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Abstract

Visual perception is critically influenced by the focus of attention. Due to limited re-
sources, it is well known that neural representations are biased in favor of attended
locations. Using concurrent eye-tracking and functional Magnetic Resonance Imag-
ing (fMRI) recordings from a large cohort of human subjects watching movies,
we first demonstrate that leveraging gaze information, in the form of attentional
masking, can significantly improve brain response prediction accuracy in a neural
encoding model. Next, we propose a novel approach to neural encoding by includ-
ing a trainable soft-attention module. Using our new approach, we demonstrate
that it is possible to learn visual attention policies by end-to-end learning merely
on fMRI response data, and without relying on any eye-tracking. Interestingly, we
find that attention locations estimated by the model on independent data agree well
with the corresponding eye fixation patterns, despite no explicit supervision to do
so. Together, these findings suggest that attention modules can be instrumental in
neural encoding models of visual stimuli. 1

1 Introduction

Developing accurate population-wide neural encoding models that predict the evoked brain response
directly from sensory stimuli has been an important goal in computational neuroscience. Modeling
neural responses to naturalistic stimuli, in particular stimuli that reflect the complexity of real-world
scenes (e.g., movies), offers significant promise to aid in understanding the human brain as it functions
in everyday life [1]. Much of the recent success in predictive modeling of neural responses is driven
by deep neural networks trained on tasks of behavioral relevance. For example, features extracted
from deep neural networks trained on image or auditory recognition tasks are currently the best
predictors of neural responses across visual and auditory brain regions, respectively [2, 3, 4]. While
this success is promising, the unexplained variance is still large enough to prompt novel efforts in
model development for this task. One aspect that is often overlooked in existing neural encoding
models in vision is visual attention.

Natural scenes are highly complex and cluttered, typically containing a myriad of objects. What we
perceive upon viewing complex, naturalistic stimuli depends significantly on where we direct our
attention. It is well known that multiple objects in natural scenes compete for neural resources and
attentional guidance helps to resolve the ensuing competition [5]. Due to the limited information
processing capacity of the visual system, neural activity is biased in favor of the attended location
[6, 7]. Hence, more salient objects tend to be more strongly and robustly represented in our brains.
Further, several theories have postulated that higher regions of the visual stream encode increasingly

1Our code is available at https://github.com/mk2299/encoding_attention.
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shift- and scale-invariant representations of attended objects after filtering out interference from
surrounding clutter [8, 9]. These studies suggest that deployment of attention results in an information
bottleneck, permitting only the most salient objects to be represented in the inferotemporal (IT) cortex,
particularly the ventral visual stream which encodes object identity. These findings together indicate
that visual attention mechanisms can be crucial to model neural responses of the higher visual system.

Visual attention and eye movements are tightly interlinked. Where we direct our gaze often quite
accurately signals the focus of our attention [10]. This form of attention, known as overt spatial
attention, can be directly measured by eye-tracking. Recent work has shown that fMRI activity can
be used to directly predict fixation maps or eye movement patterns under free-viewing of natural
scenes, suggesting a strong link between neural representations and eye movements [11]. In a
similar vein, Sinz et al. [12] demonstrated that gaze shifts as estimated from pupil locations and
behavioral states can be very useful in modeling spiking activity of mouse V1 neurons. More recent
large-scale efforts in such concurrent data collection on humans, such as the Human Connectome
Project (HCP) [13], that simultaneously record fMRI and eye-tracking measurements on a large
population under free-viewing of movies, present a novel opportunity to probe the potential role of
attention in neural encoding models of ecological stimuli.

Our contributions in this study are as follows:

• We demonstrate that leveraging information about attended locations in an input image can
be helpful in predicting the evoked neural response. Particularly, we show that attentional
masking of high-level stimulus representations based on human fixation maps can dramati-
cally improve neural response prediction accuracy for naturalistic stimuli across large parts
of the cortex.

• We show that it is possible to use supervision from neural response prediction solely to
co-train a visual attention network. This training strategy thus encourages only those salient
parts of the image to dominate the prediction of the neural response. We find that the neural
encoding model with this trained attention module outperforms encoding models with no or
fixed attention.

• Interestingly, we find that despite not being explicitly trained to predict fixations, the
attention network within the neural encoding model compares favorably against saliency
prediction models that aim to directly predict likely human fixation locations given an input
image. This suggests that neural response prediction can be a powerful supervision signal
for learning where humans attend in cluttered scenes with multiple objects. This signals a
novel opportunity for utilizing functional brain recordings during free-viewing to understand
visual attention.

2 Methods

Neural encoding models comprise two major components: a representation (feature extraction)
module that extracts relevant representations from raw stimuli and a response model that predicts
neural activation patterns from the feature space. We propose to integrate a trainable soft-attention
module on top of the representation network to learn attention schemes that guide the prediction of
whole-brain neural response. Our proposed methodology is illustrated in Figure 1.

Feature extraction network We employ the state-of-the-art ResNet-50 [14] architecture pre-
trained for object recognition on ImageNet [15] as the representation network to extract semantically
rich features from raw input images. In this study, we focus on improving neural response prediction
in higher-order regions of the visual pathway where receptive fields are larger and not limited to a
single hemi-field. Prior evidence suggests that these regions are likely best modelled by deeper layers
of object recognition networks [3, 16]. Thus, we extract the output of the last "residual block", namely
res5 (after addition) before the global pooling operation to encode all images into a 2048-channel
high-level feature representation image (of size 23× 32, in our experiments), denoted as Frep. All
pre-trained weights are kept frozen during training of the neural encoding models.

Attention network The attention network operates on the 2048-channel feature representation
image Frep. For simplicity, we employed a single convolutional layer that constructs the saliency map
with a trainable 5 × 5 filter Vatt ∈ R5×5×2048×1 as, S = Gσ ∗ [Vatt ∗ Frep]+. Here, | · |+ denotes
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Figure 1: Proposed method. A trainable soft-attention module is implemented on top of a pre-trained
representation network to rescale features based on their salience. The rescaled features are spatially
pooled and fed into a convolutional response model to predict whole-brain neural response. We assess
the value of the trained attention network by comparing it with neural encoding methods employing
(i) stimulus-dependent attention maps derived from human fixations (AG), (ii) stimulus-independent
attention map derived from all fixations in the training set that reflects the center-weighted bias of our
dataset (AC) as well as a (iii) no attention model that spatially pools the features directly with no
scaling.

the ReLU operation and Gσ∗ indicates blurring using a 5 × 5 gaussian kernel with σ = 1. The
attention scores for each pixel are finally computed from saliency maps by normalizing with the
spatial softmax operation,

A
(i)
l =

expS(i)∑n
j=1 expS

(j)
, i ∈ {1, .., n}. (1)

Here, superscript i is used to index the 23× 32 spatial locations in the feature map Frep. We note that
existing literature on selective visual attention suggests a hierarchical winner-take-all mechanism
for saliency computation, where only the particular subset of the input image that is attended is
consequently represented in higher visual systems [7]. The softmax operation can be construed as
approximating this winner-take-all mechanism. The attention is consequently applied as element-wise
scaling to Frep to yield an attention modulated representation Fa

rep = Frep�A.

Convolutional response model The convolutional response model maps the spatially pooled
attention modulated features fg =

∑n
i=1 Fa(i)

rep to the neural representation space, reshapes them into
coarse 3D feature maps and transforms them into an increasingly fine-grained volumetric neural
activation pattern using trainable convolutions. This dramatically reduces the parameter count in
comparison to linear response models with dense connections. Additionally, it captures spatial context
and allows end-to-end optimization of the neural encoding model to predict high-resolution neural
response, thereby alleviating the need for voxel sub-sampling or selection. The full sequence of
feedforward computations in the convolutional response model are shown in the inset of Figure 1.
The architecture of the convolutional response model is kept consistent across all CNN-based models
to ensure a fair comparison.

2.1 Baselines and upper bounds

No attention We compared the performance of all attention-based models against a model with no
attention modulation that spatially pools the feature representation as, fg =

∑n
i=1 F(i)

rep (denoted as ‘No
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attention’). We implemented another baseline that uses the full feature map directly (instead of spatial
pooling) as a flattened input to the convolutional response model. Due to computational/memory
constraints, we had to reduce the dimensionality of the fully connected layer (to 256 units instead
of 1024) in the convolutional response model for this encoding method. This model is henceforth
denoted as ‘No pooling’.

Center-weighted attention To further assess the usefulness of a learned attention network, we
derive a stimulus-independent attention map (AC) based on averaging across all eye gaze data in the
training set, using Gaussian kernel density estimation. This essentially amounts to center-weighted
attention (see Supplementary) since fixation locations on average are biased towards the center of an
image [17]. The standard deviation of the Gaussian kernel is chosen to maximize log-likelihood on
the validation set and is consequently set to 20.

Gaze-weighted attention We derive attention maps for every input frame from the eye gaze
coordinates observed for the respective frame across different subjects. The human fixation maps are
converted into attention maps AG by blurring with a Gaussian kernel of same standard deviation as the
center-weighted attention model. The resulting attention maps in the original input image space are
subsequently resized to the spatial dimensions of Frep and renormalized. Since these stimulus-specific
attention maps are derived from actual human gaze information, they likely represent an upper bound
in neural encoding performance among all attention-based models.

Linear models To date, neural encoding models in all prior work employ a linear response model
with appropriate regularization on the regression weights. To compare against this dominant approach,
we extract global average pooled (no-attention) features as well as pooled attention modulated features
for both non-trainable attention schemes (center-weighted and gaze-weighted attention) as described
above, to present to the linear regressor. We apply l2 regularization on the regression coefficients
and adjust the optimal strength of this penalty λ through cross-validation using 10 log-spaced values
in {1e−5, 1e5}. In later sections, we denote the performance of the above models as ‘No attention
(linear)’, ‘Center-weighted attention (linear)’ and ‘Gaze-weighted attention (linear)’ respectively.

2.2 Training procedure

All parameters were optimized to minimize the mean squared error between the predicted and target
fMRI response using Adam [18] for 25 epochs with a learning rate of 1e-4. Validation curves were
monitored to ensure convergence and hyperparameters were optimized on the validation set.

2.3 Evaluation

Neural encoding We evaluated the performance of all encoding models on the test movie by
computing the Pearson’s correlation coefficient (R) between the predicted and measured fMRI
response at each voxel. Since we are only interested in the stimulus-driven response, we isolate
voxels that exhibit high inter-group correlations over all training movies. Inter-group correlation
(“synchrony") values were computed by splitting the population into half and computing correlations
between the mean response time-course of each group (comprising 79 subjects) at every voxel. We
chose a data-driven metric (synchrony) to isolate the stimulus-driven cortex in order to avoid reliance
on pre-defined atlases or functional localizers in identifying the voxels of interest. However, since
choosing an arbitrary synchrony threshold may introduce a bias in the reported metrics, we employed
a range of threshold values, from very loose (0.15) to very strict (0.75) for the correlation value
to consider a voxel as “synchronous" [19]. Finally, to summarize the prediction accuracy across
the stimulus-driven cortex, we compute the mean correlation coefficient across the synchronous
cortex voxels by varying the “synchrony" thresholds from 0.15 (resulting in 160,900 voxels) to
0.75 (8,804 voxels). The spatial distribution of synchronous voxels across the brain as we vary the
synchrony thresholds is illustrated in Figure 2(B). For region level analysis, ROIs were extracted
using a population-wide multi-modal parcellation of the human cerebral cortex, namely the HCP
MMP parcellation [20].

Saliency prediction Next, we wanted to assess if the learned attention model was indeed looking
at meaningful locations in input images while predicting neural responses. To address this question
and put the learned attention schemes in perspective, we assessed the agreement of predicted saliency
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maps with human fixation maps for every frame in the test movie. Besides a qualitative evaluation,
we computed quantitative metrics for comparing the predicted saliency maps against popular fixation
(or saliency) prediction approaches. These include: (i) Itti-Koch [21]: a biologically plausible model
of saliency computation that assigns pixel-level conspicuity values based on multi-scale low-level
feature maps (intensity, color, orientation) computed via center-surround like operations similar
to visual receptive fields, (ii) Deepgaze-II model [22]: a deep neural network based approach that
extracts high-level features from a pre-trained image recognition architecture (VGG19) as input to a
readout network that is subsequently trained to predict fixations using supervision from gaze data,
and (iii) Intensity contrast features (ICF) model [22]: a low-level saliency computation model that
uses the same readout architecture as the Deepgaze-II model, but on low-level intensity and intensity
contrast feature maps as opposed to high-level features. Additionally, we also report evaluation
metrics for the center-weighted saliency map. We note that the Deepgaze-II and ICF models were
trained with eye-tracking supervision on the MIT1003 saliency dataset [23].

Developing metrics for saliency evaluation is an active area of research and several different metrics
have been proposed that often exhibit discrepant behavior [24]. We report the most commonly used
metrics in saliency evaluation [24], including, (i) Similarity or histogram intersection (SIM), (ii)
Pearson’s correlation coefficient (CC), (iii) Normalized scanpath saliency (NSS), (iv) Area under the
ROC curve (AUC) and (v) Shuffled AUC (sAUC). Following [25], we used log-density predictions
as saliency maps to compute all evaluation metrics.

2.4 Dataset

We study high-resolution 7T fMRI (TR = 1s, voxel size = 1.6 mm isotropic) recordings of 158
participants from the Human Connectome Project (HCP) movie-watching database while they viewed
4 audio-visual movies in separate runs [13, 26]. Each movie scan was about 15 minutes long,
comprising multiple short clips from popular Hollywood movies and/or vimeo. Eye gaze locations of
subjects were also recorded simultaneously at 1000Hz and resampled to 24Hz to match the video
frame acquisition rate. All fMRI data was preprocessed using the HCP FIX denoising procedures,
which include motion and distortion correction, high-pass filtering (2000 sec cut-off), head motion
effect regression using Friston 24-parameter model (i.e., 6 rigid body motion parameters, their
backward temporal derivatives and squares of those time series), automatic removal of artifactual
timeseries by applying regression based on Independent Component Analysis (ICA) [27] as well
as nonlinear registration to the MNI template space [28, 26]. Since the present study focuses on
the development of population-wide predictive models, we averaged the response for each frame
across subjects to obtain a single fMRI volume that represents the population average brain activation
in response to that frame. After discarding rest periods as well as the first 10 seconds of every
movie segment, we used about 12 minutes of audio-visual stimulation data per movie paired with
the corresponding fMRI response and fixation data for analysis. We extract the last frame of every
second of the video as a 720 × 1280 × 3 RGB input to present as stimulus to the neural encoding
models. The output is the predicted response across the entire brain, represented as a volumetric
image of dimensions 113× 136× 113. We estimate a hemodynamic delay of 4 sec using regression
based encoding models (see Supplementary), as the response latency that yields highest encoding
performance. Thus, all proposed and baseline models are trained to use the above stimuli to predict
the fMRI response 4 seconds after the corresponding stimulus presentation. We train and validate our
models on three movies using a 9:1 train-val split and leave the fourth movie for independent testing.
This yields 2000 training, 265 validation and 699 test stimulus-response pairs.

3 Results

Incorporating gaze-weighted attention significantly improves neural response prediction. We
first examined whether attention weighted pooling helps to improve response predictions. Figure 2
shows the mean prediction accuracy across the entire synchronous cortex for all models considered
in this study. We find that the ‘gaze-weighted attention’ model significantly outperforms the ‘no
attention’ model for both linear (∼ 40 % improvement among all voxels with synchrony>0.15), as
well as convolutional response model (∼ 47 % improvement among all voxels with synchrony>0.15).
The attention maps result in amplification of features of attended locations along with suppression of
other irrelevant information. This re-scaling of features before pooling using fixation patterns obtained
from eye-tracking data remarkably improves neural encoding performance across large areas of the
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Figure 2: Quantitative evaluation of all models. (A) depicts mean correlation values across the
synchronous, (i.e., stimulus-driven) cortex defined at a range of synchrony thresholds ([0.15,0.75]).
Each point thus reflects the mean prediction accuracy for a model across all voxels within synchronous
cortex defined by a threshold value (x-axis). (B) depicts the inter-group correlation (synchrony)
values across the entire human cerebral cortex.

cortex, suggesting that neural responses are indeed dominated by sensory signals at attended locations.
Although we employed a convolutional response model primarily for computational efficiency in
predicting a high-resolution (113x136x113) whole-brain neural response, we also observed a small
improvement in neural encoding with this response model in comparison to a linear response model.

Trainable attention model outperforms models with no attention or center-weighted attention
In addition to improving neural response prediction, the convolutional response model renders end-
to-end training of encoding models on whole-brain neural data feasible by dramatically reducing the
number of free parameters in comparison to linear response models. In this study, we exploited this
increased parameter efficiency to co-train an attention network on top of a pre-trained representation
network (while freezing the representation network) for the goal of neural response prediction. As
shown in Figure 2, the encoding model with learned attention surpasses models with no pooling, no
attention or center-weighted attention in mean prediction accuracy across the sychronous cortex as
well across most ROIs involved in object processing. This suggests that even with no eye-tracking
data, as is the case with majority movie-watching fMRI datasets, modelling visual attention as
re-weighting of stimulus representations based on spatial attention masks can still be beneficial in
response prediction. The improvements are most apparent in ventral stream regions such as the
Fusiform Face Complex (FFC) and PIT Complex, as well as object-selective parts of the lateral
occipital complex (LO1, LO2, LO3) (Figure 2). Studies in visual perception have shown that
these lateral occipital areas respond more strongly to intact objects than scrambled objects or
textures, providing strong evidence for their role in object recognition as well as object shape
perception [29, 30, 31]. Accuracy in another group of areas within the temporo-parieto-occipital
junction, which is known to be involved in visual object recognition as well as representation of
facial attributes such as the intensity of facial expressions [32], is similarly improved with the trained
attention network. In addition to these areas, we also observe some improvement in neural encoding
performance in other higher order processing regions across the dorsal visual stream, motion-sensitive
visual regions (MT+ complex) and their neighboring visual areas (Figure 3). We also trained the
proposed and baseline models on representations of other randomly selected deep layers within
the ResNet-50 architecture and observed a similar benefit of attention modulation across different
layers (see Supplementary). Further, a representational similarity analysis comparing non-modulated
and attention modulated representations of different layers across popular architectures showed that
models that explain stimulus-dependent human fixation patterns are able to better account for the
representational geometry of neural responses across intermediate and higher visual object processing
areas (see Supplementary). Taken together, these findings provide further support for the utility of
attention modelling in neural encoding approaches. In addition to improving accuracy, the attention
model further affords interpretability by highlighting salient locations within the input image that are
being employed to make response predictions.

Learned attention policies correspond remarkably well with human fixation maps. Figure 4
depicts saliency maps predicted by the trained attention network on sampled frames from the test
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Figure 3: Top: ROI-level analysis Mean correlation values across intermediate (V4), higher visual
areas in the inferotemporal cortex and its neighborhood and other higher higher-level visual regions
(Dorsal, MT+) as described in the HCP MMP parcellation [20]. Error bars represent 95% confidence
intervals around mean estimates computed using bootstrap sampling. (A)-(E) Prediction accuracy
across the cortical surface for all deep CNN-based models. Statistical significance of individual
voxel predictions is computed as the p-value of the obtained sample correlation coefficient for the
null hypothesis of uncorrelatedness (i.e., true correlation coefficient is zero) under the assumptions
of a bivariate normal distribution. Only significantly predicted voxels (p<0.05, FDR corrected) for
each method are colored on the surface. Prediction accuracy maps for encoding methods with linear
response models are provided in the Supplementary.

movie. This qualitative assessment indicates that the proposed neural encoding model learns attention
policies that are consistent with human fixation maps. Since attention is learned on top of high-level
features, the model learns to focus on high-level stimuli features such as the presence of faces, hands
and more conspicuous objects likely to direct attention in natural scenes. A closer look at incongruent
cases indicates that images where the model fails to track human fixations are often highly complex
scenes, where fixations may be driven by contextual knowledge of previous movie frames (Figure 4,
top-right) or auditory signals, e.g., who the speaker is, etc. (Figure 4, bottom-right).

Table 1 shows quantitative metrics that compare the quality of saliency maps computed by benchmark
models trained to predict gaze on our data. We also listed the performance of the attention network
that was merely trained on fMRI data, and not eye gaze data. We note that our attention network
performs on par with popular fixation prediction models that are trained directly on the task of
saliency prediction in a supervised manner (ICF and Deepgaze-II). This trend holds for almost all
saliency evaluation metrics, as shown in Table 1. This observation is particularly interesting given
that the attention network is trained using supervision from neural response prediction only, without
any information about gaze coordinates.

7



Figure 4: Qualitative assessment of saliency (log-density) maps. Top row shows sampled frames
from the test movie, middle row shows human fixation maps overlaid on the corresponding frame,
bottom row shows saliency maps predicted by the attention network of the proposed neural encoding
model. Blue indicates high saliency values whereas red indicates low saliency.

Table 1: Evaluation against saliency prediction models. Mean and standard errors for each metric are
reported. Best results are bolded.

Model SIM ↑ CC ↑ NSS ↑ AUC ↑ sAUC ↑
Itti-Koch 0.318± 0.002 0.325± 0.004 1.010± 0.014 0.795± 0.004 0.537± 0.006
ICF 0.291± 0.002 0.190± 0.007 0.646± 0.023 0.665± 0.006 0.647± 0.005
Center-weighted 0.327± 0.002 0.350± 0.004 1.074± 0.013 0.803± 0.003 0.496± 0.006
Deepgaze-II 0.359± 0.003 0.420± 0.005 1.425± 0.025 0.808± 0.004 0.713± 0.004
Ours 0.392± 0.004 0.403± 0.010 1.375± 0.041 0.754± 0.006 0.645± 0.006

4 Discussion and Conclusion

In the present study, we demonstrate that encoding models with visual attention, whether explicitly
estimated from human fixation maps or modelled using a trainable soft-attention scheme, yield
significant improvements in neural response prediction accuracy over non-attention based counterparts.
We observe consistent improvements across most high-level visual processing regions, suggesting
that unattended portions of an input image may likely have little effect on neural representations
in these regions. Loosely, this aligns well with Treisman’s feature integration theory [33], which
proposes that integrated object representations are only formed for attended locations. In addition to
improving response prediction accuracy, inclusion of visual attention within neural encoding models
promises a better understanding of spatial selection and its influence on neural representations and
perceptual processing. Further, while our study integrates a spatial attention module within a neural
encoding model, the proposed approach is not restricted to this particular form of attention. For
example, spatially global feature-based attention can also be studied within the context of neural
encoding models as "channel-wise" attention-weights instead of spatial attention masks. We believe
the observation that neural response prediction may be a useful supervision goal to study attentional
deployment is particularly exciting and can be extended in novel ways.
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The saliency of a stimulus often depends on the context within which it is presented and attentional
selection strategies can be modulated by task demands [8]. Importantly, attention selects across space
and time; here, we focus on spatial selection of stimuli but it is likely that modeling temporal context
can lead to substantive improvements. Context can also help in highlighting attentional targets that
may be driven by “surprise". Thus, in movie watching, future neural encoding models should also
capture the sequence of frames, rather than isolated frames, and the audio track in modeling attention.

Our study provides a first attempt in capturing visual attention within neural encoding models. We
see several opportunities for extending this work. In the present framework, we employed attention
as a masking strategy to filter out clutter and retain information from only the most relevant (i.e.
attended) parts of an image. It would be interesting to study how and where the features of ignored
stimuli (i.e. the stimuli that doesn’t get past the attentional bottleneck) are encoded. Further, here, we
modeled attention on top of high-level semantic features. In principle, the attention network can be
implemented on top of any level within the representation network hierarchy, including lower stages
and understanding where attention computations leads to best neural prediction accuracy and/or
agreement with human fixation maps could be a worthwhile exploration. A straightforward extension
in this direction would be to add the attention module on top of both low-level cues and high-level
representations or to combine feature maps across layers before presenting to the attention network.
In the future, we aim to further explore novel ways of incorporating attention within neural encoding
models.

Beyond advancing our understanding of sensory perception, neural encoding models have potential
for real-world applications, most obviously for brain-machine interface. Additionally, an improved
understanding of the link between sensory stimuli and evoked neural activation patterns can provide
opportunities for neural population control, for e.g., by synthetically designing stimuli to elicit a
specific neural activation pattern [34].

Broader Impact

Understanding the link between sensory stimulation and evoked neural activity in humans as revealed
with encoding models, can provide foundations for developing novel therapies. Viewed in this regard,
an improved understanding of information processing in the brain has tremendous potential. However,
encoding models can be very sensitive to biases in the training set. Our models were trained using
data from the Human Connectome Project database. While this large-scale project has made a
lot of valuable data publicly available to the scientific community for studying brain structure and
function, it is important to consider the representational bias in the dataset. For instance, the data we
analyzed is exclusively limited to a young adult population. Such biases can possibly lead to poorer
generalization of models trained with these large-scale datasets on other population groups that are
inadequately represented. Once these encoding models are ripe for therapeutic applications, this
dataset bias could prevent under-represented groups from deriving the benefits of a useful technology,
resulting in uneven access across populations. Given these considerations, it is important to address
potential representation biases in fMRI datasets and develop solutions for improving diversity and
inclusion. More generally, fMRI studies involving human subjects can raise a wide range of other
ethical issues as well, including data privacy issues and informed consent.

Further, one should be cautious about the deployment of attention or gaze prediction models in
applications such as advertising. Given the value of eye tracking based attention in marketing spaces,
public policy notices or political campaigns, it is important to be wary of a malicious use of these
attention prediction methods for profit-seeking or by ill-intentioned parties seeking to further their
own agendas. These applications regard attention as a commodity to be captured and the adopted
technologies can be used to manipulate users in subtle ways. An improved understanding about
the link between stimuli and perceptual processing in the brain, as provided with encoding models,
can also be exploited to further design or identify stimuli likely to elicit a specific emotional or
cognitive response. The fact that these technologies can be deployed without the targeted individual’s
knowledge or consent indicates it is important to protect users from the vulnerabilities exploited by
these agents.
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