
A RUSP Ablations

0 100 200 300 400 500 600 700

Training Iterations

0

2

4

6

8

10
#

 D
ef

ec
ts

Information Asymmetry - Self Play

0 100 200 300 400 500 600 700

Training Iterations

0

2

4

6

8

10

#
 M

or
e

D
ef

ec
ts

 A
ga

in
st

A
ll-

D
ef

ec
t t

ha
n

A
ll-

C
oo

pe
ra

te Information Asymmetry - Reciprocity

: 0.5, Asymmetric Noise
: 0.5, Symmetric Noise
: 0.5, : 0.5

Figure 8: Information Asymmetry in Iterated Prisoner’s Dilemma. We present evidence in
favor of our hypothesis that information asymmetry is an important factor in emergent reciprocity.
Throughout the main paper, we saw that often higher levels of the maximum uncertainty were better;
however, was it simply important to add noise to the agents’ observations or does it have to be
asymmetric noise? In blue we show the baseline RUSP method (asymmetric noise with uncertainties
sampled independently from U [0,�max]). In green we show the case where now uncertainties and
noise over relationships are not sampled independently, i.e. ⌃i

kj
= ⌃`

kj
and eT i

kj
= eT `

kj
. We see that

in this case, agents never learn reciprocal behavior and converge to the all-defect equilibrium. Next,
in red we show the case where agents are given symmetric uncertainty, but asymmetric noisy samples
from the transformation matrix, i.e. ⌃i

kj
= ⌃`

kj
and eT i

kj
6= eT `

kj
. In this case, we find that agents do

indeed converge to cooperating with each other, but do not learn a strategy as strongly reciprocal as
when trained with asymmetric uncertainty, indicating that they often naively cooperate even with an
all-defect policy that has consistently taken them for a sucker.

0 100 200 300 400 500 600 700

Training Iterations

0

2

4

6

8

10

#
 D

ef
ec

ts

Past Play - Self Play

0 100 200 300 400 500 600 700

Training Iterations

0

2

4

6

8

10

#
 M

or
e

D
ef

ec
ts

 A
ga

in
st

A
ll-

D
ef

ec
t t

ha
n

A
ll-

C
oo

pe
ra

te Past Play - Reciprocity

: 0.5, Past Play
: 0.0, No Past Play
: 0.5, No Past Play

Figure 9: Past Play in Iterated Prisoner’s Dilemma. During training, in 10% of agents in the
game do not use the latest policy weights but sample uniformly from past versions. First proposed
as a double oracle algorithm, (45) it has become standard practice in multi-agent reinforcement
learning. (2,3,4) We find that past play greatly stabilizes the emergence of reciprocity in IPD. We also
found that it was crucial in the emergence of reputation in our indirect reciprocity experiments in
Section 4.2.

15

0 100 200 300 400 500

Training Iterations

0

5

10

15

M
ea

n
R

ew
ar

d

Prisoners Buddy - Mean Reward

0 100 200 300 400 500

Training Iterations

0.0
2.5
5.0
7.5

10.0

M
ea

n
Te

am
Le

ng
th

Prisoners Buddy - Mean Team Length

0 100 200 300 400 500

Training Iterations

0
1

2
3
4

#
 A

ge
nt

s
O

n
Te

am
 P

er
 S

te
p

Prisoners Buddy
Agents On Team Per Step

: 0.0, Fully Randomized Matrix
: 0.0, Integer Partitioning
: 0.5, Fully Randomized Matrix
: 0.5, Integer Partitioning

Figure 10: Integer Partitioning versus Full Matrix Randomization in Prisoner’s Buddy. Here
we ablate the choice we made to sample from all integer partitions when constructing the reward
transformation matrix rather than having the entire matrix randomized and non-zero. We hypothesized
that in games like prisoner’s buddy where teams of 2 are optimal, more often having clique structure
during training could help agents learn to choose that structure when none is give. We cannot
directly verify this is true; however, we do find that partitioning during training does indeed help the
emergence of stable team formation.

B Public Goods and Tragedy of the Commons Grid-Worlds

The Harvest and Cleanup environments (17) (shown in Figure 11) are social dilemma environments
embedded in a grid world. Here, cooperation and defection are not simple atomic actions, but rather
long sequences of actions. Harvest is an example of a public goods game, where agents are tasked
with collecting apples; however, apples respawn more frequently the more apples there are in nearby
cells. Thus, if agents over-harvest the apples, they will no longer respawn. Cleanup is an example of
a public goods game; here apples spawn more frequently when less waste has collected in the water
channel at the top of the play area. Agents must clear the waste in order for apples to grow quickly,
thus introducing the dilemma: who should clean the waste?

In order to apply RUSP to a grid world we add extra channels to the image the agent receives as
observation. In cells containing another agent, we include the RUSP observations in these channels.
We use a simple architecture: 1 convolutional layer (6 filters and a 3 ⇥ 3 kernel), flatten, 1 dense
layer, 1 LSTM layer, layernorm, and finally any action heads. We used opensource code published
with Jaques et al. (19)

In Figure 11 we show results when training with RUSP in these environments. We find that we are
able to achieve comparable results to prior works, (17,23,19) though do not compare directly due to
differences in optimization algorithms used. We found that the RUSP uncertainty was unimportant in
these environments.

16

0 50 100 150 200 250 300 350 400

Training Iterations

0

200

400

600

800

1000

1200

C
ol

le
ct

iv
e

R
ew

ar
d

Cleanup - Public Goods

: 0.0
: 0.25
: 0.5
: 1.0

Selfish Baseline

0 50 100 150 200 250 300 350 400

Training Iterations

0
200
400
600
800

1000
1200
1400

C
ol

le
ct

iv
e

R
ew

ar
d

Harvest - Tragedy of the Commons

Figure 11: Public Goods and Tragedy of the Commons. Here we show renderings of the public
goods games Harvest and Cleanup (taken from Jaques et al. (19)) and the collective reward for RUSP
agents as compared to the greedy baseline. Consistent with past work, the greedy baseline fails to
reach a solution with high collective return. RUSP agents, however, are able to reach cooperative
equilibria with final collective return competitive with previously published methods. We found that
adding uncertainty was unimportant in these environments, meaning that simply training agents with
randomized prosocial but certain preferences was enough.

C Policy Learning

Reinforcement Learning. We consider the standard setting of stochastic multi-player games(54)

where n agents interact in an environment. Agents 1, . . . , n are given a (potentially partial) observa-
tion of the true underlying state via an observation function O : S ⇥ {1, . . . , n} ! Rd. Agents may
each choose an action from their available set A1

, . . . ,A
n, and the next state S

0 is determined by a
possibly stochastic transition function T : S ⇥A

1
⇥ . . .⇥A

n
! S

0. Finally, agents are rewarded
as a function of the transition R : S ⇥ S

0
⇥A

1
⇥ . . .⇥A

n
! Rn. In MARL, agents are typically

tasked with optimizing their own expected discounted future returns Ri =
P

H

t=0 �
t
r
i

t
, where r

i

t

is reward for agent i at time t and � the discount factor. There are many algorithms to optimize
this quantity; in this work we use Proximal Policy Optimization(43) and Generalized Advantage
Estimation. (55)

Optimization Infrastructure. We use a distributed computing infrastructure used in Berner et al. (2)

and Baker et al. (4). CPU machines rollout the policy in the environment, compute the GAE targets
and advantages, and send this data to the pool of optimizers. Optimizers (GPU machines) receive
transitions and perform a PPO update and value network regression update. Periodically, new
parameters are sent to CPU rollout machines, meaning that some amount of data is partially off-policy.
In our work, samples are included in minibatches roughly 5 times, often called sample reuse.

Past Policy Play. During training we play against against past policy versions over the course
of training. This has roots in double oracle algorithms(45) and has become standard practice in
multi-agent reinforcement learning. (2,4,3) In this work unless noted otherwise, each agent has a 10%
probability of being replaced by a policy sampled uniformly from all past versions. We found this to
be extremely important in stabilizing emergence of both direct and indirect reciprocity.

Policy Architecture. We use a similar policy architecture to that used in Baker et al. (4) Each other
agent is treated as an individual entity. The agent’s own observations are concatenated with that of
each other agent, they are individually embedded with 2 dense layers with 128 neurons, and then
they are pooled across the entity dimension such that the result is a fixed size vector regardless of
the number of agents. Finally, this fixed sized vector is passed through one more dense layer, an
LSTM layer (both with 128 neurons), and finally layernorm(56) before action heads are computed.
For action heads that attend over entities (e.g. in Prisoner’s Buddy the choosing action head and in
Oasis the action head that chooses which agent to attack), we concatenate the last activations after the
layernorm layer onto each entity embedding prior to the pooling operations to form a new embedding

17

per entity. These are each then passed through an MLP with shared weights and output dimension 1,
forming the logits per entity over which we take a softmax.

Omniscient Value Functions. Conditioning agents on varying social preferences is akin to training
goal conditioned policies, and we therefore train a Universal Value Function(57) which is also
conditioned on the reward transformation matrix. To reduce the policy gradient variance, we can
make use of an omniscient value function giving it access to privileged information unavailable to the
policy, common practice in both single-agent (58,59) and multi-agent (4,60,61) reinforcement learning.
Agent i’s value function receives additional observations of the true (non-noisy) social preferences T ,
other agents’ noisy observations over their social preferences eT j 6=i, and other agents’ uncertainty
levels ⌃j 6=i.

Optimization Hyperparamters. Each training step is comprised of 60 gradient updates to both
policy and value function parameters at which point new parameters are sent to rollout workers.
Observations are normalized with an exponential moving average (EMA) mean and variance updated
at each optimization step and clipped to be within 5 standard deviations of the mean. We also
normalize the advantages per batch.

Unless otherwise noted below we use the following optimization hyperparameters.

Batch Size 8000 Chunks
BPTT Truncation Length 5 Timesteps
Entropy Coefficient 0.01
Learning Rate 3e-4
Discount (�) 0.998
GAE � 0.95
PPO Clipping 0.2
Normalization EMA � 0.99999

D Environment and Experiment Specific Details

D.1 Iterated Prisoner’s Dilemma

Direct Reciprocity. Agents observe both their own and their opponent’s previous actions.

Indirect Reciprocity. Agents are endowed with an identity vector such that they can be distinguished
from others in the game. On each episode, each agent is given a 16-dimensional identity vector
sampled from U [0, 1] which both they and their opponents can observe. For this experiment, we
increased the horizon to 20 (as opposed to 10 for the direct reciprocity experiments) such that there is
ample time for each agent to act as there are now 3. We also increase the back-propagation through
time truncation length to 20 such that gradient signal can accurately propagate any information on
reputation from prior timesteps.

D.2 Prisoner’s Buddy

Agents choose other agents with an entity-attention mechanism described in the previous section.
Agents have a separate action head determining whether to sit out or to choose another agent, which
is parameterized by a 2-class softmax. In the event that agent chooses to sit out, we mask gradients
coming from the agent choosing action head (described in the previous paragraph) as these gradients
will purely be noise.

Agents observe other agents’ previous choices, and between rounds, agents are given 4 timesteps
during which they can “choose” others but receive no reward such that they have time to break
symmetry without penalty. Agents also observe who they and other agents chose in the previous
round in which reward was given. We increase the mean horizon to 50, such that there are 10 rounds
where reward is given.

D.3 Oasis

The code for this environment was based off of that published with Baker et al. (4) Agents are spawned
in random positions around the play area. They start with 20 health, which is the maximum health

18

they can reach. On each step, they lose 1 health. One food pellet spawns at a random position, and
it can generate between 2.1 and 2.7 health worth of food each step (randomized per episode). If
multiple agents try to eat the food on the same timestep, they will equally divide that health between
them.

Agents can move by applying a force to their x and y axes and around their z axis. At each step they
may also choose one of three actions: eat, attack, or do nothing. If they choose to eat and there is
food nearby, they will regain health. If they attack, they must also choose which other agent to attack
via an attention mechanism. If that agent is close enough and in front of them, that agent will lose 5
health.

They observe other agents via an entity-invariant architecture that process state based representations
of each other agent just as in Baker et al. (4) When an agent’s health is reduced below 0, it “dies”,
receives -100 reward, and is sent to the edge of the play area where it held in place for 100 timesteps
receiving no reward; after this period they are allowed to re-enter play.

The episode has 0.001% chance of ending on each timestep (a mean horizon of 1000 steps), and we
also randomize the floor size on each episode between 1.5 and 6 which we found helped the early
stages of training.

In this experiment we used a batch size of 32,000, which required 8 NVIDIA V100 GPU’s and
2,000 CPUs over the course of approximately half a day. We also set the LSTM BPTT length to 100
timesteps and do not use any past policy sampling.

19

