Neural encoding with visual attention
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Abstract

Visual perception is critically influenced by the focus of attention. Due to limited re-
sources, it is well known that neural representations are biased in favor of attended
locations. Using concurrent eye-tracking and functional Magnetic Resonance Imag-
ing (fMRI) recordings from a large cohort of human subjects watching movies,
we first demonstrate that leveraging gaze information, in the form of attentional
masking, can significantly improve brain response prediction accuracy in a neural
encoding model. Next, we propose a novel approach to neural encoding by includ-
ing a trainable soft-attention module. Using our new approach, we demonstrate
that it is possible to learn visual attention policies by end-to-end learning merely
on fMRI response data, and without relying on any eye-tracking. Interestingly, we
find that attention locations estimated by the model on independent data agree well
with the corresponding eye fixation patterns, despite no explicit supervision to do
so. Together, these findings suggest that attention modules can be instrumental in
neural encoding models of visual stimuli.

1 Introduction

Developing accurate population-wide neural encoding models that predict the evoked brain response
directly from sensory stimuli has been an important goal in computational neuroscience. Modeling
neural responses to naturalistic stimuli, in particular stimuli that reflect the complexity of real-world
scenes (e.g., movies), offers significant promise to aid in understanding the human brain as it functions
in everyday life [1]]. Much of the recent success in predictive modeling of neural responses is driven
by deep neural networks trained on tasks of behavioral relevance. For example, features extracted
from deep neural networks trained on image or auditory recognition tasks are currently the best
predictors of neural responses across visual and auditory brain regions, respectively [2| 3| 4]. While
this success is promising, the unexplained variance is still large enough to prompt novel efforts in
model development for this task. One aspect that is often overlooked in existing neural encoding
models in vision is visual attention.

Natural scenes are highly complex and cluttered, typically containing a myriad of objects. What we
perceive upon viewing complex, naturalistic stimuli depends significantly on where we direct our
attention. It is well known that multiple objects in natural scenes compete for neural resources and
attentional guidance helps to resolve the ensuing competition [5]. Due to the limited information
processing capacity of the visual system, neural activity is biased in favor of the attended location
[6}7]. Hence, more salient objects tend to be more strongly and robustly represented in our brains.
Further, several theories have postulated that higher regions of the visual stream encode increasingly
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shift- and scale-invariant representations of attended objects after filtering out interference from
surrounding clutter [8,9]]. These studies suggest that deployment of attention results in an information
bottleneck, permitting only the most salient objects to be represented in the inferotemporal (IT) cortex,
particularly the ventral visual stream which encodes object identity. These findings together indicate
that visual attention mechanisms can be crucial to model neural responses of the higher visual system.

Visual attention and eye movements are tightly interlinked. Where we direct our gaze often quite
accurately signals the focus of our attention [[10]]. This form of attention, known as overt spatial
attention, can be directly measured by eye-tracking. Recent work has shown that fMRI activity can
be used to directly predict fixation maps or eye movement patterns under free-viewing of natural
scenes, suggesting a strong link between neural representations and eye movements [11]. In a
similar vein, Sinz et al. [12] demonstrated that gaze shifts as estimated from pupil locations and
behavioral states can be very useful in modeling spiking activity of mouse V1 neurons. More recent
large-scale efforts in such concurrent data collection on humans, such as the Human Connectome
Project (HCP) [13]], that simultaneously record fMRI and eye-tracking measurements on a large
population under free-viewing of movies, present a novel opportunity to probe the potential role of
attention in neural encoding models of ecological stimuli.

Our contributions in this study are as follows:

* We demonstrate that leveraging information about attended locations in an input image can
be helpful in predicting the evoked neural response. Particularly, we show that attentional
masking of high-level stimulus representations based on human fixation maps can dramati-
cally improve neural response prediction accuracy for naturalistic stimuli across large parts
of the cortex.

* We show that it is possible to use supervision from neural response prediction solely to
co-train a visual attention network. This training strategy thus encourages only those salient
parts of the image to dominate the prediction of the neural response. We find that the neural
encoding model with this trained attention module outperforms encoding models with no or
fixed attention.

* Interestingly, we find that despite not being explicitly trained to predict fixations, the
attention network within the neural encoding model compares favorably against saliency
prediction models that aim to directly predict likely human fixation locations given an input
image. This suggests that neural response prediction can be a powerful supervision signal
for learning where humans attend in cluttered scenes with multiple objects. This signals a
novel opportunity for utilizing functional brain recordings during free-viewing to understand
visual attention.

2 Methods

Neural encoding models comprise two major components: a representation (feature extraction)
module that extracts relevant representations from raw stimuli and a response model that predicts
neural activation patterns from the feature space. We propose to integrate a trainable soft-attention
module on top of the representation network to learn attention schemes that guide the prediction of
whole-brain neural response. Our proposed methodology is illustrated in Figure[I]

Feature extraction network We employ the state-of-the-art ResNet-50 [14]] architecture pre-
trained for object recognition on ImageNet [[15] as the representation network to extract semantically
rich features from raw input images. In this study, we focus on improving neural response prediction
in higher-order regions of the visual pathway where receptive fields are larger and not limited to a
single hemi-field. Prior evidence suggests that these regions are likely best modelled by deeper layers
of object recognition networks [3,[16]]. Thus, we extract the output of the last "residual block", namely
res5 (after addition) before the global pooling operation to encode all images into a 2048-channel
high-level feature representation image (of size 23 32, in our experiments), denoted as Frep. All
pre-trained weights are kept frozen during training of the neural encoding models.

Attention network The attention network operates on the 2048-channel feature representation
image Frep. For simplicity, we employed a single convolutional layer that constructs the saliency map
with a trainable 5 5 filter Vage 2 R>*°*2948%1 a5 S = G, [Var Freplt. Here, j j denotes
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