
A Proof of Theorem 1

Proof. We reduce from INDEPENDENT SET for regular (i.e. equal degrees) graphs to our problem.
Let G = (V,E) be an undirected, regular graph on n vertices and m edges.

For every vertex v ∈ V we construct a random variable Xv. The support of Xv includes the
value m4pu,v , if the graph contains the edge (u, v), and this value occurs with probability m−2pu,v ,
where pu,v is an integer specific to the edge (u, v). Concretely, we can arbitrarily number the edges
e1, e2, . . . and set pu,v = i when ei = (u, v). Notice that Pr[Xv = pu,v]

2 · pu,v = 1. We normalize,
by adding a balancing term. Each random variable Xv has some probability (O(m−8m)) of taking
value m10m, in a way that the expectation of every random variable is the same number µ.

Completeness Let S be an independent set of size k in G. Then,

E[max
v∈S

Xv] =
∑
v∈S

∑
e=(u,v)∈E

m4pu,v ·Pr[Xv = m4pu,v] ·Pr[∀z ∈ S, z 6= v : Xz < m4pu,v]

=
∑
v∈S

∑
e=(u,v)∈E

m2pu,v · (1−Pr[∃z ∈ S, z 6= v : Xz ≥ m4pu,v])

≥
∑
v∈S

∑
e=(u,v)∈E

m2pu,v · (1−
∑

z∈S:z 6=v

Pr[Xz ≥ m4pu,v])

=(u /∈ S since S is an IS)
∑
v∈S

∑
e=(u,v)∈E

m2pu,v · (1−
∑

z∈S:z 6=v

Pr[Xz > m4pu,v])

=
∑
v∈S

∑
e=(u,v)∈E

m2pu,v · (1−
∑

z∈S:z 6=v

∑
m4p′>m4pu,v

Pr[Xz = m4p′])

=
∑
v∈S

∑
e=(u,v)∈E

m2pu,v · (1−
∑

z∈S:z 6=v

∑
m4p′>m4pu,v

1√
m4p′

)

≥
∑
v∈S

∑
e=(u,v)∈E

m2pu,v · (1−
∑

p′>pu,v

1

m2p′
)

≥
∑
v∈S

∑
e=(u,v)∈E

m2pu,v · (1− 2

m2(pu,v+1)
)

= E[
∑
v∈S

Xv]−
∑
v∈S

∑
e=(u,v)∈E

2

m2

= E[
∑
v∈S

Xv]−
∑
v∈S
|N(S)| 2

m2

≥ E[
∑
v∈S

Xv]−
2

m
.

Soundness Say G does not contain an independent set of size k. Let S ⊆ V be a subset of
vertices=random variables of size |S| = k. Let E1(S) denote the set of edges where one endpoint is
in S, and likewise let E2(S) denote the set of edges where both endpoints are in S.

E[max
v∈S

Xv] =
∑

(u,v)∈E1(S)

m4pu,v ·Pr[Xv = m4pu,v] ·Pr[∀z ∈ S : Xz ≤ m4pu,v]

+ 2
∑

(u,v)∈E2(S)

m4pu,v ·Pr[Xv = m4pu,v OR Xu = m4pu,v] ·Pr[∀z ∈ S : Xz ≤ m4pu,v]

≤
∑

(u,v)∈E1(S)

m4pu,v ·Pr[Xv = m4pu,v] + 2
∑

(u,v)∈E2(S)

m4pu,v ·Pr[Xv = m4pu,v OR Xu = m4pu,v]

=
∑

(u,v)∈E1(S)

m2pu,v +

 ∑
(u,v)∈E2(S)

2m2pu,v − 1

12

= E[
∑
v∈S

Xv]− |E2(S)|

≤ E[
∑
v∈S

Xv]− 1.

B Missing proofs from Section 3

B.1 Preliminaries on submodular functions

Before we present the details of our algorithm, we prove (for completeness) the following well known
property of submodular functions.
Claim 1. Let f(S) be a submodular function. Then, max

S:|S|≤(1−ε)k
f(S) ≥ (1− ε) max

S:|S|≤k
f(S).

Proof. Let A = argmaxS:|S|≤k f(S) and B ⊆ A, |B| = (1 − ε)k such that f(B) is maximized
among all subsets of A of size (1− ε)k. Let ∆(v|S) be the marginal contribution of an element v to
a set S, i.e. ∆(v|S) = f(S ∪ {v})− f(S).

f(A) = f(B) +

εk∑
i=1

∆(vi|B ∪ {v1, . . . , vi=1})

≤ f(B) +

εk∑
i=1

∆(vi|S)

≤ f(B) +

εk∑
i=1

f(B)

|B|

≤ f(B) +

εk∑
i=1

f(B)

(1− ε)k

= f(B) + εk
f(B)

(1− ε)k

=
1

1− ε
f(B)

We also prove that the expected maximum is a submodular function.
Fact 1. f(S) = E[maxi∈S{Xi}] is a monotone submodular set function.

Proof. Let fv(S) = maxi∈S vi be f(S) restricted on an outcome v. fv is obviously submodular. For
completeness, let T be a subset of the random variables and S a subset of T , and consider some i ∈
[n]\T . fv(S∪{i})−fv(S) = max{maxj∈S vj ,vi}−maxj∈S vj = max{vi−maxj∈S vj , 0} ≥
max{vi −maxj∈T vj , 0} = fv(T ∪ {i}) − fv(T). Finally, non-negative linear combinations of
submodular functions are submodular, so f(S) =

∑
v Pr[v]fv(S) is submodular.

B.2 PTAS and analysis

Step 1: preprocessing far tails (> τ). Let τ be the largest number such that ∃Sτ ⊆ [n], |Sτ | = k
that satisfies Pr[maxi∈Sτ Xi ≥ τ] = ε. For each i ∈ [n], let Hi := E[Xi|Xi > τ], and let
Hmax := maxi∈[n]Hi. Let X̂i be the random variable that takes value equal to Xi if Xi ≤ τ , and if
Xi > τ , it takes either value Hmax w.p. Hi

Hmax
or zero w.p. 1− Hi

Hmax
. Note that E[X̂i|X̂i > τ] =

Hi = E[Xi|Xi > τ].

13

Claim 2. For every subset S ⊆ [n], |S| = k,

E[max
i∈S

X̂i] ∈
[
(1− ε)E[max

i∈S
Xi],

1

(1− ε)
E[max

i∈S
Xi]

]
.

Proof. Let A be the event that maxi∈S Xi ≤ τ . When A occurs, maxi∈S X̂i = maxi∈S Xi.

Similarly, let ¬Ai denote the event that Xi > τ , and let A−i denote the event that all variables other
than i are below the threshold τ . Note that ¬Ai and A−i are independent, and conditioned on both,
maxj∈S Xj = Xi. Finally, we have that E[Xi|¬Ai] = Hi = E[X̂i|¬Ai].

We now derive upper and lower bounds on E[maxi∈S Xi|¬A]. The same proof will extend to X̂i. By
inclusion-exlusion principle,

Pr[¬A]E[max
i∈S

Xi|¬A] =
∑
∅6=U⊆S

∏
i∈U

Pr[¬Ai]
∏
j /∈U

Pr[Aj]︸ ︷︷ ︸
Pr[U is the subset of variables that pass τ]

E[max
i∈U

Xi|∀i ∈ U Xi > τ].

We now separate the cases of |U | = 1 and |U | > 1.

Pr[¬A]E[max
i∈S

Xi|¬A] =
∑
i∈S

Pr[¬Ai]Pr[A−i]︸ ︷︷ ︸
OnlyXi beats τ

E[Xi|¬Ai]︸ ︷︷ ︸
=Hi

+
∑
U⊆S
|U |>1

(...).

Dropping the second term can only decrease the total, hence

Pr[¬A]E[max
i∈S

Xi|¬A] ≥
∑
i∈S

Pr[¬Ai]Pr[A−i]Hi. (1)

To obtain an upper bound on Pr[¬A]E[maxi∈S Xi|¬A], notice that conditioned on ¬A,

max
i∈S

Xi ≤
∑
i∈S

Xi1Xi>τ .

Hence, we have that

Pr[¬A]E[max
i∈S

Xi|¬A] ≤ Pr[¬A]E[
∑
i∈S

Xi1Xi>τ |¬A]

=
∑
i∈S

Pr[¬A]E[Xi1Xi>τ |¬A]

=
∑
i∈S

E[Xi1Xi>τ]︸ ︷︷ ︸
=Hi

. (2)

Combining Eqs. (1) and (2), and recalling that they also hold for X̂i, we have that∑
i∈S

Pr[¬Ai]Pr[A−i]Hi ≤ Pr[¬A]E[max
i∈S

Xi|¬A],Pr[¬A]E[max
i∈S

X̂i|¬A] ≤
∑
i∈S

Pr[¬Ai]Hi.

It’s left to show that the lower and upper bound are close. Indeed, by the choice of τ , Pr[A−i] ≥
Pr[A] ≥ 1− ε.

Step 2: discarding small values. Now, let Wi be the random variable that takes value equal to X̂i

when X̂i ≥ ε2τ and zero otherwise. The loss is, again, negligible.

Claim 3. (1 + ε)OPTmax(W) ≥ OPTmax(X̂).

Proof. First, notice that OPTmax(W) ≥ ετ , by the definition of τ : for the subset Sτ such that
Pr[maxi∈Sτ Xi ≥ τ] = Pr[maxi∈Sτ Wi ≥ τ] = ε, so E[maxi∈Sτ Wi] ≥ Pr[maxi∈Sτ Wi ≥
τ]τ ≥ ετ . Second, consider the random variables Zi = X̂i − ε2τ . Then OPTmax(Z) =

OPTmax(X̂)− ε2τ . Also, for all i, we can couple all outcomes of Wi and Zi such that Wi ≥ Zi.
Therefore,OPTmax(W) ≥ OPTmax(Z) = OPTmax(X̂)−ε2τ ≥ OPTmax(X̂)−εOPTmax(W),
which implies the lemma.

14

Step 3: Interval and rounding. We partition the range [ε2τ, τ] into ` := log1−ε(ε
2) ∈ Õ(1/ε)

intervals [ε2τ, τ] = ∪`j=1Ij , where Ij = [ε2

(1−ε)j−1 τ,
ε2

(1−ε)j τ). We round down the values within

each interval. That is, let Yi be the random variable that takes value ε2

(1−ε)j−1 when Wi takes value in
Ij , for j ∈ [`]. Notice that this decreases the expected maximum by at most a (1− ε) factor.
Observation 1. For all S ⊆ [n], E[maxi∈S Yi] ≥ (1− ε)E[maxi∈SWi].

Step 4: Core-Tail decomposition. Let η be the largest number such that there exists a set Sη ⊆
[n], |Sη| = εk, that satisfies

Pr[max
i∈Sη

Yi ≥ η] = 1− ε. (3)

We henceforth use SC to denote the set that attains equality in (3). We decompose each Yi into “core”
(Ci) and “tail”(Ti). Specifically, Ci is the random variable that is equal Yi when Yi ≤ η (and is zero
otherwise), and Ti is the random variable that is equal to Yi when Yi > η (and is zero otherwise).

We have used ε-fraction of the budget to select the set SC (that is, SC has size εk). Next, we show
that since the function f(S) = E[maxi∈S Yi] is a submodular function, using the remaining (1− ε)-
fraction of the budget to optimize contribution from tails recovers almost the same contribution as
spending the entire budget on optimal tails. Let S

′

T be the subset of size k′ that is almost optimal
with respect to SC , i.e.

S
′

T := arg max
|S|=k′

E

[
max

{
max
i∈S

Ti,max
i∈SC

Yi

}]
.

The following lemma compares the union of S
′

T and SC to the optimal set S∗ for the Yis.
Lemma 3.

E

[
max

{
max
i∈S′T

Ti,max
i∈SC

Yi

}]
≥ (1−O(ε)) OPTmax(Y) (4)

Proof. Let S∗ be the optimal set (of size k) for the Yis. We will show a slightly stronger bound,
namely that the bound holds even when we replace the RHS of Eq. (4) with a union of S∗ and SC :

E

[
max

{
max
i∈S′T

Ti,max
i∈SC

Yi

}]
≥ (1−O(ε))E

[
max

i∈S∗∪SC
Yi

]
. (5)

We first bound the loss to the RHS from truncating all the variables in S∗ \SC below η (i.e. replacing
those Yis with Tis). Notice that the loss to the RHS of (5) is at most η times the probability that none
of the variables in SC exceed η. The latter, happens with probability at most ε by definition of η.
Therefore,

E

[
max

i∈S∗∪SC
Yi

]
≤ E

[
max

{
max
i∈S∗

Ti,max
i∈SC

Yi

}]
+ εη

≤(Eq. (3) + Markov’s inequality) E

[
max

{
max
i∈S∗

Ti,max
i∈SC

Yi

}]
+ ε

E[maxi∈SC Yi]

1− ε

≤ (1 + 2ε)E

[
max

{
max
i∈S∗

Ti,max
i∈SC

Yi

}]
. (6)

Now, if we let ST denote the optimal set of k tails. By optimality of ST , we have

E

[
max

{
max
i∈ST

Ti,max
i∈SC

Yi

}]
≥ E

[
max

{
max
i∈S∗

Ti,max
i∈SC

Yi

}]
. (7)

Finally, we use the fact that the expected max is a submodular function, to obtain:

E

[
max

{
max
i∈S′T

Ti,max
i∈SC

Yi

}]
≥ (1− ε)E

[
max

{
max
i∈ST

Ti,max
i∈SC

Yi

}]
(Claim 1)

15

≥ (1− ε)E
[
max

{
max
i∈S∗

Ti,max
i∈SC

Yi

}]
(Eq. (7))

≥ (1−O(ε))E

[
max

i∈S∗∪SC
Yi

]
(Eq. (6)).

Step 5: Discarding intervals with small relative contribution. For a tail variable Ti and interval
I ∈

{
[ε2τ, ε2

1−ετ), . . . , [(1− ε)τ, (1− ε)2τ), [(1− ε)τ, τ], (τ,∞)
}

, recall that Ti restricted to I is a

point mass: either one of the ε2τ
(1−ε)j−1 or Hmax. Let Ti(I) denote its marginal contribution to the

expectation, i.e. its probability times its value. We round down the probability on each point mass so
its marginal contribution is equal to (1− ε)zE[Ti] for some integer z.

For any set |S| = k, there is at most a constant probability that no variable passes η. To see this,
consider partitioning S into 1/ε subsets Sj of size εk.

Pr[max
i∈S

Yi < η] =
∏
j

Pr[max
i∈Sj

Yi < η] ≥(Eq. (3))
∏
j

ε = ε1/ε.

Therefore, conditioned on being nonzero, any Ti has a constant (≥ ε1/ε) probability of attaining the
maximum. Therefore

E[max
i∈S′T

Yi] ≥ ε1/ε
∑
i∈S′T

E[Ti]. (8)

We can therefore discard any intervals whose contribution is at most ε1/ε+3E[Ti], while reducing the
expected max by at most a (1− ε) factor. Formally, we have the following claim.

Claim 4. Let T̂i denote the modified variable Ti where we discard intervals with contribution at
most ε1/ε+3E[Ti], and otherwise round it down to the nearest power of (1− ε). Then,

E

[
max

{
max
i∈S′T

T̂i,max
i∈SC

Yi

}]
≥ (1− ε)2E

[
max

{
max
i∈S′T

Ti,max
i∈SC

Yi

}]
.

Proof. Let ˆ̂
Ti denote the modified variable where we only discard intervals with low contributions,

but without the rounding. Discarding each interval with contribution at most ε1/ε+3E[Ti] can decrease
the expected max by at most ε1/ε+3E[Ti]. There are Õ(1/ε) < 1/ε2 intervals, hence discarding
all low-contribution intervals for variable i decreases the expected max by ε1/ε+3E[Ti]. Summing
accross all intervals, we have that

E

[
max

{
max
i∈S′T

ˆ̂
Ti,max

i∈SC
Yi

}]
≥ E

[
max

{
max
i∈S′T

Ti,max
i∈SC

Yi

}]
− ε1/ε+3

∑
i∈S′T

E[Ti]

≥(Eq. (8)) (1− ε)E

[
max

{
max
i∈S′T

Ti,max
i∈SC

Yi

}]
.

Rounding down each contribution to the nearest power of (1− ε) can cost at most another factor of
1− ε.

The brute-force algorithm Notice that for each interval I , the marginal contribution from the point
mass of T̂i takes one of 1/ε+3 values. Therefore, each variable belongs to one of (1/ε)Õ(1/ε) = O(1)
many types, which describe the relative marginal contribution from each point mass.

We now guess an approximate type-histogram, i.e. the optimal number of variables for each type,
rounded down to the nearest power of (1 + ε). There are O(log(k)) possible guesses for each

type, so log(1/ε)Õ(1/ε)

(k) possible type-histograms total. For each type-histogram, we generate a
candidate set of ≤ k variables by taking, for each type, the variables from that type with maximal
E[Ti]. We estimate the expected maximum of each candidate set, and return the best one across all
type-histograms.

16

Running time The five pre-processing steps run in linear time (aka linear in sum of variable
supports). The brute-force algorithm runs in time O(k · polylog(k)).

C Proof of Theorem 3

We reduce from the Densest-κ-subgraph problem, formally defined as follows.

Definition 2 (Densest κ-subgraph (DκS)). We are given a n-vertex graph G = (V,E) and an
integer κ. The goal is to select a subgraph of G of size κ with maximum density (average degree).

[AAM+11] prove the following hardness result.

Theorem 5 ([AAM+11]). If there is no polynomial time algorithm for solving the hidden clique
problem for a planted clique of size n1/3 in the random graph G(n, 1/2), then for any 2/3 ≥ ε > 0,
δ > 0, there is no polynomial time algorithm that distinguishes between a graph G on N vertices
containing a clique of size κ = N1−ε, and a graph G′ on N vertices in which the densest subgraph
on κ vertices has density at most δ.

[Man17] proves the following hardness result.

Theorem 6 ([Man17]). There is a constant c > 0 such that, assuming the exponential time hypothesis,
no polynomial-time algorithm can, given a graph G on n vertices and a positive integer κ ≤ n,
distinguish between the following two cases:

• There exist κ vertices of G that induce the κ-clique.

• Every κ-subgraph of G has density at most n−1/(log logn)c

In the following, we show that given a graph G on n vertices, we can construct n random variables,
X1, . . . , Xn such that

• (Completeness) If there exists a subset of vertices S∗ of size k such that |E ∩ (S∗ × S∗)| = `, then
there exists a subset of random variables whose expected second largest value is at least `.

• (Soundness) If for all subsets S of size k |E ∩ (S × S)| < `, then there is no subset of random
variables whose expected second largest value is more than `+ 1/2k.

Combining with Theorems 5 and 6, Theorem 3 follows immediately.

Our construction works as follows. Given a graph G = (V,E), we make a random variable Xi for
each vertex i ∈ V . If (i, j) ∈ E, then we add the value p2ij with probability 1/pij to the support
of Xi and Xj , where pij = 1

(2k+1)π(i,j) , where π : E → N is an arbitrary ordering of the edges

(concretely, one can take π(i, j) = (max{i,j}−1)(max{i,j}−2)
2 + min{i, j}).

Completeness. Assume that there exists S∗ ⊆ V , |S∗| = k, such that |E ∩ (S∗ × S∗)| = `. Then

E[smaxi∈S∗ Xi] =
∑
v

v ·Pr[smaxz∈S Xz = v]

=
∑

i,j∈S∗:(i,j)∈E

p2ij ·Pr[smaxz∈S Xz = p2ij]

≥
∑

i,j∈S∗:(i,j)∈E

p2ij ·Pr[Xi = Xj = p2ij]

=
∑

i,j∈S∗:(i,j)∈E

p2ij
1

p2ij

= `.

Soundness. Let S be an arbitrary subset of random variables. We’ll show that E[smaxi∈S Xi] is at
most `+ 1/2k, where ` is the number of edges between vertices of S.

17

E[smaxi∈S Xi] =
∑

i,j∈S∗:(i,j)∈E

p2ij ·Pr[smaxz∈S Xz = p2ij]

=
∑

i,j∈S∗:(i,j)∈E

p2ij · (Pr[smaxz∈S Xz = max
z∈S

Xz = p2ij]

+ Pr[smaxz∈S Xz = p2ij & max
z∈S

Xz > p2ij]).

Since Xi and Xj are the only variables that can take value p2ij we have that

Pr[smaxz∈S Xz = max
z∈S

Xz = p2ij] ≤ Pr[Xi = Xj = p2ij] =
1

p2ij
. (9)

For the same reason, the probability that the second largest value is p2ij and the maximum value is at
least p2ij is upper bounded by 2

pij

∑
k∈S∗ Pr[Xk > p2ij]. We have that

Pr[Xk > p2ij] =
∑
v>p2ij

Pr[Xk = v]

=
∑

z>π(i,j)

Pr[Xk = p2z]

≤
∞∑

z=π(i,j)+1

1

(2k + 1)z

=
1

2k
· 1

(2k + 1)π(i,j)

=
1

2kp2ij

Thus
Pr[smaxz∈S Xz = p2ij & max

z∈S
Xz > p2ij] ≤

2

pij
· k · 1

2kp2ij
=

1

p3ij
(10)

Plugging in (9) and (10) we get that

E[smaxi∈S Xi] ≤
∑

i,j∈S∗:(i,j)∈E

p2ij · (
1

p2ij
+

1

p3ij
)

=
∑

i,j∈S∗:(i,j)∈E

1 +
1

pij

= `+
∑

i,j∈S∗:(i,j)∈E

1

(2k + 1)π(i,j)

≤ `+

∞∑
z=1

1

(2k + 1)z

= `+
1

2k
.

D Proofs missing from Section 5

D.1 Proof of Lemma 1

Proof. First, we lower bound the probability that the maximum is at least the smallest α(i)
p . Let

αmin = mini∈S α
(i)
p . For all i ∈ S, Pr[Xi ≤ αmin] ≤ Pr[Xi ≤ α

(i)
p] = 1 − 1/p. Therefore,

18

Pr[maxi∈S X̂i ≤ αmin] = Pr[∀i∈SX̂i ≤ αmin] ≤ (1− 1/p)k. Thus, Pr[maxi∈S X̂i ≥ αmin] ≥
1− (1− 1/p)k. Second, conditioned on the maximum value being at least αmin, our algorithm has,
in fact, picked the random variable that takes the largest value (out of all n random variables). To see
this most clearly, notice that the only (truncated) random variables that can take values at least αmin
are in S. The first part of the lemma follows from combining the two observations.

For the second part of the lemma, notice that Pr[smaxi∈S X̂i ≤ αmin] = Pr[for all i ∈ S, X̂i ≤
αmin] + Pr[for all but one i ∈ S, X̂i ≤ αmin]. The first term is at most (1 − 1/p)k. The second
term is at most

∑
j∈S Pr[X̂j ≥ αmin]

∏
i 6=j∈S Pr[X̂i < αmin] ≤ k(1 − 1/p)k−1. So, overall,

Pr[smaxi∈S X̂i ≤ αmin] ≤ (k + 1)(1− 1/p)k−1, and thus Pr[smaxi∈S X̂i ≥ αmin] ≥ 1− (k +
1)(1−1/p)k−1. When this event occurs, the selected subset of variables includes all random variables
whose have value at least αmin; the second part of the lemma follows.

D.2 Proofs missing from Section 5.2

LetCon[X ≥ x] = E[X|X ≥ x]·Pr[X ≥ x] =
∫∞
x
zf(z)dz. LetGt be the set of random variables

that got eliminated in round t of Algorithm 1, for t = 0, . . . , log2 k− 1, i.e. Gt = Qt \Qt+1, and let
Glog2 k = Qlog2 k, i.e. the unique random variable that survived the first log2 k − 1 rounds.

D.2.1 Upper bounding the tail

The upper bounds on the tail contribution will hold only for MHR random variables. We first bound
the contribution above β1 for the sum of all random variables except Glog2 k in Lemma 4. We then
proceed to bound the contribution above β2 for Glog2 k, in Lemma 5. When upper bounding the tail
of the expected maximum we need both lemmas, but for the case of the expected second highest
value, we can safely exclude one random variable.
Lemma 4. Let X1, . . . , Xk be MHR random variables. For all i ∈ [k] \Glog2 k and ε ∈ (0, 1/16),
let Si = Con[Xi ≥ log2(1/ε)β1]. Then

∑
i∈[k]\Glog2 k

Si ≤ 8
√
ε log2(1/ε)β1.

Proof. Let d = log2(1/ε), and notice that d > 4 since ε < 1/16.

For i ∈ Gt, we know that α(i)√
k/2t

≤ βt. Furthermore, by Lemma 6, dα(i)√
k/2t

≥ α
(i)

(
√
k/2t)d

.

Therefore, we have that Con[Xi ≥ dβt] ≤ Con[Xi ≥ dα(i)√
k/2t

] ≤ Con[Xi ≥ α(i)

(
√
k/2t)d

].

Using Lemma 7 we get

Con[Xi ≥ α(i)

(
√
k/2t)d

] ≤ 6α
(i)

(
√
k/2t)d

(
√

2t/k)d ≤ 6dβt(
√

2t/k)d.

Since |Gt| = k/2t+1, we have∑
i∈Gt

Si ≤ 6dβt(
√

2t/k)d · k/2t+1 =
3dβt
√
k
d−2 · (

√
2
t
)d−2

Therefore, the total contribution to the tail is

∑
i∈[k]\Glog2 k

Si ≤
log2 k−1∑
t=0

3dβt
√
k
d−2 · (

√
2
t
)d−2

≤ 3dβ1
√
k
d−2

log2 k−1∑
t=0

(
√

2
d−2

)t

=
3dβ1
√
k
d−2 ·

(
√

2
d−2

)log2 k − 1
√

2
d−2 − 1

=
3dβ1
√
k
d−2 ·

(
√
k)d−2 − 1
√

2
d−2 − 1

19

≤ 3dβ1
√

2
d−2 − 1

≤ 8dβ1
√

2
d

= 8
√
ε log2(1/ε)β1

where we used the fact that 2d+2

2d−1 ≤
8
3 for d ≥ 4.

Lemma 5. Let i be the unique element in Glog2 k. Then, if Xi is MHR

Con[Xi ≥ log2(1/ε)β2] ≤ 6
√
ε log2(1/ε)β2, for all ε ∈ (0, 1/16).

Proof. Let d = log2(1/ε).

Con[Xi ≥ dβ2] = Con[Xi ≥ dα(i)√
2
]

≤(Lemma 6) Con[Xi ≥ α(i)
√
2
d]

≤(Lemma 7)
6α

(i)
√
2
d

√
2
d

≤(Lemma 6) 6
√
ε log2(1/ε)β2,

where in the application of Lemma 7 we used the fact that
√

2
d

=
√

2
log2(1/ε) ≥ 2 for ε < 1/16.

The maximum of k random variables is upper bounded by their sum, therefore by combining
Lemmas 4 and 5 we get the following corollary.

Corollary 1. Let X1, . . . , Xk be MHR random variables and β = max{β1, β2} be the maximum of
the two values output by Algorithm 1. Then for all ε ∈ (0, 1/16) we have∫ ∞

β log2(1/ε)

xfmax(x)dx ≤ 14
√
ε log2(1/ε)β,

where fmax(x) is the probability density function of the random variable maxi∈[k]Xi.

For the second largest value, observe that its expected value is upper bounded by the sum of the
random variables minus (any) one of them. Therefore, by excluding the random variable in Glog2 k,
we can upper bound the tail of the expected second highest value using Lemma 4.

Corollary 2. Let X1, . . . , Xk be MHR random variables and β1 be the first output of Algorithm 1.
Then for all ε ∈ (0, 1/16) we have∫ ∞

β1 log2(1/ε)

xfsmax(x)dx ≤ 8
√
ε log2(1/ε)β1,

where fsmax(x) is the probability density function of the random variable smaxi∈[k]Xi.

D.2.2 Lower bounding the probability of being in the tail

We will repeatedly use the following two facts.

Lemma 6 ([CD15]). Let X be an MHR random variable. Then for p ≥ 1 and d ≥ 1, dαp ≥ αpd .

Lemma 7 ([CD15]). Let X be an MHR random variable. Then for all p ≥ 2, Con[X ≥ αp] ≤
6αp/p.

We now lower bound the probability that the largest and second largest value are above the outputs
max{β1, β2} and β1 of Algorithm 1. These bounds hold even if the variables are not MHR.

Lemma 8. For any random variables (possibly not MHR) X1, . . . , Xk the threshold β =
max{β1, β2} given by Algorithm 1 satisfies Pr[maxiXi ≥ β] ≥ 1/2.

20

Proof. For the unique element i in Glog2 k we have that Pr[Xi ≥ β2] = 1/
√

2 ≥ 1/2; this
covers the case that max{β1, β2} = β2. For the case that max{β1, β2} = β1 we prove that for all
t = 0, . . . , log2 k−1, Pr[maxiXi ≥ βt] ≥ 1/2. This is sufficient, since β1 = maxt=0,...,log2 k−1 βt.

Notice that, for all i that survived round t, i.e. Qt+1, we have that α(i)√
k/2t
≥ βt. Therefore, for those

random variables, Pr[Xi ≤ βt] ≤ Pr[Xi ≤ α(i)√
k/2t

] = 1−
√

2t

k . |Qt+1| = k/2t+1, so we get

Pr[max
i
Xi ≥ βt] ≥ Pr[∃i ∈ Qt+1 : Xi ≥ βt] ≥ 1− (1−

√
2t√
k

)k/2
t+1

≥ 1−
(

1√
e

)√k/√2t

≥ 1−
(

1√
e

)√k/√2log2 k−1

≥ 1−
(

1√
e

)√2

≥ 1/2.

Lemma 9. For any random variables (possibly not MHR) X1, . . . , Xk the value β1 given by Algo-
rithm 1 satisfies Pr[smaxiXi ≥ β1] ≥ 0.098.

Proof. We prove that for all t = 0, . . . , log2 k − 1, Pr[smaxiXi ≥ βt] ≥ 0.098, which suffices
since β1 = maxt=0,...,log2 k−1 βt. In round t, for all k/2t+1 surviving random variables Xi, as well
as the eliminated random variable X` with the largest (among eliminated random variables) α√

k/2t
,

we have that α(i)√
k/2t
≥ βt. Therefore, for all i ∈ Qt+1∪{`}, Pr[Xi ≤ βt] ≤ 1−

√
2t√
k

, with equality

for the random variable X`.

Pr[smaxiXi ≥ βt] ≥ Pr[smaxi∈Qt+1∪{`}Xi ≥ βt]
= 1− (Pr[max

i∈Qt+1∪{`}
Xi ≤ βt] + Pr[max

i∈Qt+1∪{`}
Xi ≥ βt and smax

i∈Qt+1∪{`}
Xi ≤ βt])

≥ 1−
∏

i∈Qt+1∪{`}

Pr[Xi ≤ βt]−
∑

i∈Qt+1

Pr[Xi ≥ βt]
∏
j 6=i

Pr[Xj ≤ βt]

−Pr[X` ≥ βt]
∏
j 6=`

Pr[Xj ≤ βt]

≥ 1−

(
1−
√

2
t

√
k

)k/2t+1+1

− k

2t+1
·

(
1−
√

2
t

√
k

)k/2t+1

−
√

2
t

√
k

(
1−
√

2
t

√
k

)k/2t+1

= 1−
(

k

2t+1
+ 1

)(
1−
√

2
t

√
k

)k/2t+1

.

When k
2t+1 takes small values the standard approximation (1 − 1/n)n ≤ 1/e is not good enough.

We take cases. When k
2t+1 ≥ 32 we use the standard exponential approximation, and argue that the

minimum of the resulting function is at least 0.395. When k
2t+1 < 32, i.e. when it takes the values

1, 2, 4, 8 and 16 we simply compute the value of the function above; the smallest of the five is 0.098
when k

2t+1 = 8.

Let x = log2(k
2t+1). Our goal is to find the minimum of g(x) = 1− (2x + 1)

(
1− 1√

2x+1

)2x
. The

standard approximation (1− 1/n)n ≤ 1/e is not good enough for small values of x (specifically x ≥
For x ≥ 5, we use the standard approximation (1− 1/n)n ≤ 1/e:

1− (2x + 1)

(
1− 1√

2x+1

)2x

≥ 1− (2x + 1)

(
1√
e

)√2x+1

= f(x)

Taking the derivative, we have that f ′(x) = 1
4 ln(2)e−

√
2x−1

(
2x+2 −

√
2x+1(2x + 1)

)
; this expres-

sion is negative when 2x+2 ≤
√

2x+1(2x + 1), which holds for x ≥ 5. Therefore, for x ≥ 5, f(x)
achieves its maximum at x = 5, where it takes the value f(5) = 1− 33

e4 ≥ 0.395.

21

Therefore, it remains to confirm the lower bound on g(x) = 1 − (2x + 1)
(

1− 1√
2x+1

)2x
for the

cases of x = 0, . . . , 4 (equivalently, k
2t+1 = 1, 2, 4, 8 and 16) where we have:

• g(0) =
√

2− 1 ≈ 0.412.

• g(1) = 1/4.

• g(2) = 3/64(−167 + 120sqrt(2)) ≈ 0.126.

• g(3) = 6487/65536 ≥ 0.098.

• g(4) = 1− 17(1− 1/(4sqrt(2)))16 ≈ 0.243

The lowest number is g(3), therefore, Pr[smaxiXi ≥ βt] ≥ 0.098. Since maxt=0,log2 k−1 βt = β1,
we get Pr[smaxiXi ≥ β1] ≥ 0.098.

D.2.3 Bounding the loss of truncation

Here, we prove our main bound on the loss from truncating.

Proof of Lemma 2. Observe that since Algorithm 1 only uses top quantiles smaller than 1√
k

, then the

outputs (β1, β2) of Algorithm 1 with inputs the Xis are identical to its outputs with inputs the X̂is.
With this observation at hand we can proceed as follows. Let β = max{β1, β2}. First, combining
Markov’s inequality with Lemmas 8 and 94 we get the following inequalities

E[maxi X̂i]

β
≥Pr[max

i
X̂i ≥ β] ≥ 1/2 (11)

E[smaxi X̂i]

β1
≥Pr[smaxi X̂i ≥ β1] ≥ 0.098 (12)

For E[maxiXi] we have:

E[max
i
Xi] =

∫ log2(1/ε)β

0

xfmax(x)dx+

∫ ∞
log2(1/ε)β

xfmax(x)dx

≤(Corollary 1) β(log2(1/ε) + 14
√
ε log2(1/ε))

≤(Eq (11)) 2(log2(1/ε) + 14
√
ε log2(1/ε))E[max

i
X̂i].

By picking ε = 0.00075 we have E[maxiXi] ≤ 28.8E[maxi X̂i].

For E[smaxiXi] we have:

E[smaxiXi] =

∫ log2(1/ε)β1

0

xfsmax(x)dx+

∫ ∞
log2(1/ε)β1

xfsmax(x)dx

≤(Corollary 2) β1(log2(1/ε) + 8
√
ε log2(1/ε))

≤(Eq (12)) 1

0.098
(log2(1/ε) + 8

√
ε log2(1/ε))E[smaxi X̂i].

By picking ε = 0.0074 we have E[smaxiXi] ≤ 122E[smaxi X̂i].

4Note that these lemmas do not need the random variables to be MHR, which is important since distributions
with point masses, like the X̂is, are not MHR, as log(1− FX̂i

(x)) is not concave.

22

E Additional Experimental Results

Additional Implementation Details. We implemented all our algorithms in Tensorflow, on
Google’s Colab.

For synthetic data, a random variable Xi is constructed by first sampling a mean µi from U [0, 60]
and a σi from U [0, 30], and taking the empirical over 5000 samples from a Normal distribution
Ni(µi, σi), where the sampled values were rounded up to 0 and down to Vmax = 1000 if outside
of the [0, Vmax] range. An experiment constructs n = 500 random variables, and selects a subset
of size k, for k = 10, 20 and 30 for each of the different methods. For a selected subset S, we
compute E[maxi∈S Xi] and E[smaxi∈S Xi], which is the “score” for that experiment. We ran 100
experiments.

For the small versus big data experiments, we have a similar setup. A random variable Xi is
constructed by first sampling a mean µi from U [0, 60] and a σi from U [0, 30] and a uniformly
random label {s, b}. If the label is s Xi is the empirical over 10 samples from Ni(µi, σi), otherwise
it is the empirical over 5000 samples. Once a method selects a subset S, its score (true performance)
is E[maxi∈S Ni(µi, σi)] and E[smaxi∈S Ni(µi, σi)], which is computed via sampling. Specifically,
we sample 500 times from each Ni(µi, σi), i ∈ S, remembering the largest/second largest value, and
then take the average. Our plots show the number of small data candidates selected versus the true
performance.

For the Twitter data, we have a dataset of 8 million tweets. The first 2 million tweets (in chronological
order) are used for feature collection. We drop all entries with fewer than 5 likes and pre-process
the text, removing stopwords (“this”, “and”, etc) and stemming (reducing words to their root, e.g.
“jumped”, “jumping” get mapped to “jump”). We find the set of distinct words in this set, and out of
those, use as features the ones that appear at least 10 and at most 350 times. The purpose of the upper
bound is (1) to not take into account words like “BTC” that appear in almost all tweets, (2) keep
the number of features small enough for computation to be feasible. We get 5500 features that we
use to train our models in the next 2 million tweets (without dropping any entries like in the feature
collection). Regression is the simplest to train. For Quantile, we train a neural network (the framework
we used is Keras) with 2 hidden layers, with quantile loss, at quantiles [0.7, 0.8, 0.9, 0.95, 0.99]. This
is the final model for the Quantile method. The KR method uses these models to filter out the train
set (the same 2 million entries quantile was trained on) by dropping all entries with fewer “likes”
than the quantile prediction. We train with squared loss on the remaining entries. This concludes
the training step. For the final step, we randomly perturb the last 4 million tweets and split it into
non-overlapping chunks of n = 500 tweets. One experiment samples a chunk, and picks, for each
method, a subset of size k = 10, 20 and 30 by ranking the entries based on the value of the prediction.
The score of a method for this experiment is the true largest/second largest number of “likes” in the
set picked. We do 8000 experiments.

Additional Figures Figure 4 shows the results for the second largest objective, on the synthetic
data. Figure 5 shows the results for the second largest objective on the Twitter data.

In Figures 6 and 7 we have the percentage of small data candidates and expected maximum for the
selected set, for the Quantile and KR algorithm (respectively), for different quantiles.

23

(a) k = 10 (b) k = 30

Figure 4: Comparing the average performance (errors bars show standard deviation divided by square
root of number of experiments) of the score-based algorithms and Greedy, for selecting k out of
n = 500 distributions, for the expected second largest value objective.

(a) k = 10 (b) k = 30

Figure 5: Comparing the average performance (errors bars show standard deviation divided by square
root of number of experiments) of the KR, quantile and regression methods, for selecting k out of
n = 500 distributions, for the expected second largest value objective.

Figure 6: Percentage of small data candidates and expected maximum for the quantile algorithm, for
different quantiles.

24

Figure 7: Percentage of small data candidates and expected maximum for the KR algorithm, for
different quantiles.

25

