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A Justification of Table [T]

Below we provide a justification for each mark of Table|[I}

Al

A2

Constant Memory

e Distillation methods need to accommodate a teacher model along with the current learner, at
a fixed memory cost. While iCaRL maintains a snapshot of the network as teacher, LWF
stores teacher responses to new task data at the beginning of each task.

o Rehearsal methods need to store a memory buffer of a fixed size. This also affects iCaRL.

e Architectural methods increase the model size linearly with respect to the number of tasks.
In more detail, PackNet and HAT need a Boolean and float mask respectively, while PNN
devotes a whole new network to each task.

e Regularization methods usually require to store up to two parameters sets, thus respecting
the constant memory constraint.

No Task Boundaries

e Distillation methods depend on task boundaries to appoint a new teacher. iCaRL also
depends on them to update its memory buffer, in accordance with the herding sampling
strategy.

o Architectural methods require to know exactly when the task finishes to update the model.
PackNet also re-trains the network at this time.

e Regularization methods exploit the task change to take a snapshot of the network, using it to
constrain drastic changes for the most important weights (0EWC, SI). Online EWC also
needs to pass over the whole training set to compute the weights importance.

e Rehearsal methods can operate in the absence of task boundaries if their memory buffer
exploits to the reservoir sampling strategy. This applies to ER, GSS, MER, DER and
DER++ and can easily be extended to A-GEM (by replacing ring sampling with reservoir as
discussed in Sec. @ Other rehearsal approaches, however, rely on boundaries to perform
specific steps: HAL hallucinates new anchors that synthesize the task it just completed,
whereas FDR needs them to record converged logits to replay.

GEM does not strictly depend on task boundaries, but rather on task identities to associate every
memorized input with its original task (as described in Sec. 3 of [7]). This is meant to let GEM
set up a separate QP for each past task (notice that this is instead unnecessary for A-GEM, which
only solves one generic constraint w.r.t. the average gradient of all buffer items). We acknowledge
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that reliance on task boundaries and reliance on task identities are logically equivalent: indeed, 1)
the availability of task identities straightforwardly allows any method to recognize and exploit task
boundaries; ii) vice versa, by relying on task boundaries and maintaining a task counter, one can
easily associate task identities to incoming input points (under the assumption that tasks are always
shown in a sequence without repetitions). This explains why Table[T]indicates that GEM depends on
task boundaries. This is also in line with what argued by the authors of [1]].

A.3 No test time oracle

o Architectural methods need to know the task label to modify the model accordingly before
they make any prediction.

e LWF is designed as a multi-head method, which means that its prediction head must be
chosen in accordance with the task label.

e Regularization methods, rehearsal methods and iCaRL can perform inference with no
information about the task.

B Details on the Implementation of MNIST-360

MNIST-360 presents the evaluated method with a sequence of MNIST digits from 0 to 8 shown at
increasing angles.

B.1 Training

For Training purposes, we build batches using exemplars that belong to two consequent classes
at a time, meaning that 9 pairs of classes are possibly encountered: (0,1), (1,2), (2,3), (3 4),
(4,5), (5,6), (6,7), (7,8), and (8, 0). Each pair is shown in this order in R rounds (R = 3 in our
experiments) at changing rotations. This means that MNIST-360 consists of 9 - R pseudo-tasks,
whose boundaries are not signaled to the tested method. We indicate them with \Ifg,dl"b) where
r € {1,..., R} is the round number and d;, dy are digits forming one of the pairs listed above.

As every MNIST digit d appears in 2 - R pseudo-tasks, we randomly split its example images evenly
in 6 groups G¢ where i € {1,...,2- R}. The set of exemplars that are shown in gldrda) i given as
Gdrl/Q U G‘[lr/z]ﬂ, where [r/2] is an integer division.

At the beginning of \Ilgdl"dﬂ, we initialize two counters Cy, and Cy, to keep track of how many
exemplars of d; and ds are shown respectively. Given batch size B (B = 16 in our experiments),

each batch is made up of N4, samples from Gdr1 (/2] and Ny, samples from G?ﬁ/z] 41 Where:
Gyl = Ca
Ny, = min ( - L A ‘B,|GE |~ Ca, %
|G[ /2] | Ca, + |G[T/2 41l —Ca,
Nd2 = min (B Ndl, |G[r/2 le| Cd2> (8)

This allows us to produce balanced batches, in which the proportion of exemplars of d; and d5 is
maintained the same. Pseudo-task \If,(»dl’d2) ends when the entirety of G‘[ir /2] U Gd

/241 has been
shown, which does not necessarily happen after a fixed number of batches.

Each digit d is also associated with a counter C; that is never reset during training and is increased
every time an exemplar of d is shown to the evaluated method. Before its showing, every exemplar is
rotated by

where |d| is the number of total examples of digit d in the training set and O is a digit-specific angular
offset, whose value for the ith digitis givenby O; = (i — 1) 5% (Og = —35'g R, 01 =0,0; = 3575,
etc.). By so doing, every digit’s exemplars are shown with an increasing rotation spanning an entire
27 angle throughout the entire procedure. Rotation changes within each pseudo-task, resulting into
a gradually changing distribution. Fig.[I]in the main paper shows the first batch of the initial 11
pseudo-tasks with B = 9.



B.2 Test

As no task boundaries are provided, evaluation on MNIST-360 can only be carried out after the
training is complete. For test purposes, digits are still shown with an increasing rotation as per Eq.[9}
with |d| referring to the test-set digit cardinality and no offset applied (O4 = 0).

The order with which digits are shown is irrelevant, therefore no specific batching strategy is necessary
and we simply show one digit at a time.

C Accuracy vs. Memory Occupation

In Fig. 3] we show how the accuracy results for the experiments in Section#.2)and [F1|relate to the
total memory usage of the evaluated methods. We maintain that having a reduced memory footprint
is especially important for a CL method. This is usually fairly easy to assess for rehearsal-based
methods, as they clearly specify the number of items that must be saved in the memory buffer.
While this could lead to the belief that they have higher memory requirements than other classes of
solutions [4], it should be noted that architectural, distillation- and regularization-based methods can
instead be characterized by non-negligible fixed overheads, making them less efficient and harder to
scale.

MNIST-360 - General Continual Learning
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Permuted MNIST - Domain-IL Rotated MNIST - Domain-IL
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Figure 3: Performance vs. memory allocation for the experiments of Section[dand[F.I] Successive
points of the same method indicate increasing buffer size. Methods with lower accuracy or excessive
memory consumption may be omitted (best viewed in color).

D Reservoir Sampling Algorithm

In the following, we provide the buffer insertion algorithm (3] for the Reservoir Sampling strategy [9].

Algorithm 3 - Reservoir Sampling

Input: memory buffer M, number of seen examples N, example z, label y.
if M > N then

MIN] « (a,)
else

j = randomlInteger (min = 0, max = N)

if j < |M]| then

M[j] « (2,9)

end if
end if
return M

E Details on the Implementation of iCaRL

Although iCaRL [8] was initially proposed for the Class-IL setting, we make it possible to use it for
Task-IL as well by introducing a modification of its classification rule. Let 1, be the average feature
vector of the exemplars for class y and ¢(x) be the feature vector computed on example z, iCaRL
predicts a label y* as

Y= arglmilg [p(x) — payll- (10)
y=1,...,



Instead, given the tensor of average feature vectors for all classes p, we formulate iCaRL’s network
response h(x) as

W) = —[lo(z) — pll. (11)
Considering the argmax for h(x), without masking (Class-IL setting), results in the same prediction
as Eq.[10]
It is also worth noting that iCaRL exploits a weight-decay regularization term (wd_reg), as suggested
in [8]], in order to make its performance competitive with the other proposed approaches.

F Additional Results

F.1 Sequential-MNIST

Similarly to Sequential CIFAR-10, the Sequential MNIST protocol split the whole training set of the
MNIST Digits dataset in 5 tasks, each of which introduces two new digits.

Model Class-IL Task-IL

JOINT 95.57+0.24 99.51+0.07

SGD 19.60=+0.04 94.94+2.18

oEWC 20.46+1.01 98.39+0.48

SI 19.27+0.30 96.00+2.04

LwF 19.62+0.01 94.11+3.01

PNN - 99.23+0.20

Buffer 200 500 5120 200 500 5120
ER 80.43+1.80 86.12+1.80 93.40+1.29 97.86+0.35 99.04+0.18 99.33+0.22
MER 81.47+1.56 88.35+0.41 94.57+0.18 98.05+0.25 98.43+0.11 99.27+0.09
GEM 80.11+1.54 85.99+1.35 95.11+0.87 97.78+0.25 98.71+0.20 99.44+0.12
A-GEM 45.72+4.26 46.66+5.85 5H4.24+6.49 98.61+0.24 98.93+0.21 98.93+0.20
iCaRL 70.51+0.53 70.10+1.08 70.60+1.03 98.28+0.09 98.32+0.07 98.32+0.11
FDR 79.43+3.26 85.87+4.04 87.47+3.15 97.66+0.18 97.54+1.90 97.79+1.33
GSS 38.90+2.49 49.76+4.73 89.39+0.75 95.02+1.85 97.71+053 98.33+0.17
HAL 84.70+0.87 87.21+0.49 89.52+0.96 97.96+0.21 98.03+0.22 98.35+0.17

DER (ours) 84.55+1.64 90.54+1.18 94.90+0.57 98.80+0.15 98.84+0.13 99.29+0.11
DER++ (ours) 85.61+£1.40 91.00+1.49 95.30+1.20 98.76+0.2s 98.94+0.27 99.47+o0.07

Table 4: Results for the Sequential-MNIST dataset.

F.2 Additional Comparisons with Experience Replay
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Figure 4: A comparison between our proposal (DER++) and the variants of Experience Replay
presented in [3]].

In the main paper we already draw a thorough comparison with Experience Replay (ER), showing
that DER and DER++ often result in better performance and more remarkable capabilities. It is worth



noting that the ER we compared with was equipped with the reservoir strategy; therefore, it would be
interesting to see whether the same experimental conclusions also hold for other variants of naive
replay (e.g. ER with ring-buffer). For this reason, Fig. 4] provides further analysis in the setting of [,
which investigates what happens when varying the number of samples that are retained for later
replay. Interestingly, while reservoir weakens ER when very few past memories are available, it does
not bring DER++ to the same flaw. In the low-memory regime, indeed, the probability of leaving a
class out from the buffer increases: while ER would not have any chance to retain the knowledge
underlying these “ghost” classes, we conjecture that DER++ could recover this information from the
non-argmax outputs of the past predicted distribution.

F.3 Single-Epoch Setting

Buffer ER FDR DER++ JOINT JOINT
#epochs 1 1 1 1 50/100
200 37.64 21.22 41.93

Seq.
500 4522 21.06 48.04 5674  92.20
CIFAR-10 5100 5028 2057 53.31
Seq 200 598 487  6.35
. : 500 839 476 8.65  19.37  59.99
Tiny ImageNet

5120 16.04 4.96 16.41

Table 5: Single-epoch evaluation setting (Class-IL).

Several Continual Learning works present experiments even on fairly complex datasets (e.g.: CIFAR-
10, CIFAR-100, Mini ImageNet) in which the model is only trained for one epoch for each task [1}
31140 [7]. As showing the model each example only once could be deemed closer to real-world CL
scenarios, this is a very compelling setting and somewhat close in spirit to the reasons why we focus
on General Continual Learning.

However, we see that committing to just one epoch (hence, few gradient steps) makes it difficult to
disentangle the effects of catastrophic forgetting (the focus of our work) from those of underfitting.
This is especially relevant when dealing with complex datasets and deserves further investigation: for
this reason, we conduct a single-epoch experiment on Seq. CIFAR-10 and Seq. Tiny ImageNet. We
include in Tab. E] the performance of different rehearsal methods; additionally, we report the results
of joint training when limiting the number of epochs to one and, vice versa, when such limitation
is removed (see last two columns). While the multi-epoch joint training learns to classify with a
satisfactory accuracy, the single-epoch counterpart (which is the upper bound to all other methods
in this experiment) yields a much lower accuracy and underfits dramatically. In light of this, it is
hard to evaluate the merits of other CL methods, whose evaluation is severely undermined by this
confounding factor. Although DER++ proves reliable even in this difficult setting, we feel that future
CL works should strive for realism by designing experimental settings which are fully in line with
the guidelines of GCL [6] rather than adopting the single-epoch protocol.

F.4 Forward and Backward Transfer

In this section, we present additional results for the experiments presented in Sec. {.2] and [F.1}
reporting Forward Transfer (FWT), Backward Transfer (BWT) [[7] and Forgetting (FRG) [2]. The
first one assesses whether a model is capable of improving on unseen tasks w.r.t. random guessing,
whereas the second and third ones measure the performance degradation in subsequent tasks. Despite
their popularity in recent CL works [2, (316} [7]], we did not report them in the main paper because we
believe that the average accuracy represents an already exhaustive measure of CL performance.

FWT is computed as the difference between the accuracy just before starting training on a given
task and the one of the random-initialized network; it is averaged across all tasks. While one can
argue that learning to classify unseen classes is desirable, the meaning of such a measure is highly
dependent on the setting. Indeed, Class-IL and Task-IL show distinct classes in distinct tasks, which
makes transfer impossible. On the contrary, FWT can be relevant for Domain-IL scenarios, provided



that the input transformation is not disruptive (as it is the case with Permuted-MNIST). In conclusion,
as CL settings sooner or later show all classes to the network, we are primarily interested in the
accuracy at the end of the training, not the one before seeing any example.

FRG and BWT compute the difference between the current accuracy and its best value for each task.
It is worth noting that any method that restrains the learning of the current task could exhibit high
backward transfer but low final accuracy. This is as easy as increasing the weight of the regularization
term: this way, the past knowledge is well-preserved but the current task is not learned properly.
Moreover, BWT makes the assumption that the highest value of the accuracy on a task is the one
yielded at the end of it. This is not always true, as rehearsal-based methods can exploit the memory
buffer in a subsequent task, even enhancing their performance on a previous one if they start from
low accuracy.

FORWARD TRANSFER
Buffer Method S-MNIST S-CIFAR-10 P-MNIST R-MNIST
Class-IL Task-IL Class-IL Task-IL  Domain-IL Domain-IL
- SGD —11.06+2.90  2.33+a.71 —9.09+0.11 —1.46+1.17 0.32+0.85 48.94+0.10
oEWC —7.44+4.18 —0.13+s8.12 —12.51+0.02 —4.09+7.97 0.69+0.97 52.45+8.75
SI —9.50+5.27  —1.3445.42 —12.64+020 —2.33+2.209 0.71+1.89 53.09+o0.73
-  LwF —12.39+4.06  1.30+5.40 —10.63+5.12 0.73+4.36 - -
PNN - N/A - N/A - -
ER —12.1242.21  —0.8643.24 —11.02+2.77 2.10+1.27 1.37+0.48 66.79+0.05
MER —11.03+3.40 —2.18+3.51 - - - -
GEM —10.26+3.08 —0.16+5.80 —7.50+7.05 0.13+3.54 0.42+035 54.06+4.35
A-GEM —10.04+3.11  2.39+6.96 —11.37+0.08 —0.34+0.13 0.83+0.57 54.84+10.45
200 iCaRL N/A N/A N/A N/A - -
FDR —12.06+2.22 —0.81+3890 —12.75+0.30 —2.42+0.86 —1.24+0.06 60.71+s.17
GSS —11.31+258  2.9916.61 —7.08+10.01 6.17+2.06 0.04+0.85 57.28+4.47
HAL —11.15+356 —0.20+3.99 —11.94+080 —0.02+0.10 1.72+0.08 59.95+3.71
DER (ours) —10.16+3.78  3.23+5.2a —11.89+088 0.27+7.12 1.23+0.26 64.69+2.02
DER++ (ours) —12.42+1.84 —2.33+5.69 —4.88+6.90 2.68+0.11 0.91+045 67.21+2.13
ER —10.42+3.42  1.02+5.55 —8.42+483 —3.12+4.02 0.56+252 65.52+1.56
MER —10.59+3.83  0.89+5.03 - - - -
GEM —10.594+3.26  0.11+5.66 —12.53+0.65 1.36+3.05 0.17+0.59 54.19+2.37
A-GEM —9.74+3.60 1.10x7.30 —6.38+8.64 6.36+3.88 0.03x1.20 52.50x0.51
500 iCaRL N/A N/A N/A N/A - -
FDR —9.27+2.80 4.73+508 —6.23+8.79 3.7l+270 —0.32+0.43 65.97+1.02
GSS —10.16+3.48  0.17x5.32 —7.84+443 2.11x331 0.89+0.94 58.19+4.42
HAL —9.02+5.06 0.79+7.26 —7.15+757  3.06+1.03 1.33+0.23 64.21+3.16
DER (ours) —7.96+2.57 1.17+e6.37 —13.26+1.08 —4.52+2.39 0.21x1.21 72.45+0.14
DER++ (ours) —10.90+4.88 —2.92+532 —6.29+8.89 —0.31+1.86 —0.35+0.01 67.05+0.11
ER —10.97+3.70  0.17+3.46 —8.45+10.75 —1.05+5.87 1.46+1.15 73.03+1.59
MER —10.50+3.35 —0.33+5.81 - - - -
GEM —9.51+383 —0.2849.16 —9.18+4.27 —1.24+0.83 1.03+0.89 62.06+3.01
A-GEM —11.31+3.44 1.14+7.08 —8.01x6.31 —3.94x0s82 0.43+0.39 51.05+1.34
5120 iCaRL N/A N/A N/A N/A - -
FDR —9.25+4.65 —1.30+590 —7.6945.95 —0.52+0.54 —0.13+0.54 72.54+0.35
GSS —10.89+3.52 —2.1946.64 —9.88+2.21 —0.13+5.24 0.34+1.49 63.39+4.55
HAL —10.06+4.46  0.16+7.43  —10.34+3.22 0.32+1.09 0.52+0.47 66.00+0.09
DER (ours) —11.59+4.3¢  —2.424522 —5.98+8.44 2.37+3.98 0.32+018 71.12+0.53
DER++ (ours) —10.71+2.95  0.20+9.44 —11.2342.67 4.56+0.02 0.06+0.22 72.11+1.81

Table 6: Forward Transfer results for the Experiments of Sec.d.2]and [F.1]



BACKWARD TRANSFER

S-MNIST S-CIFAR-10 P-MNIST R-MNIST
Buffer Method . .
Class-IL Task-IL Class-IL Task-IL Domain-IL  Domain-IL
- SGD —99.10+0.55 —4.98+2.58 —96.39+0.12 —46.24+2.12 —57.65+4.32 —20.34+2.50
oEWC —97.79+1.24 —0.38+0.19 —91.64+3.07 —29.13£4.11 —36.69+2.31 —24.59+5.37
SI —98.89+0.86 —3.46+1.69 —95.78+0.64 —38.76+0.89 —27.914+0.31 —22.91+0.26
- LwF —99.30+0.11  —6.21+3.67 —96.69+0.25 —32.56+0.56 - -
PNN - 0.00+0.00 - 0.00+0.00 - -
ER —21.36+2.46 —0.82+0.41 —61.244262 —7.08+0.64 —22.54+0.95 —8.24+1.56
MER —20.38+1.97 —0.81+0.20 - - - -
GEM —22.3242.04 —1.14+048 —82.61+1.60 —9.27+207 —29.38+2.56 —11.51+4.75
A-GEM —66.15+6.84 —0.06+2.95 —95.73+0.20 —16.39+0.86 —31.6943.92 —19.32+1.17
200 iCaRL —11.73+0.73 —0.23+0.06 —28.72+0.49 —1.0144.15 - -
FDR —21.15+4.18  —0.50+0.19 —86.40+2.67 —7.36+0.03 —20.62+0.65 —13.31+2.60
GSS —74.10+3.03 —4.29+2.31 —75.25+4.0r —8.56+1.78 —47.85+1.82 —20.19+6.45
HAL —14.5441.49 —0.48+020 —69.114+4.21 —11.91+052 —15.24+1.33 —11.71+0.26
DER (ours) —17.66+2.10 —0.56+0.18 —40.76+0.42 —6.21+071 —13.79+0.80 —5.99+0.46
DER++ (ours) —16.27x1.73 —0.55+0.37 —32.594232 —5.16x021 —11.47+0.33 —5.27+o0.26
ER —15.97+2.46 —0.36+0.20 —45.35+0.07 —3.54+035 —14.90+0.39 —7.52+1.44
MER —11.52+056 —0.44+0.17 - - - -
GEM —15.47+2.03 —0.27+0.98 —74.31+1a62 —9.121021 —18.76+0.91 —7.19+1.40
A-GEM —65.84+7.24 —0.54+020 —94.01+1.16 —14.26+4.18 —28.53+2.01 —19.36+3.18
500 iCaRL —11.84+0.73 —0.25+0.00 —25.71+1.10 —1.06+4.21 - -
FDR —13.9045.19 —1.27+2.43 —85.62+0.36 —4.80+030 —12.80+1.28 —6.70+1.93
GSS —60.35+6.03 —0.77+0.62 —62.88+2.67 —7.73+3.99 —23.68+1.35 —17.45+9.92
HAL —9.97+162 —0.30x026 —62.21+4314 —5.41+1.10 —11.58+1049 —6.78x0.87
DER (ours) —9.58+152  —0.39x018 —26.74+015 —4.56+0.45 —8.04+0.42 —3.41+2.18
DER++ (ours) —8.85+1.86 —0.34+0.16 —22.38+4.41 —4.66+1.15 —7.62+1.02 —3.18+0.14
ER —6.07+1.84 0.03+0.36  —13.99+1.12 0.08+0.06 —5.24+0.13 —2.55+0.53
MER —3.2240.33  0.05+0.11 - - - -
GEM —4.14+1.43 0.16+0.85  —75.27+4.41 —6.914233 —6.74+0.49 —0.06+0.29
A-GEM —55.04+10.93 0.78+4.16 —84.49+3.08 —9.89+0.40 —23.73+2.22 —17.70+1.28
5120 iCaRL —11.64+072 —0.22+0.08 —24.94+0.14 —0.99+1.41 - -
FDR —11.58+3.97 —0.87+£1.66 —96.64+0.19 —1.89+051 —3.81+0.13 —2.81%0.47
GSS —7.90+1.21  —0.0940.15 —b8.1l+9.12 —6.38+1.71 —19.82+1.31 —17.05+2.31
HAL —6.55+1.63 0.02+0.20 —27.194+753 —4.51+054 —4.27+0.22 —2.25+0.01
DER (ours) —4.53+0.83 —0.314+008 —10.12+0.80 —2.59+0.08 —3.49+0.02 —1.73+0.10
DER++ (ours) —4.19+163 —0.13+0.09 —6.89+0.50 —1.16+022 —2.9340.15 —1.18+0.53

Table 7: Backward Transfer results for the Experiments of Sec. [4.2]and [F1]



FORGETTING

Buffer Method S-MNIST S-CIFAR-10 P-MNIST R-MNIST
Class-IL  Task-IL Class-IL Task-IL  Domain-IL Domain-IL
- SGD 99.10+0.55 5.15+2.74 96.39+0.12 46.24+2.12 57.65+4.32 20.82+2.47
oEWC 97.79+1.24 0.44+0.16 91.64+3.07 29.33+3.8¢ 36.69+2.34 36.44+1.44
SI 98.89+0.86 5.15+2.74 95.78+0.64 38.76+0.80 27.914+0.31 23.4140.49
- LwF 99.30+0.11  5.15+2.74 96.69+0.25 32.56+0.56 - -
PNN - 0.00+0.00 - 0.00+0.00 - -
ER 21.36+2.46 0.84+0.41 61.24+262 7.0840.64 22.54+0.95 8.87+1.44
MER 20.38+1.97 0.82+0.21 - - - -
GEM 22.32+2.04 1.19+0.38 82.61+1.60 9.27+2.07 29.38+2.56 12.97+4.82
A-GEM 66.15+6.84 0.96+0.28 95.73+0.20 16.39+0.86 31.69+3.92 20.05+1.12
200 iCaRL 11.734+0.73 0.28+0.08 28.72+0.49 2.63+3.48 - -
FDR 21.15+4.18 0.52+0.18 86.40+2.67 7.36+0.03 20.62+0.65 13.66+2.52
GSS 74.10+3.03 4.30+2.31 75.25+4.07 8.56+1.78 47.85+1.82 20.71+6.50
HAL 14.54+1.49 0.53+0.19 69.11x4.21 12.26+0.02 79.00x1.17 83.59+0.04
DER (ours) 17.66+2.10 0.57+0.18 40.76+0.42 6.57+0.20 14.00+0.73 6.53+0.32
DER++ (ours) 16.27+1.73 0.66+0.2s8 32.5942.32 5.16+0.21 11.49+0.31 6.08+0.43
ER 15.97+2.46 0.39+0.20 45.35+0.07 3.54+0.35 14.90+0.30 8.02+1.56
MER 11.52+0.56 0.45+0.17 - - - -
GEM 15.57+1.77 0.54+0.15 T74.31+462 9.12+021 18.76+£0.91 8.79+1.44
A-GEM 65.84+7.24 0.64+020 94.01+1.16 14.26+4.18 28.53+2.01 19.70+3.14
500 iCaRL 11.84+0.73 0.30+0.09 25.71+1.10 2.6642.47 - -
FDR 13.90+5.19 1.35+2.40 85.62+0.36 4.80+0.00 12.80+1.28 7.21+1.89
GSS 60.35+6.03 0.89+0.40 62.88+2.67 7.73+3.99 23.68+1.35 18.05+9.89
HAL 9.97+162 0.3540.21 62.21+434 5.41+1.10 82.53+0.36 88.53+0.77
DER (ours) 9.58+1.52  0.45+0.13 26.74+0.15 4.56+0.45 8.07+0.43  3.96+2.08
DER++ (ours) 8.85+1.86 0.35+0.15 22.38+4.41 4.66+1.15 7.67+1.05 3.57+o0.09
ER 6.08+1.84 0.2540.23 13.99+1.12 0.27+0.06 5.24+0.13  3.10+0.42
MER 3.2240.33 0.0740.06 - - - -
GEM 4.30+1.16 0.16+0.09 75.27+4.41 6.91+2.33 6.74+0.40  2.49+0.17
A-GEM 55.10+10.79 0.63+0.21 84.49+3.08 11.36+1.68 23.74+2.23 18.10+1.44
5120 iCaRL 11.64+0.72 0.26+0.06 24.94+0.14 1.59+0.57 - -
FDR 11.58+3.97 0.95+1.61 96.64+0.19 1.93+0.4s 3.82+0.12 3.31+o056
GSS 7.90+1.21  0.18+0.11 58 1lxo12 7.71x231 89.76+0.39 92.66+0.02
HAL 6.55+1.63  0.13+0.07 27.19+753 5.21+0.50 19.97+1.33 17.62+2.33

DER (ours) 4.53+0.83 0.32+0.08 10.1210.80 2.59+0.08 3.51+0.03 2.17+0.11
DER++ (ours) 4.19+1.63 0.23+0.06 7.27+0.84 1.18+0.19 2.96+t0.12 1.62+o0.50

Table 8: Forgetting results for the Experiments of Sec.[4.2]and [F.1]

G Hyperparameter Search

G.1 Best values

In Table [9] we show the best hyperparameter combination that we chose for each method for the
experiments in the main paper, according to the criteria outlined in Section .1 We denote the
learning rate with Ir, the batch size with bs and the minibatch size (i.e. the size of the batches
drawn from the buffer in rehearsal-based methods) with mbs, while other symbols refer to the
respective methods. We hold batch size and minibatch size out of the hyperparameter search space
for all Continual Learning benchmarks. Their values are fixed as follows: Sequential MNIST: 10;
Sequential CIFAR-10, Sequential Tiny ImageNet: 32; Permuted MNIST, Rotated MNIST: 128.

Conversely, batch size and minibatch size belong to the hyperparameter search space for experiments
on the novel MNIST-360 dataset. It must be noted that MER does not depend on batch size, as it
internally always adopts a single-example forward pass.



Method | Buffer | Permuted MNIST Buffer | Rotated MNIST
SGD - Ir: 0.2 - Ir: 0.2
oEWC - Ir:0.1 X:0.7 ~:1.0 - Ir: 0.1 A 0.7 ~:1.0
SI - Ir:0.1 ¢:05 &£:1.0 - Ir:0.1 ¢:1.0 &:1.0
ER 200 | Ir: 0.2 200 | Ir: 0.2
500 | Ir: 0.2 500 | Ir:0.2
5120 | Ir: 0.2 5120 | Ir: 0.2
GEM 200 | Ir:0.1 ~:0.5 200 | Ir:0.01 ~:0.5
500 Ir:0.1 ~:0.5 500 Ir: 0.01 ~:0.5
5120 | Ir: 0.1 ~:0.5 5120 | Ir: 0.01 ~:0.5
A-GEM | 200 | Ir:0.1 200 | Ir: 0.1
500 | Ir: 0.1 500 | Ir: 0.3
5120 | Ir: 0.1 5120 | Ir: 0.3
FDR 200 | Ir: 0.1 «:1.0 200 | ir: 0.1 «: 1.0
500 Ir:01 «:0.3 500 Ir:02 «:0.3
5120 | ir: 0.1 «: 1.0 5120 | ir: 0.2 «: 1.0
GSS 200 | Ir: 0.2 gmbs: 128 nb: 1 200 | Ir: 0.2 gmbs: 128 nb: 1
500 Ir: 0.1 gmbs: 10 nb: 1 500 Ir: 0.2 gmbs: 128 nb: 1
5120 | Ir: 0.03 gmbs: 10 nb: 1 5120 | Ir: 0.2 gmbs: 128 nb: 1
HAL 200 | Ir:0.1 A 0.1 5:0.5 ~4:0.1 200 | Ir:0.1 A:0.2 5:05 ~4:0.1
500 | Ir-0.1 A:0.1 B:03 ~:0.1 500 | Ir-0.1 X:0.1 B:05 ~:0.1
5120 | Ir: 0.1 X 0.1 5:0.5 ~:0.1 5120 | Ir: 0.1 A 0.1 5:0.3 ~:0.1
DER 200 | Ir: 0.2 «:1.0 200 | Ir: 0.2 «:1.0
500 Ir:02 «:1.0 500 Ir:02 «:0.5
5120 | ir: 0.2 «: 0.5 5120 | Ir: 0.2 «@: 0.5
DER++ 200 | Ir:0.1 ar1.0 B:1.0 200 | Ir:0.1 as1.0 B5:0.5
500 | Ir:0.2 1.0 B:0.5 500 | Ir:0.2 @05 B:1.0
5120 | Ir: 0.2 w05 p:1.0 5120 | Ir: 0.2 «@: 05 p:0.5
Method | Buffer | Sequential MNIST Buffer | Sequential CIFAR-10
SGD - Ir: 0.03 - Ir: 0.1
oEWC - Ir:0.03 A:90 ~:1.0 - Ir:0.03 A:10 ~:1.0
SI - Ir: 0.1 ¢:1.0 &£:09 - Ir: 0.03 ¢:0.5 &£:1.0
LwF - Ir: 0.03 a:1 T-2.0 wd: 0.0005 - Ir:0.03 «:05 T:2.0
PNN - Ir: 0.1 - Ir: 0.03
ER 200 | Ir: 0.01 200 | Ir: 0.1
500 | Ir: 0.1 500 | Ir: 0.1
5120 | Ir: 0.1 5120 | Ir: 0.1
MER 200 | Ir:0.1 B:1 ~:1 nb:1 bs:1
500 | Ir:0.1 B:1 ~:1 nb:1 bs:1
5120 | r: 0.03 B:1 ~:1 nb:1 bs:1
GEM 200 | Ir:0.01 ~:1.0 200 | Ir:0.03 ~:0.5
500 | Ir:0.03 ~:0.5 500 | Ir:0.03 ~:0.5
5120 | ir: 0.1 ~:1.0 5120 | Ir: 0.03 ~:0.5
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Method | Buffer | Sequential MNIST Buffer | Sequential CIFAR-10
A-GEM | 200 | Ir:0.1 200 | Ir: 0.03
500 | Ir: 0.1 500 | Ir: 0.03
5120 | ir: 0.1 5120 | Ir: 0.03
iCaRL 200 | Ir: 0.1 wd: 0 200 | Ir: 0.1 wd: 1075
500 Ir: 0.1 wd: 0 500 Ir: 0.1 wd:107°
5120 | Ir: 0.1 wd: 0 5120 | Ir: 0.03 wd:10
FDR 200 | [r:0.03 0.5 200 | Ir: 0.03 «: 0.3
500 | Ir:0.1 w02 500 | Ir:0.03 1.0
5120 | ir: 0.1 «: 0.2 5120 | r: 0.03 «: 0.3
GSS 200 | Ir: 0.1 gmbs: 10 nb: 1 200 | Ir: 0.03 gmbs: 32 nb: 1
500 Ir: 0.1 gmbs: 10 nb: 1 500 Ir: 0.03 gmbs: 32 nb: 1
5120 | Ir: 0.1 gmbs: 10 nb: 1 5120 | Ir: 0.03 gmbs: 32 nb: 1
HAL 200 | Ir: 0.1 A:0.1 B:0.7 ~:05 | 200 | Ir:0.03 X:0.2 pB:0.5
v: 0.1
500 | Ir:0.1 A:0.1 5:02 ~:05 | 500 | Ir:0.03 A:0.1 p:0.3
v: 0.1
5120 | Ir: 0.1 A:0.1 B:0.7 ~:05 | 5120 | Ir: 0.03 A:0.1 p:0.3
v: 0.1
DER 200 | Ir: 0.03 - 0.2 200 | Ir:0.03 «:0.3
500 | Ir: 0.03 «a:1.0 500 | Ir:0.03 «:0.3
5120 | Ir: 0.1 «@: 0.5 5120 | Ir: 0.03 «: 0.3
DER++ 200 | Ir:0.03 - 0.2 [:1.0 200 | Ir:0.03 0.1 p:05
500 | Ir:0.03 as1.0 [5:0.5 500 | Ir:0.03 « 02 p:05
5120 | ir: 0.1 «: 0.2 (B:0.5 5120 | Ir: 0.03 «: 0.1 pB:1.0
Method | Buffer | Sequential Tiny ImageNet Buffer | MNIST-360
SGD - Ir: 0.03 - Ir: 0.1 bs: 4
oEWC - Ir:0.03 A:25 ~:1.0
SI - Ir:0.03 ¢:05 £:1.0
LwF - Ir:0.01 «a:1.0 T:2.0
PNN - Ir: 0.03
ER 200 | Ir: 0.1 200 | Ir: 0.2 bs:1 mbs: 16
500 Ir: 0.03 500 Ir: 0.2 bs:1 mbs: 16
5120 | Ir: 0.1 1000 | Ir: 0.2 bs: 4 mbs: 16
MER 200 | Ir: 0.2 mbs: 128 f(:1
v:1 nb:3
500 Ir: 0.1 mbs: 128 [:1
vy:1 nb:3
1000 | Ir: 0.2 mbs: 128 [:1
v:1 nb:3
A-GEM | 200 | Ir:0.01 200 | Ir: 0.1 bs: 16 mbs: 128
500 | Ir: 0.01 500 | Ir: 0.1 bs:16 mbs: 128
5120 | Ir: 0.01 1000 | Ir: 0.1 bs:4 mbs: 128
iCaRL 200 Ir: 0.03 wd: 107°
500 Ir: 0.03 wd: 107°
5120 | Ir: 0.03 wd: 107°
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Method | Buffer | Sequential Tiny Imagenet | Buffer | MNIST-360
FDR 200 | Ir:0.03 «:0.3
500 | Ir:0.03 a:1.0
5120 | Ir: 0.03 «: 0.3
GSS 200 | Ir: 0.2 bs:1 mbs: 16
500 Ir: 0.2 bs:1 mbs: 16
1000 | Ir: 0.2 bs: 4 mbs: 16

DER 200 | Ir:0.03 «: 0.1 200 | Ir: 0.1 bs: 16
mbs: 64 «: 0.5
500 Ir:0.03 «:0.1 500 Ir: 0.2 bs: 16
mbs: 16 «a: 0.5
5120 | Ir: 0.03 «: 0.1 1000 | Ir: 0.1 bs: 8

mbs: 16  «a: 0.5

DER++ | 200 | [r: 0.03 «:0.1 B:1.0 200 | Ir: 0.2 bs: 16

mbs: 16 «: 0.5 S:1.0
500 | Ir:0.03 «:-0.2 (:0.5 500 | Ir: 0.2 bs: 16

mbs: 16 «: 0.5 (:1.0
5120 | Ir: 0.03 «:0.1 B:0.5 1000 | Ir: 0.2 bs: 16

mbs: 128 «: 0.2 B:1.0

Table 9: Hyperparameters selected for our experiments.

G.2 All values

In the following, we provide a list of all the parameter combinations that were considered (Table [I0).
Note that the same parameters are searched for all examined buffer sizes.

Permuted MNIST Rotated MNIST Sequential Tiny ImageNet
Method Par Values Method  Par Values
Method Par Values
SGD/IOINT [ 0.03,0.1,0.2 SGD I 0.03,0.1,0.2
i L ! i L ! SGD Ir  [0.01,0.03,0.1]
oEWC Ir [0.1,0.01] oEWC  Ir [0.01,0.1]
X [0.1, 1, 10,30, 90,100] A [0.1,0.7,1,10,30,90,100]  °EWC Ir 001, 0.03]
5 0.9, 1.0] 5 (09, 1.0] A [10,25, 30,90, 100]
v [0.9, 0.95, 1.0]
SI Ir [0.01,0.1] SI I [0.01,0.1]
¢ [0.5,1.0] ¢ [0.5, 1.0] St Ir [0-0[3%03]
I3 [0.9, 1.0] I3 [0.9, 1.0] ¢ -
¢ [1.0]
ER I 0.03,0.1,0.2 ER | 0.1,0.2
i L ! i L ! LwF I [0.01,0.03]
GEM Ir [0.01,0.1,0.3] GEM  Ir [0.01,0.3,0.1] a [0.3,1,3]
y [0.1,0.5, 1] 5 [0.1,0.5, 1] T [2.0, 4.0]
wd  [0.00005, 0.00001]
A-GEM  Ir [0.01,0.1,0.3] A-GEM  Ir [0.01, 0.1, 0.3]
PNN  Ir [0.03, 0.1]
GSS Ir [0.03,0.1,0.2] GSS  Ir [0.03,0.1,0.2]
gmbs (10, 64, 128] gimbs [10, 64, 128] ER Ir [0.01, 0.03,0.1]
nb [1] nb [1]
A-GEM Ir [0.003, 0.01]
HAL Ir [0.03,0.1,0.3] HAL  Ir [0.03, 0.1, 0.3] -
A\ [0.1,02] 3\ (0.1,02] iCaRL  Ir [0.01, 0.03,0.1]
3 0.3, 0.5] 3 (03,05 wd  [0.00005, 0.00001]
vy [0.1] Y [0.1] FDR  Ir [0.01, 0.03, 0.1]
DER  Ir [0.1,0.2] DER  Ir [0.1,02] o [0.03,0.1,03 1.0, 3.01
« [0.5, 1.0] « [0.5, 1.0] DER Ir [0.01, 0.03, 0.1]
DER++  Ir [0.1,02] DER++ Ir [0.1,0.2] o [0.1, 0.5, 1.0]
a [0.5, 1.0] a [0.5, 1.0] DER++ Ir [0.01, 0.03]
B 0.5, 1.0] B [0.5,1.0] a  [0.1,02,0.5,1.0]
B [0.5, 1.0]
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Sequential MNIST Sequential CIFAR-10 MNIST-360
Method  Par Values Method  Par Values Method Par Values
SGD Ir [0.01,0.03,0.1] SGD Ir [0.01,0.03,0.1] SGD Ir [0.1,0.2]
bs  [1,4,8,16]
oEWC  Ir [0.01,0.03,0.1] oEWC  Ir [0.03,0.1]
A [10,25,30,90, 100] A [10, 25, 30, 90, 100] ER mbs 16, 64, 128]
5 [0.9, 1.0] v [0.9,1.0] Ir [0.1,0.2]
bs  [1,4,8,16]
SI Ir [0.01,0.03,0.1] SI Ir [0.01,0.03,0.1]
¢ [0.3,0.5,0.7,1.0] c [0.5,0.1] MER  mbs [128]
13 [0.9,1.0] ¢ [1.0] Ir [0.1,0.2]
1.0
LwF Ir [0.01, 0.03,0.1] LwF Ir [0.01,0.03,0.1] 'f; h o{
a  [03,05,0.7,1.0] « [0.3,1,3, 10] ub [
T [2.0,4.0] T [2.0]
A-GEM-R mbs [16, 64, 128]
PNN Ir [0.01,0.03,0.1] PNN Ir [0.03,0.1] I [0.1.02]
ER Ir [0.03,0.01, 0.1] ER Ir [0.01, 0.03, 0.1] bs [1,4,16]
MER Ir [0.03,0.1] GEM Ir [0.01, 0.03, 0.1] GSS ";bs [1[66 ?46122]8]
, [1.0] [0.5,1] r .1, 0.
ﬁnl;Y [ i bs  [1,4,8,16]
A-GEM  Ir [0.03,0.1] gmbs  [16, 64, 128]
GEM  Ir [0.01,0.03,0.1] - nb []
- [05. 1] iCaRL  Ir [0.01,0.03,0.1]
wd [0.0001, 0.0005] DER mbs  [16, 64, 128]
A-GEM | 0.03,0.1
’ J ] FDR Ir [0.01,0.03,0.1] 1172 “[0;‘1’80'%]
iCaRL  Ir [0.03,0.1] a  [0.03,0.1,0.3, 1.0,3.0] o [0.5. 1.01
wd  [0.0001, 0.0005] oSS ; 001,003,011 o
r .01, 0.03, 0.
FDR  Ir [0.03,0.1] ambs (32] DER++  mbs 16,064, 128]
o [0.2,0.5, 1.0] b 5t lr—10.1,02]
i bs  [1,4.8,16]
GSS Ir [0.03,0.1] HAL Ir [0.01, 0.03, 0.1] a [0.2,0.5]
gmbs [10] A [0.1,0.5] B [0.5, 1.0]
nb [1] 8 [0.2,0.3, 0.5]
it [0.1]
HAL Ir [0.03,0.1,0.2]
A [0.1,0.5] DER Ir [0.01,0.03,0.1]
B [0.2,0.5,0.7] « [0.2,0.5, 1.0]
0.1,0.5
il C ! DER++ Ir [0.01,0.03, 0.1]
DER Ir [0.03, 0.1] « [0.1,0.2, 0.5]
« [0.2,0.5, 1.0] 8 [0.5,1.0]
DER++  Ir [0.03,0.1]
« [0.2,0.5, 1.0]
8 [0.2,0.5, 1.0]
Table 10: Hyperparameter space for Grid-Search
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