
Supplementary Material: Appendices

A Can the transition to linearity be explained by model rescaling?

The work [5] introduced the term “lazy training” and proposed a mechanism for the constancy of the
tangent kernel based on rescaling the model. While, as shown in [5], model rescaling can lead to lazy
training, as we discuss below, it does not explain the phenomenon of constant tangent kernel in the
setting of the original paper [10] and consequent works.

Specifically, [5] provides the following criterion for the near constancy of the tangent kernel (using
their notation):

κf (w0) := ‖f(w0)− y‖︸ ︷︷ ︸
A

‖D2f(w0)‖
‖Df(w0)‖2︸ ︷︷ ︸

B

� 1, (16)

Here y is the ground truth label, D2f(w0) is the Hessian of the model f at initialization and
‖Df(w0)‖2 is the norm of the gradient, i.e., a diagonal entry of the tangent kernel.

The paper [5] shows that the model f can be rescaled to satisfy the condition in Eq.(16) as follows.
Consider a rescaled model αf with a scaling factor α ∈ R, α > 0. Then the quantity καf becomes

καf (w0) =
1

α
‖αf(w0)− y‖ ‖D

2f(w0)‖
‖Df(w0)‖2

=
∥∥∥f(w0)− y

α

∥∥∥ ‖D2f(w0)‖
‖Df(w0)‖2

. (17)

Assuming that f(w0) = 0 and choosing a large α, forces καf � 1, by rescaling the factor A to be
small, while keeping B unchanged.

While rescaling the model, together with the important assumption of f(w0) = 0, leads to a lazy
training regime, we point out that it is not the same regime as observed in the original work [10] and
followup papers such as [13, 6] and also different from practical neural network training, since we
usually have A = ‖f(w0)− y‖ = Θ(1) in these settings. Specifically:

• The assumption of f(w0) = 0 is necessary for the rescaled models in [5] to have A � 1.
Yet, the networks, such as those analyzed in [10], are initialized so that f(w0) = Θ(1).
• From Eq.(17), we see that rescaling the model f by α is equivalent to rescaling the ground

truth label y by 1/α without changing the model (this can also be seen from the loss function,
cf. Eq.(2) of [5]). When α is large, the rescaled label y/α is close to zero. However, no such
rescaling happens in practice or in works, such as [10, 13, 6]. The training dynamics of the
model with the label y/α does not generally match the dynamics of the original problem
with the label y and will result in a different solution.

Since A = Θ(1), in the NTK setting and many practical settings, to satisfy the criterion in Eq.(16),
the model needs to have B = ‖D2f(w0)‖/‖Df(w0)‖2 � 1. In fact, we note that the analysis of
2-layer networks in [5] uses a different argument, not based on model rescaling. Indeed, as we show
in this work, B is small for a broad class of wide neural networks with linear output layer, due to a
vanishing norm of the Hessian as the width of the network increases.

In summary, the rescaled models satisfy the criterion, κ � 1, by scaling the factor A to be small,
while the neural networks, such as the ones considered in the original work [10], satisfy this criterion
by having B � 1, while A = Θ(1).

B Other Parameterization Strategies

Throughout the paper, our analysis is based on the NTK prameterization [10], under which the
constancy of tangent kernel is originally observed. In this section, we show that different parame-
terization strategies (e.g., LeCun initialization [LeCun et al.]5: w(l)

0;i ∼ N (0, 1/m)) do not change
our conclusions. Specifically, we show that, compared to the NTK prameterization, a different

5LeCun, Yann A and Bottou, Léon and Orr, Genevieve B and Müller, Klaus-Robert,“Efficient backprop”.
In:Neural networks: Tricks of the trade. Springer, 2012, pp. 9-48.
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parameterization strategy only rescales the tangent kernel K and the spectral norm of the Hessian
‖H‖ by the same factor, hence the ratio between tangent kernel K and Hessian spectral norm keeps
the same and ‖H‖ = o(‖K‖) still holds.

Recall that we initialize the parameters W = {w(1),w(2), · · · ,w(L),w(L+1) := v} of the general
form of a deep neural network f , Eq.(7) by a standard Gaussian, i.e. w(l)

i ∼ N (0, 1). If we apply
another parameterization strategy W here, for example, w(l)

i ∼ N (0, σ2
m), where σm can be a

function of m, we can see every w(l)
i = σmw

(l)
i where w(l)

i ∼ N (0, 1).

Hence each layer function becomes

α(l) = φl

(
1

σm
w(l);α(l−1)

)
. (18)

In this case, the gradient of the model f w.r.t. the weights of layer l is

∂f

∂w(l)
=
∂w(l)

∂w(l)

∂f

∂w(l)
=

1

σm

∂f

∂w(l)
. (19)

And by the same reason, the Hessian of the model f w.r.t. the weights of layer l1 and l2 is

∂2f

∂w(l1)∂w(l2)
=

1

σ2
m

∂2f

∂w(l1)∂w(l2)
. (20)

Therefore, it’s easy to see the ratio of the norm of the tangent kernel to the norm of the Hessian keeps
the same:

‖K(W)‖
‖H(W)‖

=
‖ 1
σ2
m
K(W)‖

‖ 1
σ2
m
H(W)‖

=
‖K(W)‖
‖H(W)‖

. (21)

Example: LeCun initialization/parameterization. In many practical machine learning tasks, it
is popular to use the LeCun initialization/parameterization: each individual parameter (W

(l)
0 )ij ∼

N (0, 1
m ), while there is no factor 1/

√
m in the definition of the layer function, e.g., for fully

connected layers
α(l+1) = σ(W (l)α(l)). (22)

In this setting, the factor σm = 1/
√
m. Then, by the analysis above, we see that

‖K‖ = O(m), ‖H‖ = O(
√
m) = o(‖K‖). (23)

It is also interesting to note that, for the parameter change w∗ −w0, the Euclidean norm

‖w∗ −w0‖ = Θ(1/
√
m). (24)

C Experimental Setup

Dataset. We use a synthetic dataset of size N = 60 which contains C = 3 classes. Each data point
(x, y) is sampled as follows: label y is randomly sampled from {0, 1, 2} with equal probability; given
y, x is drawn from the following distribution:

x ∼


N (0, 1), if y = 0;

N (10, 1), if y = 1;

N (−10, 1), if y = 2.

(25)

We encode each yi ∈ {0, 1, 2} by a one-hot vector yi ∈ {0, 1}3. And yi,j means the j-th component
of yi. We use this dataset for all the optimization tasks mentioned below.

C.1 Wide neural networks with non-linear output layers

Neural Networks. In the experiments, we train three different neural networks:
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• Neural network with a linear output layer

f(w, V,b;x) =
1√
m
V σ(wx+ b), (26)

where w ∈ Rm and b ∈ Rm are weights and biases for the first layer and V ∈ R3×m are
the weights for the output layer, and σ(·) is the ReLU activation function.

• Neural network with a softmax-activated (non-linear) output layer

f̃1(w, V,b;x) = Softmax(f(w, V,b;x)); (27)

• Neural network with a swish-activated (non-linear) output layer

f̃2(w, V,b;x) = Swish(f(w, V,b;x)). (28)

Here the swish activation function is defined as Swish(z) = z � (1 + exp(−0.1 · z))−1,
where � is the element-wise multiplication.

Optimization Tasks. We combine the training of networks f and f̃1 together, by optimizing the
following loss function:

L1(w,v,b) = − 1

N

N∑
i=1

C∑
j=1

yi,j · log((f̃1(xi)j). (29)

In this combined training, networks f and f̃1 always have the same parameters during training, and
the difference between f and f̃1 is the non-linearity on the output.

For the swish-activated network f̃2, we minimize the square loss function:

L2(w,v,b) =
1

N

N∑
i=1

‖f̃2(xi)− yi‖2. (30)

We use gradient descent to minimize the loss functions until convergence is achieved (i.e. loss less
than 10−4). To measure the change of tangent kernels, we compute the max (relative) change of
tangent kernel from initialization to convergence: ∆K := supt>0 ‖K(wt)−K(w0)‖F /‖K(w0)‖F .
For each training, we take 10 independent runs and report the average ∆K.

We compare the tangent kernel changes ∆K of f, f̃1 and f̃2, at a variety of network widths, m = 30,
102, 103, 104, 105, 106.

C.2 Wide neural networks with a bottleneck

The Neural Network. In the experiment, we use a fully connected neural network with 3 hidden
layers and a linear output layer. Its second hidden layer, i.e., the bottleneck layer has a width mb,
while the other hidden layers has a width m. Specifically, it is defined as:

f(W;x) =
1√
m
W4σ

(
W3

1√
m
W2σ(W1x)

)
, (31)

where W1 ∈ Rm×1, W2 ∈ Rmb×m, W3 ∈ Rm×mb , W4 ∈ RC×m. Here we use ReLU as activation
functions.

Optimization Tasks. We minimize the cross entropy loss:

L(W) = − 1

N

N∑
i=1

C∑
j=1

yi,j · log((f̃(xi)j), (32)

where we denote Softmax(f) by f̃ . Here, we let the network width m = 104, and investigate on
different bottleneck width mb ∈ {3, 5, 10, 50, 100, 500,1000}.
For each bottleneck width, we use gradient descent to minimize the loss functions until convergence
is achieved (i.e. loss less than 10−4) and compute the max (relative) change of tangent kernel from
initialization to convergence: ∆K := supt>0 ‖K(wt)−K(w0)‖F /‖K(w0)‖F . For each training,
take 10 independent runs and report the average ∆K.
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D Proof for Proposition 2.1

Proof. Recall that the tangent kernel is defined as

Kij(w) = ∇f(w;xi)
T∇f(w;xj), for any inputs xi,xj ∈ Rd. (33)

Linearity of f in w ⇒ constancy of tangent kernel. Since f is linear in w, ∇wf(w;x) is a
constant vector in Rp, for any given input x. By the definition of the tangent kernel, each element
Kij(w) is constant, for any inputs xi,xj .

Constancy of tangent kernel ⇒ linearity of f in w. It suffices to prove for every input xi,
function f(w;xi) : Rp → R is linear in w.

For a constant tangent kernel, each element Kii(w) is constant. Noting that Kii(w) =
‖∇wf(w,xi)‖2, we have ‖∇wf(w,x)‖ is constant in w, for all input x.

The following arguments basically follow the idea from [8] (a more general result was shown in [16]).

To simplify the notation, in the rest of the proof, we hide the argument x, and we use f(w) to denote
f(w;x).

Let ‖∇f(w)‖ = c. Consider the ordinary differential equation (ODE)

dw(t)

dt
= ∇f(w(t)),

where w(0) = w0 ∈ Rp is the initial setting of the parameters. We have

df

dt
= 〈∇f, dw

dt
〉 = c2,

and consequently

f(w(t)) = c2t+ f(w0). (34)

For any t1, t2, since ‖∇f(w)‖ = c, we have

c2|t1 − t2| = |f(w(t1))− f(w(t2))| ≤ c|w(t1)−w(t2)|,

but |w(t1)−w(t2)| = |
∫ t1
t2
‖dw(t)/dt‖dt| = c|t1 − t2|, which indicates

w(t) = t∇f(w0) + w0. (35)

And in the following we show for any v ∈ Rp, if f(v) = f(w0), we have

〈∇f(w0),v −w0〉 = 0. (36)

Given t 6= 0, let c : [0, 1]→ Rp be a differentiable curve joining t∇f(w0) + w0 and v. By Eq. (34)
and Eq. (35), we have

c2|t| = |f(w(t))− f(w0)| = |f(w0 + t∇f(w0))− f(w0)|

= |
∫ 1

0

〈∇f(c(s)), c′(s)〉ds|

≤
∫ 1

0

‖c′(s)‖ds

= ‖v − t∇f(w0)−w0‖.

It follows that

c4t2 ≤ ‖v −w0‖2 + t2 + 2t〈v −w0,∇f(w0)〉.

Dividing by t and taking t to ±∞ allows us to have 〈∇f(w0),v −w0〉 = 0.
Then we construct the level set

Ma = M = {w ∈ Rp : f(w) = a}, (37)
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where a ∈ R. And its tangent space at w is

TwM = {w + v ∈ Rp : 〈v,∇f(w)〉 = 0}. (38)

By Eq.(36) we have 〈v −w,∇f(w)〉 for all v ∈M that satisfies f(v) = f(w). From Eq.(38) we
can see v ∈ TwM . Therefore M ⊂ TwM . By the fact that M is a closed hypersurface, M = TwM
for all w ∈M .
Hence there exists a w′ ∈ Rp such that ‖w′‖ = 1 and the level set Eq.(37) is equivalently defined as
Ma = {acw

′ + v′ : 〈v′,w′〉 = 0,v′ ∈ Rp} for all a. And we can construct a function g : R → R
such that

g(t) = f(v′ + tw′),

where g′(t) = c for all t which shows f is linear.

E Proof of Proposition 2.2

Proof. The model f , as a function of the parameters w, can be written as the form of Taylor expansion
with Lagrange remainder term:

f(w) = f(w0) +∇wf(w0)T (w −w0) +
1

2
(w −w0)TH(ξ)(w −w0), (39)

for some ξ on the line segment joining w and w0. Then Euclidean norm of the gradient change is
bounded by

‖∇wf(w)−∇wf(w0)‖ = ‖H(ξ)(w −w0)‖ ≤ ‖H(ξ)‖ · ‖(w −w0)‖ ≤ ‖H(ξ)‖R. (40)

Hence, according to the definition of the tangent kernel, for any inputs x, z ∈ Rd,

|K(x,z)(w)−K(x,z)(w0)|
≤ ‖∇wf(w;x)−∇wf(w0;x)‖ · ‖∇wf(w; z)‖+ ‖∇wf(w; z)−∇wf(w0; z)‖ · ‖∇f(w0;x)‖
≤ ‖H(ξ)‖R(‖∇wf(w0;x)‖+ ‖∇wf(w; z)‖).

Since f is smooth, the gradients ∇wf(w0) and ∇wf(w) are bounded. Therefore, |K(x,z)(w) −
K(x,z)(w0)| = O(εR).

F Proof of Theorem 3.1

Proof. The Hessian matrix H of the neural network can be written as the following structure:

H =


H(1,1) H(1,2) · · · H(1,L+1)

H(2,1) H(2,2) · · · H(2,L+1)

...
...

. . .
...

H(L+1,1) H(L+1,2) · · · H(L+1,L+1)

 . (41)

Here, each Hessian block H(l1,l2) := ∂2f
∂w(l1)∂w(l2) is the second derivative of f w.r.t. its weights of

l1-th and l2-th layers, where we treat the final layer parameters v as w(L+1).

The following lemma allows us to bound the Hessian spectral norm by the norms of its blocks (see
proof in Appendix I.1).

Lemma F.1. Spectral norm of a matrix H (41) is upper bounded by the sum of the spectral norm of
its blocks, i.e. ‖H‖ ≤

∑
l1,l2
‖H(l1,l2)‖, l1, l2 ∈ [L+ 1].

By this lemma, it suffices to prove that, for each Hessian block H(l1,l2), l1, l2 ∈ [L+ 1], the spectral
norm ‖H(l1,l2)‖ = Õ(1/

√
m). Since the Hessian matrix is symmetry, without loss of generosity, we

assume 1 ≤ l1 ≤ l2 ≤ L+ 1.

16



Case 1: 1 ≤ l1 ≤ l2 ≤ L. By the chain rule, the gradient of the model f w.r.t. the weights of layer
l, can be written as

∂f

∂w(l)
=

∂φl
∂w(l)

(
L∏

l′=l+1

∂φl′

∂α(l′−1)

)
1√
m
v. (42)

Then, the Hessian block has the following expression:

H(l1,l2)

=
∂2φl1

(∂w(l1))2
∂f

∂αl1
· Il1=l2 +

(
∂φl1
∂w(l1)

l2−1∏
l′=l1+1

∂φl′

∂α(l′−1)

)
∂2φl2

∂α(l2−1)∂w(l2)

(
∂f

∂α(l2)

)

+

L∑
l=l2+1

(
∂φl1
∂w(l1)

l−1∏
l′=l1+1

∂φl′

∂α(l′−1)

)
∂2φl

(∂α(l−1))2

(
∂φl2
∂w(l2)

l∏
l′=l2+1

∂φl′

∂α(l′−1)

)(
∂f

∂α(l)

)

Hence, the spectral norm of Hessian block H(l1,l2) is bounded by∥∥∥H(l1,l2)
∥∥∥

≤
∥∥∥∥ ∂2φl1

(∂w(l1))2

∥∥∥∥
2,2,1

∥∥∥∥ ∂f

∂α(l1)

∥∥∥∥
∞

+

∥∥∥∥ ∂φl1
∂w(l1)

∥∥∥∥ l2−1∏
l′=l1+1

∥∥∥∥ ∂φl′

∂α(l′−1)

∥∥∥∥∥∥∥∥ ∂2φl2
∂α(l2−1)∂w(l2)

∥∥∥∥
2,2,1

∥∥∥∥ ∂f

∂α(l2)

∥∥∥∥
∞

+

L∑
l=l2+1

∥∥∥∥ ∂φl1
∂w(l1)

∥∥∥∥ l∏
l′=l1+1

∥∥∥∥ ∂φl′

∂α(l′−1)

∥∥∥∥∥∥∥∥ ∂2φl
(∂α(l−1))2

∥∥∥∥
2,2,1

∥∥∥∥ ∂φl2
∂w(l2)

∥∥∥∥ l∏
l′=l2+1

∥∥∥∥ ∂φl′

∂α(l′−1)

∥∥∥∥∥∥∥∥ ∂f

∂α(l)

∥∥∥∥
∞
.

Since the vector-valued layer function φl is Lipschitz continuous w.r.t. its input α and parameters
w, the spectral norms of “gradients”

∥∥ ∂φl
∂α(l−1)

∥∥ and
∥∥ ∂φl
∂w(l)

∥∥ are bounded, for all l ∈ [L]. By

the condition (a) of the theorem, the norms of order 3 tensors,
∥∥ ∂2φl
(∂w(l))2

∥∥
2,2,1

,
∥∥ ∂2φl
(∂α(l−1))2

∥∥
2,2,1

and
∥∥ ∂2φl2
∂α(l2−1)∂w(l2)

∥∥
2,2,1

are of the order Õ(1). In addition, by condition (b) of the theorem, the

∞-norms
∥∥ ∂f
∂α(l)

∥∥
∞, l ∈ [L], are of the order Õ(1/

√
m). Hence, we have∥∥∥H(l1,l2)

∥∥∥ = Õ

(
1√
m

)
, ∀l1, l2 ∈ [L]. (43)

Case 2: 1 ≤ l1 < l2 = L+ 1. Using the gradient expression in Eq.(42), we have

H(l1,L+1) =
1√
m

∂φl
∂w(l1)

(
L∏

l′=l+1

∂φl′

∂α(l′−1)

)
. (44)

Hence,

‖H(l1,L+1)‖ ≤ 1√
m

∥∥∥∥ ∂φl
∂w(l1)

∥∥∥∥ L∏
l′=l+1

∥∥∥∥ ∂φl′

∂α(l′−1)

∥∥∥∥ = Õ

(
1√
m

)
. (45)

Case 3: l1 = l2 = L+ 1. In this case, the Hessian block H(L+1,L+1) is simply zero. Hence, the
spectral norm is zero.

G Proofs of Theorem 3.2

The basic idea of the proof is to show that this fully connected neural network satisfies, within a ball
of finite radius around the initialization W0, the conditions proposed in Theorem 3.1, as well as the
Lipschitz continuity assumption. Then, by Theorem 3.1 we immediately get the desired results.
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The fully connected neural network is defined in the following way:

α(0) = x,

α(l) = σ(α̃(l)), α̃(l) =
1

√
ml−1

W (l)α(l−1), ∀l ∈ [L]

f =
1
√
mL

vTα(L), (46)

where m0 = d which is the dimension of the input x, and ml = m for all l ∈ [L]. The trainable
parameters of this network are W := {W (1),W (2), · · · ,W (L),W (L+1) := v}, and are initialized
by the random Gaussian initialization, i.e., each parameter (W

(l)
0 )ij ∼ N (0, 1),∀l ∈ [L], and

v0,i ∼ N (0, 1), i, j ∈ [m]. As the parameters W (l) of each layer are reshaped into matrices, the
Euclidean norm of parameters becomes ‖W‖ := (

∑L+1
l=1 ‖W (l)‖2F )1/2, where ‖ ·‖F is the Frobenius

norm of a matrix.

To make the presentation of the proof as simple as possible, we first make the following assumption
about the initial parameters W0. Then we prove it in Lemma G.1 that the assumption is satisfied
with high probability by the random Gaussian initialization.

Assumption G.1. We assume that there exists a constant c0 > 0 such that, for all initial weight
matrices/vector W (l)

0 , ‖W (l)
0 ‖ ≤ c0

√
m, where l ∈ [L+ 1].

Lemma G.1 (Spectral norms of initial weight matrices). If the parameters are initialized as
(W

(l)
0 )ij ∼ N (0, 1) for all l ∈ [L + 1] and m > d, then, for each layer l ∈ [L + 1], we have

with probability at least 1− 2 exp(−m2 ),

‖W (l)
0 ‖ ≤ 3

√
m. (47)

The proof is in Appendix I.2.

We further assume that, for the input x ∈ Rd, each component is bounded, i.e. |xi| ≤ Cx, for some
constant Cx and for all i ∈ [d]. This assumption covers most of the practical cases.

We prove the following lemma which states that the norm of the matrix W (l) keeps its order in a
finite ball around the W (l)

0 .

Lemma G.2. If W0 satisfies Assumption G.1, then for any W such that ‖W−W0‖ ≤ R, we have

‖W (l)‖ ≤ c0
√
m+R = O(

√
m), ∀l ∈ [L+ 1]. (48)

See the proof in Appendix I.3. The following lemma gives bounds on the Euclidean norm of the
vector of hidden neurons for each layer.

Lemma G.3. If W0 satisfies Assumption G.1, then, for any W such that ‖W−W0‖ ≤ R, we have,
at all hidden layers

‖α(l)(W)‖ ≤ Llσ(c0 +R/
√
m)l
√
mCx +

l∑
i=1

Li−1σ (c0 +R/
√
m)i−1σ(0) = O(

√
m), ∀l ∈ [L].

(49)
Particularly, for the input layer,

‖α(0)‖ = ‖x‖ ≤
√
dCx = O(1). (50)

The proof is in Appendix I.4 .

Now, we are ready to prove the theorem. Specifically, we prove the following for the fully connected
layer in the ball B(W0, R): Lipschitz continuity, satisfying conditions (a) and (b) in Theorem 3.1
in Section G.1, G.2 and G.3, respectively. Then, the theorem is an immediate consequence of
Theorem 3.1.
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G.1 Proofs of Lipschitz continuity

Note that the layer function is vector-valued. It suffices to prove that the first derivatives, which are
matrices, have bounded spectral norms in the ball B(W0, R).

When l = 2, 3, · · · , L. Recall from Eq.(9) that, a fully connected layer φl is defined as, for
l = 2, 3, · · · , L:

α(l) = φl(W
(l);α(l−1)) = σ

(
1√
m
W (l)α(l−1)

)
. (51)

The term α̃(l) := 1√
m
W (l)α(l−1) is also known as preactivation.

Note that, in this case, the parameter vector w(l) is reshaped to a m×m matrix W (l), except that
W (1) is a m× d matrix. The first derivatives of φl are

(∇αφl)i,j =
1√
m
σ′(α̃

(l)
i )W

(l)
ij , (52)

(∇wφl)i,jj′ =
1√
m
σ′(α̃

(l)
i )α

(l−1)
j′ Ii=j . (53)

By the definition of spectral norm, ‖A‖ = sup‖v‖=1 ‖Av‖, we have, for all 2 ≤ l ≤ L,

‖∇αφl‖2 = sup
‖v‖=1

1

m

m∑
i=1

(
σ′(α̃

(l)
i )W

(l)
ij vj

)2
= sup

‖v‖=1

1

m
‖Σ′(l)W (l)v‖2

≤ 1

m
‖Σ′(l)‖2‖W (l)‖2

≤ L2
σ(c0 +R/

√
m)2 = O(1),

where Σ′
(l) is a diagonal matrix, with the diagonal entry Σ′

(l)
ii = σ′(α̃

(l)
i ). Similarly, we have

‖∇wφl‖2 = sup
‖V ‖F=1

1

m

m∑
i=1

(∑
j,j′

σ′(α̃
(l)
i )α

(l−1)
j′ Ii=jVjj′

)2
= sup

‖V ‖F=1

1

m
‖Σ′(l)V α(l−1)‖2

≤ 1

m
‖Σ′(l)‖2‖α(l−1)‖2

≤
(
Llσ(c0 +R)l−1Cx

)2
= O(1). (54)

We used Lemma G.2 and G.3 above.

When l = 1. The layer function is:

α(1) = φ1(W (1);α(0)) = σ

(
1√
d
W (1)x

)
. (55)

In this layer, the input x is fixed (independent of trainable parameters) and not a dynamical variable.
Hence, ∇αφ1 is not an interesting object in our Hessian analysis6.

For∇wφ1, we have (with a similar analysis as in Eq.(54)),

‖∇wφ1‖2 ≤ 1

d
‖Σ′(l)‖2‖α(0)‖2 ≤ L2

σC
2
x = O(1).

We see that both ‖∇αφl‖ and ‖∇wφl‖ are bounded, hence, the (vector valued) layer function of fully
connected neural networks is Lipschitz continuous.

6Indeed, it does not show up in the Hessian analysis, see Section F.
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G.2 Proof of condition (a) in Theorem 3.1

Proof. We consider the first layer i.e. l = 1 and the rest of the layers i.e. l = 2, 3, · · · , L separately.

When l = 2, 3, · · · , L. The second derivatives of the vector-valued layer function φl, which are
order 3 tensors, have the following expressions:(

∂2φl
(∂α(l−1))2

)
i,j,k

=
1

m
σ′′(α̃

(l)
i )W

(l)
ij W

(l)
ik , (56)(

∂2φl
∂α(l−1)∂W (l)

)
i,j,kk′

=
1

m
σ′′(α̃

(l)
i )W

(l)
ij α

(l−1)
k′ Ii=k, (57)(

∂2φl
(∂W (l))2

)
i,jj′,kk′

=
1

m
σ′′(α̃

(l)
i )α

(l−1)
j′ α

(l−1)
k′ Ii=k=j . (58)

By the definition of the (2, 2, 1)-norm for order 3 tensors, and Lemma G.2, we get∥∥∥∥ ∂2φl
(∂α(l−1))2

∥∥∥∥
2,2,1

= sup
‖v1‖=‖v2‖=1

1

m

m∑
i=1

∣∣∣σ′′(α̃(l)
i )(W (l)v1)i(W

(l)v2)i

∣∣∣
≤ sup
‖v1‖=‖v2‖=1

1

m
βσ

m∑
i=1

∣∣∣(W (l)v1)i(W
(l)v2)i

∣∣∣
≤ sup
‖v1‖=‖v2‖=1

1

2m
βσ

m∑
i=1

(W (l)v1)2i + (W (l)v2)2i

≤ 1

2m
βσ sup
‖v1‖=‖v2‖=1

(‖W (l)v1‖2 + ‖W (l)v2‖2)

≤ 1

2m
βσ(‖W (l)‖2 + ‖W (l)‖2)

≤ βσ(c0 +R/
√
m)2 = O(1). (59)

Similarly, by using Lemma G.2 and Lemma G.3, we have,∥∥∥∥ ∂2φl
∂α(l−1)∂W (l)

∥∥∥∥
2,2,1

= sup
‖v1‖=‖V2‖F=1

1

m

m∑
i=1

∣∣∣σ′′(α̃(l)
i )(W (l)v1)i(V2α

(l))i

∣∣∣
≤ sup
‖v1‖=‖V2‖F=1

1

2m
βσ(‖W (l)v1‖2 + ‖V2α(l−1)‖2)

≤ 1

2m
βσ(‖W (l)‖2 + ‖α(l−1)‖2)

≤ βσ
2

(c0 +R/
√
m)2 +

βσ
2
L2l−2
σ (c0 +R/

√
m)(2l−2)C2

x = O(1).

And ∥∥∥∥ ∂2φl
(∂W (l))2

∥∥∥∥
2,2,1

= sup
‖V1‖F=‖V2‖F=1

1

m

m∑
i=1

∣∣∣σ′′(α̃(l)
i )(V1α

(l−1))i(V2α
(l−1))i

∣∣∣
≤ sup
‖V1‖F=‖V2‖F=1

1

2m
βσ(‖V1α(l−1)‖2 + ‖V2α(l−1)‖2)

≤ 1

2m
βσ(‖α(l−1)‖2 + ‖α(l−1)‖2)

≤ βσL2l−2
σ (c0 +R/

√
m)2l−2C2

x = O(1). (60)

When l = 1. As discussed in Section G.1, the input α(0) is constant, we only need to analyze the
tensor ∂2φl

(∂W (l))2
in this case. With a similar analysis as in Eq.(60), we have∥∥∥∥ ∂2φ1

(∂W (1))2

∥∥∥∥
2,2,1

≤ 1

2d
βσ(‖α(0)‖2 + ‖α(0)‖2) ≤ βσC2

x = O(1). (61)
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G.3 Proof of condition (b) in Theorem 3.1

Proof. First of all, we present a few useful facts, Lemma G.4-G.6 that will be used during the proof.
The proofs of the following lemmas are in Appendix I.5-I.7.

We first show that each activation of the hidden layers is bounded at initialization, with high probabil-
ity.

Lemma G.4. For any l ∈ [L], given i ∈ [m], with probability at least 1 − 2e−c
(l)
α ln2(m) for some

constant c(l)α > 0, |α(l)
i | = Õ(1) at initialization.

Define vector b(l) := ∇α(l)f ∈ Rm for l ∈ [L]. And we use b0 to denote b at initialization.
Specifically, b(l) takes the following form:

b(l) =

L∏
l′=l+1

(
1√
m

(W (l′))TΣ′
(l′)
)

1√
m
v, (62)

where Σ′
(l′) is a diagonal matrix, with (Σ′

(l′)
)ii = σ′(α̃

(l′)
i ).

The following lemma gives an upper bound to norms of b(l) in the ball B(W0, R).

Lemma G.5. If the initial parameters W0 of the multi-layer neural network f(W) satisfies Assump-
tion G.1, then, for any W such that ‖W −W0‖ ≤ R, we have, at all hidden layers, i.e., ∀l ∈ [L],

‖b(l)‖ ≤ LL−lσ (c0 +R/
√
m)L−l+1. (63)

In particular, at initialization,

‖b(l)
0 ‖ ≤ LL−lσ cL−l+1

0 . (64)

We proceed to show all the components of b(l)
0 are of order Õ( 1√

m
) with high probability.

Lemma G.6. With probability at least 1 −me−c
(l)
b ln2(m) for some constant c(l)b > 0, ‖b(l)

0 ‖∞ =

Õ(1/
√
m).

Now we show besides at initialization, ‖b‖∞ is of order Õ( 1√
m

) in the ball B(W0, R) with high
probability, i.e. the condition (b) in Theorem 3.1. Technically, we bound the difference of the∞-norm
by the difference of 2-norm.

First of all, we prove, by induction, the following claim: for all l ∈ [L],

‖b(l) − b
(l)
0 ‖ = Õ

(
1√
m

)
. (65)

In the base case, we consider l = L. We have

b(L) =
1√
m
v,

b
(L)
0 =

1√
m
v0.

Hence,

‖b(L) − b
(L)
0 ‖ =

1√
m
‖v − v0‖ ≤

1√
m
‖W −W0‖ ≤

1√
m
R. (66)
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Now, suppose that ‖b(l) − b
(l)
0 ‖ = Õ( 1√

m
). Then∥∥∥b(l−1) − b

(l−1)
0

∥∥∥ =
1√
m

∥∥∥(W (l))TΣ′(l)b(l) − (W
(l)
0 )TΣ

′(l)
0 b

(l)
0 + (W

(l)
0 )TΣ′(l)b

(l)
0

+ (W
(l)
0 )TΣ′(l)b(l) − (W

(l)
0 )TΣ′(l)b

(l)
0 − (W

(l)
0 )TΣ′(l)b(l)

∥∥∥
=

1√
m

∥∥∥((W (l))T − (W
(l)
0 )T

)
Σ′(l)b(l) + (W

(l)
0 )T

(
Σ′(l) − Σ

′(l)
0

)
b
(l)
0

+ (W
(l)
0 )TΣ′(l)

(
b(l) − b

(l)
0

)∥∥∥
≤ 1√

m

∥∥∥W (l) −W (l)
0

∥∥∥
2
‖Σ′(l)‖‖b(l)‖+

1√
m
‖W (l)

0 ‖
∥∥∥(Σ′(l) − Σ

′(l)
0

)
b
(l)
0

∥∥∥
+

1√
m
‖W (l)

0 ‖‖Σ′(l)‖
∥∥∥b(l) − b

(l)
0

∥∥∥ , (67)

where Σ′
(l) is a diagonal matrix, with (Σ′

(l)
)ii = σ′(α̃

(l)
i ).

To bound the second additive term above, we need the following inequality:

‖α̃(l)(W)− α̃(l)(W0)‖

=

∥∥∥∥ 1√
m
W (l)α(l−1)(W)− 1√

m
W

(l)
0 α(l−1)(W0)

∥∥∥∥
≤ 1√

m
‖W (l)

0 ‖ · Lσ · ‖α̃(l−1)(W)− α̃(l−1)(W0)‖+
1√
m
‖W (l) −W (l)

0 ‖‖α(l−1)(W)‖

≤ c0Lσ‖α̃(l−1)(W)− α̃(l−1)(W0) +
1√
m
‖W (l) −W (l)

0 ‖‖α(l−1)(W)‖

= c0Lσ‖α̃(l−1)(W)− α̃(l−1)(W0)‖+O(1),

where the last equality is the result of Lemma G.3 that ‖α(l−1)‖ = O(
√
m).

Recursively applying the above equation, since ‖α̃(1)(W)− α̃(1)(W0)‖ ≤ R√
d
Cx, we have

‖α̃(l)(W)− α̃(l)(W0)‖ = cl−10 Ll−1σ ‖α̃(1)(W)− α̃(1)(W0)‖+O(1) = O(1). (68)
Also, note that Σ′ is a diagonal matrix, then, we have∥∥∥[Σ′(l) − Σ

′(l)
0

]
b
(l)
0

∥∥∥ =

√√√√ m∑
i=1

(b
(l)
0 )2i

(
σ′(α̃

(l)
i (W))− σ′(α̃(l)

i (W0))
)2

≤ ‖b(l)
0 ‖∞

√√√√ m∑
i=1

[
σ′(α̃

(l)
i (W))− σ′(α̃(l)

i (W0))
]2

≤ ‖b(l)
0 ‖∞ · βσ‖α̃(l)(W)− α̃(l)(W0)‖ = Õ

(
1√
m

)
, (69)

where we used Lemma G.5 and Eq.(68) in the last equality.
Now, insert Eq.(69) into Eq.(67), and apply Lemma G.5 and the induction hypothesis, then we have∥∥∥b(l−1) − b

(l−1)
0

∥∥∥ ≤ 1√
m
RLL−l+1

σ (c0 +R/
√
m)L−l+1 +

1√
m
c0
√
m
∥∥∥[Σ′(l) − Σ

′(l)
0

]
b
(l)
0

∥∥∥
+c0Lσ

∥∥∥b(l) − b
(l)
0

∥∥∥ = Õ

(
1√
m

)
. (70)

Thus, Eq.(65) holds for l − 1, and the proof of the induction step is complete. Therefore, by the
principle of induction, Eq.(65) holds for all l ∈ [L].
Now, let’s consider ‖b(l)‖∞. By Lemma G.6 and Lemma G.5, with probability at least
1−me−c

(l)
b ln2(m),

‖b(l)‖∞ ≤ ‖b(l)
0 ‖∞ + ‖b(l) − b

(l)
0 ‖∞

≤ ‖b(l)
0 ‖∞ + ‖b(l) − b

(l)
0 ‖ = Õ

(
1√
m

)
. (71)
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Using union bound, for all l ∈ [L], we have with probability 1−m
∑L
l=1 e

−c(l)b ln2(m),

‖b(l)‖∞ = ‖ ∂f

∂α(l)
‖∞ = Õ

(
1√
m

)
. (72)

H Generalization to other architectures

In this section, we show that, for both convolutional neural networks (CNN) and residual networks
(ResNets), the conditions proposed in Theorem 3.1 are satisfied, and hence these networks have small
Hessian spectral norms when the network width m is sufficiently large.

H.1 Convolutional Neural Networks

A convolutional neural network (CNN) is a network of the type in Eq.(7), with each convolutional
layer function φl defined as

α(l) = φl(W
(l);α(l−1)) = σ

(
1
√
ml

W(l) ∗ α(l−1)
)
, ∀l ∈ [L], (73)

where ∗ is the convolution operator (see the definition below), and the layer width ml = m for all
l = 2, 3, · · · , L, and m1 = d with d as the number of channels of the input.

To simplify the notation, we consider a one-dimensional CNN, i.e., a “image” is an 1-D array of
“pixels”, and one will find that the analysis in this section also applies to higher dimensional CNNs.
We also drop the layer indices l, wherever there is no ambiguity.

We denote the number of channels for each hidden layer as m, the number of pixels in the “image” as
Q and the size of each filter as K. Furthermore, we use i, j ∈ [m] as indices of the channels, q ∈ [Q]
as indices of pixels and k ∈ [K] as indices within the filter. The input α ∈ Rm×Q is a matrix, with
m rows as channels and Q columns as pixels. The parameters W ∈ RK×m×m is a order 3 tensor.
The output of the layer function φ is of size m×Q. In this 1-D CNN case, the convolution operator
is defined as

(W ∗ α)i,q =

K∑
k=1

m∑
j=1

Wk,i,jαj,q+k−K+1
2
. (74)

Reformulation of convolutional layer. Now, we reformulate the convolutional layer function in
Eq.(73) into a fully-connected-like function. Then, we can use the techniques developed in Section G
to prove for the CNN. Specifically, for all k ∈ [K], define matrices W [k] and α[k] such that each
entry (W [k])ij = Wk,i,j and (α[k])jq = αj,q+k−K+1

2
. Then, the convolution operator in Eq.(74) can

be rewritten as

(W ∗ α) =

K∑
k=1

W [k]α[k]. (75)

Here in the summation, it is matrix multiplication. Note that, while W [k] are independent from each
other for different k ∈ [K], the inputs α[k] are not independent from each other; instead, they share
pixels: (α[k])j,q = (α[k′])j,q+k−k′ , i.e., each α[k] is a pixel-shifted version of α (newly generated
pixels after shift is filled with zeros).

Therefore, the convolutional layer can also be written as (for l > 1)

φ(W;α) = σ

(
K∑
k=1

1√
m
W [k]α[k]

)
, σ(α̃). (76)

Here, we can see we will use this expression of convolutional layer function for analysis in this
section.

Before proceeding to the proof for CNN, we first point out a few useful facts, as summarized in the
following lemmas.

23



Lemma H.1. Given matrices A,B and C such that A = BC, we have ‖A‖F ≤ ‖B‖‖C‖F , where
‖B‖ is the spectral norm of matrix B.

See the proof in Appendix I.8. The following two lemmas provide bounds on the spectral norm of
weights and Frobenius norm of hidden layers. These two lemmas (and the proofs) are analogous to
Lemma G.2 and G.3, and we omit the proof.

Lemma H.2. Suppose the parameters are initialized as (W
[k]
0 )i,j ∼ N (0, 1), for all k ∈ [K], i, j ∈

[m]. Then, with high probability of the random initialization, we have for any W ∈ B(W0, R) the
following holds

‖W [k]‖ = O(
√
m), ∀k ∈ [K]. (77)

Lemma H.3. Suppose the parameters are initialized as (W
[k]
0 )i,j ∼ N (0, 1), for all k ∈ [K], i, j ∈

[m] and for all layers. Then, with high probability of the random initialization, we have for any
W ∈ B(W0, R) the following holds at all hidden layers

‖α‖F = O(
√
m). (78)

And at the input layer,
‖α‖F = O(1). (79)

In the following, we focus on analyzing the layers with l > 1. For the case of l = 1, we omit the
proof, and refer the readers to the discussion in Section G, which also applies here.

Proof of Lipschitz continuity. As seen in Section G, it suffices to prove the boundedness of the
operator norms: ‖∇wf‖ and ‖∇αf‖. Note that, in the convolutional layer function, the vector
of parameters w is reshaped to W ∈ RK×m×m, and the input is reshaped to α ∈ Rm×Q. Then,
the Euclidean norm of the input becomes Frobenius norm ‖α‖F , and the Euclidean norm ‖w‖ =

(
∑K
k=1 ‖W [k]‖2F )1/2.

Then, the spectral norm square

‖∇αφ‖2 =
1

m
sup
‖V ‖F=1

m∑
i=1

Q∑
q=1

(σ′(α̃i,q))
2
( K∑
k=1

W [k]V [k]
)2
i,q

≤ 1

m
L2
σ sup
‖V ‖F=1

∥∥∥ K∑
k=1

W [k]V [k]
∥∥∥2
F

≤ 1

m
L2
σ sup
‖V ‖F=1

(
K∑
k=1

‖W [k]‖‖V [k]‖F

)2

≤ 1

m
L2
σ

(
K∑
k=1

‖W [k]‖

)2

= O(1).

Here, in the second inequality, we used Lemma H.1, and in the last equality, we used Lemma H.2.
Similarly, using Lemma H.1 and H.3, we also have

‖∇wφ‖2 =
1

m
sup

{
m∑
i=1

Q∑
q=1

(σ′(α̃i,q))
2
( K∑
k=1

V [k]α[k]
)2
i,q

:

K∑
k=1

‖V [k]‖2F = 1

}

≤ 1

m
L2
σ sup


∥∥∥∥∥
K∑
k=1

V [k]α[k]

∥∥∥∥∥
2

F

:

K∑
k=1

‖V [k]‖2F = 1


≤ 1

m
L2
σ sup


(

K∑
k=1

‖V [k]‖‖α[k]‖F

)2

:

K∑
k=1

‖V [k]‖2F = 1


≤ 1

m
L2
σ

(
K∑
k=1

‖α[k]‖F

)2

= O(1).
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Proof of condition (a) in Theorem 3.1. Now we show that the convolutional layer satisfies the
condition (a) proposed in Theorem 3.1. The proof idea is analogous to the fully connected case as in
Section G, and we provide a sketch of the proof for CNN here.

Recall that the vector of parameters w is reshaped to W ∈ RK×m×m, and the input is reshaped to
α ∈ Rm×Q. Then, by Lemma H.1 and H.2, we have∥∥∥∥∂2φ∂α2

∥∥∥∥
2,2,1

= sup


m∑
i=1

Q∑
q=1

1

m

∣∣∣∣∣∣σ′′(α̃i,q)
(

K∑
k=1

W [k]V
[k]
1

)
i,q

(
K∑
k=1

W [k]V
[k]
2

)
i,q

∣∣∣∣∣∣ : ‖V1‖F = ‖V2‖F = 1


≤ βσ

2m
sup


∥∥∥∥∥
K∑
k=1

W [k]V
[k]
1

∥∥∥∥∥
2

F

+

∥∥∥∥∥
K∑
k=1

W [k]V
[k]
2

∥∥∥∥∥
2

F

: ‖V1‖F = ‖V2‖F = 1


≤ βσ

2m
· 2

(
K∑
k=1

‖W [k]‖

)2

= O(1).

Similarly, by using Lemma H.1, H.2 and H.3, we also have∥∥∥∥ ∂2φ

∂α∂w

∥∥∥∥
2,2,1

= sup


m∑
i=1

Q∑
q=1

1

m

∣∣∣∣∣∣σ′′(α̃i,q)
(

K∑
k=1

V
[k]
1 α[k]

)
i,q

(
K∑
k=1

W [k]V
[k]
2

)
i,q

∣∣∣∣∣∣ :

K∑
k=1

‖V [k]
1 ‖2F = ‖V2‖2F = 1


≤ βσ

2m
sup


∥∥∥∥∥
K∑
k=1

V
[k]
1 α[k]

∥∥∥∥∥
2

F

+

∥∥∥∥∥
K∑
k=1

W [k]V
[k]
2

∥∥∥∥∥
2

F

:

K∑
k=1

‖V [k]
1 ‖2F = ‖V2‖2F = 1


≤ βσ

2m
·

(( K∑
k=1

‖α[k]‖F
)2

+
( K∑
k=1

‖W [k]‖
)2)

= O(1),

and∥∥∥∥ ∂2φ∂w2

∥∥∥∥
2,2,1

= sup


m∑
i=1

Q∑
q=1

1

m

∣∣∣∣∣∣σ′′(α̃i,q)
(

K∑
k=1

V
[k]
1 α[k]

)
i,q

(
K∑
k=1

V
[k]
2 α[k]

)
i,q

∣∣∣∣∣∣ :

K∑
k=1

‖V [k]
1 ‖2F =

K∑
k=1

‖V [k]
2 ‖2F = 1


≤ βσ

2m
sup


∥∥∥∥∥
K∑
k=1

V
[k]
1 α[k]

∥∥∥∥∥
2

F

+

∥∥∥∥∥
K∑
k=1

V
[k]
2 α[k]

∥∥∥∥∥
2

F

:

K∑
k=1

‖V [k]
1 ‖2F =

K∑
k=1

‖V [k]
2 ‖2F = 1


≤ βσ

2m
· 2
( K∑
k=1

‖α[k]‖F
)2

= O(1).

Proof sketch of condition (b) in Theorem 3.1. The proof idea is similar to the case of fully
connected case, as in Section G.3, i.e., proving by induction. The base case of the induction is
the same as fully connected case, and we omit it here. The inductive hypothesis for CNN is:
maxi∈[m],q∈[Q](∇α(l+1)f)i,q = Õ(1).
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Now, for l-th layer, we have

(∇α(l)f)i,q =

m∑
j=1

Q∑
q′=1

K∑
k=1

(∇α(l+1)f)j,q′σ
′(α̃

(l+1)
j,q′ )

1√
m
W

[k]
ji Iq=q′−k+K+1

2

=

K∑
k=1

m∑
j=1

(∇α(l+1)f)j,q+k−K+1
2
σ′
(
α̃
(l+1)

j,q+k−K+1
2

) 1√
m
W

[k]
ji

,
K∑
k=1

(∇α(l)f)
[k]
i,q.

By the same argument as in Section G.3, we have: maxi∈[m],q∈[Q](∇α(l)f)
[k]
i,q = Õ(1), for each

k ∈ [K], with high probability of the random initialization. Since K is finite, then we have
maxi∈[m],q∈[Q](∇α(l)f)i,q = Õ(1) with high probability of the random initialization.

H.2 Residual Networks (ResNet)

In this subsection we prove that the Hessian spectral norm for ResNet also scales as Õ(1/
√
m), with

m being the width of the network. We define the ResNet f as follows:

α(1) = σ(
1√
d
W (1)x),

α(l) = σ(α̃(l)
res) + α(l−1), α̃(l)

res =
1√
m
W (l)α(l−1), ∀2 ≤ l ≤ L,

f =
1√
m
vTα(L). (80)

The parameters W := {W (1),W (2), · · · ,W (L),W (L+1) := v} are initialized following the random
Gaussian initialization strategy, i.e., (W

(l)
0 )ij ∼ N (0, 1),∀l ∈ [L], and v0,i ∼ N (0, 1), i, j ∈ [m].

Remark H.1. This definition of ResNet differs from the standard ResNet architecture in [He et al.]7

that the skip connections are at every layer, instead of every two layers. One will find that the same
analysis can be easily generalized to cases where skip connections are at every two or more layer.
The same definition, up to a scaling factor, was also theoretically studied in [7].

We see that the ResNet is the same as a fully connected neural network, Eq. (46), except that
the activations α(l) has an extra additive term α(l−1) from the previous layer, interpreted as skip
connection. Because of this similarity, the proof for ResNet is almost identical to that for fully
connected networks in Section G. In the following, we sketch the proof for ResNet. Specifically, we
focus on the arguments that are new to ResNet, and omit those identical to the fully connected case.
Hence, we suggest the readers read Section G first.

Parallel to Lemma G.2 and G.3 for fully connected case, we have the following lemmas for the
ResNet.
Lemma H.4. Suppose the parameters are initialized as (W

(l)
0 )i,j ∼ N (0, 1), for all l ∈ [L], and

v0,i ∼ N (0, 1), i, j ∈ [m]. Then, with high probability of the random initialization, we have for any
W ∈ B(W0, R) the following holds

‖W (l)‖ = O(
√
m), ∀l ∈ [L+ 1]. (81)

Lemma H.5. Suppose the parameters are initialized as (W
(l)
0 )i,j ∼ N (0, 1), for all l ∈ [L], and

v0,i ∼ N (0, 1), i, j ∈ [m]. Then, with high probability of the random initialization, we have for any
W ∈ B(W0, R) the following holds at all hidden layers

‖α(l)‖ = O(
√
m). (82)

Particularly, for the input layer
‖α(0)‖ = ‖x‖ = O(1). (83)

7Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for image recognition”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770-778.
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The proofs of the above two lemmas are almost identical to those of Lemma G.2 and G.3. We omit
the proofs here, and refer interested readers to proofs of Lemma G.2 and G.3.

Proofs of Lipschitz continuity for ResNet. We prove that the first derivatives have bounded
spectral norms in the ball B(W0, R).

When 2 ≤ l ≤ L, from the definition of ResNet, Eq.(80), a ResNet layer φl is defined by:

α(l) = φl(W
(l);α(l−1)) = σ

(
1√
m
W (l)α(l−1)

)
+ α(l−1). (84)

Therefore, we have

‖∇αφl‖ = sup
‖v‖=1

‖( 1√
m

Σ′
(l)
W (l) + I)v‖

≤ sup
‖v‖=1

(
1√
m
‖Σ′(l)‖‖W (l)‖‖v‖+ ‖v‖)

≤ Lσ(c0 +R/
√
m) + 1 = O(1).

We note that ‖∇wφl‖ has the same expression as the one of the fully connected networks. By the
same argument in Section G.1, as well as Lemma H.5, we have ‖∇wφl‖ = O(1).

When l = 1, the layer function is defined by

α(1) = φ1(W (1);α(0)) = σ

(
1√
d
W (1)x

)
.

In this layer, the input x is fixed (independent of trainable parameters) and not a dynamical variable.
Hence, ∇αφ1 is not an interesting object in our Hessian analysis.

And we have

‖∇wφ1‖ ≤
1√
d
‖Σ′(l)‖‖x‖ ≤ LσCx = O(1).

We see that both ‖∇αφl‖ and ‖∇wφl‖ are bounded, hence, the (vector valued) layer function of
ResNet is Lipschitz continuous.

Proof of condition (a) in Theorem 3.1 for ResNet. Note that the skip connection term α(l−1) in
Eq.(84) is linear in α(l−1) and independent from W (l). Hence, the order 3 tensors are exactly the
same as in the case of fully connected networks. Applying the same argument as in Section G.2 gives
the following:∥∥∥∥ ∂2φl

(∂α(l−1))2

∥∥∥∥
2,2,1

= O(1),

∥∥∥∥ ∂2φl
∂α(l−1)∂W (l)

∥∥∥∥
2,2,1

= O(1),

∥∥∥∥ ∂2φl
(∂W (l))2

∥∥∥∥
2,2,1

= O(1). (85)

Proof of condition (b) in Theorem 3.1 for ResNet. For a ResNet, define vector b(l)
res := ∇α(l)f

for l ∈ [L]. Specifically, b(l)
res takes the following form:

b(l)
res =

L∏
l′=l+1

(
1√
m

(W (l′))TΣ′
(l′)

+ I

)
1√
m
v. (86)

Compared to the expression of b(l), in Eq.(62), which is the fully connected network case, the only
difference is that b(l)

res for ResNet has an extra additive identity matrix. We argue that the∞-norm
‖b(l)

res‖∞ is still the order of Õ(1/
√
m). We show this by induction.

First, recall that by the analysis in Section G.3 we have ‖b(l)‖∞ = Õ( 1√
m

) for all l ∈ [L].

In the base case, b(L)
res = 1√

m
v = b(L). Then ‖b(L)

res‖∞ = Õ( 1√
m

) holds.
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Now, suppose ‖b(l+1)
res ‖∞ = Õ( 1√

m
) holds. For b(l)

res, we have

b(l)
res =

(
1√
m

(W (l+1))TΣ′
(l+1)

+ I

)
b(l+1)
res =

1√
m

(W (l+1))TΣ′
(l+1)

b(l+1)
res + b(l+1)

res . (87)

By an analogous analysis as in Section G.3 and I.7, we have that∞-norm of the first term is of the
order Õ(1/

√
m). Since ‖b(l+1)

res ‖∞ is also of the order Õ(1/
√
m), we conclude that ‖b(l)

res‖∞ is of
the order Õ(1/

√
m).

H.3 Architecture with mixed layer types

So far, we have seen that fully connected networks (Theorem 3.2), CNNs(Section H.1) and ResNets
(Section H.2) satisfy the conditions in Theorem 3.1. In fact, our analysis generalizes to architectures
with mixed layer types. Note that the Liptshitz continuity of layer functions and condition (a) of
Theorem 3.1 are purely layer-wise, and does not depend on the types of other layers. As for the
condition (b), our analysis is inductive: ‖∇α(l)f‖∞ = Õ(1) only relies on the structure of the current
layer and the fact that ‖∇α(l+1)f‖∞ = Õ(1).

I Proof of Technical Lemmas

I.1 Proof of Lemma F.1

Proof.

‖H‖ =

∥∥∥∥∥∥∥∥


H(1,1) 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

+


0 H(1,2) · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

+ · · ·+


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · H(L+1,L+1)


∥∥∥∥∥∥∥∥

≤
∑
l1,l2

‖H(l1,l2)‖.

I.2 Proofs for Gaussian Random Initialization

Proof of Lemma G.1. Consider an arbitrary random matrix W ∈ Rm1×m2 with each entry Wij ∼
N (0, 1). By Corollary 5.35 of [18], for any t > 0, we have with probability at least 1− 2exp(− t

2

2 ),

‖W‖2 ≤
√
m1 +

√
m2 + t. (88)

In particular, for the initial parameter setting W0, we have

‖W (1)
0 ‖2 ≤

√
d+
√
m+ t,

‖W (l)
0 ‖2 ≤ 2

√
m+ t, l ∈ {2, 3, ..., L},

‖W (L+1)
0 ‖2 ≤

√
m+ 1 + t.

Letting t =
√
m and noting that m > d, we finish the proof.

I.3 Proof of Lemma G.2

Proof. By triangle inequality and the definition ‖W‖ =
∑L+1
l=1 ‖W (l)‖F , we have for all layers, i.e.,

l ∈ [L+ 1],

‖W (l)‖2 ≤ ‖W (l)
0 ‖2 + ‖W (l) −W (l)

0 ‖2 ≤ ‖W
(l)
0 ‖2 + ‖W (l) −W (l)

0 ‖F ≤ c0
√
m+R. (89)

Note that, at the output layer, W (L+1) i.e. v is a vector, and the Frobenius norm ‖ · ‖F reduces to the
Euclidean norm ‖ · ‖.
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I.4 Proof of Lemma G.3

Proof. To analyze ‖α(l)(W)‖, let’s first consider the input layer, i.e., l = 0: ‖α(0)‖ = ‖x‖ ≤√
d‖x‖∞ ≤

√
dCx, where d is the dimension of the input x. Then we prove Eq.(49) by induction.

For the first hidden layer l = 1,

‖α(1)(W)‖ =

∥∥∥∥σ( 1√
d
W (1)α(0)

)∥∥∥∥
≤ 1√

d
Lσ‖W (1)‖2‖α(0)‖+ σ(0)

≤ 1√
d
Lσ(c0

√
m+R)‖α(0)‖+ σ(0)

≤ Lσ(c0 +R/
√
m)
√
mCx + σ(0). (90)

Above, we used the Lσ-Lipschitz continuity and applied Lemma G.2 in the second inequality.
Now, suppose for l-th layer we have

‖α(l)(W)‖ ≤ Llσ(c0 +R/
√
m)l
√
mCx +

l∑
i=1

Li−1σ (c0 +R/
√
m)i−1σ(0). (91)

Then, by a similar argument as in Eq.(90), we can get

‖α(l+1)(W)‖ =

∥∥∥∥σ( 1√
m
W (l+1)α(l)(W)

)∥∥∥∥
≤ Ll+1

σ (c0 +R/
√
m)l+1

√
mCx +

l+1∑
i=1

Li−1σ (c0 +R/
√
m)i−1σ(0).

I.5 Proof of Lemma G.4

Proof. When 2 ≤ l ≤ L, |α(l)
i | takes the following form:

|α(l)
i | =

∣∣∣∣∣σ
(

1√
m

m∑
k=1

W
(l)
ik α

(l−1)
k

)∣∣∣∣∣
≤

∣∣∣∣∣ Lσ√m
m∑
k=1

W
(l)
ik α

(l−1)
k

∣∣∣∣∣+ |σ(0)|,

where we can see
∑m
k=1 W

(l)
ik α

(l−1)
k ∼ N (0, ‖α(l−1)‖2) since W (l)

ik ∼ N (0, 1) at initialization.
By the concentration inequality for Gaussian random variable, we have

P[|α(l)
i | ≥ ln(m) + |σ(0)|] ≤ P[

∣∣∣∣∣ Lσ√m
m∑
k=1

W
(l)
ik α

(l−1)
k

∣∣∣∣∣ ≥ ln(m)]

≤ 2e
− mln2(m)

2L2
σ‖α

(l−1)‖2

= 2e−c
(l)
α ln2(m),

for c(l)α = m
2L2

σ‖α(l−1)‖2 = Ω(1) by Lemma G.3.
When l = 1, we have

|α(1)
i | =

∣∣∣∣∣σ
(

1√
d

d∑
k=1

W
(1)
ik xk

)∣∣∣∣∣
≤

∣∣∣∣∣Lσ√d
d∑
k=1

W
(1)
ik xk

∣∣∣∣∣+ |σ(0)|.
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Similarly, at initialization,
∑d
k=1W

(1)
ik xk ∼ N (0, ‖x‖2). Hence

P[|α(1)
i | ≥ ln(m) + |σ(0)|] ≤ P

[∣∣∣∣∣Lσ√d
d∑
k=1

W
(l)
ik xk

∣∣∣∣∣ ≥ ln(m)

]

≤ 2e
− dln2(m)

2L2
σ‖x‖

2

= 2e−c
(0)
α ln2(m),

where we denote d
L2
σ‖x‖

by c(0)α , which is of the order Θ(1).

Therefore, |α(l)
i | = Õ(1) with probability at least 1− 2e−c

(l)
α ln2(m) for all l ∈ [L].

I.6 Proof of Lemma G.5

Proof. The expression of the derivatives b(l) is

b(l) =

(
L∏

l′=l+1

1√
m

(W (l′))TΣ′(l
′)

)
1√
m
v, (92)

where Σ′(l
′) is a diagonal matrix with each non-zero element (Σ′(l

′))ii = σ′(α̃
(l)
i (W)).

We prove the lemma by induction. When l = L, using Lemma G.2, we have

‖b(L)‖ =
1√
m
‖v‖ ≤ 1√

m
(c0
√
m+R) = c0 +R/

√
m. (93)

Suppose at l-th layer, ‖b(l)‖ ≤ LL−lσ (c0 +R/
√
m)L−l+1. Then

‖b(l−1)‖ = ‖ 1√
m

(W (l))TΣ′(l)b(l)‖

≤ 1√
m
‖W (l)‖2‖Σ′(l)‖2‖b(l)‖

≤ (c0 +R/
√
m)Lσ‖b(l)‖

≤ LL−l+1
σ (c0 +R/

√
m)L−l+2.

Above, we used Lemma G.2 and the Lσ-Lipschitz continuity of the activation function σ(·) in the
second inequality.
Setting R = 0, we immediately obtain Eq.(64).

I.7 Proof of Lemma G.6

Proof. We prove it by induction. When l = L, b(L)
0 = 1√

m
v0. Since v0,i ∼ N (0, 1), by the

concentration inequality, for every i ∈ [m], we have

P[|v0,i| ≥ ln(m)] ≤ 2e
−ln2(m)

2 .

By union bound, with probability at least 1− 2me
−ln2(m)

2 ,

‖v0‖∞ ≤ ln(m),

in other words,

‖b(L)
0 ‖∞ = Õ(1/

√
m).

Supposing with probability 1 − me−c
(l)
b ln2(m) for some constant c(l)b > 0, we have ‖b(l)

0 ‖∞ =

Õ(1/
√
m). Then we show ‖b(l−1)

0 ‖∞ = Õ(1/
√
m) with probability 1−me−c

(l−1)
b ln2(m) for some

constant c(l−1)b > 0.
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For simplicity, in the rest of the proof, we hide the subscript 0. Hence we denote b
(l−1)
0 =

1√
m

(W
(l−1)
0 )TΣ′

(l−1)
0 b

(l)
0 by

b(l−1) =
1√
m

(W (l−1))TΣ′
(l−1)

b(l),

where (W (l−1))ij ∼ N (0, 1).
Similarly, we analyze every component of b(l−1):

|b(l−1)
i | =

∣∣∣∣∣∣ 1√
m

m∑
k=1

W
(l−1)
ki σ′

 1√
m

m∑
j=1

W
(l−1)
kj α

(l−2)
j

b
(l)
k

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1√
m

m∑
k=1

W
(l−1)
ki σ′

 1√
m

m∑
j 6=i

W
(l−1)
kj α

(l−2)
j

b
(l)
k +

1

m
βσα

(l−2)
i

m∑
k=1

(W
(l−1)
ki )2b

(l)
k

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1√
m

m∑
k=1

W
(l−1)
ki σ′

 1√
m

m∑
j 6=i

W
(l−1)
kj α

(l−2)
j

b
(l)
k

∣∣∣∣∣∣+

∣∣∣∣∣ 1

m
βσα

(l−2)
i

m∑
k=1

(W
(l−1)
ki )2b

(l)
k

∣∣∣∣∣ .
For the first term, we use a Gaussian random variable to bound it:

1√
m

m∑
k=1

W
(l−1)
ki σ′

 1√
m

m∑
j 6=i

W
(l−1)
kj α

(l−2)
j

b
(l)
k ≤

Lσ√
m

m∑
k=1

W
(l−1)
ki b

(l)
k ∼ N

(
0,
L2
σ

m
‖b(l)‖2

)
.

Using the concentration inequality, we have

P

[∣∣∣∣∣ Lσ√m
m∑
k=1

W
(l−1)
ki b

(l)
k

∣∣∣∣∣ ≥ ln(m)√
m

]
≤ 2e

− ln2(m)

2L2
σ‖b

(l)‖2 ≤ 2e−c
(l)
σ ln2(m),

for some c(l)σ = 1
2L2

σ‖b(l)‖2 ≥
1

2L2L−2l+2
σ c02L−2l+2

by Lemma G.5.
For the second term, we have

1

m
βσα

(l−2)
i

m∑
k=1

(W
(l−1)
ki )2b

(l)
k ≤

1

m
βσ|α(l−2)

i |‖b(l)‖∞
m∑
k=1

(W
(l−1)
ki )2,

where we can see
∑m
k=1(W

(l−1)
ki )2 ∼ χ2(m).

By Lemma G.4, with probability 1− e−c(l−2)
α ln2(m), we get |α(l−2)

i | = Õ(1). Hence, by Lemma 1 in
[12], there exist constants c̃1, c̃2, c̃3 > 0, such that

P

[
1

m
βσ|α(l−2)

i |‖b(l)‖∞
m∑
k=1

(W
(l−1)
ki )2 ≥ c̃1

lnc̃3(m)√
m

]
≤ e−c̃2m,

with probability 1−me−c
(l)
b ln2(m) by the induction hypothesis.

Combining these probability terms, there exists a constant c(l−1)b such that

e−c
(l−1)
b ln2(m) ≤ me−c

(l)
b ln2(m) + 2e−c

(l)
σ ln2(m) + 2e−c

(l−2)
α ln2(m) + e−c̃2m.

Then with probability at least 1− e−c
(l−1)
b ln2(m),

|b(l−1)
i | = Õ(1/

√
m).

By union bound, with probability at least 1−me−c
(l−1)
b ln2(m), we have

‖b(l−1)‖∞ = Õ(1/
√
m).

Hence by the principle of induction, for all l ∈ [L], with probability at least 1−me−c
(l)
b ln2(m) for

some constant c(l)b > 0, we have

‖b(l)‖∞ = Õ(1/
√
m). (94)
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I.8 Proof of Lemma H.1

Proof. Let A = (a1,a2, · · · ,ad) and C = (c1, c2, · · · , cd), where each ai is a column of the matrix
A and each ci is a column of the matrix C. Then we have

ai = Bci, ∀i ∈ [d]. (95)

Now, for the Frobenius norm, we have

‖A‖2F =

d∑
i=1

‖ai‖2 =

d∑
i=1

‖Bci‖2 ≤
d∑
i=1

‖B‖2‖ci‖2 = ‖B‖2‖C‖2F .

Hence, ‖A‖F ≤ ‖B‖‖C‖F .
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