δ + (1− p∗λ,P,δ)
β

(
min(T + 1, fβ,δ,P ) +

LT,β,δ,P
λ

)
.

18



𝑃𝐺

1 − 𝑃𝐺

𝐵1𝐺

𝑃𝐵

𝐵2

1 − 𝑃𝐵 1 − 𝑃𝐵

𝑃𝐵

(a)

2 4 6 8 10 12 14
Burst Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

No
rm

al
ize

d 
Co

un
t

Histogram of Burst Lengths

(b)

Figure 10: In Fig. (a), we show the transition probabilities of the Fritchman straggler model. In
Fig. (b), we show a histogram of burst lengths seen by the model (PG = 0.2, PB = 0.5).

5 Experimental results
In this section, we evaluate the performance of proposed schemes by training 5 neural network (NN)
models concurrently (with learning rates {0.1, 0.15, 0.2, 0.25, 0.3}). Algorithms are implemented
using mpi4py [19] and NumPy on a local university testbed. We use four virtual machines with 8GB
of RAM and 4 vCPUs as workers and one more machine with 16GB of RAM and 8 vCPUs as the
master. The master distributes jobs, keeps track of stragglers, and decodes the job results. During
the wait-time to obtain results from workers in each round, master performs decoding of results
from previous rounds and any necessary encoding for the next round. Master performs encoding and
decoding at the same time on multiple vCPUs. Our experiments show that average encoding/decoding
times are smaller than average processing times (denoted by R , RJ

J ). Consequently, the effect
encoding/decoding times have in our experiments is not significant.

Each NN model is fully connected with two hidden layers of size 3000 followed by a ReLU activation.
Training is performed for 250 iterations over MNIST dataset with a batch size of 1024 using SGD.
We break down each iteration of training into 8 sequential matrix-matrix multiplication jobs (job
loads vary across these 8 jobs); 3 and 5 jobs respectively for forward and backward passes. The jobs
belonging to the 5 NN models are interleaved so that job-i belongs to model ((i − 1) mod 5) + 1.
Hence, input matrices for job-i is dependent on the result of job-(i − 5). It takes T + 1 rounds
(worst-case) to deliver mini-task results corresponding to each job and then, one additional round for
decoding. Thus, T is set to 3. For the 5 NN models, we have in total J = 250 ∗ 5 ∗ 8 = 10000 jobs.

We run the experiments based on the i.i.d. straggler model, as well as the Fritchman model, which
models presence of stragglers in bursts. In order to simulate stragglers, we make the to-be-stragglers
perform their tasks α = 5 times. We select best-performing code parameters for each straggler
model using a simplified first order simulation. For the i.i.d. model, we set the straggler probability
δ = 0.3. The code parameters used are (i) polynomial: {S = 2, x = 2, y = 1} (ii) DIP: {x =
2, y = 3, T = 3, λ = 1, µ = 0.25} (iii) IDIP: {x = 2, y = 3, T = 3, N = 10,W = 4, µ = 0.25}
(the IDIP scheme here is the arbitrary straggler variant). For the Fritchman model, we consider
three states (see Fig. 10), where a worker will be a straggler in round-t iff it is in either state
B1 or B2. The state transitions happen to every worker in the beginning of each round, with
transition probabilities PG = 0.2, PB = 0.5. The code parameters used here are (i) polynomial:
{S = 2, x = 2, y = 1} (ii) DIP: {x = 2, y = 2, T = 3, λ = 2, µ = 0.25} (iii) IDIP: {x = 2, y =
6, T = 3, B = 2, ε = 2,W = 3, µ = 0.25} (the IDIP scheme here is the bursty straggler variant).
A performance summary is provided in Table 1. Fig. 11 clearly depicts the improvement newly
proposed schemes provide over the polynomial coding scheme. DIP, IDIP schemes register reductions
of 36% (32%) and 24% (41%), respectively, in the average processing time (R) over polynomial
codes, for i.i.d. (Fritchman) straggler model. Note that experimental results are in agreement with
the numerical results, which assume the i.i.d. straggler model and predict superior performance of
DIP scheme over both IDIP and polynomial schemes. For the Fritchman model, IDIP emerges to be
the best-performing scheme. The complete set of codes used for these experiments, are available at:
https://github.com/erfanhss/SequentialCodedComputing.

19



0 2000 4000 6000 8000 10000
Round

0

500

1000

1500

2000

2500

3000
Ti

m
e

uncoded
poly
DIP
IDIP

(a) i.i.d. straggler model

0 500 1000 1500 2000 2500 3000
Time

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

Test Loss Model 0
uncoded
poly
DIP
IDIP

(b) i.i.d. straggler model

0 2000 4000 6000 8000 10000
Round

0

1000

2000

3000

4000

5000

6000

Ti
m

e

uncoded
poly
DIP
IDIP

(c) Fritchman model

0 1000 2000 3000 4000 5000 6000
Time

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

Test Loss Model 0
uncoded
poly
DIP
IDIP

(d) Fritchman model

Figure 11: Experimental results for training neural networks. Fig. (a) & (c): round vs. cumulative
processing time; Fig. (b) & (d): time vs. test loss for NN model-1.

0 25 50 75 100 125 150 175 200
Iteration

0

10

20

30

40

Lo
ad

 (1
08 )

uncoded
poly
DIP
IDIP

(a) i.i.d. straggler model

0 25 50 75 100 125 150 175 200
Iteration

0

20

40

60

80

Lo
ad

 (1
08 )

uncoded
poly
DIP
IDIP

(b) Fritchman model

Figure 12: Experimental results for training neural networks. Round (first 200) vs. task load. The task
loads vary across rounds for all schemes, as job loads are not the same across rounds. In particular,
the load-variation can be seen to be amplified for the DIP scheme (due to its inherent variable load
nature) in Fig. (b).

20



Table 1: Performance summary for two straggler models, in terms of encoding/decoding times and R.

(a) i.i.d. model

Scheme Enc. time Dec. time R

Uncoded 0 0 0.3
Poly 0.076 0.077 0.152
DIP 0.091 0.082 0.096
IDIP 0.052 0.078 0.115

(b) Fritchman model

Scheme Enc. time Dec. time R

Uncoded 0 0 0.574
Poly 0.045 0.187 0.482
DIP 0.065 0.206 0.327
IDIP 0.024 0.193 0.281

Remark 5.1 (Applicability of the scheme in general). Even though we discuss the specific application
of training multiple NN simultaneously, our framework suits well in any situation where the master is
interested in finishing quickly a collection of multiple independent sequences of matrix multiplications
(dependencies are permitted within a sequence). For instance, solving multiple systems of linear
equations through an iterative algorithm such as the Jacobi method.

A Proof of Theorem 3.1
We assume that either m ≤ n or p ≤ n (the authors of [3] also make the same assumption), so that
the matrix productX(t)∗Y (t) is not trivially rank-deficient (which degenerates the problem). We are
interested in the exact recovery of the product X(t) ∗ Y (t), which can take any value in Rm×p (say b
bits for each real value, owing to the finite precision). Thus, finishing each job-t, i.e., computing all
the entries of X(t) ∗ Y (t), requires master to have access to at least mpb bits.

Let N = N1W + N2, where 0 ≤ N2 < W . Consider the periodic straggler pattern depicted in
Fig. 13, which conforms to the (N,W )-arbitrary straggler model. Let L denote the maximum of
normalized task loads across all rounds [1 : J + T ]. Note that L is of the form `′

xy , where `′ is the
number of mini-tasks assigned to each worker for the round with the maximum normalized task load.
Each mini-task result is a matrix ∈ R

m
x ×

p
y , which contains mp

xy b bits. Hence, a worker with `t ≤ `′
mini-tasks in round-t can transfer at most `′mpxy b = Lmpb bits to the master, when it finishes all the
mini-tasks assigned to it.

For some i ≥ 1, consider the first iW rounds. A total of iW jobs are initiated in these rounds. In
order to finish this many jobs, the master needs access to at least iWmpb bits. The total number
of bits returned by the workers in these iW rounds is at most i(PW −N)Lmpb (as stragglers are
assumed to provide no results as per the straggler model). The amount of pending information
which is required to finish all these iW jobs is thus at least max({iW − iPWL+ iNL, 0})mpb =
i(PW − N) max({L∗ − L, 0})mpb bits. Assume that L < L∗. Even if there are no stragglers
from round-(iW + 1) onwards, the master will still take at least

⌈
i(PW−N)(L∗−L)

PL

⌉
more rounds

to accumulate i(PW −N)(L∗ − L)mpb bits. As it scales with i, for sufficiently large i, we have⌈
i(PW−N)(L∗−L)

PL

⌉
> T and the delay constraint T is not met. Thus, our assumption does not hold

and L ≥ L∗.

B Proof of Theorem 3.2
Consider the straggler pattern depicted in Fig. 14, which conforms to the (B, ε,W )-bursty straggler
model. Each row in the figure corresponds to a worker, whereas each column corresponds to a round.
First ε workers are experiencing a periodic pattern of B consecutive straggling rounds followed by a
guard interval ofW−1 rounds. Let L denote the maximum of normalized task loads across all rounds.
For some i ≥ 1, consider the first i(B +W − 1) rounds. A total of i(B +W − 1) jobs are initiated
in these rounds. The total number of bits returned by the workers in these i(B +W − 1) rounds is
i(P (B+W − 1)− εB)Lmpb (as stragglers are assumed to provide no results as per the model). The
amount of pending information required by the master to finish all these i(B+W − 1) jobs is thus at
least max({i(B+W−1)−iP (B+W−1)L+iBεL, 0})mpb = i(P (B+W−1)−Bε) max({L∗−
L, 0})mpb bits. Assume that L < L∗. Even if there are no stragglers from round-(i(B+W −1)+1)

onwards, the master will still require at least
⌈
i(P (B+W−1)−Bε)(L∗−L)

PL

⌉
more rounds to access these

21



….Worker 1

Worker 𝑁1

Worker (𝑁1+ 1)

Worker 𝑃

𝑁2

𝑊

Round

1 2

….

….

….

…
.

…
.

𝑁2

….

….

….

….

….

𝑁2

𝑊

….

….

….

…
.

…
.

….

….

….

….

….

….

….

….

…
.

…
.

…
.

𝑁2+ 1 𝑊 𝑊+ 1 𝑊 +𝑁2 2𝑊

Figure 13: A periodic straggler pattern conforming to the (N,W )-arbitrary straggler model.

….

....

….

….

....

…
.

Worker 1

Worker 𝜖

Worker (𝜖 + 1)

Worker 𝑃

𝐵 𝑊 − 1

Round

1 2

…. ….

…. …. ….

…. …. ….

…. …. ….

…
.

…
.

…
.

…
.

…
.

…
.

…
.

𝐵

𝐵 𝐵 + 1 𝐵 +𝑊 2𝐵 +𝑊

Figure 14: A periodic straggler pattern conforming to the (B, ε,W )-bursty straggler model.

many bits. As it scales with i, for sufficiently large i, we have
⌈
i(P (B+W−1)−Bε)(L∗−L)

PL

⌉
> T .

Hence, the delay constraint T is clearly not met. Thus, L ≥ L∗ when J →∞ and T <∞. For the
special case of B = W , consider the straggler pattern shown in Fig. 15. Following similar arguments
as above, it can be inferred that L ≥ L∗.

C Additional experiments with constant job load
In this section, we describe results of some additional experiments we conducted to evaluate the
performance of our schemes, when job loads are of constant size. We take the total number of jobs
(J) to be 300. All the matrices {X(i)}, {Y (i)} have dimension 4000× 4000. We use here the same
experimental setup as in Sec. 5 with four virtual machines. Stragglers are produced based on the
Gilbert-Elliott (GE) model. GE model is nothing but a Fritchman model with two states (see Fig.
16). A worker here will be a straggler in round-t iff it is in state B. The state transitions happen to
every worker in the beginning of each round, with transition probabilities PG = PB = 0.2. The
code parameters used here are (i) polynomial: {S = 2, x = 2, y = 1} (ii) DIP: {x = 2, y = 2, T =
4, λ = 3, µ = 0.25} (iii) IDIP: {x = 2, y = 7, T = 4, B = 2, ε = 3,W = 4, µ = 0.25} (the IDIP
scheme here is the bursty straggler variant). A performance summary is provided in Table 2. In terms
of average processing time, DIP and IDIP schemes achieve reductions of 57% and 62%, respectively,
over polynomial codes.

22



….Worker 1

Worker 𝜖

Worker (𝜖 + 1)

Worker 𝑃

𝑊

Round

1 2

….

….

….

…
.

…
.

𝑊

….

𝑊

𝑊+ 1

….

….

….

…
.

…
.

2𝑊

….

….

….

….

…
.

…
.

Figure 15: A straggler pattern conforming to the (B, ε,W )-bursty straggler model, when B = W .

𝑃𝐺

1 − 𝑃𝐺

𝐺 𝐵

1 − 𝑃𝐵

𝑃𝐵

Figure 16: Transition probabilities of the Gilbert-Elliott straggler model.

Table 2: Performance summary in terms of encoding/decoding times and R.
Scheme Enc. time Dec. time R

Uncoded 0 0 9.33
Poly 0.32 1.36 8.40
DIP 0.38 2.45 3.60
IDIP 0.16 1.18 3.12

References
[1] K. Huang and J. A. Abraham, “Algorithm-Based Fault Tolerance for Matrix Operations,” IEEE

Trans. Computers, vol. 33, no. 6, pp. 518–528, 1984.

[2] K. Lee, M. Lam, R. Pedarsani, D. S. Papailiopoulos, and K. Ramchandran, “Speeding Up
Distributed Machine Learning Using Codes,” IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 1514–
1529, 2018.

[3] Q. Yu, M. A. Maddah-Ali, and S. Avestimehr, “Polynomial Codes: an Optimal Design for High-
Dimensional Coded Matrix Multiplication,” in Proc. Annual Conference on Neural Information
Processing Systems, pp. 4403–4413, 2017.

[4] S. Wang, J. Liu, and N. B. Shroff, “Coded Sparse Matrix Multiplication,” in Proc. International
Conference on Machine Learning, ICML, vol. 80, pp. 5139–5147, PMLR, 2018.

[5] M. Fahim and V. R. Cadambe, “Numerically Stable Polynomially Coded Computing,” in Proc.
IEEE International Symposium on Information Theory, ISIT, pp. 3017–3021, IEEE, 2019.

[6] P. Soto, J. Li, and X. Fan, “Dual Entangled Polynomial Code: Three-Dimensional Coding for
Distributed Matrix Multiplication,” in Proc. International Conference on Machine Learning,
ICML, vol. 97, pp. 5937–5945, PMLR, 2019.

23



[7] A. Ramamoorthy, L. Tang, and P. O. Vontobel, “Universally Decodable Matrices for Distributed
Matrix-Vector Multiplication,” in Proc. IEEE International Symposium on Information Theory,
ISIT, pp. 1777–1781, IEEE, 2019.

[8] A. B. Das and A. Ramamoorthy, “Distributed Matrix-Vector Multiplication: A Convolutional
Coding Approach,” in Proc. IEEE International Symposium on Information Theory, ISIT,
pp. 3022–3026, IEEE, 2019.

[9] A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan, “Random Khatri-Rao-Product
Codes for NumericallyStable Distributed Matrix Multiplication,” in Proc. Allerton Conf. on
Comm., Contr., and Comp., pp. 253–259, 2019.

[10] A. Mallick, M. Chaudhari, and G. Joshi, “Fast and Efficient Distributed Matrix-vector Multipli-
cation Using Rateless Fountain Codes,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP, pp. 8192–8196, IEEE, 2019.

[11] S. Kiani, N. S. Ferdinand, and S. C. Draper, “Hierarchical coded matrix multiplication,” in Proc.
Canadian Workshop on Information Theory, CWIT, pp. 1–6, IEEE, 2019.

[12] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded Computation Over
Heterogeneous Clusters,” IEEE Trans. Inf. Theory, vol. 65, no. 7, pp. 4227–4242, 2019.

[13] C. Yang, R. Pedarsani, and A. S. Avestimehr, “Timely Coded Computing,” in Proc. IEEE
International Symposium on Information Theory, ISIT, pp. 2798–2802, IEEE, 2019.

[14] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. R. Cadambe, and P. Grover, “On the Optimal
Recovery Threshold of Coded Matrix Multiplication,” IEEE Trans. Inf. Theory, vol. 66, no. 1,
pp. 278–301, 2020.

[15] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler Mitigation in Distributed Matrix
Multiplication: Fundamental Limits and Optimal Coding,” IEEE Trans. Inf. Theory, vol. 66,
no. 3, pp. 1920–1933, 2020.

[16] A. Ramamoorthy, A. B. Das, and L. Tang, “Straggler-resistant distributed matrix computation
via coding theory,” CoRR, vol. abs/2002.03515, 2020.

[17] E. Martinian and C. W. Sundberg, “Burst erasure correction codes with low decoding delay,”
IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2494–2502, 2004.

[18] V. Y. Pan, “How Bad Are Vandermonde Matrices?,” SIAM J. Matrix Anal. Appl., vol. 37, no. 2,
pp. 676–694, 2016.

[19] L. Dalcín, R. Paz, and M. A. Storti, “MPI for Python,” J. Parallel Distributed Comput., vol. 65,
no. 9, pp. 1108–1115, 2005.

24


	Introduction
	System model and summary of results
	System model
	Summary of results

	Coded sequential matrix multiplication schemes
	Diagonally interleaved polynomial (DIP) coding scheme
	An improved coding scheme for specific straggler models
	(N,W)-arbitrary straggler model
	(B,,W)-bursty straggler model
	Improved diagonally interleaved polynomial (IDIP) coding scheme

	Optimality of DIP, IDIP coding schemes under arbitrary, bursty straggler model assumptions
	Optimality of DIP scheme
	Optimality of IDIP scheme


	Numerical results
	Uncoded scheme
	Polynomial coding scheme
	IDIP coding scheme
	DIP coding scheme
	Unconstrained delay (T=)
	Constrained delay (T<)


	Experimental results
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Additional experiments with constant job load

