
A Relationship with Riemann-Lipschitz Continuity

Antonakopoulos et al. [2020] introduced the idea of Riemann-Lipschitz continuity (RLC). They show
how FTRL and OMD can be used when the cost functions are all RLC in a way that guarantees
O(
√
T ) regret. In this section we shall discuss the relationship between these two generalizations of

Lipschitz continuity. Ultimately, we will see that our results are at least as general but that further
study into the relationship between these ideas is needed. We note that we will closely follow the
notation of Antonakopoulos et al. [2020] and shall not discuss Riemannian metrics in full generality.

Let G : Rn → Rn×n be such that G(x) is a symmetric positive definite matrix for all x ∈ X \ {0}
and G(0) is symmetric positive semidefinite. Then the Riemannian metric (induced by G) is the
collection of bilinear pairings { 〈·, ·〉x : x ∈ X} defined by

〈y, z〉x := yTG(x)z, ∀x, y, z ∈ X .

For conciseness, we shall denote the above metric induced by G simply as the metric G. Moreover,
the local norm induced by such the metric G on x ∈ X is naturally given by

‖z‖x :=
√
〈z,G(x)z〉, ∀z ∈ X .

Let us now give the definition of Riemann-Lispchitz continuity.
Definition A.1. Let L > 0. A function f : X → R is L-Riemann-Lipschitz continuous (RLC)
relative to a Riemannian metric G if

|f(y)− f(x)| ≤ L · distG(x, y) ∀x, y ∈ X ,

where distG(x, y) is the Riemannian distance∗ between x and y induced by the Riemannian metric G.

The above definition is notably hard to work with. In the case of differentiable functions, RLC boils
down to a much simpler and more intuitive condition.
Proposition A.2 ([Antonakopoulos et al., 2020, Proposition 1]). Suppose that f : X → R is differ-
entiable. Then f is L-RLC if and only if

‖grad f(x)‖x ≤ L for all x ∈ X , (A.1)

where† grad f(x) := G(x)−1∇f(x) is the Riemannian gradient of f at x with respect to the
metric G.

Finally, Antonakopoulos et al. [2020] use the notion of a strong convexity of a closed convex function
R : X → R with respect to a metric G. For the sake of conciseness and simplicity, we shall use
the equivalent condition given by Antonakopoulos et al. [2020, Lemma 1] and assume that R is
differentiable, but the arguments of this section hold even if R is a closed convex function with
a continuous selection of subgradients. More specifically, a differentiable convex function R is
K-strongly convex with respect to the metric G for K > 0 if

K

2
‖x− y‖2x ≤ DR(y, x), ∀x, y ∈ X .

We are now in place to discuss the relationship between the notions of relative Lipchitz continuity
and RLC. First, one should note that Proposition A.2 requires differentiability to hold. Since the
regret bounds in Antonakopoulos et al. [2020] rely on (A.1), they also rely on the cost functions
being differentiable. Since most O(

√
T ) regret bounds in the online convex optimization literature

(as well as the regret bounds in this text) do not rely on differentiability of the cost functions, it would
be interesting to investigate if differentiability of the cost functions is in fact needed for the regret
bounds of Antonakopoulos et al. [2020] to hold. In particular, in a way similar to classic Lipschitz
continuity, it might be the case that (A.1) holds for at least one subgradient (after transformation by
the metric G) at each point x ∈ X in the non-differentiable case.
∗Equal contributions.
∗We do not give here the full definition of a Riemannian metric as given by Antonakopoulos et al. [2020]

since it will not be used in any of our discussions.
†Here we overlook the case when x = 0 (and, thus, when G(x) is not necessarily invertible), for the sake of

simplicity.
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Assuming that the cost functions are indeed differentiable, we can show that relative Lipschitz
continuity is at least as general as RLC. In the following proposition we show that if f is a RLC
function with respect to a metric G and if we have a differentiable convex function R which is
strongly convex w.r.t. G (which is used as a regularizer or a mirror map in FTRL and OMD), then f
is Lipschitz continuous relative to R.

Proposition A.3. Let f : X → R be a differentiable convex function and let R : X → R be a
differentiable convex function such that R is K-strongly convex with respect to the Riemannian
metric G. If f is L-RLC with respect to G, then f is L′-Lipschitz continuous relative to R where we
set L′ := L

√
K/2.

Proof. Let x ∈ X . First, note that

‖grad f(x)‖2x = grad f(x)TG(x) grad f(x) = ∇f(x)TG(x)−1G(x)G(x)−1∇f(x)

= ∇f(x)TG(x)−1∇f(x) = ‖∇f(x)‖2x,∗,

where ‖·‖x,∗ is the dual norm of ‖·‖x. Therefore, for any y ∈ X ,

∇f(x)T(x− y) ≤ ‖∇f(x)‖x,∗‖x− y‖x (by the definition of dual norm),

≤ L‖x− y‖x, (by RLC),

≤ L
√
K

2
DR(y, x), (by strong convexity of R w.r.t. G).

The above proposition shows that Riemann-Lipschitz continuity (together with a strongly convex
function with respect to the Riemannian metric) implies relative Lipschitz continuity. Thus, our
regret bounds can be seen as generalizations of the regret bounds due to Antonakopoulos et al. [2020].
Moreover, the modularity of our proofs makes it easier to extend the results to the different settings (as
demonstrated to the extension of some regret bounds to the composite setting as shown in Section 4,
for example ).

Regarding the implication in the other direction, that is, whether relative Lipschitz continuity implies
Riemannian Lipschitz continuity with respect to some metric G, it is not clear if it holds in general.
The problem is that we do not know a systematic way of obtaining a metric G given a function f
Lipschitz continuous relative to a function R such that f is RLC with respect to G and R is strongly
convex with respect to G. Still, in some examples such a metric G does seem to exist. It is not clear
at the moment if both concepts of Lipschitz continuity are equivalent or not.

B Arithmetic Inequalities

Lemma B.1. Let {at}t≥1 be a non-negative sequence with a1 > 0. Then,

T∑
t=1

at√∑t
i=1 ai

≤ 2

√√√√ T∑
t=1

at, ∀T ∈ N.

Proof. The proof is by induction on T . The statement holds trivially for T = 1. Let T > 1 and
define s :=

∑T
t=1 at. By the induction hypothesis,

T∑
t=1

at√∑t
i=1 ai

≤ 2

√√√√T−1∑
t=1

at +
aT√∑T
i=1 ai

= 2
√
s− aT +

aT√
s
.

Finally, note that

2
√
s− aT +

aT√
s
≤ 2
√
s ⇐⇒ 2

√
s(s− aT ) ≤ 2s− aT ⇐⇒ 4s(s− aT ) ≤ (2s− aT )2,

⇐⇒ 4s2 − 4saT ≤ 4s2 − 4saT + a2
T ⇐⇒ 0 ≤ a2

T .
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C Proofs for Section 3

C.1 Strong FTRL Lemma

In this section we give a proof of Lemma 3.1 for completeness. We also show how the lemma can be
used for the composite setting. For further discussions on the lemma and on FTRL, see the thorough
survey of McMahan [2017].

Proof of Lemma 3.1. Fix T > 0. Define rt := ( 1
ηt
− 1

ηt−1
)R for each t ≥ 0 (recall that η0 := 1 and

1/η−1 := 0), define ht := rt + ft for each t ≥ 1, and set h0 := r0. In this way, we have
t∑
i=0

ht =

t∑
i=1

ft +

t∑
i=0

rt =

t∑
i=1

ft +
1

ηt
R = Ht, ∀t ≥ 0.

In particular,

xt ∈ arg min
x∈X

Ht−1(x) = arg min
x∈X

t−1∑
i=0

hi(x), ∀t ≥ 0. (C.1)

Let us now bound the regret of the points x1, . . . , xT with respect to the functions h1, . . . , hT and to
a comparison point z ∈ X (plus a −h0(z) term):

T∑
t=1

(ht(xt)− ht(z))− h0(z) =

T∑
t=1

ht(xt)−HT (z) =

T∑
t=1

(Ht(xt)−Ht−1(xt))−HT (z),

(C.1)
≤

T∑
t=1

(Ht(xt)−Ht−1(xt))−HT (xT+1),

=

T∑
t=1

(Ht(xt)−Ht(xt+1))−H0(x1),

where in the last equation we just re-indexed the summation, placing HT+1(xT+1) inside the
summation, and leaving H0(x1) out. Re-arranging the terms and using H0 = h0 = r0 and x0 = x1

yield
T∑
t=1

(ft(xt) + rt(xt)− ft(z)− rt(z)) =

T∑
t=1

(ht(xt)− ht(z)),

≤ r0(z)− r0(x0) +

T∑
t=1

(Ht(xt)−Ht(xt+1)),

which implies

RegretT (z) =

T∑
t=1

(ft(xt)− ft(z)) ≤
T∑
t=0

(rt(z)− rt(xt)) +

T∑
t=1

(Ht(xt)−Ht(xt+1)).

Since rt = ( 1
ηt
− 1

ηt−1
)R for all t ≥ 0, we have

T∑
t=0

(rt(z)− rt(xt)) =

T∑
t=0

( 1

ηt
− 1

ηt−1

)
(R(z)−R(xt)).

For the composite setting (see Section D), we modify the definition of rt for t ≥ 1 (maintaining the
definition of r0) in the above proof for

rt :=
( 1

ηt
− 1

ηt−1

)
R+ Ψ, ∀t ≥ 1.

In this case, we have

Ht =

t∑
i=1

ft +

t∑
i=0

rt =

t∑
i=1

ft +
1

ηt
R+ tΨ.
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Proceeding in the same way as in the proof of Lemma 3.1, we get
T∑
t=1

(ft(xt)− f(z)) ≤
T∑
t=0

( 1

ηt
− 1

ηt−1

)
(R(z)−R(xt)),

+

T∑
t=1

(Ψ(z)−Ψ(xt)) +

T∑
t=1

(Ht(xt)−Ht(xt+1)),

Re-arranging yields

RegretΨT (z) ≤
T∑
t=0

( 1

ηt
− 1

ηt−1

)
(R(z)−R(xt)) +

T∑
t=1

(Ht(xt)−Ht(xt+1)). (C.2)

C.2 Sublinear Regret with Relative Lipschitz Functions

With the Strong FTRL Lemma, to derive regret bounds we can focus on bounding the difference
in cost between consecutive iterates. In this section we will prove the sublinear regret bound for
FTRL from Theorem 3.2. In the next lemma we give a bound on these costs based on the Bregman
divergence of the FTRL regularizer, this time relying on convexity (but not on much more). Loosely
saying, the first claim of the next lemma follows from the optimality conditions of the iterates of
FTRL and the second follows from the subgradient inequality.
Lemma C.1. Let {xt}t≥1 and {Ft}t≥0 be defined as in Algorithm 1. Then, for each t ∈ N there is
pt ∈ NX (xt) such that−pt− 1

ηt−1
∇R(xt) ∈ ∂Ft−1(xt), where η0 ∈ R can be any positive constant.

Moreover, this implies

Ft−1(xt)− Ft−1(xt+1) ≤ 1

ηt−1

(
R(xt+1)−R(xt)−DR(xt+1, xt)

)
.

Proof. Let t ≥ 1. By the definition of the FTRL algorithm, we have xt ∈ arg minx∈X (Ft−1(x) +
1

ηt−1
R(x)). By the optimality conditions for convex programs, we have

∂
(
Ft−1 + 1

ηt−1
R
)

(xt) ∩ (−NX (xt)) 6= ∅.

Since ∂
(
Ft−1 + 1

ηt−1
R
)

(xt) = ∂Ft−1(xt) + 1
ηt−1
∇R(xt), the above shows there is pt ∈ NX (xt)

such that
−pt −

1

ηt−1
∇R(xt) ∈ ∂Ft−1(xt).

Using the subgradient inequality (2.1) with the above subgradient yields,

Ft−1(xt)− Ft−1(xt+1)

≤ −〈pt, xt − xt+1〉 − 1
ηt−1
〈∇R(xt), xt − xt+1〉,

≤ − 1
ηt−1
〈∇R(xt), xt − xt+1〉 (by the definition of normal cone),

= 1
ηt−1

(
R(xt+1)−R(xt)−DR(xt+1, xt)

)
,

where in the last equation we used that, by definition of the Bregman divergence, DR(xt+1, xt) =
R(xt+1)−R(xt)− 〈∇R(xt), xt+1 − xt〉 and, thus, −〈∇R(xt), xt − xt+1〉 = R(xt+1)−R(xt)−
DR(xt+1, xt).

Proof of Theorem 3.2. For each t ≥ 0 let Ht be defined as in the Strong FTRL Lemma and fix t ≥ 0.
We have

Ht(xt)−Ht(xt+1) = Ft(xt)− Ft(xt+1) +
1

ηt
(R(xt)−R(xt+1)). (C.3)

Using Ft = Ft−1 + ft together with Lemma C.1 we have

Ft(xt)− Ft(xt+1) = Ft−1(xt)− Ft−1(xt+1) + ft(xt)− ft(xt+1),

≤ 1

ηt−1

(
R(xt+1)−R(xt)−DR(xt+1, xt)

)
+ ft(xt)− ft(xt+1).
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Plugging the above inequality onto (C.3) yields

(C.3) ≤ ft(xt)− ft(xt+1)− DR(xt+1, xt)

ηt−1
+
( 1

ηt
− 1

ηt−1

)
(R(xt)−R(xt+1)). (C.4)

Since ft is L-relative Lipschitz continuous with respect to R, we apply (2.3) followed by the
the arithmetic-geometric mean inequality

√
αβ ≤ (α + β)/2 with α := L2ηt−1 and β :=

2DR(xt+1, xt)/ηt−1 to get

ft(xt)− ft(xt+1)− DR(xt+1, xt)

ηt−1

(2.3)
≤ L

√
2DR(xt+1, xt)−

DR(xt+1, xt)

ηt−1
≤ L2ηt−1

2
.

Applying the above on (C.4) yields

(C.4) ≤ L2ηt−1

2
+
( 1

ηt
− 1

ηt−1

)
(R(xt)−R(xt+1)).

Plugging the above inequality into the the Strong FTRL Lemma together with R(x1) ≤ R(xt) for
each t ≥ 1 (which follows by the definition of x1) yields

RegretT (z) ≤
T∑
t=0

( 1

ηt
− 1

ηt−1

)
(R(z)−R(xt) +R(xt)−R(xt+1)) +

T∑
t=1

L2ηt−1

2
,

=

T∑
t=0

( 1

ηt
− 1

ηt−1

)
(R(z)−R(xt+1)) +

T∑
t=1

L2ηt−1

2
,

≤ 1

ηT
(R(z)−R(x1)) +

T∑
t=1

L2ηt−1

2
≤ K

ηT
+

T∑
t=1

L2ηt−1

2
.

If we set ηt :=
√

2K/(L
√
t+ 1) and since

∑T
t=1

1√
t
≤ 2
√
T by Lemma B.1 in Appendix B, then

RegretT (z) ≤ L
√
K(T + 1)+

L
√
K

2

T∑
t=1

1√
t
≤ L

√
K(T + 1)+L

√
KT ≤ 2L

√
K(T + 1).

C.3 Logarithmic Regret

The next lemma strengthens the bound from Lemma C.1 in the case where the loss functions are
relative strongly convex with respect to a fixed reference function. We further simplify matters by
taking R = 0, that is, regularization is not needed for FTRL in the relative strongly convex case.
Lemma C.2. Let {xt}t≥1 be defined as in Algorithm 1 with R := 0. Moreover, let h : D → R be a
differentiable convex function such that ft is M -strongly convex relative to h for each t ≥ 1. Then,
for all T ≥ 1,

Ft−1(xt)− Ft−1(xt+1) ≤ −(t− 1)MDh(xt+1, xt).

Proof. Let t ≥ 1. Note that Ft−1 is (t − 1)M -strongly convex relative to R since it is the sum of
t− 1 functions that are each M -strongly convex relative to R. Additionally, let pt ∈ NX (xt) be as
given by Lemma C.1. By this lemma we have −pt ∈ ∂Ft−1(xt). Thus, using inequality (2.4) from
the definition of relative strong convexity with this subgradient yields

Ft−1(xt)− Ft−1(xt+1) ≤ −〈pt, xt − xt+1〉 − (t− 1)MDh(xt+1, xt).

By the definition of normal cone we have −〈pt, xt − xt+1〉 = 〈pt, xt+1 − xt〉 ≤ 0, which yields the
desired inequality.

Proof of Theorem 3.3. For each t ≥ 0 let Ht : X → R be defined as in the Strong FTRL Lemma and
fix t ≥ 0. Since R = 0, we have Ht = Ft. This together with Lemma C.2 yields

Ht(xt)−Ht(xt+1) = Ft(xt)− Ft(xt+1) = Ft−1(xt)− Ft−1(xt+1) + ft(xt)− ft(xt+1),

≤ −(t− 1)MDh(xt+1, xt) + ft(xt)− ft(xt+1). (C.5)
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Let gt ∈ ∂ft(xt). Since ft is L-Lipschitz continuous and M -strongly convex, both relative to h, we
have

ft(xt)−ft(xt+1)
(2.4)
≤ 〈gt, xt−xt+1〉−MDh(xt+1, xt)

(2.3)
≤ L

√
2DR(xt+1, xt)−MDR(xt+1, xt).

Applying the above to (C.5) together with the fact that
√
αβ ≤ (α+ β)/2 with α := L2/(Mt) and

β := 2tMDR(xt+1, xt) yields

Ht(xt)−Ht(xt+1) ≤ L
√

2DR(xt+1, xt)− tMDR(xt+1, xt) ≤
L2

2Mt
.

Finally, plugging the above inequality into the Strong FTRL Lemma (with R = 0) gives

RegretT (z) ≤
T∑
t=0

(Ht(xt)−Ht(xt+1)) ≤ L2

2M

T∑
t=1

1

t
≤ L2

2M
(log(T ) + 1).

D Sublinear Regret Bounds for FTRL with Composite Loss Functions

In this section we extend the results from Section 3 to the case where the loss functions are composite.
Specifically, there is a known non-negative convex function Ψ: X → R+ (sometimes called extra
regularizer) which is subdifferentiable on X and at round t the loss function presented to the player
is ft + Ψ. Usually Ψ is a simple function which is easy to optimize over (such as the `1-norm). Thus,
although ft + Ψ might not preserve relative Lipschitz continuity of ft, one might still hope to obtain
good regret bounds in this case. We shall see that FTRL does not need any modifications to enjoy of
good theoretical guarantees in this setting. Yet, its analysis in the composite case will allow us to
derive regret bounds for the regularized dual averaging method due to Xiao [2010].

In the composite case we measure the performance of an OCO algorithm by its composite regret
(against a point z ∈ X ) given by

RegretΨT (z) :=

T∑
t=1

(ft(xt) + Ψ(xt))− inf
z∈X

T∑
t=1

(ft(z) + Ψ(z)), ∀T > 0. (D.1)

In the case of FTRL, practically no modifications to the algorithm are needed. Namely, the update of
Algorithm 1 becomes

xt+1 ∈ arg min
x∈X

( t∑
i=1

fi(x) + tΨ(x) +
1

ηt
R(x)

)
, ∀t ≥ 0.

We do make the additional assumption that Ψ(x1) = 0, that is, x1 minimizes Ψ and tha latter has
minimum value of 0. In practice one has some control on Ψ, so this assumption is not too restrictive.
The next theorem shows that we can recover the regret bound from Theorem 3.2 for the composite
setting even if Ψ is not relative Lipschitz-continuous with respect to the FTRL regularizer.
Theorem D.1. Let Ψ: X → R+ be a nonnegative convex function such that {xt}t≥1 as given as in
Algorithm 1 are such that Ψ(x1) = 0. Assume that ft is L-Lipschitz continuous relative to R for
all t ≥ 1. Let z ∈ X and K ∈ R be such that K ≥ R(z)−R(x1). Additionally, assume Ψ(x1) = 0.
Then,

RegretΨT (z) ≤ 2K

ηT
+

T∑
t=1

L2ηt−1

2
, ∀T > 0.

In particular, if ηt :=
√

2K/(L
√
t+ 1) for each t ≥ 1, then RegretΨT (z) ≤ 2L

√
K(T + 1)

The proof is largely identical to the proof of Theorem 3.2. One of the main differences in the analysis
is the following version of Lemma C.1 tweaked for the composite setting. It follows by adding
(t− 1)Ψ to Ft−1 in the proof of the original lemma and using the properties of the subgradient. We
give the full proof for the sake of completeness.
Lemma D.2. Let Ψ: X → R+ be a nonnegative convex function such that {xt}t≥1 as given as in
Algorithm 1 are such that Ψ(x1) = 0. Then, for each t ∈ N there is pt ∈ NX (xt) such that

−pt −
1

ηt−1
∇R(xt) ∈ ∂

(
Ft−1 + (t− 1)Ψ

)
(xt),
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and the above implies

Ft−1(xt)− Ft−1(xt+1) + (t− 1)(Ψ(xt)−Ψ(xt+1))

≤ 1

ηt−1

(
R(xt+1)−R(xt)−DR(xt+1, xt)

)
(t− 1).

Proof. Let t ≥ 1. By the definition of the FTRL algorithm, we have xt ∈ arg minx∈X (Ft−1(x) +
(t− 1)Ψ(x) + 1

ηt−1
R(x)). By the optimality conditions for convex programs, we have

∂
(
Ft−1 + (t− 1)Ψ(x) + 1

ηt−1
R
)

(xt) ∩ (−NX (xt)) 6= ∅.

Since ∂(Ft−1 +(t−1)Ψ(x)+ 1
ηt−1

R)(xt) = ∂(Ft−1 +(t−1)Ψ(x))(xt)+ 1
ηt−1
∇R(xt), the above

shows there is pt ∈ NX (xt) such that

−pt −
1

ηt−1
∇R(xt) ∈ ∂(Ft−1 + (t− 1)Ψ(x))(xt).

Using the subgradient inequality (2.1) with the above subgradient yields,

Ft−1(xt) + (t− 1)Ψ(xt)− Ft−1(xt+1)− (t− 1)Ψ(xt+1)

≤ −〈pt, xt − xt+1〉 − 1
ηt−1
〈∇R(xt), xt − xt+1〉,

≤ − 1
ηt−1
〈∇R(xt), xt − xt+1〉 (by the definition of normal cone),

= 1
ηt−1

(
R(xt+1)−R(xt)−DR(xt+1, xt)

)
,

where in the last equation we used that, by definition of the Bregman divergence, DR(xt+1, xt) =
R(xt+1)−R(xt)− 〈∇R(xt), xt+1 − xt〉 and, thus, −〈∇R(xt), xt − xt+1〉 = R(xt+1)−R(xt)−
DR(xt+1, xt).

Now we are in position to prove Theorem D.1.

Proof of Theorem D.1. We proceed in a way extremely similar to the proof of Theorem 3.2, but in
place of the standard FTRL Lemma we use its composite version as in (C.2).

For each t ≥ 0 let Ht be define das in the (composite) Strong FTRL Lemma so that Ht =
∑t
i=1 fi +

tΨ + 1
ηt
R and fix t ≥ 0. In this case we have

Ht(xt)−Ht(xt+1) = Ft(xt)− Ft(xt+1) + t(Ψ(xt)−Ψ(xt+1)) +
1

ηt
(R(xt)−R(xt+1)).

Using Ft = Ft−1 + ft together with Lemma D.2 we have

Ft(xt)− Ft(xt+1) + t(Ψ(xt)−Ψ(xt+1))

≤ 1

ηt−1

(
R(xt+1)−R(xt)−DR(xt+1, xt)

)
+ ft(xt)− ft(xt+1) + Ψ(xt)−Ψ(xt+1).

Proceeding as in the proof of Theorem 3.2 (with the addition of a Ψ(xt)−Ψ(xt+1) term) we have

Ht(xt)−Ht(xt+1) ≤ L2ηt−1

2
+
( 1

ηt
− 1

ηt−1

)
(R(xt)−R(xt+1)) + Ψ(xt)−Ψ(xt+1).

When summing over t ∈ {1, . . . , T}, the terms Ψ(xt)−Ψ(xt+1) telescope so that, since x1 mini-
mizes Ψ, we have

T∑
t=1

(Ψ(xt)−Ψ(xt+1) = Ψ(x1)−Ψ(xT+1) ≤ 0.

Therefore, the remainder of the proof follows as in the proof of Theorem 3.2.
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D.1 Regularized Dual Averaging

As previously discussed, applying OCO algorithms such as dual averaging in an out-of-the-box fashion
when the loss functions are composite case does not exploit the structure of the extra-regularization
given by Ψ and may have poor performance in practice. For example, McMahan [2017] shows that
applying DA in the composite case with Ψ := ‖·‖1 does not yield sparse solutions. Xiao [2010]
proposed the regularized dual averaging (RDA) method to solve this issue. The algorithm is identical
to DA but it does not linearize the function Ψ. Formally, the initial iterate x1 is in arg minx∈X (R(x)
and is such that Ψ(x1) = 0, that is, x1 minimizes Ψ. For the following rounds, RDA computes

xt+1 ∈ arg min
x∈X

( t∑
i=1

〈gi, x〉+ tΨ(x) +
1

ηt
R(x)

)
∀t ≥ 1. (D.2)

With an argument analogous to the one made in Section 4, we can write RDA as an instance of FTRL
(with composite loss functions) and obtain the following corollary of Theorem D.1.
Corollary D.3. Let Ψ: Rn → R+ be a nonnegative convex function. Let {xt}t≥1 be defined as
in (D.2) and assume Ψ(x1) = 0. Moreover, suppose ft is L-Lipschitz continuous relative to R for
all t ≥ 1. Let z ∈ X and let K ∈ R be such that K ≥ R(z)−R(x1). If ηt :=

√
2K/(L

√
t+ 1) for

all t ≥ 1, then RegretΨT (z) ≤ 2L
√
K(T + 1).

E Proofs for Section 5

In this section we give the missing proofs of Section 5. Throughout this section, let {xt}t≥1 and
{ŵt}t≥1 be defined as in Algorithm 2, and define

wt := ∇Φ∗(ŵt), ∀t ≥ 1.

First, let us state inequality (4.9) and Claim 4.2 (without substituting exactly value of γt) from Fang
et al. [2020] at the beginning, which will appear multiple times throughout this section, respectively
as:
Claim E.1. If γt = ηt+1/ηt ∈ (0, 1] for each t ≥ 1, then

ft(xt)− ft(z) ≤
1

ηt
(DΦ(xt, wt+1)−DΦ(z, wt+1) +DΦ(z, xt)).

Claim E.2. If γt ∈ (0, 1] for all t ≥ 1, then,

1

ηt
(DΦ(xt, wt+1)−DΦ(z, wt+1) +DΦ(z, xt))

≤ DΦ(xt, wt+1)

ηt
+

1

ηt

(( 1

γt
− 1
)
DΦ(z, x1)− 1

γt
DΦ(z, xt+1) +DΦ(z, xt)

)
.

E.1 Sublinear Regret for Relative Lipschitz Functions

In this subsection we prove sublinear regret for DS-OMD with relative Lipschitz continuous cost
functions. First we use Theorem 4.1 in Fang et al. [2020]. This theorem is analogous to the bound
given in the analysis of classic OMD given by Bubeck [2015, Theorem 4.2].
Theorem E.3 (Fang et al. [2020, Theorem 4.1]). If γt := ηt+1/ηt for each t ≥ 1, then

RegretT (z) ≤
T∑
t=1

DΦ(xt, wt+1)

ηt
+
DΦ(z, x1)

ηT+1
, ∀T > 0.

Now we are ready to use Theorem E.3 to prove Theorem 5.1.

Proof of Theorem 5.1. We first need to bound the terms DΦ(xt, wt+1) for each t ≥ 1. Fix t ≥ 1. By
the three-point identity for Bregman divergences (see (2.2)),

DΦ(xt, wt+1) = −DΦ(wt+1, xt) + 〈∇Φ(xt)−∇Φ(wt+1), xt − wt+1〉 . (E.1)
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From the definition of the iterates in Algorithm 2, we have ηtgt = ∇Φ(xt)−∇Φ(wt+1). Thus,

(E.1) = −DΦ(wt+1, xt) + ηt 〈gt, xt − wt+1〉 ,
(2.3)
≤ −DΦ(wt+1, xt) + ηtL

√
2DΦ(wt+1, xt) ≤

η2
tL

2

2
, (E.2)

where first inequality is from (2.3) ( since ft is Lipschitz continuous relative to Φ) and the second
inequality comes from the fact that

√
αβ ≤ (α + β)/2 with α := η2

tL
2 and β := DΦ(wt+1, xt).

Plugging the above in Theorem E.3, we get

RegretT (z) ≤
T∑
t=1

ηtL
2

2
+
DΦ(z, x1)

ηT+1
≤

T∑
t=1

ηtL
2

2
+

K

ηT+1
.

Setting ηt :=
√
K/L

√
t for each t ≥ 1 and by using Lemma B.1 from Appendix Bwe have

RegretT (z) ≤ L2

2
·
√
K2
√
T

L
+K

L
√
T + 1√
K

≤ 2L
√
K(T + 1).

E.2 Proof for Theorem 5.3

In this section we give a logarithmic regret bound for OMD the cost functions are when relative
Lipschitz continuous and relative strongly convex, both relative to the mirror map. The first step in
the proof is the following claim given by modifying Claims E.1 and E.2 and combining them together.

Claim E.4. Assume that γt = 1 for all t ≥ 1, then

ft(xt)− ft(z) ≤
1

ηt

(
DΦ(xt, wt+1)−DΦ(z, xt+1) +DΦ(z, xt)

)
−MDΦ(z, xt).

Proof of Claim E.4. This proof largely follows the structure of the proof of Claim E.1. First, instead
of using subgradient inequality, we use the definition of relative strong convexity and get

ft(xt)− ft(z) ≤ 〈gt, xt − z〉 −MDΦ(z, xt).

By proceeding as in the proof of Claim E.1 but adding the extra term −MDΦ(z, xt) term we get

ft(xt)− ft(z) ≤
1

ηt

(
DΦ(xt, wt+1)−DΦ(z, wt+1) +DΦ(z, xt)

)
−MDΦ(z, xt).

Then we apply Claim E.2 with γt = 1 to get the desired inequality.

The next step in the proof of the logarithmic regret bound is to sum Claim E.4 over t, yielding

T∑
t=1

(
ft(xt)− ft(z)

)
≤

T∑
t=1

DΦ(xt, wt+1)

ηt
+

T∑
t=2

((
1

ηt
− 1

ηt−1

)
DΦ(z, xt)−MDΦ(z, xt)

)
+

1

η1
DΦ(z, x1)− 1

ηT
DΦ(z, xT+1)−MDΦ(z, x1), (by Claim E.4)

≤
T∑
t=1

DΦ(xt, wt+1)

ηt
+

T∑
t=2

((
1

ηt
− 1

ηt−1

)
DΦ(z, xt)−MDΦ(z, xt)

)
. (η1 = 1/M)

Since ηt = 1
Mt , we have

T∑
t=2

((
1

ηt
− 1

ηt−1

)
DΦ(z, xt)−MDΦ(z, xt)

)
=

T∑
i=2

(
MDΦ(z, xt)−MDΦ(z, xt)

)
= 0.
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We have already shown that DΦ(xt, wt+1) ≤ η2tL
2

2 in (E.2), so

RegretT (z) ≤
T∑
t=1

DΦ(xt, wt+1)

ηt
+

T∑
i=2

((
1

ηt
− 1

ηt−1

)
DΦ(z, xt)−MDΦ(z, xt)

)
,

≤
T∑
t=1

ηtL
2

2
=

L2

2M

T∑
t=1

1

t
≤ L2

2M
(log T + 1).

The last step comes from upper bound of the harmonic series.

E.3 Sublinear Regret for DS-OMD with Extra Regularization

Following the notation from Appendix D, we let Ψ: X → R+ denote the extra regularizer, a
nonnegative convex function. We also assume Ψ is minimized at x1 with value 0 and use composite
regret to measure the performance. The only modification we need to make to Algorithm 2 is to
change the projection step of the algorithm to

xt+1 = arg min
x∈Rn

(
DΦ

(
x, yt+1

)
+ ηt+1Ψ(x)

)
. (E.3)

Here we minimize over Rn instead of over X since we can introduce the constraint of the points
lying in X by adding to Ψ the indicator function of X . That is, by adding to Ψ the function

δX (x) :=

{
0 if x ∈ X ,
+∞ otherwise,

∀x ∈ Rn.

In the remainder of this section we denote by ΠΦ
ηt+1Ψ(yt+1) the point computed by the right-hand

side of (E.3). If we pick this projection coefficient αt carefully, we can getO(
√
T ) regret, as specified

by the next theorem.
Theorem E.5. Let {xt}t≥1 be given as in Algorithm 2 with composite updates and with parameters
γt := ηt+1/ηt for each t ≥ 1. Assume that Ψ(x1) = 0 and that ft is L-Lipschitz continuous relative
to Φ for all t ≥ 1. Let z ∈ X and K ∈ R be such that K ≥ DΦ(z, x1). Then,

RegretΨT (z) ≤
T∑
t=1

ηtL
2

2
+

K

ηT+1
, ∀z ∈ X ,∀T > 0.

In particular, for ηt :=
√
K/L

√
t for each t ≥ 1, then RegretΨT (z) ≤ 2L

√
K(T + 1).

The analysis hinges on the following generalization of [Bubeck, 2015, Lemma 4.1], which can be
thought as a “pythagorean Theorem” for Bregman projections.
Lemma E.6. Let x ∈ Rn, y ∈ Do, and set ȳ := ΠΦ

αtΨ
(y). If ȳ ∈ Do, then

DΦ(x, ȳ) +DΦ(ȳ, y) ≤ DΦ(x, y) + αt(Ψ(x)−Ψ(ȳ)).

Proof of Lemma E.6. By the optimality conditions of the projection, we have ∇Φ(y) − ∇Φ(ȳ) ∈
∂(αtΨ)(ȳ). Using the three-point identity of Bregman divergences (see (2.2)) and the subgradient
inequality, we get

DΦ(x, ȳ) +DΦ(ȳ, y)−DΦ(x, y) = 〈∇Φ(y)−∇Φ(ȳ), x− ȳ〉 ≤ αt(Ψ(x)−Ψ(ȳ)).

Rearranging yields the desired inequality.

We are now ready to prove Theorem E.5.

Proof of Theorem E.5. To prove the theorem, we just need to show that Theorem E.3 still holds (with
respect to the composite regret) in the algorithm with composite projections. We modify Claims E.1
and E.2 to get the following claim.

Claim E.7.
ft(xt)− ft(z)

≤ DΦ(xt, wt+1)

ηt
+

(
1

ηt+1
− 1

ηt

)
DΦ(z, x1) +

DΦ(z, xt)

ηt
− DΦ(z, xt+1)

ηt+1
+ (Ψ(z)−Ψ(xt+1)).
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Proof of Claim E.7. Claim E.1 gives us the following inequality:

ft(xt)− ft(z) ≤
1

ηt
(DΦ(xt, wt+1)−DΦ(z, wt+1) +DΦ(z, xt)).

Then we just need to modify Claim E.2 to bound the right side of the above inequality. Using Lemma
E.6, we have

DΦ(z, yt+1)−DΦ(xt+1, yt+1) ≥ DΦ(z, xt+1) + αt(Ψ(xt+1)−Ψ(z)).

Then we substitute the step DΦ(z, yt+1)−DΦ(xt+1, yt+1) ≥ DΦ(z, xt+1) in the original proof of
Claim E.2 in Fang et al. [2020] with the above inequality plus the extra regularization term and Claim
E.7 follows.

Now the regret is bounded by

RegretΨT (z)

=

T∑
t=1

(
ft(xt) + Ψ(xt)− ft(z)−Ψ(z)

)
,

=

T∑
t=1

((
ft(xt)− ft(z)

)
+
(

Ψ(xt)−Ψ(z)
))

,

≤
T∑
t=1

DΦ(xt, wt+1)

ηt
+ sup
z∈X

DΦ(z, x1)

ηT+1
+

T∑
t=1

(Ψ(xt)−Ψ(xt+1)),

=

T∑
t=1

DΦ(xt, wt+1)

ηt
+ sup
z∈X

DΦ(z, x1)

ηT+1
+ Ψ(x1)−Ψ(xT+1),

≤
T∑
t=1

DΦ(xt, wt+1)

ηt
+ sup
z∈X

DΦ(z, x1)

ηT+1
.

The first inequality follows Claim E.7 and the last step comes from the assumption that x1 is the
minimizer of Ψ. This shows Theorem E.3 holds as desired and then the proof of Theorem E.5 follows
as in Appendix E.1.

Similarly, by setting all ft to a fixed function f and taking average we get the following corollary.
Corollary E.8. Consider a convex function f and let x∗ be a minimizer of f . Let Φ be a differentiable
strictly convex mirror map such that X ⊆ Do. Assume that f is L-Lipschitz continuous to Φ and
there exists non-negative K such that K ≥ DΦ(x∗, x1). Let {ηt}t≥1 be a sequence of step sizes.
If we pick step size ηt = 1√

t
, αt = ηt+1 and stabilization coefficient γt = ηt+1/ηt, then we have

convergence rate

(f + Ψ)

(
1

T

T∑
t=1

xt

)
− (f + Ψ)(x∗) ≤ 2L

√
2K√
T

.
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